
Fair Bandwidth Sharing Between Unicast and Multicast
Flows in Best-Effort Networks

Fethi Filali and Walid Dabbous
INRIA, 2004 Route des Lucioles, BP-93,
06902 Sophia-Antipolis Cedex, France

Abstract

In this paper, we propose a simple scheduler called SBQ (Service-Based Queuing) to share the band-
width fairly between unicast and multicast flows according to a new definition of fairness referred as
the inter-service fairness. We also describe a new active queue management mechanism called MFQ
(Multicast Fair Queuing) to fairly share the allowed multicast bandwidth among competing flows in the
multicast queue.

The simulation results obtained for very heterogeneous sources and links characteristics suggest that,
on the one hand, SBQ achieves the expected aggregated bandwidth sharing among unicast and multicast
service, and on the other hand the multicast flows remain TCP-friendly.
Keywords: Multicast fairness, Fair bandwidth sharing, Two classes scheduler mechanism, Active queue
management, Membership Information .

1 Introduction

It is widely accepted that one of the several factors inhibiting the usage of the IP multicast is the lack of
good and well-tested multicast congestion control mechanisms.

The precise requirements for multicast congestion control are perhaps open to discussion given the
efficiency savings of multicast, but it is well known that a multicast flow is “acceptable” if it achieves no
greater medium-term throughput to any receiver in the multicast group than would be achieved by a TCP
flow between the multicast sender and that receiver. Such requirement can be satisfied either by a single
multicast group if the sender transmits at a rate dictated by the lowest receiver in the group, or by a layered
multicast scheme that allows different receivers to receive different number of layers at different rates.

In this paper, we develop a novel approach that helps multicast congestion control mechanisms to
fairly exist with TCP protocol. Our approach is based on a new fairness notion, the inter-service fairness,
which is used to share the bandwidth fairly between unicast and multicast services. Our fairness definition
requires that the aggregated multicast traffic remains globally TCP-friendly in each communication link. In
other words, the aggregated multicast average rate should not exceed the sum of their TCP-friendly rates.
This approach allows the ISPs to define their own intra-multicast bandwidth sharing strategy which may
implement either a multicast pricing policy [15] or an intra-multicast bandwidth allocation strategy [18].

To implement the inter-service fairness notion, we propose a two classes CBQ/WRR-like scheduler
[13]: one for the unicast flows and the other one for multicast flows. We call our scheduler Service-Based
Queuing (SBQ) because it distinguishes between two different transfer services: unicast and multicast
services. SBQ integrates a method to dynamically vary the weights of the two queues in order to match
the expected bandwidth share between unicast and multicast flows. Upon a packet arrival, the router has to
classify and redirect it to the appropriate queue.

The aim of SBQ in the global architecture is to achieve the bandwidth sharing between unicast and
multicast classes. In order to share the multicast bandwidth fairly among all competing multicast flows in
the multicast queue, we propose and evaluate a new active queue management mechanism for multicast

1

flows called MFQ (Multicast Fair Queuing) which represents another key component. MFQ uses a single
FIFO queue to share the bandwidth according to a pre-configured bandwidth allocation scheme. It also
implements a novel bandwidth sharing notion, called Multicast Allocation Layer (MAL). Based on this
notion, MFQ classifies multicast packets into layers and adjusts their weights in order to provide a band-
width sharing being as close as possible to that given by the fluid model algorithm. Since social, economic,
and technical issues lead the ISPs to implement different fairness policies, considering their business strat-
egy, we made the choice that MFQ mechanism will be independent of the fairness function used. Indeed,
the multicast bandwidth allocation module may implement either a multicast fairness function as those
described in [18] or a multicast pricing model [15].

To the best of our knowledge there is no prior work on unicast and multicast bandwidth sharing using a
scheduling mechanism in the open literature. Furthermore, we consider our scheduler a promising avenue
in developing congestion control mechanisms for multicast applications, and so an additional motivation
for this work is to lay a sound basis for further development of multicast congestion control with a small
but efficient help from the network. Note that our proposals described in this paper concern only best-effort
networks and their deployment in DiffServ-like networks are described in [12].

We use simulation to evaluate the effectiveness and performance of our scheme for various sources
including not only TCP, UDP, and multicast CBR sources, but also multicast sources that implement the
recently proposed layered multicast congestion control scheme FLID-DL [21]. Simulations are done for
heterogeneous network and link characteristics and with different starting time, finish time, packet size,
rate, and number of receivers in the multicast sessions.

The simulation results obtained for very heterogeneous sources and links characteristics suggest that,
on the one hand, our scheduler achieves the expected aggregated bandwidth sharing among unicast and
multicast service, and on the other hand the multicast flows remain TCP-friendly.

The body of this paper is organized as follows. In Section 2, we present the inter-service fairness
notion. The fluid model algorithm is presented in Section 3. Section 4 details the characteristics of the
SBQ scheduler and the MFQ buffer management mechanism is described in Section 5. We analyze in
Section 6 the implementation and deployment complexity of our schemes. The performance evaluation of
SBQ in best-effort networks is explored in Section 7. Section 8 summarizes our main findings and outlines
future research directions.

2 Inter-Service Fairness

In the informational IETF standard [22], the authors recommended that each end-to-end multicast conges-
tion control should ensure that, for each source-receiver pair, the multicast flow must be TCP-friendly. We
believe that this recommendation has been done because there is no network support to guarantee the TCP-
friendliness and that it was an anticipated requirement which aims to encourage the fast deployment of
multicast in the Internet. In addition, the multicast congestion control mechanisms that tried to achieve the
TCP-fairness criterion are not always fair with TCP [5, 27] especially under variable network conditions.

We propose a new notion of unicast and multicast fairness called: the inter-service fairness. This notion
is defined as follows.

Definition 2.1 The Inter-service fairness: The multicast flows must remain globally TCP-friendly and not
individually TCP-friendly for each flow. In other words, we should ensure that the sum of multicast flows
rate does not exceed the sum of their TCP-friendly rates.

The TCP throughput rate
�������

, in units of packets per second, can be approximated by the formula
in [14]:

� ������� 	��
�
�
 ����� �������� �
� ��� 	 ������� ��� � (1)

where
� �!�"�

is a function of the packet loss rate
�
, the TCP round trip time

��
�

, and the retransmission

timeout value
��
�#

, where we have set
��
�# �%$ ��
�

according to [24]. Since the multicast analogue of��
�

is not well defined, a target value of

��
&

can be fixed in advance to generate a “target rate”

�'�!�"�
.

R2

R3

6 Mbps

6 Mbps

6 Mbps 6 Mbps

6 Mbps

6 Mbps

6 Mbps

S

S

S

R1

2

3

1

Figure 1: A topology used to illustrate the inter-service fairness definition. All links have the same Round
Trip Time (RTT).

We illustrate the inter-service fairness definition using the topology shown in Figure 1. We consider
two multicast sessions, one from source ��� sending to

� � and the other one from source � � sending to
� �

and one unicast session from source � �
sending to

� �
. Let r � , r � , and r

�
, be the inter-service fair share of

source � � , � � , and � �
, respectively. The TCP-friendly rate is equal to �� � �

Mbps given that all links have
the same RTT. When applying the inter-service fairness definition to share the bandwidth between the three
sources, � � and � � will get together an aggregated fair share equal to

$
Mbps and source � �

will get alone
a fair share r

�
equal to

�
Mbps. Our definition of the inter-service fairness does not specify the way how

the bandwidth should be shared among multicast competing flows. Therefore, each vector (� � , � �) where
� � � � � � $

Mbps is considered as a feasible intra-multicast fair share solution.

3 Fluid Model Algorithm

We consider a network as a set of links � where each link ��� has a capacity 	
����
 . In addition to unicast
flows, we a known number of multicast flows with different number of receivers. All flows (unicast and
multicast) compete for access to communication links. A multicast session ��� is a tuple

��� ����������� � ��������������� ��� �
of session members:

� � is the session sender that transmits data within a network; each � ��� ! is a receiver
that receives data from

� � . Each session contains exactly one sender and at least one receiver. We denote" � the multicast group number # to be a multicast group to which belong one or more multicast sessions.
We write ����� !%$&�'� to indicate that receiver ����� ! is a member of the multicast session �(� and �'�)$ " � to
indicate that the multicast session �(� belongs to group

" � .
We define *+�,� � to be the number of receivers in session �(� whose path toward the source includes

link ��� and define *-� to be the number of all receivers whose multicast delivery tree includes link �.� , i.e.,
*/� �10 � * �,� � .

We now consider a single link with a capacity equal to 	 . We assume 2 active TCP flows and 3 active
multicast flows arriving to the link. The TCP source number 4 sends at the instantaneous rate 5 � �76 � and the
multicast source number 4 sends at the instantaneous rate 8 � �96 � , in bits per second.

Unicast max-min fair bandwidth allocations [3] are characterized by the fact that all TCP flows that
are bottlenecked (i.e., have packets dropped) by a router have the same output rate. We call this rate the
unicast allocation rate of the server; let : �96 �

be the unicast allocation rate at time
6
. In general, if max-min

bandwidth allocations are achieved, each unicast flow 4 receives service at a rate given by 3;4<2 � 5=� �76 � �>: �96 � �
.

For multicast flows, the nature of the expected allocation is not yet well defined. It can be either determined
by a fairness function scheme depending on the group membership [18] or by a multicast pricing model
[15]. To be independent of the allocation strategy used, we define a vector ? �76 � � � ? � �96 � �@? � �96 � �(�������A?CB �76 � �
giving the expected allocation at the instantaneous time

6
. As explained in Section 5.1, the value of ?D� �76 �

may be either a set value or a function of the number of competing multicast groups, the number of flows per
group, and the number of receivers per flow. We call this vector of fair, the multicast allocation vector. If
the fair share is achieved, the multicast flow number 4 receives service at a rate given by 3E4<2 � 8 � �96 � �@? � �96 � � .

Let F �76 �
be the total arrival rate: F �76 � �G0 ��H(I��H � 5 � �76 � � 0 �JH'B�JH � 8 � �76 � . If F �76 � �K	 the congestion

phenomena holds and then the unicast allocation rate : �96 �
and the multicast allocation vector ? �76 �

which
corresponds to the inter-service fairness definition given in Section 2 are the unique solution to

��H'I�
�JH �

3E4<2 � 5 � �76 � � : �96 � � � �JH'B�
��H �

3E4<2 � 8 � �96 � �A? � �96 � � � 	 (2)

subject to: ��H'B�
�JH �

?C� �96 ��� 3=: �96 �
(3)

This constraint is added in order to guarantee that the aggregated multicast bandwidth share rate does not
exceed that of 3 equivalent unicast flows. In other words, each multicast flow will get an average rate
equal to : �96 �

.

If 5 � �96 � �&: �76 �
, then the fraction of bits �����	��

�����	��
���
����
 will be dropped, and the unicast flow 4 will have an

output rate of exactly : �76 �
. The arrival rate to the next hop is given by 3;4<2 � 5 � �96 � �>: �76 ���

.

If 8 � �76 � � ? � �96 � , then the fraction of bits ��������

����������
��������
 will be dropped, and the multicast flow 4 will have
an output rate of exactly ? � �96 � . The arrival rate to the next hop is given by 3E4<2 � 8 � �96 � �A? � �76 � � .

As mentioned above, the multicast allocation vector can be computed using a multicast fairness func-
tion that depends on the number of receivers which are distributed in the multicast delivery tree. Therefore,
the number of downstream receivers in each router of the multicast delivery tree does not remain constant
because some receivers may be reached via different interfaces. Thus, ? �76 �

may be different in the tree
branches even when there is no more competing multicast flow. To illustrate this, we consider two suc-
cessive routers � � and � � composing a branch of the multicast tree of flow 4 and denote by

� � and
� � the

number of receivers downstream to � � and � � , respectively. One can easily write the following inequality� � � � � because router � � is close to the multicast source than router � � . Hence, an immediate inequality
between the flow weights in the two routers holds: ? �� �76 ��� ? �� �96 � which means that the flow weight in
router � � (? �� �96 �) is less than or equal to that in router � � (? �� �76 �).

4 The Service-Based Queuing (SBQ) Scheduler

4.1 Principals and Architecture

In order to implement the fluid model algorithm that integrates our inter-service fairness definition given
in Section 2, we propose to use a CBR/WRR-like scheduler [13] but with only two queues, one for each
class as shown in Figure 2. We call our scheduler SBQ (Service-Based Queuing) because it differentiates
between the packets according to their transfer service: unicast or multicast.

Ex: RED, FRED, etc.

Unicast

Multicast

SBQ
Unicast/
Multicast

Detector

Input Output

MFQ

Figure 2: SBQ scheduler architecture

Before being queued, unicast and multicast packets are classified into two separated classes. We use a
modified version of the Weighted Round Robin (WRR) algorithm which is the most widely implemented
scheduling algorithm as of date [13]. This is due to its low level of complexity and its ease of implementa-
tion which follows hence. In this scheduler, packets receive service according to the service quantum1 of

1The service quantum of a given flow is expressed in term of packets belonging to this flow which could be served in a service
round.

flows to which they belong. Each queue has an associated weight. In every round of service, the number
of packets served from a queue is proportional to its associated weight and the mean packet size.

As buffer management schemes: we use MFQ (Multicast Fair Queuing) mechanism (which will be
detailed in Section 5) for the multicast queue and another queue management mechanism (RED, FRED,
WRED, etc.) for the unicast queue.

The SBQ scheduler’s operation is illustrated by the following example: consider a WRR server that uses
two queues: U (for Unicast) and M (for Multicast) with weights 0.6 and 0.4, respectively. Let the mean
packet size for U and M be 1000 Bytes and 500 Bytes, respectively. The weights are first normalized by
the mean packet size to get 0.6 for class U and 0.8 for class M. The normalized weights are then multiplied
by a constant to get the lowest possible integer. In this case we get 6 and 8 for U and M, respectively. This
means that in every round of service 6 packets are served from queue U and 8 packets are served from
queue M.

4.2 Scheduler Configuration

When configuring WRR to share the link bandwidth between the two classes. At time
6

we configure the
multicast class (M queue) with a weight equal to

���96 �
and the unicast class (U queue) with a weight equal

to
� 	�� ���96 � �

.
To implement our inter-service fairness notion defined in Section 2 and to ensure that the bandwidth

sharing is as close as possible to the fluid model algorithm developed in Section 3, we propose to update
the weight

���76 �
at time

6
as follows:

���76 � � ����� � 0 ��H'B �	��
��H � �������
�	� � �	 � 3 �96 �
 �76 � � 3 �76 ��� (4)

where:
 �������
� is the TCP-friendly throughput rate of the multicast flow 4 estimated using Eq. 1,

� � is the packet size of flow 4 in bytes,

	 is the link capacity in bytes per second,

 �96 �

is the number of active unicast flows at time
6
,

3 �96 �
is the number of active multicast flows at time

6
.

To be globally fair against TCP-connections, the sum of the rates of 3 �96 �
active multicast flows must not

exceed the sum of that of their 3 �76 �
single TCP flows rate over large time scales. This corresponds to the

first term of Eq. 4. The second term of this equation allocates instantaneous bandwidth fairly between
unicast and multicast flows by sharing it proportionally to the number of flows in the two queues. We
believe that using this simplistic and efficient formula of

���96 �
, we can guarantee both short-term and

long-term fairness. Indeed, the two terms used in
���76 �

configuration allow us to ensure both short-term
max-min fairness between active flows based on a local information about the number of flows and a
long-term TCP-friendliness between active sessions based on a global information concerning the rates of
multicast sources.

A possible way to extend the configuration of
���96 �

is to add a third term referring to the maximum
portion of the link capacity that should not be exceeded by multicast flows. This value can be tuned by the
ISP depending on a chosen policy used to handle multicast connections crossing its network. In this case,
the configuration of the weight

���76 �
of the multicast queue will be done as follows:

���76 � � ����� � ����� � 0 �JH'B �	��
�JH � ���!�"�
��� � �	 ��3;492	����� B������ � � � 3 �76 �
 �96 � � 3 �96 � � � (5)

where 3;4<2	����� B������ � is the minimum capacity fraction that should be given to multicast flows 2.

2The weight of the unicast queue is therefore equal to 	!�"$#�%'& .

Upon each change on the number of active flows in the unicast or multicast queue, the weights of both
queues are updated to match the new fairness values. Both queues priority are set to 1.

To compute the value of
���96 �

, each SBQ router has to know the TCP-friendly rate of active multicast
flows and maintain only the aggregated rate to be used in the first term of Eq. 4. The TCP-friendly rate
of a multicast session corresponds to the sending rate of the source. In single rate multicast transmission
protocols, such as TFMCC [28], every receiver periodically estimates its TCP-friendly reception rate using
for example the formula 1 and reports this rate to the source. The source determines the lowest rate among
all receivers rates and uses it to send data downstream to all receivers. In multi-rate multicast transmission
such as RLC [27], WEBRC [20] and FLID-DL [5], the source sends data using several layers. For each
layer, the source uses a specific sending rate depending on the data encoding scheme. The receivers join
and leave the layers according to their reception TCP-friendly reception rates computed using Eq. 1.

For both cases, the source TCP-friendly throughput rate can be included in the IP packet header by
the multicast source or the source’s Designated Router (DR). This technique is largely used by many other
mechanisms such as CSFQ [26], TUF [8] for different purposes. Thus, a SBQ intermediate router gets the
rates from the IP multicast packet headers and computes their aggregated value according to Eq. 4 or Eq.
5.

4.3 Weights updating time

In this sub-section, we answer the question: How often we update the weights? In other words, what is the
time-scale on which we should look at the bandwidth allocation. There is a tradeoff between complexity
and efficiency when choosing the time-scale value. Indeed, larger time-scale are not suitable for short-lived
TCP connections which are the most of TCP connections currently in the Internet3. On the other hand, what
happens on shorter time-scales if we consider fairness on longer time-scale. We do not claim that there is
an optimal value of the time-scale which can be applied for each type of traffic and which leads to both less
complexity and good efficiency.

The time-scale is designed to allow the update of weights to take effect before their values are updated
again. It should be therefore longer than the average round trip time (RTT) among the connections passing
through the router. In the current Internet, it can be set in the range from 	
 ms up to 	 sec, so this property
can guarantee that the unfairness can’t increase very quickly and make the queue parameters stable. But
this parameter can’t be set too big so that the scheduler weight can’t be adaptive enough to the network
dynamics.

We will show in the simulation section that the use of a time-scale equal to 	 sec, which we believe an
accepted value, can provide a good tradeoff between efficiency and complexity.

4.4 Counting unicast connections

To update the value of the weight used in our scheduler computed using Eq. 4, we need to know the number
of multicast and unicast flows. While the former is provided by MFQ, the latter could be obtained through
the use of a flow-based unicast active queue management mechanism such as FRED [19]. However, unicast
flow-based AQM are not available everywhere and most of current routers use a FIFO or RED [12] schemes
which don’t provide the number of unicast connections. That’s why, we propose hereafter a simple method
which we use to estimate the number of unicast connections in the unicast queue.

SBQ counts active unicast connections as follows. It maintains a bit vector called � of fixed length.
When a packet arrives, SBQ hashes the packets connection identifiers (IP addresses and port numbers) and
sets the corresponding bit in � . SBQ clears randomly chosen bits from � at a rate calculated to clear all
of every few seconds. The count of set bits in � approximates the number of connections active in the last
few seconds. Appendix B contains pseudo-code for this algorithm. The SBQ simulations in Section 7 use
a 5000-bit � and a clearing interval (

6 ����� ���) of 	
 seconds The code in Appendix B may under-estimate
the number of connections due to hash collisions. This error will be small if v has significantly more bits
than there are connections. This method of counting connections has two good qualities. First, it requires

3Internet traffic archive: http://www.cs.columbia.edu/~hgs/internet/traffic.html

no explicit cooperation from unicast flows. Second, requires very little state: on the order of one bit per
connection.

5 The Multicast Fair Queuing (MFQ) Mechanism

Two modules compose our mechanism:

The multicast bandwidth allocation module which computes the expected fair share for each active
multicast flow 4.

The buffer management module which uses a single FIFO queue and interacts with the first module
to decide the drop preference in order to achieve the expected bandwidth sharing.

In Figure 3, we show a simplified architecture of MFQ. In the following sections, we explore and discuss
the two modules.

Allocation Module
Multicast Bandwidth

C
la

ss
ifi

er

Buffer Management
Module

FIFO Queue

Routing
Multicast

Module

Input link Output link

Figure 3: A simplified MFQ architecture

5.1 Multicast Bandwidth Allocation Module

We first present a general framework for the multicast fairness notion. Then, we enumerate some inter-
multicast fairness candidates functions that could be implemented by the ISPs. We consider the two exist-
ing multicast service models: the ASM (Any Source Multicast) [10] model and the SSM (Single Source
Multicast) model [16].

5.1.1 General Framework

The multicast bandwidth allocation module determines the link capacity fraction5 that should be allocated
to the flow to which the incoming packet belongs. We develop hereafter a general framework of the
multicast bandwidth allocation module. As we have pointed out earlier, the multicast fairness function
may depend on the number of groups, the number of flows per group, and the number of receivers per flow.
We assume that each ISP has a single and clearly defined multicast bandwidth sharing policy. This policy
can be configured in all or some routers inside its network.

Using the network model introduced in Section 3, we define the bandwidth ? � � , in bits per second,
allocated to group

" � , in link � � as follows:

?C� � ��� � � " � � � 	 � (6)

where
� � � � � is the inter-group multicast fairness function that implements the bandwidth sharing policy

among active multicast groups. In other words,
� � � " � � � 	 � is the maximum bandwidth, in bits per second,

that should be allocated to group
" � in link � � .

4A multicast flow is considered instantaneously active if it has at least one packet in the queue.
5Throughout this dissertation we use the terms “link capacity fraction”, “flow weights”, and “flow bandwidth allocation”, inter-

changeably.

In the ASM (Any Source Multicast) service model [9], a multicast group may have one or more sessions
(flows) from different sources that share the same communication link. The bandwidth allocated to flow �
of the multicast session �(�+$ " � in link � � is given by the following expression:

:D� � � � � � �>!�� �D!�$ " � � � ?C� � (7)

where ? � � is computed using Eq. 6. The function
� � � � � determines the fraction of the bandwidth which has

already been allocated to group
" � and that should be given to the session � � . We call this function the

intra-group multicast fairness function. Both
� � and

� � depend on the number of downstream receivers
of each multicast session that belongs to the same group. The functions

� � � � � and
� � � � � must satisfy the

following properties:

for each multicast group

" � :
�� � � � " � � � 	 , and
�� � � � �>! � � 	 for each �D!�$ " � ;

in each link � � : 0 � � � � " � � � 	 , and

0 !����
	�� �
� � � � ! � � 	 for each group

" � .

Our main focus in this paper is not to find the “optimal” functions
� � � � � and

� � � � � , however we will show
that MFQ can adapt itself according to the bandwidth allocation function used, the number of receivers per
flow, the number of active flows, and the number of active multicast groups.

5.1.2 Examples of inter-multicast fairness functions

In the ASM service model [9], it is possible to have two or more different sources sending to the same
multicast group

" � . Therefore, it makes sense to use the function
� � to share the bandwidth between

multicast competing groups. Let’s assume that the capacity 	 � of link � � is equitably shared between
them, then the group

" � gets a bandwidth share ? � � equals to
� � � " � � � 	 � � �
 � 	 � , where � is the total

number of distinct groups. If
� � is a logarithm function of the number of receivers, the session � � $ " �

will get a bandwidth share equal to : � � � ����� ��� I��0 ����� ������ � ����� ��� I��
 � �
 � 	 � , where 3 � is the number of sessions

that belong to group
" � , and 2 ! is the number of receivers of session � ! .

In the SSM service model [16], each sender may use a different group address and the multicast session
is identified by the couple (sender address, group address). Thus, there is only one source per multicast
group and there is therefore no need of using function

� � . In the case of using a logarithm bandwidth
sharing function, the session ��� will get a bandwidth share equal to :'� � � ����� ��� I �0 ���������� � ����� ��� I �
 � 	 � , where 2
is the total number of competing sessions.

5.2 Buffer Management Module

5.2.1 Module Description

The role of the buffer management module is to make the queuing/dropping decision of each incoming
multicast packet. In the MFQ design phase, we have taken some key decisions in order to have a suitable
mechanism independent of the network and sources characteristics and especially the variation of flows
weights6, source behavior when a packet is lost, and sources rates.

We use a single FIFO queue with a pre-configured maximum size in packets. For each multicast active
flow, we maintain a flow state containing:

the number of packets belonging to this flow which are waiting to be served,

the current flow weights which is provided by the bandwidth allocation module.

If the flow is new or if there is a change on the number of receivers, we get the new flow weight from
the bandwidth allocation module. We assume that we know the number of downstream receivers for each
active multicast flow and in each router belonging to the multicast delivery tree. In [11], we emphasized on

6In the case of using a fairness function which depends on the number of downstream receivers, all flows weights change when at
least one receiver joins or leaves one of the multicast active sessions.

this issue and we propose an extension to the multicast service model to count the number of downstream
members at the senders as well as at the intermediate routers in the multicast delivery tree.

To prevent the queue from being monopolized by high-rate or bursty multicast sources, we use a pre-
configured threshold variable thrsh. If the mean queue size7 is less than thrsh the packet will be accepted
only if the number of waiting packets belonging to the flow does not exceed the allowed number (its MAL
value or its MAL value plus one more packet depending on the generated number u as explained above).

If the mean queue size is more than the threshold thrsh or the queue is full, we accept the packet only
if it belongs to an inactive flow. If the queue is full, we drop the incoming packet if its flow is active,
otherwise we drop randomly a packet from the queue and we queue the incoming packet. By this way we
allow a new multicast flow to become active and we remove the bias against bursty sources. If the packet
was accepted, we update the flow state.

5.2.2 The Multicast Allocation Layer (MAL) Scheme

In order to achieve a fine-grained queuing/dropping, we introduce a new scheme, called Multicast Alloca-
tion Layer (MAL) which is a key component of the MFQ’s buffer management module. We define a MAL
as follows:

Definition: A MAL is a set of flows that may have the same or different expected allocation in term of
the link capacity fraction (the bit-level fairness), but they have the same allocation in term of the maximum
number of packets (the packet-level fairness) allowed to be present at the same time in the queue.

We assume that at the time
6
, there are 2 active multicast flows in the queue and that the flow � � has a

weight equal to � � which is provided by the bandwidth allocation module.
In the Internet, the size of packets generated by a source may be different to that of packets generated

by other sessions given that this parameter depends on the nature of the session (data, audio, video, etc.)
and on the codecs used to generate the media. To take into account the fact the packet sizes are different,
the weights � � are normalized according to the packet size of all competing flows. So, we define the MAL
mapping function

�������
as follows:

��� � �	� � ���������	� � � �������	� ID� ��
 ��
A� 	 � � � ������� � �.4<3 �
� � � ��
 ���
��� � � � � ��� � � � � �.4<3��

where
� �.4<3 is the queue size in packets. Two flows � � and ��� belong to the same MAL number � only if

� �
��� � � � � � � ����� � ��� � � � .
Given that the number of active flows change, the flows weights and the set of flows per MAL are

dynamic. A MAL which has a non-empty set of flows is considered active. We can have at most
� �.4<3

active MALs in a queue of a size equal to
� �.4<3 and in this case each MAL contains only one flow.

Let us explain the MAL scheme through the example given in Figure 4. In the x-axis, we show the
distribution of

� 	 active flows in the different MALs. As we can see, there are 5 active MALs with various
size in term of the number of active flows that contains each MAL. The flows belonging to the same MAL
have different weights drawn in the y-axis by vertical arrows. For example, flows � ��� and � � belong to the
MAL number

$
which has � active flows { ��� , � ��� , � ��� , � � , � � � }.

To do a fine grain dropping, MFQ maintains for each active MAL the identity of the flow which has
the highest weight among other flows in the same MAL. As we will detail in the next section, MFQ
discriminates between flows belonging to the same MAL in order to achieve the expected fair share.

One can make the observation that when the flows weights are equal, the bandwidth is equitably dis-
tributed among flows given that there is only one active MAL including all active flows. We believe that the
use of the MAL scheme will be also helpful even for unicast flows in differentiated networks by providing
a fine-grained dropping for unicast packets belonging to the same DiffServ class when their corresponding
flows have different weights 8.

7We use the same method as RED (Random Early Drop) [12] to estimate the mean queue size ������� . The formula for calculating
the average queue length �	����� is �	�����! # !!"$#�&&%'�	�����)(
"*# , +-,."*#/, . The weighted moving average formula, with weight"*# is used to filter out transient congestion. The value of "0# is set to 0.002 in all simulations.

8The details about how to use the MAL scheme in DiffServ networks for unicast flows is, of course, out of the scope of this work
on multicast bandwidth sharing and it will be investigated in future works.

MAL 1

MAL 2

MAL 3

MAL 5F
lo

w
s

w
ei

g
h

ts

Flows

MAL 4

f ff f5 1 10f f f 8f f 14f f 4 f 20 f f 319 f16 ff 2118f7 1713f12915112

Each MAL contains a dynamic set of flows

6f f

Figure 4: An illustration of the Multicast Allocation Layer (MAL) scheme

Given that we do queuing using per-packet manner and not per-bit manner, MFQ tries to guarantee
that the maximum number of packets allocated to each active flow 4 remains always less than the integer
value of its expected allocation in term of the capacity fraction � � multiplied by

� �.4<3 , the maximum
queue size in packets, i.e.;

� � � � � �,4<3�� . However, two flows that have different weights may have the
same maximum number of packets allowed to be queued. In the example given in Figure 4, the maximum
number of allowed packets of flow number

�
and flow number

�
 is equal to 4 because
� � � � � �,493 � �

� � ��� � � �.4<3 � � $
where � � �
@�
 � , � ��� �
@�
 � � and

� �.4<3 � � $
. To guarantee a more fine-grained

queuing, we enhance the buffer management module by using the MAL scheme that we have described
above.

For every arriving packet, the router starts by identifying the multicast flow and the MAL to which it
belongs. Let flow number 4 be the flow to which belong the arriving packet and # be the number of its
MAL. We generate a random value
 $��
@� 	�� and we allow the flow 4 gets one more packet than its MAL
value if
 � � � ��� F��	� # � � 3�

�>F)��������
 6 4�� 2 , where � F���� # � � 3�
��DF �7������
 6 4�� 2 is the maximum weight of
flows belonging to the MAL number # . As consequence, we ensure that each two flows that belong to the
same MAL will get randomly and proportionally to their fair share one more packet than their MAL
values and we ensure a much more fine-grained bandwidth sharing. If the packet was accepted, we update
its MAL state.

For completeness, we give the pseudo-code of the algorithm in Appendix A.

5.3 MFQ and Layered Multicast

When evaluating new network control mechanisms one must evaluate the impact of the proposed mecha-
nisms on application performance. We discuss in this section the MFQ impact on layered multicast appli-
cation performance.

When the multicast session using a layered transmission scheme, the data is split into layers and each
layer sends to a different group address. Depending on the loss rate seen by the receivers, they join and
leave layers to adapt to the network situations. We demonstrate how MFQ can achieve a priority dropping
without explicitly assigning priorities to the transmission layers.

Assuming a multicast source decodes data into 2 transmission layers and that there are
� � receivers

subscribed to the layer � � (� � is the base layer). Given that receivers who join the layer � � should join all lower
layers � � ����� �J� � � , we can easily write the following inequality:

� I � �
� ����� � � � � � � � �

� ����� � � � � � � .
Without loss of generality, we assume the use of the LogRD function to allocate the bandwidth fairly

between multicast flows. The weight of the transmission layer number # is � � � ����� �����0 ���������� � ����� ��� �

. We can

easily write the following inequality:

� I � �
� ����� � � � � � � � �

� ����� � � � � � � � (8)

We can then write:

���
��� � � I � � ��� ����� � � ����� � � � � � ������� � � � � � ��� ����� � ������� � � � � � ������� � � � � � (9)

where
������� � � � � is the MAL to which belongs the flow associated to the transmission layer number 4 .

Thus, it is clear that layers with lower number of receivers (lower priority layers) will see a loss rate higher
than those with higher number of receivers and in particular the base layer � � (highest priority layer).

Similar approaches that need a network-support including priority dropping [1] schemes require that
the network support as many loss priority levels as layers. In addition, to ensure a fair allocation of network
resource, they also require that each session uses the same set of priorities than others. Furthermore, priority
dropping provides no incentives for receivers to lower their subscription level.

The development of a multicast-congestion control mechanism that uses MFQ to ensure a priority
dropping between flows corresponding to the transmission layers is one of our future works that we will
investigate.

6 Complexity and Implementation Issues

The deployment of WRR-like algorithms in the Internet may raise some open questions for large deploy-
ment. The scalability issue is the main barrier of their large deployment in the Internet. We mean by the
scalability, the ability of the mechanism to process a very large number of flows with different characteris-
tics at the same time.

We believe that our scheduler can be deployed in large networks thanks to two mainly key points:

it uses only two queues, so we need to classify only two types of service: unicast and multicast
flows. This task has already been done in part by the routing lookup module before the packet being
queued, and

all unicast flows are queued in the same queue.

It is important to note that we usually associate the flow-based mechanisms support with complexity and
scalability problems since they require connection specific information. These concerns are justifiable
only in point-to-point connections, for which routing tables do not maintain connection-specific state. In
multicasting, routing tables keep connection specific state in routers anyway; namely, the multicast group
address refers to a connection. Thus, adding multicast flow specific information is straightforward and
increases the routing state only by a fraction.

Comparing to CBQ/WRR, our mechanism is less complex to be deployed in the Internet. It should be
noted that even CBQ is now supported by a large number of routers and many research works such as [25]
demonstrate its deployment feasibility.

At each “SBQ router”, we need to maintain a state per active multicast flow. Upon a packet arrival,
the router needs to (1) determine the flow and the MAL number to which the arriving packet belongs, (2)
update the flow state and the MAL state parameters such as the number of packets of the corresponding
flow and the allocation of this flow provided by the multicast bandwidth sharing module. As shown in
[25], these operations and even the packet classification could be efficiently implemented because it only
consists of reading the flow ID for IPv6 or the pair (source IP address, multicast destination address) for
IPv4.

At branch points in the multicast tree, SBQ routers must record additional information needed by
the multicast bandwidth allocation module such as the number of downstream receivers. The processing
complexity at SBQ routers is increased in two (minor) ways. First, during the lookup-operation for each
packet arrival, useful information must also be retrieved from the routing table entry. Second, before
accepting the datagram, SBQ should verify that the flow is authorized to get more packets in the queue.
While our mechanism would benefit from better bandwidth allocation functions, it is explicitly designed to
be robust to coarse implementation of the inter-multicast fairness function using the MAL scheme described
in Section 5.2.2.

Additionally, SBQ can also interact with window-based as well as rate-based multicast congestion
control by sending back to the source an ECN-like (ECN - Explicit Congestion Notification) or another
specific message in order to signal its fair rate. This issue is out of the scope of this paper.

It should also be noted that the source address and the destination group address are not only needed
by the MFQ mechanism but also by the multicast routing lookup module which has to determine the list of
outgoing interface(s) for each incoming multicast packet.

One major advantage of our approach is that it minimizes the complexity of designing multicast con-
gestion control schemes. Indeed, the network guarantees that the multicast flows will share fairly the
bandwidth with competing unicast flows. Moreover, our scheme provides to the ISPs a flexible way to
define and implement their own intra-multicast fairness strategy. The simulation results presented in the
next section will confirm our claims.

7 Simulation Methodology and Results

We have implemented the SBQ scheduler in the ns-2 network simulator [23] and we conducted several
experiments to evaluate its performance for different traffic characteristics.

7.1 Single Bottleneck Link

We validate our scheme for a topology consisting of a single congested link connecting two routers 2 � and
2 � and having a capacity 	 equal to 	 Mbps and a propagation delay � equal to 	 ms. As shown in Figure
5, sources are connected to router 2 � and all destinations are downstream to router 2 � .

1 Mbps 1ms Sources
FLID−DL

CBR
UDP TCP

Router Router
n2n1

Destinations

Random delay and bandwidth

Figure 5: A single congested link simulation topology. The congested link has a capacity of 1 Mbps and
1ms propagation delay.

We configure our scheduler in the bottleneck link from router 2 � to router 2 � . The maximum buffer
size

� �.4<3 of both queues is set to
� $

packets. Other links are tail-drop and they have sufficient bandwidth
to avoid packets loss. We consider responsive and non-responsive sources and heterogeneous links with
different delay and bandwidth.

We assume 32 multicast sources and 32 unicast sources that compete to share the link capacity. We
index the flows from 	 to

� $
. The 32 multicast sources are divided as follows:

Flows from 1 to 16: CBR sources. These sources implement no type of congestion control mecha-
nism (neither application-level nor transport-level).

Flows from 17 to 32: FLID-DL (Fair Layered Increase-Decrease with Dynamic Layering) [5] sources.
As we have outlined earlier, the protocol FLID-DL uses a Digital Fountain [6] at the source in which
the sender encodes the original data and redundancy information such that receivers can decode the
original data once they have received a fixed number of arbitrary but distinct packets. The FLID-DL
simulation parameters are the same as those recommended in [5]9.

Each source uses 17 layers encoding, each layer is modeled by a UDP traffic source. In Tab. 1, we give the
values of different parameters used.

As outlined earlier, we use MFQ as the active queue management in the multicast queue. Without
loss of generality, we utilize a receiver-dependent logarithm policy (the LogRD policy) proposed in [18] to
share the bandwidth between multicast flows. This policy consists in giving to the multicast flow number 4
a bandwidth fraction equal to

����� ��� I �0 � � ����� ��� I �

, where 2 � is the number of receivers of flow # .

9These parameters are used in the ns implementation of FLID which is available at http://dfountain.com/
technology/library/flid/.

Table 1: FLID-DL parameters used in simulation

slot_time_

1000

0

0.1

17

0.5

1.3c_mult_

number_of_layers_

simulated_rtt_

rng_speed_

packet_payload_ the number of bytes in packet

the random generator’s speed

for tcp rate value calculation

the multiplicative factor

Description ValueParameter

the number of layers

the slot time

The 32 unicast sources are composed as follows:

Flows from 33 to 48: UDP sources. These unicast sources transmit packets at different constant bit
rates (CBR unicast sources).

Flows from 49 to 64: TCP sources. Our TCP connections use the standard TCP Reno implementation
provided with ns-2 network simulator.

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 10 20 30 40 50 60 70 80 90 100

S
ch

ed
ul

er
 w

ei
gh

ts
 v

al
ue

s

Simualtion Time (in sec)

Unicast queue weight
Multicast queue weight

Figure 6: Scheduler weights variation in function of the simulation time

Unless otherwise specified, each simulation lasts 100 seconds and the weight updating period is set to�
sec. Other parameters are chosen as following:

packet size: the packet size of each flow is randomly generated between 500 and 1000 bytes.

starting time: the starting time of each flow is randomly generated between 0 and 20 seconds before
the end of the simulation.

finish time: the finish time of each flow is randomly generated between 0 and 5 seconds before the
end of the simulation.

rate: the rate of both unicast and multicast UDP flows is randomly generated between 	
 Kbps and	

 Kbps.

number of receivers: the number of downstream receivers of the 32 multicast sessions is randomly
generated between 1 and 64.

The four first unicast UDP and multicast CBR flows are kept along the simulation time (start time =
 sec,
and finish time = 	

 sec) to be sure that the link will be always congested. Each one of these flows is
sending at a rate equal to

� ��� !��� � 	 � � Kbps. Note that the active queue management mechanism used in
the unicast queue is the responsible for protecting TCP connections against bursty unicast sources. MFQ
is able to protect multicast responsive flows (FLID-DL flows) because, as we have explained above, it uses
a pre-defined threshold and it privileges accepting packets belonging to new flows. Initially (at

6 �
 sec),
the weight

�
of the SBQ scheduler (see Eq. 4) is set to
A� � �

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 F
lo

w
 T

hr
ou

gh
pu

t (
in

 M
bp

s)

Simulation Time (in sec)

Unicast: UDP and TCP
Multicast: CBR and FLID-DL

Figure 7: The variation of the average unicast and multicast average rate in function of the simulation time
over 500 msec

In Figure 6, we plot the variation of unicast and multicast queue weights in function of the simulation
time. As we can easily see the value of weights change during the simulation because they depend on the
number of active unicast and multicast flows in the two queues of the SBQ scheduler. The multicast weight
increases when the unicast weight decreases and vice versa.

We look at the inter-service fairness defined in Section 2 which is the main performance metric of our
scheme. To this end, we compare the average unicast and multicast rates over �

 3���� � of simulations. We
show in Figure 7, the variation of the unicast and the multicast average rate in function of the simulation
time.

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

N
or

m
al

iz
ed

 A
ve

ra
ge

 A
gg

re
ga

te
d

R
at

e

Time-scale (in 10 * sec)

Effect of the Time-Scale

Figure 8: Sensitivity of SBQ performance on the time-scale value

As we can observe, the results match exactly what we expect. Indeed, two main observations can be
derived from the plots of Figure 7. Firstly, there is a fluctuation on the average aggregated rate for unicast
and multicast flows which due to the random start and finish time of all flows. Secondly, the multicast
average rate is very close to the unicast average rate. This demonstrates the ability of SBQ to share the

bandwidth fairly between unicast and multicast flows according to our inter-service fairness notion defined
in Section 2.

In order to evaluate the impact of the time-scale value on the performance of SBQ, we measure the
normalized aggregated rate (average unicast rate/average multicast rate) obtained for various values of the
time-scale. In Figure 8, we show the variation of this metric in function of the time-scale value. We can
conclude that using a 	 sec time-scale allows to reach

� ���
of the performance of SBQ. In other words, the

use of an updating period equal to 	 sec leads to a good tradeoff between complexity and efficiency.
In a new experiment, we use the network configuration of Figure 5 and we suppose that the flow 4 has

exactly 4 receivers. We set the start time of all flows to 0 and their finish time to 100 seconds. We plot
in Figure 9(a) and Figure 9(b) the obtained and the expected multicast bandwidth sharing for linear and
logarithm bandwidth allocation policy, respectively. As show in these figures, MFQ matches closely the
fair share for both policies despite the heterogeneity of the multicast sources.

0

0.02

0.04

0.06

0.08

0.1

5 10 15 20 25 30

B
an

dw
id

th
 (

M
bp

s)

Flow Number

MFQ
Expected BDW

(a) Using a linear allocation function

0

0.02

0.04

0.06

0.08

0.1

5 10 15 20 25 30

B
an

dw
id

th
 (

M
bp

s)

Flow Number

MFQ
Expected BDW

(b) Using a logarithm allocation function

Figure 9: 32 multicast flows. Flows form 1 to 16 are FLID-DL sources and those from 17 to 32 are CBR
sources

We claimed earlier that our scheduler is flexible in the sense that its performance is independent of the
intra-multicast fairness function. To argument this claim, we compare in Figure 10 the normalized rate over
�

 3 � � � of simulation time for linear (LIN), logarithm (LOG), and receiver-independent (RI) bandwidth
sharing policies which are defined in [18]10. As we can see the normalized average rate is always varying
around 	 (between
A� � � and 	 � 	 �) for the three cases.

We study the bandwidth shared among multicast flows in the multicast queue of the SBQ scheduler
provided by the MFQ buffer management mechanism. The multicast flow number 4 is assumed to have
exactly 4 downstream receivers (members). We use a logarithm multicast bandwidth allocation scheme and
we vary the number of UDP unicast flows from 1 to 16 flows. In Figure 11, we show the bandwidth fair
rate obtained for the 32 multicast flows. It is very clear from the plots that the shape of flows rate curves
follows a logarithm function of the number of downstream receivers given that it was assumed to be equal
to the flow index.

7.2 Multiple Bottleneck Links

In this sub-section, we analyze how the throughput of multicast and unicast flows is influenced when the
flow traverses � congested link. We performed two experiments based on the topology of Figure 12. We
index the links from 	 to � .

10Assume � active multicast flows and denote by ��� the number of downstream receivers of flow � , the RI, LIN, LOG bandwidth
sharing policies consist to give to flow � a bandwidth share equal to �� ,

� �0 � � � , and �
	��
�� � �0 ��� �
	��
�� � ��� , respectively.

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
at

e:
 U

ni
ca

st
/M

ul
tic

as
t

Simulation Time (in sec)

LIN multicast fairness
LOG multicast fairness

RI multicast fairness

Figure 10: The normalized rate when modifying the intra-multicast fairness function over 500 msec of
simulation time

0.01

0.015

0.02

0.025

0.03

0.035

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

B
an

dw
id

th
 (

in
 M

bp
s)

Multicast Flow Number

1 UDP Flow
 4 UDP Flows
 8 UDP Flows
12 UDP Flows
16 UDP Flows

Figure 11: Rates of multicast flows when using a logarithm multicast bandwidth sharing function

L
R1 R2 Rj Rj+1 Rk+1

1 L kLj

M
ai

n
de

st
in

at
io

ns

M
ai

n
so

ur
ce

s

UDP ka .. kjUDP ja .. jjUDP ja .. (j−1)jUDP 1a .. 1j

UDP 2a .. 2jUDP 1a .. 1j UDP ja .. jj UDP (j+1)a .. (j+1)j

Cross traffic links

Figure 12: Topology for analyzing the effects of multiple congested links on the performance of SBQ

We use exactly the same traffic parameters as the case of single bottleneck described above and we
measure the aggregated bandwidth received by each service type (unicast or multicast) in function of the
number of congested links. Again, a link � � , � � # � 	
 , is kept congested by setting its capacity 	 � to
	 � � � � �
 Kbps. The capacity 	 � of the link number 	 is set to 	 Mbps. 10 cross CBR sources send at
200 Kbps on each of the congested links. This cross traffic enter the path in one of the router and exists at
the next.

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10 12 14

N
or

m
al

iz
ed

 A
ve

ra
ge

 A
gg

re
ga

te
d

T
hr

ou
gh

pu
t

Number of Congested Links

Variation of the number of congested links

Figure 13: The normalized rate as a function of the number of congested links

We plot in Figure 13, the variation of the normalized average rate as a function of the number of
congested links. As we can see, the normalized average rate remains close to 1 even when the number of
congested increases.

We also extended the unicast fairness index introduced by Jain in [17] to multicast traffic. Instead of
the expected unicast fair rate, which is always the same for unicast connections, we use that of multicast
flows which may differ from one flow to another depending on the fairness function implemented in the
bandwidth allocation module. The multicast fairness index is then computed as follows:

	�� 	
2
�JH'I�
��H �

�
6 � � 6 �6 �

�
(10)

where 2 is the number of active multicast flows,
6 � and

6 � are the expected and the obtained bandwidth share
of the multicast flow 4 , respectively. We plot in Figure 14, the variation of the multicast fairness index as
a function of the number of congested links. As we can see, the index value remains close to 1 even when
the number of congested links increases for RI, LIN, and LOG fairness functions. As expected in [18], the
LOG fairness function has better fairness index variation than the two other functions.

8 Conclusions and Future Works

In this paper, we have presented a CBQ-like scheduler for bandwidth sharing between unicast and multicast
flows. The scheduler uses two queues: one for unicast and the other one for multicast. We used a simplistic
and efficient dynamic configuration method of the WRR scheduler to achieve the expected sharing based
on a new fairness notion called the inter-service fairness.

The buffer management mechanism used in the multicast queue was MFQ, a new scheme that we have
detailed in this paper and which provides the expected multicast bandwidth sharing between multicast flows
using a single FIFO queue.

To validate our scheme, we simulated a very heterogeneous environment with different types of sources,
starting times, sending rates, delays, and packets sizes. We demonstrated that SBQ achieves the expected
results in the sense that the bandwidth is shared fairly between unicast and multicast flows according to our
new definition of fairness.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

F
ai

rn
es

s
In

de
x

Number of congested links

RI Fairness Function
LIN Fairness Function

LOG Fairness Function

Figure 14: MFQ performance in multiple bottleneck link

Future work could evaluate the performance for other types of multicast traffic that include others
application-based or transport-based congestion control mechanisms. Indeed, there is a big debate going on
in today’s the network research community on whether "end-to-end"argument is still the golden rule, or just
dead [7]. The current Internet is built on top of the "end-to-end" philosophy. End systems are responsible
for constructing better than best-effort service, therefore the network is often drawn as a big cloud with
end system (PCs, etc) attached to it, with its inner workings hidden from the end users. However, this is
not always true in today’s Internet, where servers and proxies for specific applications (the web, mainly)
are installed inside the network in attempt to improve the application performance. Therefore many people
believe the "end-to-end" service model is dead, since lots of services can be done better inside the network
than by the end system.

In a multicast network, it is very important that the bandwidth is allocated fairly among the multicast
sessions. An appealing approach that accommodates heterogeneous receivers and adapts to congestion is
to encode the data onto multiple layers and transmit each layer on its own multicast group.

Layered multicast protocols typically use a receiver-driven approach in which the end-systems decides
which layers should be delivered [5, 27].

An alternative approach is to use a SBQ scheme where the network, rather than the receiver, decides
which layers (flows) should be delivered. When congestion arises, the network drop the least important
packet (e.g; that has the less number of downstream receivers) first. An important benefit of SBQ is stable
and fair allocation of bandwidth. Because packet losses are concentrated at the highest layer(s) (given their
lower number of receivers), the highest layers absorb the majority of transient losses caused by short term
congestion.

We do not claim that such type of mechanism can be easily deployed in the today’s Internet, how-
ever minimizing the complexity of developing multicast congestion control mechanisms between the end
hosts and the network can encourage the development of added-value multicast applications. Indeed, SBQ
allows the ISPs to differentiate between unicast and multicast flows according to a pre-defined multicast
bandwidth allocation function and a novel unicast and multicast fairness definition (inter-service fairness)
which guarantees that each multicast flow remains globally tcp-friendly.

Acknowledgments

The author would like to thank the anonymous reviewers for valuable, detailed, and careful comments and
feedback.

References

[1] S. Bajaj, L. Breslau, and S. Shenker, Uniform versus priority dropping for layered video, In Proc. of
SIGCOMM’98, pp. 131-143, September 1998

[2] T. Bates, et al., Multiprotocol Extensions for BGP-4, IETF, RFC 2283, February 1998.

[3] D. Bertsekas and R. Gallagher, Data Networks, Englewood Cliffs, NJ, Prentice-Hall, 1992.

[4] S. Blake, et al., An Architecture for Differentiated Services, IETF, RFC 2475, December 1998.

[5] J. Byers, M. Frumin, G. Horn, M. Luby, M. Mitzenmacher, A. Roetter, and W. Shaver, FLID-DL:
Congestion Control for Layered Multicast, In Proc. of NGC 2000, pp. 71-81, November 2000.

[6] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege, A digital fountain approach to reliable distribution
of bulk data transfer, In Proc. of ACM SIGCOMM’98, September 1998.

[7] D. Clark and B. Marjory, Rethinking the Design of the Internet: The End-to-End Arguments vs. the
Brave New World, ACM Transactions on Internet Technology (TOIT), Volume 1, Issue 1, pp. 70-109,
August 2001.

[8] A. Clerget, and W. Dabbous, TUF : Tag-based Unified Fairness, In Proc. of IEEE INFOCOM 2001,
April 2001.

[9] S. Deering, Multicast routing in a datagram internetwork, Ph.D. thesis, 1991.

[10] S. Deering, Host Extensions for IP Multicasting, IETF, RFC 1112, August 1989.

[11] F. Filali, H. Asaeda, and W. Dabbous, Counting the Number of Members in Multicast Communication,
in Proc. of the Fourth International Workshop on Networked Group Communication (NGC 2002),
Boston, USA, October 2002.

[12] F. Filali, L. Fazio and W. Dabbous, Enabling Unicast and Multicast Differentiation in DIffServ Archi-
tecture, Submitted for publication.

[12] S. Floyd, V. Jacobson, and V. Random, Early Detection gateways for Congestion Avoidance,
IEEE/ACM TON, V.1 No.4, pp. 397-413, August 1993.

[13] S. Floyd and V. Jacobson, Link-sharing and Resource Management Models for Packet Networks,
IEEE/ACM TON, V. 3, No.4, 1995.

[14] S. Floyd, M. Handley, J. Padye, and J. Widmer, Equation-based congestion control for unicast appli-
cations, In Proc. ACM SIGCOMM’00, August 2000.

[15] T. N.H. Henderson and S. N. Bhatti, Protocol-independent multicast pricing, In Proc of NOSS-
DAV’00, June 2000.

[16] H. Holbrook and B. Cain, Source-Specific Multicast for IP, IETF, Internet draft, draft-ietf-ssm-arch-
01.txt, November 2002.

[17] R. Jain, The art of computer systems performance analysis, John Wiley and sons QA76.9.E94J32,
1991.

[18] A. Legout, J. Nonnenmacher, and E. W. Biersack, Bandwidth Allocation Policies for Unicast and
Multicast Flows, IEEE/ACM TON, V.9 No.4, August 2001.

[19] D. Lin and R. Morris, Dynamics of Random Early Detection, In Proc. of ACM SIGCOMM’97,
September 1997.

[20] M. Luby, V. Goyal, and S. Skaria, Wave and Equation Based Rate building block, IETF, Internet draft,
draft-ietf-rmt-bb-webrc-04.txt, December 2002.

[21] M. Luby, L. Vicisano, and A. Haken, Reliable Multicast Transport Building Block: Layered Conges-
tion Control, IETF, Internet draft, draft-ietf-rmt-bb-lcc-00.txt, November 2000.

[22] A. Mankin, et al., IETF Criteria for evaluating Reliable Multicast Transport and Applications Proto-
cols, IETF RFC 2357, June 1998.

[23] S. McCanne and S. Floyd, Ucb/lbnl/vint network simulator (ns) version 2.1b6, http://
www-mash.cs.berkeley.edu/ns/, June 2000.

[24] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, Modeling TCP throughput: a simple model and its
empirical validation, In Proc. of ACM SIGCOMM, Vancouver, Canada, September 1998.

[25] D. C. Stephens, J.C.R. Bennet, and H. Zhang, Implementing scheduling algorithms in high speed
networks, IEEE JSAC, V. 17, No. 6, pp. 1145-1159, June 1999.

[26] I. Stoica, S. Shenker, and H. Zhang, Core-Stateless Fair Queueing: A Scalable Architecture to Ap-
proximate Fair Bandwidth Allocations in High Speed Networks, In Proc. of SIGCOMM’98.

[27] L. Vicisano, L. Rizzo, and J. Crowcroft, TCP-like congestion control for layered multicast datda
transfer, In Proc. of IEEE INFOCOM’98, San Francisco, CA, March 1998.

[28] J. Widmer and M. Handley, TCP-Friendly Multicast Congestion Control (TFMCC): Protocol Speci-
fication, IETF, Internet draft, draft-ietf-rmt-bb-tfmcc-00.txt, November 2001.

Appendix A: The pseudo-code of MFQ mechanism

Variables:

fs_ : Flow State {receivers, active, qlen, fairness}
ls_ : Layer State {maxFlowID, maxAllocation }

Algorithm:

/* determine the multicast flow ID */
flowID � classify(pkt)

/* update the flow state if needed*/
if (flowID is not active) {
fs_[flowID].receivers � getReceivers(p)
fs_[flowID].count++
newflow � 1

} else (if the number of receivers has changed)
update the number of receivers and the total number

/* get the expected allocation */
weight � getAllocation(flowID])

/* determine the MAL to which belongs the current flow */
int mal_ � max(1,(int)(weight*thrsh))

/* compute the number of packets to add to the expected allocation {0 or 1} */
double u � Random::uniform();
if (u > f / ls_[mal_].maxAllocation)
p � 0;

else p � 1;

/* update the mean queue size */

update the mean queue size(qlen)

/* the MFQ dropping decision as explained in Section 5.2 */
if (qlen >= qlim)
if (! newflow) drop(pkt)
else{

pktd � getPacketToDrop()
update_mal_state(pktd)
update_flow_state(pktd)
drop(pktd)
enqeue(pkt)

}
else {
if (fs[flowID].qlen < mal_ + p)
if (! newflow && qlen > thrsh) drop(pkt)
else enqeue(pkt)

else
drop(pkt)

}

/* update the flow and the MAL states if the pkt was not dropped */
if (pkt was not dropped) {
update_mal_state(pkt)
update_flow_state(pkt)

}

Appendix B : The algorithm for counting unicast connections

Connection count(packet p)
h = H(p)
if � �������	�

� ��������

� � ��

� �
current time����������� = ��� ��������� ��!#"%$� &%��'(!*)

if � ��������� > 0� � �,+ � =t
for - ��

to ����������� - 1
r = random(0... �.� ��� - 1)
if � � /0����

� � /0���	�
� � ��

return (N)

Variables:

1 � � - � Vector of �.� �2� bits. � � - � indicates if a packet from a connection with hash
- has arrived in the last

� �(���(��� seconds.
1 �

Count of one bits in � .
1 � � �,+ � Time at which bits in � were last cleared.
1 /

Randomly selected index of a bit to clear in � . Constants: �.� ��� Size of
� in bits; should be larger than the number of expected connections.

1 � �����(�2� Interval in seconds over which to clear all of � .
1	3 �546�

Hashes a packets connection identifying fields to a value between 0 and
� � ��� .

