
Optimizing content distribution through adaptive distributed caching

Peter Backx*, Thijs Lambrecht, Bart Dhoedt, Filip De Turck, Piet Demeester

Department of Information Technology (INTEC), Ghent University-IMEC, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium

Received 5 August 2004; accepted 5 August 2004

Available online 11 September 2004

Abstract

Web caching is a widely used technique to decrease Internet traffic and server load, as well as to reduce client-perceived response times.

Most currently deployed caches are almost isolated entities, with very limited cooperation between them. In this paper, we use the power of

active networking to implement a much more fine-grained cooperation. Active networking allows to intercept and monitor passing request

packets and to place, on demand, a cache at virtually every node in the network, giving a broad range of possible caching locations and

offering considerable content placement opportunities. A scalable and fast heuristic is proposed for inter-cache cooperation. The performance

of the heuristic is evaluated through simulations, implemented on a test network and shown to be optimal for tree topologies.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Active networks; Web caching; Cooperative caching; Content distribution
1. Introduction

The goal of web caching is threefold: to decrease Internet

traffic, to reduce the load on servers and to decrease the

latency as perceived by the users. Substantial improvements

are already visible with the current widespread use of proxy

caches. However, caches currently are mostly individual

entities that either do not cooperate or cooperate in a very

basic fashion. Traditionally, caches can only monitor traffic

at a single point in the network and cannot optimize traffic

with a more general network-wide scope. For this reason

cooperative web caching was introduced, in which caches

are connected together and exchange information, usually

about the pages they are caching. Although, cooperative

web caching might not always be suitable (Ref. [1] shows

that traditional cooperative proxy caching is only beneficial

at a small to medium-sized city scale), we propose a finer

level of cooperation, with reduced network overhead and

lower computational complexity than many other coopera-

tive cache architectures [2–5].

With our Adaptive Distributed Cache (ADC) architec-

ture we aim at providing a solution that can quickly and
0140-3664/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2004.08.007

* Corresponding author. Tel.: C32 9 264 9991; fax: C32 9 264 9960.

E-mail address: peter.backx@intec.ugent.be (P. Backx).
automatically adapt to new situations and request patterns

that can scale to whatever size of cooperation and network is

needed and that can be easily and incrementally deployed in

existing networks. In contrast to most conventional schemes

where caches are located at the edges of networks, we use

the flexibility of active networks [6] and propose to deploy

caches throughout the network. Active networks enable

protocols to automatically install code and state on the

routers inside the network, enabling them to host caching

functionality. Caches inside the network have been studied

and a number of advantages have been shown [7–9]. Section 2

presents a much more detailed overview of related work.

Active networks provide us with several benefits. First,

instead of statically installing caches at nodes inside the

network caches can be installed on demand when a first

request to cache data at that point is made. Secondly they

allow to intercept and monitor packets (in this case HTTP

request packets) without additional changes to existing

network protocols. Third, the active approach allows for a

lightweight multicast protocol that is used for coordination

between caches without the need to rely on IP multicast

(which is not deployed at large scale) or unicast (which

incurs substantial additional network overhead). Further-

more, the software, such as the caching heuristic, can be

updated on the fly.
Computer Communications 28 (2005) 640–653
www.elsevier.com/locate/comcom

http://www.elsevier.com/locate/comcom

P. Backx et al. / Computer Communications 28 (2005) 640–653 641
Content delivery companies can deploy the ADC

architecture in order to enhance the performance of their

content delivery networks by reducing overall network

traffic, used cache space and load on servers.

The remainder of this paper is structured as follows:

Section 3 investigates the caching problem and gives an

Integer Linear Programming (ILP) formulation that can be

used to calculate the optimal solution in principle. This

approach, although yielding optimal solutions, is only

applicable to relatively small networks due to its compu-

tational complexity. Section 4 details a heuristic enabling

our adaptive and distributed caching approach built on

the concept of pushing web pages from the server into the

network towards the optimal caching location. The

performance both in terms of network cost as well as

concerning incurred network delay are investigated. Section

5 addresses the performance of an implementation of this

heuristic by comparing experimental results to simulations

and to optimal solutions calculated by solving the ILP

problem. Furthermore, the influence of parameters specific

to web traffic on the performance is analyzed.
2. Related work

Although considerable work has been done in the area

of designing cooperative caching architectures, these

efforts are focused on cooperating edge caches, usually

with at most two or three layers of hierarchy. The Internet

Cache Protocol (ICP) [10] is one of the earliest protocols

that enables cooperation between web caches. On a cache

miss, an ICP query is sent to all caches at the same level

in the hierarchy. The cache then waits for a hit from one

of these sibling caches or until all siblings have reported a

miss. In the latter case the request is sent up the hierarchy,

either to a parent cache or to a server. The disadvantage of

this protocol lies in both the additional network load that

is generated on every cache miss and the additional delay

that is introduced when waiting for a reply from sibling

caches.

Cache Digests [2], implemented in the Squid web proxy

[3], addresses these issues. On regular intervals caches

exchange a summary of their contents and in this way a cache

can know what pages are available in the other caches. While

this approach partly solves the drawbacks of ICP, the main

disadvantage here lies in the fact that a cache does not

necessary have an up-to-date view of the contents of its

sibling caches. Therefore, a cache could falsely assume a

sibling has a page, while actually this page has already been

removed. Also the way in which the cache digests are built

(using Bloom filters) can cause false hits [4].

Both Cache Array Routing Protocol (CARP) [11] and

Web Caching with Consistent Hashing [5] use hash values

of requests to select a cache responsible for caching the

requested page. Because there is a direct mapping between a

request and a cache location, a request can be immediately
routed to the correct cache (although that cache might still

not have that page available). Furthermore pages will only

be cached once, freeing up extra cache space. It is very

important that the hash function is carefully designed such

that the requests are evenly distributed over all caches. It is

also necessary to make sure that when a cache is added as

few pages as possible will map to a different cache

(preferably only the pages that will be handled by the new

cache should change mapping).

Cisco’s Web Cache Coordination Protocol (WCCP) [12]

also uses hash values, but at a lower layer. A router

intercepts HTTP requests and uses the IP address of the

destination to calculate a hash value which is then used to

decide which cache will handle the request. The advantage

is that caches themselves are offloaded because the hash

calculations are now spread over the routers. However,

since routers have only access to the destination IP address

all pages on the same server will be cached by the same

cache.

A number of studies [1,13,14] are available on the

performance of these cooperative cache architectures.

However, since caches are deployed at the edge, the cost

of retrieving a document from a cache different from the

local cache is almost as high as getting it from the server,

both in terms of network usage and network delay (in the

assumption that the network is not congested). Conse-

quently, the conclusion of these studies is that cooperation

between edge caches has very little influence on the client

perceived latency. However, the main rationale for adopting

cooperative caching lies in the fact that network traffic is

distributed between caches and server, avoiding server hot

spots (and associated delays and congestion).

Recent research [15,16] on hierarchical cooperative

cache systems has shown advantages when caches are

placed en-route between client and server. The cache

hierarchy and routing is constructed such that, a request that

is sent higher up in the cache hierarchy is also sent closer

towards the server. This means the penalty of a cache miss

(both in network usage and additional latency) will be a lot

smaller compared to the traditional architectures discussed

above. Zhang et al. [17,18] use the same idea, but also add

adaptability to the architecture. The layers and relations in

the hierarchy are automatically adapted to the network

situation. Their approach resembles the techniques that will

be discussed in this paper, however, the usage of multicast

groups greatly complicates the protocols necessary to make

this cache architecture work. [8] takes this another step

further and places caches inside the network at routing

nodes. The ability to cache at virtually any node in the

network reduces the latency considerable even when caches

are relatively small, however, the influence on the network

usage is not investigated. [7,9] also place caches inside the

network, but only a limited number of caches is placed at

optimal locations. Both conclude that caching inside the

network can produce a substantial network traffic reduction

even compared to traditional proxy caches at the edge,

P. Backx et al. / Computer Communications 28 (2005) 640–653642
but no solution is offered how caches can be dynamically

relocated (when optimal locations change due to changing

request patterns).

In Ref. [19], Iyer et al. discuss distributed cooperative

caching at a different layer. Instead of cooperation over the

Internet, cooperation over a local LAN is proposed. In fact

the architecture could replace the local proxy cache with

smaller caches at every users PC. They showed a

performance equal to a large centralized proxy cache as

soon as individual cache sizes are around 100 MB, with the

added benefit that their system is much more fault tolerant

then a centralized cache.

A number of papers have already used active networking

as a means to implement their proposed web caching

architecture, such as the above mentioned [8]. The main

benefit of active networking is that any node on the network

can be used as a cache because it can monitor and process

packets and has storage space available for caching.

Ref. [21] uses active networks to route packets towards

correct caches. This has the advantage that there is no need

for storage space on the actual active network, but the

disadvantage that packets incur additional delays when they

are routed of the shortest path from client to server. Ref. [20]

is one of the most recent papers to investigate the

applicability of Active Networking to web caching, but

only tries to adapt the existing two layer cooperative

caching architectures.
Fig. 1. The caching problem: a server offers a number of pages for download. The

clients download some of the pages (the boxes next to the clients show the reques

caches in order to minimize network usage and client-experienced latency.
3. The caching problem: optimal solution

Fig. 1 shows a general overview of the one server

caching problem. A server contains a number of pages

(p1,.,pn) that can be downloaded by the clients. Each client

requests a number of these pages with a certain frequency.

They connect to the server through a network of routers

and/or active nodes. The problem at hand is to minimize the

cost for delivering the requested pages to the clients. If no

caches are used, pages are sent from server to client via the

shortest path and the cost is the network cost associated with

using the network links to transmit the pages to the

appropriate clients. However, if an active network is

considered, all the nodes inside the network are active and

can be used as caches to store copies of one or more of the

pages on the server. Storing pages inside the network will

reduce the network cost because pages are closer to the

clients. However, cached pages need to be reloaded from the

server to the cache whenever they are changed on the server.

This incurs an extra cost, which we call the refresh cost.

The goal now is to determine whether and where it is

useful to cache a certain page. This optimization can be

based on a range of criteria. Most important are the latency

perceived by clients and the load on server. Reduced latency

for the clients will give users quicker access to the

information they need, while reduced server load will

allow a server to handle more clients with the same

hardware and network connection.
pages offered are shown in the box connected to the server (p1,.,pn). The

ted pages) through a network of routers/active nodes. These can be used as

P. Backx et al. / Computer Communications 28 (2005) 640–653 643
In our work we focus on optimizing the network traffic,

because this is the fundamental driving factor behind both

these criteria. With reduced network traffic and caches in the

network, the pages will be cached closer to the user and

experience less congestion, which results in shorter delays

for the clients. Globally minimizing network traffic will also

reduce the traffic to and from the servers and thus the server

load.

3.1. Formal problem formulation

3.1.1. Notations

Given a network G with a topology consisting of a set

of nodes V of size jVj, connected by a set of edges E of

size jEj. With every edge e2E corresponds a cost per unit

of bandwidth c(e). For this paper we presume that

bandwidth is not the restricting factor or, in other

words, the capacity of the edges is unlimited. This also

means that caches can load pages along the shortest path

to the server. The cost of the shortest path from the server

to node n is K(n). With every node n2V corresponds a

capacity v(n) which indicates the size of the cache in node

n. One of the nodes is selected to be the server node s. It

holds a set of pages P of size jPj. Every page p2P is

characterized by its size s(p) and its refresh rate r(p).

Finally we have a set of client nodes D of size jDj. With

every client d2D and each page p2P corresponds a

request rate f(d,p) (which may be zero if the client does

not request that page).

All variables are binary:
†
 z(n,p) is 1 iff node n is used for caching page p.
†
 h(d,p,e) is 1 iff edge e is used to send page p to client d.
†
 z 0(n,d,p) is 1 iff node n is used for caching page p needed

by client d. In other words, client d gets page p from the

cache n. For every (client, page)-pair there is only one

cache location (see constraint (2)).

There are jVj$jPj z-variables, jDj$jPj$jEj h-variables and

jVjjDjjPj z 0-variables.

3.1.2. The objective function

To optimize the network traffic, two factors should be

considered: first the request cost, i.e. the network traffic

generated by actually sending the file to a requesting client

either from a cache or from the server and secondly the

refresh cost, which is the network traffic caused by

updating files in the caches that have been changed on

the server.

The objective function that needs to be minimized shows

these two components:X
e2E

X
p2P

X
d2D

cðeÞsðpÞf ðp; dÞhðd; p; eÞ

C
X
n2V

X
p2P

zðn; pÞsðpÞrðpÞKðnÞ (1)
The first term is the request cost: a request for page p by

client d will cause network traffic to increase by an amount of

c(e)s(p) on every edge e between the client and the cache (or

server) that serves the request for that client and that page.

The second term is the refresh cost. As discussed previously

the shortest path (with a cost of K(n) per unit of bandwidth)

can be used for transferring pages from server to caches.

The variables are subject to a number of constraints: the

server node s is certainly a cache and must contain all pages:

zðs; pÞ Z 1; cp2P (2)

For every page p requested by client d (i.e. f(d,p)s0),

there has to be exactly one node that caches the page for that

client (this node can also be the server):X
n2V

z0ðn; d; pÞ Z ½f ðd; pÞs0?1 : 0�; cd 2D; cp2P

(3)

If a page is cached in a node for one or more clients

(i.e. z 0(n,d,p)Z1 for at least one page p requested by a client

d at cache n) we need to set up a cache in that node.

z0ðn; d; pÞKzðn; pÞ%0; cd 2D; cp2P; cn2V

(4)

There should be a path from client to cache or server for

every page that a client requests. Thus if an outgoing edge of

a node n is used for a page p for client d, also an incoming

edge should be used for that page and client, unless this is

the source node (i.e. either the server or a cache).X
e2outðnÞ

hðd; p; eÞK
X

e2inðnÞ

hðd; p; eÞ Z z0ðn; d; pÞ;

cd 2D; cp2P; cn2Vnfdg ð5Þ

Requested pages arrive at the client but are not forwarded

further.X
e2inðdÞ

hðd; p; eÞCz0ðd; d; pÞ Z ½f ðd; pÞs0?1 : 0�;

cp2P; cd 2D ð6Þ

X
e2outðdÞ

hðd; p; eÞ Z 0; cp2P; cd 2D (7)

The capacity of the nodes is restricted:X
p2P

zðn; pÞsðpÞ%vðnÞ; cn2V (8)

3.2. Solution through integer linear programming

Each of the above constraints can be written in a formal

way as follows:

Li%Ci,x%Ui; i Z 1;.; 7 (9)

where x represents the one-dimensional vector of all con-

catenated decision and auxiliary variables of the problem.

P. Backx et al. / Computer Communications 28 (2005) 640–653644
Ci is a two-dimensional matrix with as many columns as

there are z variables and as many rows as there are

constraints, stated by formula (2)–(8) above. Ci is typically

a sparse matrix. Li and Ui are, respectively, the lower and

upper bound one-dimensional matrices for the ith constraint.

An ILP optimization routine has been developed, which first

calculates the numerical values of the seven constraint

matrices Ci (iZ1,.,7) for the particular problem instance,

together with the coefficients of the variables in the

objective function (1). The optimal values for the decision

variables z(n,p), h(d,p,e) and z 0(n,d,p) are then calculated,

using a Branch and Bound based ILP solution approach

[22]. Note that the auxiliary variables need to be calculated

as well during the optimization process. From the found

values of the decision variables, the optimal caching

location for the considered problem instance can be easily

deduced.

While this formulation enables us to calculate the

optimal solution, actually finding a solution does have a

number of disadvantages:
†

Fig

tho

req
All information is needed in advance: not only the refresh

rates of the pages at the server but also the request rate of

the users. Since this is impractical, this optimal solution

cannot be used in a real situation (on could try and

estimate request rates). It does, however, give an

indication of ‘where the caches should have been

placed’. That is why results obtained by ILP are used

as benchmark for the heuristic (see Section 4).
†
 A lot of processing power, time and memory is needed

because of the large constraint matrices, coefficients and

variables.
†
 All necessary data needs to be gathered at a central point,

thus becoming a single point of failure.
. 2. A distribution tree with a constant out degree of E and height L. Every cache

se caches at level LK1) and to exactly E caches at level jK1 (or to E clients if t

uest rate l.
An advantage of this approach is that it does not only

look for caching locations along the shortest path from

client to server (unlike the heuristic that is discussed in

Section 4). It can also use caches that are not on the route

from client to server. Although this allows for additional

optimization, it does complicate protocol design, if one

were to use this approach on a real network.
4. Practical solution to the caching problem

through a heuristic

In view of the practical problems associated with using

an ILP based solution, a heuristic was developed to solve the

problem. Section 4.1 looks at a solution for one very specific

case, which is then expanded into a general distributed

heuristic in Section 4.2. Finally the incurred delay by using

en-route caching is analyzed. This is an important point

because every additional en-route cache adds an additional

delay on a cache miss.
4.1. Optimal caching location in a regular tree

Fig. 2 shows the simplified network we are considering in

this section. Two simplifications are made. First the degree

of each node is constant: every cache is connected to a

parent cache or the server and to exactly E child caches or

clients. While the distance between clients and server is L

hops. Secondly, every client requests a page with the same

request rate l. These symmetric assumptions have the

consequence that if it is decided to cache a specific page at a

certain cache in the tree, it should be cached at all the caches

at that level in the tree. Requests are always forwarded along
at level j is connected to exactly one cache at level jC1 (or to the server for

he cache is at level 1). Clients request pages from the server with an average

P. Backx et al. / Computer Communications 28 (2005) 640–653 645
the shortest path up the tree and sibling caches (caches at the

same distance from the server) are not queried to keep

overhead low.

The request cost for a page cached at level j and

requested l times per second by each client is given by:

Breq Z jELl (10)

In Eq. (10), the cost for using a link is considered to be the

same over the entire network and equal to 1, implying that a

single request for a page will cost j (in general the cost for

using a link is not necessarily exactly 1 and can be chosen at

will, however, this only multiplies the equations by a cons-

tant factor and obviously does not affect the conclusions).

The refresh cost for a page cached at level j which needs

to be refreshed m times per second is dependent upon the

number of location that it is cached at, which in turn

depends upon the level at which the page is cached.

Brefr Z ðL K jÞEðLKjÞm (11)

The total network cost B is given by the sum of these two

and an example of this is shown in Fig. 3. Clearly there is an

optimal caching level at which the total network cost is

minimal. By calculating the differential we can obtain an

expression for the optimal caching level j0:

DB

Dj

����
jZj0

Z ELl KELKj0 m½L K j0 K ðL K j0 C1ÞE� Z 0

(12)

Implying:

l

m
Z

ðL K j0ÞðE K1ÞCE

Ej0
(13)

We denote the request rate seen by a single cache at level

j as lj, and hence:

lj Z Ej
l (14)

Therefore,

lj0

m
Z ðL K j0ÞðE K1ÞCE (15)
Fig. 3. The costs involved with caching a page at level j: request cost,

refresh cost and total cost for LZ11, EZ3 and l/mZ1.
This expression defines a threshold value for caching

pages, based on the local request rate lj and refresh rate m.
4.2. Threshold push heuristic for en-route caching

The Threshold Push Heuristic is inspired by the results

obtained in the previous section. Every cache is actually a

transparent en-route cache, meaning that it can monitor the

requests passing by and build a database of request rates for

all passing pages. If the page is cached in this cache, it will

send the reply to the client and not forward the request. The

heuristic itself works on one very basic principle: If the total

request rate for a page exceeds a given threshold, the cache

will send a request to all adjacent caches to start caching this

particular page thereby reducing the load on this cache.

Because transparent en-route caching is used we only

have to consider the distribution tree from server to clients.

While the network might have cyclic paths and cross-

connections, the heuristic only works along the distribution

tree, which is made up of the shortest paths from the server

to all the clients. In principle no data is sent on any of the

links that are not part of the distribution tree, however, in

practice it is not always possible to know exactly what links

are part of what distribution tree (it is, of course, different

for every server). Such knowledge can be built up by caches

by monitoring on which links requests have been received.

This does mean that in the initial phase some superfluous

message might be exchanged, however, this has no long-

term effect on performance. Fig. 4 shows a small part of this

tree. It is important to note that this distribution tree is not a

regular tree such as the one in the previous Section 4.1.

When minimizing network traffic, the influence of two

parameters should be taken into account: the rate at which

clients request pages and the refresh rate, which is the

number of times a page has to be reloaded from the server,

because it was changed.

Fig. 4 illustrates the threshold push heuristic: a cache at

level j will have to decide if it is cheaper (in terms of

network cost) to push the pages towards level jK1. This can

be done be comparing the network costs B of caching at

level j and jK1:

Bj Z dcðjÞlj CdðjÞm; BjK1 Z dcðj K1Þlj CEdðj K1Þm

(16)

With d(j) the distance between the cache at level j and the

server and dc(j) the average distance between that cache and

the clients and E the number of caches connected to the

cache at level jC1. These two equations can be written

down for every page on the server.

A page should be pushed if it is cheaper to cache it at a

lower level, thus whenever the following inequality holds:

ðE K1ÞdðjÞCE!
lj

m
(17)

Fig. 4. Threshold push heuristic. The node decides whether or not to push a page further into the network based on the refresh and request frequencies.

P. Backx et al. / Computer Communications 28 (2005) 640–653646
(since in a tree topology dc(jK1)Zdc(j)K1 and

d(jK1)Zd(j)C1)

By using this mechanism, the pages will gradually move

to the aggregation point where there is a balance between

the price to fulfill the requests being made and the cost of

refreshing the page.

It is now easy to conclude that indeed the general

threshold defined in Eq. (17) pushes the pages towards the

optimal caching location for the specific regular distribution

tree that we considered in Section 4.1. The push condition

can be simplified because d(j)ZLKj:

ðE K1ÞðL K jÞCE!
lj

m
(18)

If a page is cached at level j this means that the caches at

level jC1 pushes the page, while those at level j do not:
ðE K1ÞðL K j K1ÞCE!
lj

m

ðE K1ÞðL K jÞCER
lj

m

5 ðE K1ÞðL K j K1ÞCE!
lj

m
% ðE K1ÞðL K jÞCE ððAÞ! ðBÞ% ðCÞÞ

8>><
>>: (19)
Clearly the formula for the optimal caching location in

Section 4.1 holds for these conditions. Fig. 5 shows the

different quantities that we have discussed in this section.
Fig. 5. THP bounds and request rate. If the ratio between request rate and

refresh rate exceeds the upper bound the cache at level j will push the page

(such is the case for caches at levels 4 and 5 in the figure). If it is bellow the

lower bound the page should not have been pushed (such as for caches at

levels 1 and 2). The values used to create the above figure are: EZ3, LZ5

and l/mZ0.1.
4.3. Delay reduction

The caching architecture and the active network that

we use will incur extra delays in every node in the

network. In order for our caching architecture to be viable

it should, at the very least, not be slower then the usual

proxy cache. That is why this section analyzes the

speedup. The speedup is the ratio of the time Tproxy to

get a page without cooperative caching (but with a single

proxy cache) and the time Tcooperative to fetch a page with

cooperative caching (such as our adaptive distributed

caching architecture):
S Z
Tproxy

Tcooperative

(20)

Tproxy is the average time to get a page when only local

proxy caching is used. This value only depends on the hit

ratio of the proxy cache and the time it takes to get the

request:

Tproxy Z h0Tlocal C ð1 Kh0ÞTs (21)

with
†
 h0 the hit ratio of the local proxy cache
†
 Tlocal the average time to get a requested page from the

local proxy cache
†
 Ts the average time to get the page from the server.

P. Backx et al. / Computer Communications 28 (2005) 640–653 647
To calculate Tcooperative we make the following

assumption:
The time to get a page from a cache increases linear by

the hopcount, and fetching a page from a cache i hops

away will take:

Ti Z Tlocal C iTstep (22)

with Tstep the average increase in response time between

caches one hop away.
Getting a page from the server, L hops away, with our

architecture will take TlocalCLTstep, which is most likely

higher than Ts, since extra processing needs to be done at

every node.

Our architecture first searches the local proxy cache and

then forwards the request along the shortest path towards the

server, checking each cache at every hop. If the requested

web page is found in a cache it is sent to the client. With the

above assumption in mind Tcooperative is:

Tcooperative Z
XLK1

iZ0

himiðTlocal CiTstepÞ

 !
CmLðTlocal CLTstepÞ

(23)

with
†
 hi the hit rate of the cache i hops from the local cache.Q

†
 m0Z1 and mi Z jZ0/ðiK1Þð1KhjÞ
†

Fig. 6. Speedup versus cache hit ratio for values of Tstep/Ts ranging between

0.1 and 0.5.
L the number of hops between the local cache and the

server.

The speedup is now given by:

S Z
h0

Tlocal

Ts
K1

 �
C1PLK1

iZ0 himi
Tlocal

Ts
C iTstep

 �
 �
CmL

Tlocal

Ts
CL

Tstep

Ts

 �
(24)

We now introduce another assumption:

The cache hitrate h is the same for all caches. This is a

rather strict assumption. The literature is not clear on this

point. Ref. [16] (among others) predict and measure a

substantial higher hit ratio for caches higher up in the

hierarchy, while others, such as Ref. [13], have the exact

opposite results. While caches higher up in the hierarchy

will not receive requests for popular pages that are

already cached lower in the hierarchy, they do benefit

from the fact that they receive an aggregated stream of

requests and thus server a larger population with more

requests and possibly more pages that are beneficial for

caching. Our simulations show that this assumption does

not always hold in practice. It is dependent on the exact

request and refresh rate distributions, the individual
cache sizes and the public interest (or document sharing).

Especially the latter is important in this regard and this is

investigated in Section 5.5.2.

The speedup can now be further simplified: miZ(1Kh)i

and hiZh

SZ
h Tlocal

Ts
K1

 �
C1PLK1

iZ0 hð1KhÞi Tlocal

Ts
Ci

Tstep

Ts

 �
 �
Cð1KhÞL Tlocal

Ts
CL

Tstep

Ts

 �
(25)

We now use the following estimates:
†
 Tlocal=TsZ1=20: This value is based on Ref. [1], which

estimates the last byte latency of server response at 1.9 s

and the latency of a proxy cache hit at 10 ms. Thus, our

estimate is rather pessimistic and the overall perform-

ance of our caching architecture will most likely be better

than the results shown below.
†
 LZ19. Monitoring measurements performed in the

framework of this study on a test infrastructure of 346

web servers have shown an average hopcount of 19.4.

Fig. 6 demonstrates the speedup for different values of

Tstep/Ts. At Tstep/TsZ0.2, this means that it will take almost

four times longer to get a page from the server when our

cooperative caching architecture is used than when only a

single proxy cache is used:

Ts;cachesZ
Ts

20
C

19Ts

5
Z

77

20
TsZ3:85Ts

Although, in reality, the increase in response time will

very likely not be this high, it does demonstrate the potential

of our architecture, which outperforms a basic proxy cache

as soon as the cache hit ratio exceeds 0.2. When the

cache hit ratio gets very high the advantage of the caching

architecture is lost, because almost all pages will be cached

at the local proxy cache.

Fig. 7 shows the maximum achievable speedup for

different values of Tstep/Ts and the hitrate to achieve this

Fig. 7. Maximum achievable speedup and hitrate needed at the caches to

achieve that speedup.

P. Backx et al. / Computer Communications 28 (2005) 640–653648
maximal speedup. At high values (and thus long additional

delays in every node) the achievable speedup is very small

and the hitrate needed is high.

While we have made a number of assumptions and

estimates, we can conclude from this section that it is

possible to suffer a substantial additional delay on every hop

and still, on average, deliver the requested pages quicker.
5. Simulations and experimental results

5.1. Protocol design

A protocol implementing the THP heuristic was designed

to evaluate the performance on an actual test network.

Packets on an active network are usually called capsules,

because they not only contain data but also code. The

protocol itself consists of three types of capsules:
†
 The most basic capsule is the data capsule that transports

web pages from one node to another; there is no need for

active functionality here. In the actual implementation

data capsules are only used to set up a TCP connection

between the client and the data source (either the server

or a cache), in order to reliably transfer the page.
†
 The request capsule contains the largest part of the

protocol code: it is sent from the requesting client

towards the server along the shortest path. The capsule

will update the request rate at each node that has an

active cache and it checks the cache database if the page

is available.
†
 The push capsule is broadcasted by a cache to its

neighbors whenever the request rate of a page has

reached the threshold. The broadcasting can either be

done through some existing network support or can be

implemented as an active service.

The refresh rate can also be estimated from monitoring

data, but it is easier and more convenient to use the HTTP
header fields that are provided by the server, such as the

‘cache-control’ fields, which is what the implementation

uses.

This protocol was simulated in the JavaSim simulation

environment [24] and implemented using the ANTS

execution environment [26]. Both use an identical protocol

that is empowered by the functionality offered by the active

nodes:
†
 Most importantly is of course the memory and/or disc

storage space to store monitoring data and cached pages.
†
 A minimal amount of processing power is required for

lookup operations and for calculating the request rate.
†
 Services that exploit this functionality can be installed

dynamically and on demand. This greatly simplifies the

deployment of the proposed service as the other

alternative would be to statically install the caching

service on every node that is part of the caching network.
†
 In principle, transparent (for the user) interception of

HTTP get packets becomes possible. However, in

practice, this is not as straightforward. This is discussed

in more detail in Section 5.2.
†
 Push capsules are broadcasted using a lightweight

broadcast protocol that can be implemented very easily

using active networks. Relying on existing solutions

would make this a lot harder: IP multicast is not deployed

at large scale and unicasting to all recipients generates a

lot of network traffic overhead.
5.2. Implementation details

While the simulation can assume that the entire network

is active, in practice this is not feasible. To circumvent the

routers that are not active the implementation uses an

overlay network. Fig. 8 shows how this works: the TCP-

network transports HTTP requests and HTTP data replies

while the active network is overlaid on top of the existing

network to add the flexibility required by the adaptive cache

protocol. Proxies ensure the interaction between those two

networks, translating between the HTTP protocol and our

own active cache protocol, based on ANTS capsules. Other

active network architecture offer support for intercepting

packets and processing them. For instance, AMnet is, in this

regard, a better choice. However, this framework has only

recently been developed and was not available at the time.

However, the use of proxies is a solution that

considerably simplifies development of the protocol,

because once the HTTP request packets are converted to

request capsules on the network, not all routers have to be

active and not all active nodes need to have a cache installed

for the cache architecture to work. An active request capsule

will be forwarded to a proxy close to the server, where it is

translated back into a HTTP request. Once on the active

network, a request can be monitored and intercepted by

caches. It should be noted that finding a proxy ‘close’ to

Fig. 8. Active network overlaid on an IP network. Also shown is the route a request takes from client to server.

Fig. 9. Active node. Incoming packets are classified. Non-active IP-packets

are forwarded as usual, while active packets are executed in the correct

execution environment.

P. Backx et al. / Computer Communications 28 (2005) 640–653 649
the server is not an easy task. The easiest solution, which is

used in this paper, is to install an active node on every server

that wants to use the ADC network. Active requests can than

be forwarded towards the server where the proxy will

intercept them and convert the packets back to regular

HTTP requests. However, more complicated solutions are

also possible such as using a protocol that calculates

distances between proxies and servers and selects the closest

one. Such a solution requires a more complicated protocol,

because proxies that translate HTTP requests into active

packets need to send the active request towards the correct

proxy.

Fig. 9 gives an overview of an active node. It has the

basic functionality of a router (the IP forwarding block) but

it will intercept any packets that are labeled active and

forward them to the correct execution environment in which

the code that the packets carry is executed. For the cache

implementation we use the ANTS 1.31 execution environ-

ment [26], which is a general-purpose execution environ-

ment with support for active extensions. These are chunks of

code that can be preloaded on the node to avoid excessive

loading times The API offered by the execution environ-

ment to its active packets is then enriched by these

extensions. Both caches and proxies are implemented as

active extensions.

Active nodes enter the cache network by downloading

and executing the proper extension. Once installed, the

cache will automatically start monitoring every passing

request for stored pages. A first push request will trigger the

installation of the active caching extension. If no extensions

are available it is also possible to make direct use of the soft

state cache that is available in practically any execution

environment. However, the extension offers an easier and

more performing solution because there is no need to send

the full code with the request capsules. Because caches are

deployed dynamically whenever they are needed there is no

lengthy manual setup procedure. Caches do not need to

know the exact place of their neighboring nodes and

whether they already have an active extension installed

because push packets can be broadcasted over the active

network. Active nodes will forward those push packets
towards all their neighbors until they reach an active node

that is either willing and able to join the cache network or

where a proxy extension is installed. In the former case, a

cache extension will be installed (if necessary) and the node

will start caching the requested page. In the latter, the push

packet will be discarded.

Storage space has become cheap so we have not

considered the impact of limited cache sizes until now. If

cache space becomes an issue pages can be removed by a

least frequently used (LFU) cache replacement policy. This

way, pages that have become unpopular and for which the

request rate has become too low are not pushed back

towards the server, but are simply purged from the cache. If

such a page becomes popular again it will have to pushed

back from the server towards the cache. While this generates

a certain overhead, the old page would probably be out-of-

date anyway, so keeping it in some cache is most likely a

waste of resources.

While one might argue that the proposed solution could

be implemented by upgrading routers this is actually not

Fig. 10. Basic test network. Eight clients connect through six caches to a server.

P. Backx et al. / Computer Communications 28 (2005) 640–653650
a very scalable and practical technique. Exactly here the

active networking approach shines by allowing us to

dynamically deploy more caches on the network when

needed.

Furthermore, as previously mentioned, active networks

give us several more advantages:
†
 Intercepting of packets, which is vital for monitoring

requests. ANTS does give us a disadvantage here

because this is not provided in the framework, hence

the need for proxies. In this regard, the net-centric

approach of, for instance, AMnet 2.0 [27] is better suited.

However, AMnet 2.0 was not available at the time of this

research.
†
 Broadcast. Again it could be argued that most routers

already have multicast functionality, however, this is

very rarely enabled (especially across multiple service

providers domains). Active Networks pretty much gives

us multicasting for free, especially the very basic needs

we have (only one hop towards the neighbors).
5.3. Testing configurations

For the tests two networks are used:
†
 Network A is shown in Fig. 10. It is a small test network

and is used for testing and comparing the implementation

and the ILP solution on an actual testbed.
†

Fig. 11. Network cost comparison between the ILP solution (gray), the

implemented and simulated THP heuristic (black) and a network without

caches (dashed).
Network B is a much larger network consisting of 1000

nodes. It was generated using the generalized linear

preference model [28]. This model generates a graph

closely resembling the power law and characteristic path

length exhibited in the actual Internet topology [23]. The

network is structured as a tree, so there are no cyclical

paths. There are 660 leaf nodes, which are used as clients.

Because of its size, this network could only be analyzed

through simulations.
5.4. Heuristic evaluation

Fig. 11 compares for network A both the implementation

and simulation of the threshold push heuristic with the

optimal solution provided by solving ILP problem. The

server has 26 pages, each of size 1 kB, that are served to

each of the eight clients. The actual page size does not

influence the performance of the heuristic, but does

influence the performance of the network and cache

database components. Every page remains unchanged for

a random period between 4 and 20 min, after which it

becomes stale and needs to be refreshed. Every client has a

random subset of these 26 pages from which it regularly

requests a random page. The implementation was tested and

benchmarked using Web PolyGraph [29]. The request

sequence it generated were used by the CPLEX ILP solver

and the JavaSim simulation to compare the performance.

We also compared the cost on a small irregular network.

The network consists of 15 nodes, of which nine are clients,

five caches and one is a server. The average distance

between client and server is 2.9 hops.

Fig. 12. Network cost comparison on an irregular 15 node network. Fig. 14. Influence of the number of caches on the performance of the

caching architecture.

P. Backx et al. / Computer Communications 28 (2005) 640–653 651
Figs. 11 and 12 show a typical result of a 20 min

experiment in which we increased the number of requests by

clients from 1 to 25/min. The total network cost (1 unit/kB)

is shown as function of the request rate. Compared to the

case when no caching is used the heuristic gives a typical

bandwidth cost reduction of 50% while it is typically 20%

more expensive in terms of network cost when compared to

the optimal ILP solution. The latter difference is caused by

the fact that the heuristic estimates the request rate based on

the current observations, while the ILP solution can

correctly calculate the request rate because it is executed

after all measurements have been done.

While Fig. 11 depicts the steady state solution, Fig. 13

shows the evolution of cache loads as a function of time.
Fig. 13. Dynamic evolution of the load on server and caches: absolute (top)

and relative (bottom).
The top figure shows the absolute values for a server

offering 100 pages with a 4-min refresh period and clients

randomly requesting 20 pages per minute. Again Network A

was used, with cache 1 located on the level closest to the

server and cache 2 closest to the clients. By pushing

excessive load from the server into the network and thus

caching popular files load balancing is achieved. The

bottom figure shows this even clearer in relative values. At

first the server has to handle all the requests while later in

the experiment it only handles about 25%.

The simulations presented in Fig. 14 investigate the

behavior of the caching architecture on a more realistic

network and use the 1000 nodes Internet-alike Network B. In

any realistic situation the number of caches will be limited

for various reasons, such as the availability of sufficient

CPU and memory resources at the nodes. Until now we have

assumed that all nodes in the network are candidate

locations for caches. In this simulation the number of

caches was varied from 0 to 100% of all routing nodes.

Caches were chosen randomly and one server offered

500 pages that were requested according to a Zipf-like

distribution with a-value of 0.75 (which is a value

commonly found in web traffic [25], also see the experiment

in Section 5.5.1). Fig. 14 shows the average results for

20 simulations. Although the performance decreases with

fewer caches, there still is a substantial gain in network cost

even for few deployed caches.

Throughout this paper the size of caches is not

considered to be of any major importance and it is assumed

that cache sizes can hold all pages that need to be cached at

that location or caches can safely discard old content

without impacting the network cost. This simulation, using

the same parameters as the previous simulation, investigates

whether this assumption is valid. A standard LFU cache

replacement policy was implemented and the size of the

caches was varied. Fig. 15 shows the average result for

20 simulations. As soon as the caches can hold about 20% of

the available pages there is not much performance

improvement. At cache sizes smaller than 5% of the

available page set the interaction between the LFU

Fig. 15. The influence of cache size on the network cost. The cache size is

measured in the number of constant length pages it can hold.

Fig. 17. The performance of the cache architecture for different values

of public interest.

P. Backx et al. / Computer Communications 28 (2005) 640–653652
replacement policy and THP heuristic tends to become

somewhat unstable and pages are cached and removed from

the cache too frequently, which accounts for the increased

refresh cost.
5.5. Influence of typical web parameters

In this section the influence of two major parameters in

web traffic is investigated. Both the parameter of the Zipf-

like distribution and the amount of public interest directly

influence the distribution of requests for web pages and thus

it is important to see their effect on our caching architecture.
5.5.1. Zipf-like distribution

As has been demonstrated in multiple studies ([1,25]),

the requests for pages follow a Zipf-like distribution, in

which the number of requests for the ith most popular page

is proportional to 1/ia for some constant a, which usually is

situated between 0.6 and 0.8 [18].

To investigate the influence of a on our cache

architecture we set up a server with 100 pages, each

with a 4 min refresh time and let the clients request

20 pages/min, and the pages are chosen according to a Zipf-

like distribution. Fig. 16 is the result of this experiment for

network A. Clearly, the performance of our architecture is

relatively constant, no matter the exact a value.

The dashed line is an indication of the cache cost,

representing the total amount of cached pages during
Fig. 16. Influence of the Zipf parameter a on the performance of the cache

architecture.
the experiment. With low a values more pages need to be

cached to obtain a gain in network cost, which is what is to

be expected.
5.5.2. Public interest

One major objection against cooperative caches is that

the requested pages are too distinct between clients [1]. This

phenomenon is commonly referred to as the public interest

of a client or page sharing between clients. This parameter

represents the percentage of pages requested by more than

one client. Clients with 50% public interest will request 50%

of their pages out of a private set that are not requested by

other clients, while the other 50% will also be requested by

other clients (and possibly by all clients).

For an experiment on network A, the number of available

pages was kept at 100. Somewhat counterintuitive results

are shown in Fig. 17: the performance actually increases

with decreasing public interest.

This is explained by the fact that with increasing public

interest and a fixed number of total pages on the one server,

the actual number of different pages that clients will request

decreases, which allows our caching architecture and

heuristic to function more optimal.

The 100 pages offered by the server can be split into a

public set and a number of private sets. Every client has its

own private set (hence the name) and it will request pages

from both the public set and his private set. Table 1 shows

the sizes of these sets (all private sets are equally large

because of the symmetric nature of our test setup). For a

small public interest ratio clients will only request from a

small set of pages, however, their total request rates will

remain the same. So for small public interest request rates

by individual clients for a small number of pages will be
Table 1

Public interest influence on working set size

Public interest

(%)

Size of public

set

Size of private

set

Total working

set per client

100 100 0 100

80 33.3 8.3 41.6

60 15.8 10.5 26.3

40 7.7 11.5 19.2

20 3 12.1 15.2

P. Backx et al. / Computer Communications 28 (2005) 640–653 653
high. These conditions are very well suited for our heuristic

because the caches closest to the clients will be able to

‘specialize’ in the pages that their clients request.
6. Conclusion

A new caching architecture was presented as well as an

implementation based on active networking technology. By

allowing the network to host cache functionality a vast

number of cache locations becomes available and it is

possible to store content close to its optimal location for

given user behavior and content characteristics. A heuristic

was presented to find these optimal locations and through

simulation and experimentation it was shown that this

architecture works in a wide variety of situations and

reductions in network traffic of up to 30% were achieved.

The architecture continues to behave under typical web

traffic parameters that other cooperative caching architec-

tures do not handle very well, such as a high diversity in

requested pages between clients.
Acknowledgements

The Measurement Factory and in particular Alex

Rousskov are gratefully acknowledged for the Web

Polygraph benchmark and the free support provided. Part

of this work was carried out within the framework of the

project CoDiNet sponsored by the Flemish Institute for

the promotion of Scientific and Technological Research in

the Industry (IWT) and by the Ghent University GOA-

project ‘Programmable and Active Networks’ (PAN).
References

[1] A. Wolman, G.M. Voelker, N. Sharma, N. Cardwell, A. Karlin,

H.M. Levy, On the scale and performance of cooperative web proxy

caching, Operating Systems Review 34 (5) (1999) 16–31.

[2] L. Fan, P.Cao, J. Almeide,A.Z. Broder, Summary cache: a scalable wide-

area web cache sharing protocol, in: Proceedings of SIGCOMM 1998.

[3] Squid web proxy cache, At URL: http://www.squid-cache.org.

[4] A. Rousskov, D. Wessels, Cache digests, Computer Networks and

ISDN Systems 30, 1998.

[5] D. Karger, T. Leighton, D. Lewin, A. Sherman, Web caching with

consistent hashing, in: Proceedings of the Eighth International World

Wide Web Conference, Toronto, Canada, May 1999.

[6] K. Psounis, Active networks: applications, security, safety and

architectures, IEEE Communications Surveys First Quarter (1999).

[7] P. Krishnan, D. Raz, Y. Shavitt, The cache location problem,

IEEE/ACM Transactions on Networking October (2000).

[8] S. Bhattacharjee, K.L. Calvert, E.W. Zegura, Self-organizing wide-

area network caches, Technical Report GIT-CC-97/31, 1997.
[9] P.B. Danzig, R.S. Hall, M.F. Schwartz, A case for caching file objects

inside internetworks, CU-CS-642-93, March 1993.

[10] D. Wessels, K. Claffy, Internet cache protocol (ICP), version 2, At

URL: http://www.ietf.org/rfc/rfc2186.txt.

[11] K. Ross, Hash-routing for collections of shared web caches, IEEE

Network 11, 37–44, 1997.

[12] M. Cieslak, D. Foster, G. Tiwana, R. Wilson, Web cache coordination

protocol v2.0. At URL: http://www.web-cache.com/writings/internet-

drafts/draft-wilson-wrec-wccp-v2-00.txt.

[13] S.G. Dykes, K.A. Robbins, A viability analysis of cooperative proxy

caching, in: Proceedings of IEEE Infocom, Anchorage, Alaska,

April 2001.

[14] C. Lindemann, O.P. Waldhorst, Evaluating cooperative web caching

protocols for emerging network technologies, in: Proceedings of

Workshop on Caching, Coherence and Consistency (WC3001),

Sorrento, Italy, June 2001.

[15] H. Che, Z. Wang, Y. Tung, Analysis and design of hierarchical web

caching systems, in: Proceedings of IEEE Infocom 2001, Anchorage,

Alaska, April 2001.

[16] P. Rodriguez, C. Spanner, E.W. Biersack, Analysis of web caching

architectures: hierarchical and distributed caching, IEEE/ACM

Transactions on Networking August (2001).

[17] L. Zhang, S. Floyd, V. Jacobson, Adaptive web caching, in:

Proceedings of the NLANR Web Cache Workshop, Boulder,

Colorado, USA, June 1997.

[18] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, S. Floyd, V.

Jacobson, Adaptive web caching: towards a new global caching

architecture, in: Proceedings of the Third International Web Caching

Workshop, Manchester, England, June 1998.

[19] S. Iyer, A. Rowstron, P. Druschel, Squirrel: a decentralized peer-to-

peer web cache, in: Proceedings of IEEE Infocom 2001, Anchorage,

Alaska, April 2001.

[20] L. Lefèvre, J. Pierson, S. Guebli, Deployment of collaborative web

caching with active networks, in: Proceedings of the International

Workshop on Active Networks (IWAN) 2003, Kyoto, Japan,

December 2003.

[21] U. Legedza, J. Guttag, Using network-level support to improve cache

routing, in: Proceedings of the Third International WWW Caching

Workshop, Manchester, England, June 1998.

[22] G.L. Nemhauser, A.L. Wolsey, Integer and Combinatorial Optimiz-

ation, Wiley, New York, 1988.

[23] S. Jin, A. Bestavros, Small-world internet topologies, Boston

University Technical Report BUCS-TR-2002–2004, January 2002.

[24] H. Tyan, The JavaSim simulation environment, At URL: http://www.

javasim.org.

[25] L. Breslau, P. Cao, L. Fan, G. Philips, S. Shenker, Web caching and

zipf-like distributions: evidence and implications, in: Proceedings

of IEEE Infocom, 1999.

[26] D.J. Wetherall, Service introduction in an active network, PhD Thesis

at the MIT, February 1999.

[27] T. Fuhrmann, T. Harbaum, M. Schöller, M. Zitterbart, AMnet 2.0: an

improved architecture for programmable networks, in: Proceedings of

the International Workshop on Active Networks (IWAN) 2002,

Zürich, Switzerland, December 2002.

[28] T. Bu, D. Towsley, On distinguishing between power-law internet

topology generators, in: Proceedings of IEEE Infocom 2002,

New York, US, 2002.

[29] Web Polygraph, At URL: http://www.web-polygraph.org.

http://www.web-polygraph.org
http://www.web-polygraph.org
http://www.web-polygraph.org
http://www.web-polygraph.org
http://www.web-polygraph.org
http://www.web-polygraph.org
http://www.web-polygraph.org

	Optimizing content distribution through adaptive distributed caching
	Introduction
	Related work
	The caching problem: optimal solution
	Formal problem formulation
	Solution through integer linear programming

	Practical solution to the caching problem through a heuristic
	Optimal caching location in a regular tree
	Threshold push heuristic for en-route caching
	Delay reduction

	Simulations and experimental results
	Protocol design
	Implementation details
	Testing configurations
	Heuristic evaluation
	Influence of typical web parameters

	Conclusion
	Acknowledgements
	References

