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Abstract

In wireless sensor networks, many applications rely on th
ability of sensor nodes to estimate their physical locatio .0
and time with respect to a common reference scale. This @ <:> \ﬁ/
cessity is reflected by the development of a significant nu
ber of algorithms for localization and time synchronizatio
for sensor networks in the recent past. However, research
on location estimation on the one hand and on time syn- (@ (b) (©
chronization on the other hand has been largely separated. o _ ) _
Despite this, models, requirements, techniques, and a@tgure 1:App||cat|9ns of space and time. (a) _|nteract_|on of an
fithms of the two domains are rather similar and in sory§te"nal observer with the sensor network, (b) interaction among
. ._sensor nodes, (c) interaction of the sensor network with the moni-
respects closely related. The purpose of this paper is 0
. L - . . . tored real world.
make this affinity explicit, with the hope of stimulating a
mutual fertilization and enabling a better understanding of
both domains. estimation and time synchronization and discusses various
requirements and basic approaches to location estimation
) and time synchronization based on this model. In Section
1 Introduction 4 we discuss the structure of distributed algorithms for lo-
cation estimation and time synchronization. In particular,
In wireless sensor networks — large wireless networksweé will point out that both kinds of algorithms are based on
tiny computing and sensing devices —, space and tifiee& common structural elements. Section 5 presents vari-
play a crucial role, since sensor nodes are used to amls limitations and trade-offs of this class of algorithms and
laboratively monitor physical phenomena and their spati®ection 6 concludes the paper.
temporal properties. Consequently, a number of techniques
and distributed algorithms for location estimation and for
time synchronization have been developed specifically 8r  Uses of Space and Time
sensor networks. Research in these two domains has been
performed by mostly separated research communities. Figure 1 illustrates three important use classes of space and
A closer look on both research domains reveals that thérae in sensor networks. Typically, a sensor network is
are many similariti€’s This does affect a variety of aspecttasked by and reports results to an external observer (a).
of location estimation and time synchronization, rangiry sensor network also interacts with the physical world
from applications and requirements to basic approaches #r@ugh distributed sensors and possibly also through actua-
concrete algorithmic techniques. The purpose of this pagesis (c). Finally, the sensor nodes interact among each other
is to point out this close affinity. The hope is that this coul® coordinate distributed computations (b). The following
lead to a better understanding of both domains and to a rparagraphs will discuss applications of space and time in
tual fertilization, where results from one domain could B&ese three domains.
adopted by the other.
Th_e remainde_r of this paper is structurgd as follows. 51.1 Sensor Network — Observer
Section 2 we point out uses of space and time in sensor net-
works. Section 3 presents a common model for locatitmmany applications, a sensor network interfaces to an ex-

- " : 4 by NCCRMICS ternal observer for tasking, reporting results, and manage-
*This work was partly supported by - , a center supportjﬂ .
by the Swiss National Science Foundation under grant no. 5005-67322. ent. This external observer may be a human operator (as

we acknowledge that there are also significant differences, but tHigPicted in Figure 1) or a computer S.){Ste_m- TaSking a sen-
paper focuses on the similarities. sor network often involves the specification of regions of




interest in spacetime such as “only during the night” or “the It is anticipated that in the future large-scale and com-
area south of ...". Since the observer is typically interestpléx actuation functions will be realized by coordinated use
in a physical phenomenon of the real world (and not in ief many simple distributed actuator nodes that are part of
dividual sensor nodes), such spacetime addressing is oiesensor network. Similar to distributed measurements,
preferable over addressing individual nodes or groups spfatio-temporal coordination will then also be an important
nodes by identifiers. ingredient for consistent distributed actuation.
As a sensor network reports monitoring results to the ob-
server, many spatio-temporal properties of observed phys- .
ical phenomena are of interest. For example, time and Within a Sensor Network
cation of occurrence of a reported physical event are Oft?irr]ne and location are also valuable concents for int
crucial to associate event reports with the originating physi- S . pis for intra-
: : .’ petwork coordination among different sensor nodes. As
cal events. Properties such as size, shape, speed, trajecég%or networks are essentially distributed systems, man
density do all refer to the categories time and space. " y ar yst ' y
traditional uses of the concepts of time and location do also
apply to wireless sensor networks. Liskov [12] points out
2.2  Sensor Network — Real World a number of uses of time in distributed systems in gen-
eral such as for concurrency control (e.g., atomicity, mutual
In sensor networks, many different sensor nodes distribugxglusion), security (e.g., authentication), data consistency
over an area may be involved in the observation of a sing&g., cache consistency, consistency of replicated data), and
physical phenomenon. One of the key functions of a sensemmunication protocols (e.g., at-most-once message de-
network is therefore the assembly of many distributed diyery).
servations into a coherent estimate of the original physicalOne particularly important example for concurrency con-
phenomenon — a process known as data fusion. Spacetanidis the use of time-division multiplexing in wireless
time are key ingredients for data fusion. For example, maogmmunication, where multiple shared access to a com-
sensors can only detect the proximity of an observed objeabn communication medium may be realized by assign-
Higher-level information, such as speed, size, or shapeimg time slots with exclusive access to the communicating
an object can then only be obtained by correlating data frgmeers. This may require the participating sensor nodes to
multiple sensor nodes whose locations are known. The géare a common view on physical time. A prominent use of
locity of a mobile object, for example, can be estimated Ispatial information for network coordination is geographic
the ratio of the spatial and temporal distances between tmare addressing and routing, where geographic locations
consecutive object sightings by different sensor nodes. r&place the use of node identifiers.
another example, the size and shape of a widespread objegt number of approaches intend to improve energy ef-
can be approximated by the union of the coverage areasiciency by selectively switching sensor nodes or compo-
the sensor nodes that concurrently detect the object.  nents thereof into power-saving sleep modes. In order to
Since many different instances of a physical phenomeramsure seamless operation of the sensor network despite of
can occur in spatio-temporal proximity, one of the tasks tifis, spatio-temporal coordination among sensor nodes may
a sensor network is the separation of sensor samples, Hetrequired. The algorithm presented in [27], for exam-
is, the partitioning of sensor samples into groups that egah, extends the lifetime of dense networks by switching
represent a single physical phenomenon. Spatio-tempafélnodes such that the remaining nodes are sufficient to
relationships (e.g., distance) among sensor samples aooer the area of interest. To ensure coverage, node loca-
key element for separation. tions must be known. Another way of extending network
Spatio-temporal coordination among sensor nodes ni#gtime is to periodically switch off radio transceivers of
also be necessary to ensure correctness and consisten®g$or nodes, since their power consumption is rather high
distributed measurements [9]. For example, if the sampliagen when only listening to the network. Temporal coor-
rate of sensors is low compared to the temporal frequerstipation is required to ensure that activity periods of sen-
of an observed phenomenon, it may be necessary to ens@ferodes overlap in time in order to enable communication
that sensor readout occurs concurrently at all sensor noges, e.g., [28]).
in order to avoid false observation results. This is also anAnother service of importance for sensor network ap-
issue for sensor calibration as explained in [2]. Likewisplications is temporal message ordering [19]. Many data-
the spatial distribution of sensors has an impact on the clusion algorithms have to process sensor readings ordered
rectness of observation results. For example, in orderhbipthe time of occurrence (e.qg., in the approach for velocity
estimate the average of a certain physical quantity oveestimation sketched above). However, highly variable mes-
certain physical area (e.g., average room temperature), gage delays in sensor networks imply that messages from
typically not sufficient to simply calculate the average ovelistributed sensor nodes typically do not arrive at a receiver
all sensor nodes covering the area, because then areas iwithe order they have been sent. Reordering messages ac-
higher node density would be overrepresented in the resatirding to the time of sensor readout requires temporal co-
ing average value. ordination among sensor nodes.



The close relationship between time and space in the ore2

physical world is also reflected by methods for time syn-
chronization and location estimation themselves. For exam-

ple, methods for location estimation based on the measure-

ment of time of flight or time difference of arrival of certain

signals typically require synchronized time. The other way P
round, location information may also help to achieve time
synchronization. This is due to the fact that time synchro-

nization approaches often have to estimate message delays. A
One component of the message delay is the time of flight o T R ’ oteq
of the carrier signal between two nodes, which can be cal- Pq

culated if the distance between sender and receiver and the

propagation speed of the carrier signal are known. Figure 2:A point p in spacetime and its coordinatgsandp; in
two different coordinate systems.

3 Locating Nodes in Spacetime o _ L o
localization / locationas an abbreviation for localization /

In this section we develop a common model for locatidacation in spacetime. We will udecalization / location in
estimation and time synchronization. Using this model, e andlocalization / location in spacevhen specifically
will discuss various requirements on and different classed@ferring to time and space.
time synchronization and localization. Localization in spacetime comes in many different fla-
One possible way to model physical space is to do tH@rs and with many different requirements and practical
as a three-dimensional real-valued vector space. Likewig@nstraints, which are discussed in the following sections.
physical time can be modeled as a one-dimensional real-
valued vector space. These two vector spaces are ofte |nternal vs. External
combined to form a four-dimensional vector space known
asspacetime To indicate points in spacetime, a coordinald/ith external localization in spacetime, a given coordinate
system is used, consisting of the vectofthe origin) and system is used as a reference. With internal localization,
four linearly independent vectoks , es, e3, e4 (the axes). there exists no predefined coordinate system. The nodes of
To avoid relativistic effects and to simplify our discussior§ sensor network then have to agree on a single coordinate
we assume that a coordinate system has the following prépstem, but which one is actually chosen is irrelevant.
erties:eq = (0,0,0,1), thee; are mutually orthogonal (i.e., Note that external localization is a special case of inter-
inner product is zero), anfk;| = |es| = |es|. In other nal synchronization, since a coordinate transformation can
words, the space axes, e, e3 form a Cartesian coordinatebe applied to map coordinates w.r.t. an arbitrary coordi-
systeme, is the time axis, anfk, |, |es], |es| and|e,| are the nate system used for internal synchronization to coordinates
space and time units, respectively. Any painih spacetime W.r.t. a predefined external coordinate system.
can now be specified by its coordinates, p2, p3, p4) with External localization is mostly used when interfacing
respect to the coordinate systéme, es, €3, €4), such that to the real world and observers, since there are well-
pis given byo + pie1 + poes + pses + paey. established coordinate systems used in daily life such as
Under these assumptions, the spatial dithe coordinate system defined by Universal Transverse Mer-
tance between two pointp and ¢ is given by cator (UTM) space coordinates and Coordinated Universal
V(1 —q@1)? + (p2 — @)+ (p3s — g3)%, and the tem- Time (UTC). For spatio-temporal coordination among sen-
poral distance is given by, — q4|. sor nodes, internal localization is often sufficient.
The above model allows a holistic view on localization
and time synchro.nizr.:ltion as fpllows. If.a sensor nqdeés2 Global vs. Local
modeled as a point in spacetime, localization and time
synchronization can be considered as determining the darerder to be able to compare two poiptandq in space-
rent coordinates gf with respect to a given coordinate systime, the coordinates of the two points must be known
tem. We refer to this process lxating a sensor node inw.r.t. a single coordinate system. The most obvious way to
spacetime achieve this is to have all network nodes use a single global
Note that it is quite common to use different coordinatmordinate system. In this case, any sensor node can easily
systems. However, using a simple coordinate transforncampare any two points in spacetime obtained from any two
tion scheme, the coordinates of a given pointp can be nodes.
transformed into coordinates in a primed coordinate sys- However, the use of a single global coordinate system is
tem, as depicted in Figure 2 for a two-dimensional coordiet the only possible solution. As illustrated in Figure 3,
nate system. small sets of nodes or even single nodes may use a local co-
In the remainder of the paper we will simply use the ternasdinate system each. If points in spacetime remain within




other. Basically, point estimates are convenient to use due
to the simplicity of point arithmetic and because statements

in terms of the abstract spacetime model can be directly ap-
- 0 .. plied to the point estimates. However, the use of point es-
DR T " timates may lead to wrong results. For example, for two

T Ce 7 point estimatep andg wherep, < ¢4 holds,p may despite
\ / of this actually represent a later point in time than

T_» While the use of explicit bounds is often more complex

: ? and inconvenient, and sometimes rather imprecise, errors

like the above one can be avoided. However, the use of

bounds also introduces situations where it is impossible to

Figure 3: Small sets of nodes may use local coordinate systeq?.c'de on a certain expression. For example, if bounding

If a point in spacetime is passed beyond the scope of such a If@xes (i.e., intervals) are used to represent points in time,
coordinate system, a coordinate transformation is applied. it cannot be determined whether one point is earlier than

another if the corresponding intervals overlap. While the
introduction of such undecidable situations may seem un-
the scope of such a local coordinate system, they can be g@Sirable from a technical point of view, they explicitly rep-
ily compared. However, if coordinates of points in spacgesent fundamental limitations of the system and alert the
time are passed across the border between the scopes ogf¥flication or user about it, instead of making arbitrary and
different local coordinate systems, a coordinate transformgtentially wrong decisions.
tion must be applied to the point. Yet another approach to deal with the imprecision of lo-
When to prefer the one or the other approach dependsization algorithms is the use of probability distributions
on the actual application. Maintaining a coordinate systejjer spacetime. However, due to the practical difficulty
across a set of distributed network nodes requires commafigealing with probability distributions, this approach is

nication among the participating nodes. However, comp@[rrrently not used in distributed algorithms for sensor net-
ing points within the scope of a single coordinate systefprks.

then comes for free. Local coordinate systems typically
do not require active communication among nodes using _ _
different coordinate systems. Passing points across a 364 Points vs. Distances

ordinate system boundary, however, requires to compugs ?h . di . d that points i
suitable transformation between the two involved coord[} "€ Prévious discussions we assumed that points in space-

nate systems, which then has to be applied to the aﬁec?gae originating from different nodes in the sensor network
points. are compared. However, there are also applications where

i{é(}ividual nodes locally measure distances between points

Therefore, a reasonable approach would be to clusI time and where it i Hicient t mpare distan
nodes based on their interaction patterns, where each clgpacetime a ere 1t1s suthicient to compare distances

has a local coordinate system. If two nodes do frequenﬁ&?asured at different sensor nodes.

exchange points in spacetime, they should end up in thégs an exampls, (;ons(ljde_r an ﬁpﬂllcatmn_whﬁre sensor
same cluster. If there is strong interaction among all nodides measure the time during which a certain phenomenon

in the network, using a single global coordinate systemqgn be sighted and where the sighting durations at different
likely the better choice sensor nodes must be compared (e.g., to estimate the accel-

eration of a mobile object). Here, the actual points in time
) ) when the phenomenon appeared or disappeared are irrele-
3.3 Point Estimates vs. Bounds vant. However, it is important that different sensor nodes

Actual implementations of localization in spacetime afgeasure the same duration given identical physical stimuli.

based on measurements. Since measurements are a|wa?§wously, measuring and comparing distances is a spe-
case of measuring and comparing points in spacetime,

afflicted with errors, only estimates of the coordinates of % ] . i
point in spacetime can be obtained in practice. Despite tHi§1C€ & distance can be eaS|I_y calculated when the points are
it is often convenient to use such point estimates as if th@yen W.r.t. & common coordinate system.
were correct in the absolute sense.
Another approach is_ to explicitly deal with errors in mea 5 Scope and Lifetime
surements by specifying bounds on the actual coordinates
of a point in spacetime, where one assumes that the tAuescopedefines a subset of nodes where localization in
value lies within the bounds. Common ways of specifyirgpacetime is required. Ketimedefines a time interval dur-
bounds are bounding boxes and spheroids. In the speitiglwhich localization is required. The two extremes are ev-
case of (one-dimensional) time, both map to intervals. erywhere/continuous (e.g., time synchronization to coordi-
Both point estimates and bounds have advantages aatk access to the communication channel) and on-demand,
disadvantages that influence the choice of one over of thieere localization is only performed where and when actu-

coordinate

transformation




ally needed (e.g., to estimate the location of a an instang@antity. With respect to quality, an application might re-
neous physical event). quire a certain average precision, other applications may re-
Both lifetime and scope requirements can vary from a@guest a certain maximum error. The requirements on the
plication to application and may change dynamically and dlistribution of precision over the network and over time
unpredictable ways. In many sensor network applicatiomsgy also vary from application to application. With re-
scope and lifetime are correlated with the occurrence of $gect to quantity, required precision is closely related to
observed physical phenomena. For example, to locatetlag temporal frequency and spatial detail of the phenom-
object moving through a sensor network, nodes that can @ga that require localization in spacetime. For localization
tect the object might define the scope and the lifetime. in time, precision requirements range from a maximum er-
With everywhere/continuous localization, the localizd0r of few micro seconds (e.g., for controlling access to the
tion procedure is performed permanently on all nodes, sughnmunication channel) to seconds or even minutes (e.g.,
that an up-to-date estimate of the current location in spaf@-activating a sensor network during certain times of the
time is immediately available whenever requested by tHay). With respect to location, precision requirements range
application. With on-demand localization, the localizatioifom a maximum error of some centimeters (e.g., locating
procedure is performed only where (i.e., on a certain nodeghooter [22]) to tens or even hundreds of meters (e.g., lo-
and when the application requests the current locationCting an animal herd).
spacetime. The result is only available after a delay caused\s mentioned in Section 3.5, the scope of localization
by the execution of the localization algorithm. in sensor networks is often defined by a set of collocated
The overheads of the two approaches depend on the f@2sor nodes that cooperate in monitoring a close-by event
quency of the application requesting localization. If rareiff the real world. For this kind of application, the precision
requested, on-demand localization may be more efficiedfiong this set of collocated nodes typically must be high.
If frequently requested, continuous localization is likely tbowever, the precision among nodes which are far apart in
be more efficient. In sensor networks, where activity is g¥Pace may not be important. We will return to this issue in
ten triggered by the occurrence of rare physical events, fections 5.1.
on-demand approach is certainly a promising technique for

achieving resource efficiency. 3.7 Other Quality-of-Service Aspects

Besides the aspects discussed so far, a number of additional
QoS characteristics of localization in spacetime are of prac-
0t'gcal relevance. Two prominent examples are robustness and

security. A robust localization algorithm delivers correct

|ogation estimates even in the presence of well-defined, ac-
jdental failures. Another aspect is secure verification of
ocation estimates, where spoofed locations can be detected

3.6 Precision

A localization algorithm yields a point estimate or boun
on a sensor node’s actual positipin spacetime. Precision
is a measure for how well this result matches the grou
truth locationg of nodes across the network over time. F
algorithms returning point estimates, fhetantaneougre-
cision for a given node at a given point in time is usuall&?ee' e.g. [4]).
expressed in terms of the distance between the point esti-
mate andp. Algorithms that return bounds are error-fre . .
if p is actually enclosed by the bounds. However, the pr%— Distributed A|gOfItth for Local-
cision of bound-based algorithms can be expressed by the jzation in Spacetime
uncertainty of the bounds (e.g., the volume of a bounding
box, the length of an interval). Many practical distributed algorithms for localization in
To derive the overall precision of an algorithm within thepace (e.g., [1, 7, 14, 16, 20, 21]) and time (e.g., [5, 8, 13,
scope and during lifetime, the instantaneous precisions2af 24]) are based on a few common structural elements. In
the nodes have to be combined. The combined precisthis section we point out these structural elements and dis-
then has to be accumulated over time to arrive at a siguss various concrete instances of these elements found in
gle value that characterizes precision. Common wayseXisting algorithms.
combining instantaneous precision values of many node€onsider Figure 4. Part (a) shows two kinds of nodes:
are maximum, average, and standard deviation. A vari@ck reference nodes with known locations and white client
often found in the literature is the maximum error after r@¢qodes with unknown locations. In part (b), a gray client
moving a given percentage (e.g., 5%) of the largest erratede measures its distandg from a number of neighbor-
The combined precision typically improves during the ex@g reference nodes. Using the locati$iof the references
cution of an algorithm and approaches a stable value in thed the measuref;, the gray node infers its own location
steady state. The combined precision in the steady stateipagpacetime. The node can now also act as a reference for
be used to express the overall precision of an algorithm. other client nodes in subsequent iterations of the algorithm
Requirements on the precision may heavily vary from ags illustrated in part (c). Eventually, all nodes should be
plication to application. This applies both to quality andble to measure distances to a sufficient number of neigh-



cess is not trivial, as it depends on a number of parameters
such as the precision of the state information of the indi-

vidual reference nodes, but also on a particular combination

of reference nodes. Also, certain reference nodes may only
become available after they have estimated there location
themselves. Often, an overlay structure (e.g., spanning tree,
clustering) is constructed to ease this selection process. For
example, a client node may use its parent in a spanning tree
as a reference node. Essentially, constraint selection can be
interpreted as the approach an algorithm takes to structure

Figure 4:Client nodes infer their location in spacetime by meAc-)Ca“Z"jltlon In_multl-hop networks (i.e., a_cross space?.

suring spatio-temporal relationshigs (e.g., Euclidean distance, 1N€ fourth important element of localization algorithms

message delay) to black reference nodes with known locafion$s an approach tanaintain localization over timesince a

in spacetime. The process is iteratively applied. The figure shogiggle estimate of a node’s location in spacetime is quickly

from the left to the right, a sequence of three snapshots. invalidated due to the progress of time and due to mobility.
The conceptually simplest approach to this problem is to

) ) ) ] . repeat a one-shot localization frequently.
boring reference nodes in order to estimate their location IN_ast but not least, hootstrapping mechanisia needed

spacetime. , ) to provide initial reference nodes that act as seeds for dis-
The meaning of the symbolA and S has to be inter- iy ted localization algorithms.

preted in a rather broad sense hesds any state informa-

tion of a node that i_s reIevant_to the_locali_zation algorithn8f'[en be considered as a combination of concrete instances
Efxampldes;ors are|t|mg, ||0((:jat|0n, ?élentatlonl, andthadtdrr(]a§§ the above five categories and additional “glue” elements.
ofanode.> may aiso Incude configence values that ¢ lany practical algorithms consist of several phases in order
a}cter|ze'the precision of the respec tive p|ts of state mfomfg'improve precision or other performance metrics. In each
tlog. A '3 a spa’uo-tempofral relatlonzmp bEetweer|1 a _CI'E; ase, different instances of the five categories may be used.
node and one or more relerence nodes. Examples inc example, several algorithms consist of a first phase to

Euclidean distance, hop distance, message delay, and aPBt&in rough location estimates for all nodes. In a second

W'tlh (rjespecft.c;[o the orl|entat|on of the clienfi may also phase, the so-called refinement phase, these initial estimates
include confidence values. are further improved.

A pair (S, A) can be interpreted as@nstrainton the | . : I
. . : . n the following sections we will discuss the above struc-

possible spacetime locations of a client node. For exam%er,al elements in more detail
if S is a location of a reference node in space a@nds '
Euclidean distance, then the location of the client node is
constrained to the hull of a sphere with radiiscentered 4 1 Bootstrapping
atS. As we will show in Section 4.2, a constraint may also
involve multiple reference nodes, such tiafs a relation- Obtaining constraints typically requires a number of ref-
ship among a client node and any number of reference nodemnce nodes with known locations in spacetime. Boot-
(e.g., client node is closer to referentéhan to reference strapping consists in providing such initial reference nodes
2). Also, reference nodes need not be network neighborsath location estimates. The most commonly used approach
the client node. to solve the bootstrapping problem is the provision of so-

A second structural element of localization algorithms @lled anchor nodes which are able to estimate their loca-
a procedure focombining multiple constraintsAs pointed tions by means of an out-of-band localization mechanism
out above, a single constraint limits the possible locationsssfch as GPS. While anchors are a natural way to solve the
a client node, but the resulting solution space often does hobtstrapping problem and allow for good precision due to
satisfy precision requirements. Hence, multiple constraimoviding location “fixpoints” throughout large networks,
have to be combined (e.g., intersected) to further cut dothey also come with a significant overhead: a certain por-
the solution space (e.g., to a single point in spacetime). tion of the nodes must be equipped with additional hard-

A third important component of localization algorithmavare (e.g., GPS receivers) and an additional infrastructure
are rules teselect constraintsin dense networks with manyis often needed (e.g., GPS satellites). We will discuss issues
reference nodes, there is a large set of possibilities for aith anchors in more detail in Section 5.1.
taining constraints that involve different sets of referencelt is also possible to solve the bootstrapping problem
nodes. While a large number of constraints may resultwithout the use of anchors. Consider for example Figure
very precise location estimates, the overhead for combinfigwhere three nodes 1, 2, and 3 with mutual Euclidean
such numerous constraints may be prohibitive. Hence, tlistancesd;,, do3, d13 are depicted. The nodes define a
goal is to select a small number of tight constraints thatdeordinate system as follows. The origin is given by the
sufficient to achieve a certain precision. This selection preesition of node 1. The positive x axis is given by a ray

(a (b (c)

A concrete algorithm for localization in spacetime can



reference and client. A round-trip message exchange be-
tween client and reference can be used to derive lower and
upper bounds on the temporal distance (e.g., [18]). The av-
erage of these bounds can be used as a point estimate of the
temporal distance (e.g., [8, 24]). A broadcast message is
usually received almost concurrently by a set of receivers.
Hence, a broadcast message that is received by a reference
node and a client node can be interpreted as a virtual mes-
sage from the reference to the client with a negligible delay
(e.g., [6]).

For localization in space, distance-dependent properties
of propagating signals (e.g., sound, radio) such as received
signal strength or time of flight are typically used as a foun-

tion for A measurements. Two common forms of con-
&fraints are based on Euclidean distances (e.g., bounds or
point estimates for the distance from a reference) and angles
(e.g., bounds or point estimates for the direction of arrival

starting at node node 1 passing through node 2. The p%g‘-"‘ sign'all from a reference). Roulgh Qistance bounds can
itive y axis is given by a ray starting at node 1 that is ope exploiting the fact that communicating nodes cannot be

thogonal to the x axis and that extends into the half plaffsther apart than the maximum communication range (€.g.,
(defined by the x axis) that contains node 3. In this cht)- Angle measurements typically require more complex

ordinate system, the coordinates of the three nodes Ia%dware such as directional antennas or antenna arrays.
(0,0), (0,d12), and (X, \/dZ, — X2), respectively, with Two common constraints that involve multiple references
) 1 ’ 1 bl 12 1 1

X = (&2, + d24 — d2s)/2d12 (€.9., [3, 17]). are “closer to” relationships (i.e., client is closer to refer-

Note that a coordinate system constructed this way%lecet_l;?a” E[O reflerenc$ 2) fand dlsaa?hce c;hfferfences ("Ze"
not unambiguous, any other coordinate system could h&qUENt 1A MELers closer o reterence an to reference 2).

been used as well. Hence, in contrast to anchor-based ap-

proaches, anchor-free approaches are not suitable for eﬁeg C o :
. . . . ombining Constraints

nal localization (cf. Section 3.1). Also, the coordinate sys- 9

tem changes when one of the initial reference nodes movgssingle constraint can be interpreted as a region in space-
invalidating the location estimates of all nodes whose p@me that contains the location of a client. Combining mul-
sitions have been estimated with respect to this Coordinﬁ.ﬁﬂe constraints typ|ca||y consists of two Steps_ In a first
system. The precision of anchor-based algorithms is oftg@p, “bad” constraints are eliminated from the set of avail-
superior to anchor-free approaches, since anchor nodes Bl constraints. One example of such bad constraints are
be distributed over the network to act as fixpoints for locajytiiers that represent a region in spacetime that does not
ization. With anchor-free approaches, nodes far away frgferlap with the regions defined by some or all other con-
the reference nodes that define an initial coordinate systgaints. After this step, the remaining constraints should
may experience significant imprecision due to accumulatifgve a non-empty intersection that contains the prospective

Figure 5. Three non-collinear nodes with known mutu
distancesl;; define an unambiguous coordinate system fi
two-dimensional space.

errors. location estimate of the client.
In a second step, the intersection or a point in the inter-
4.2 Obtaining Constraints section of the remaining constraints is computed. In many

cases, this can be achieved analytically, for example by
The general form of a constraint €S, ..., Sy}, A), solving an equation system. In some cases, a closed-form
where N reference nodes and their respective state infeplution cannot be derived or the computational overhead
mation.S; is involved. A represents a spatio-temporal relanay be prohibitively high. An approximative solution that
tionship among these reference nodes and the client nddedes off computational overhead for memory is to subdi-
While S; are typically retrieved from a reference node byide the solution space into pixels, where each pixel has an
means of a message exchande,is usually a measuredassociated bit that is set to “1” initially. For each available
quantity. In most cases) is either represented by a pointonstraint, the pixels that are outside the region represented
estimate (e.g., distance X) or by bounds (e.g., distanceby the constraint are set to “0". Eventually, the remaining
> X and/or distance: Y). “1” pixels form an approximation of the intersection region

For localization in time, the delay of network messages(&.9., [10]).

typically used as a foundation fdk measurements. A sin- Due to measurement errors, it may happen that there is
gle message exchange from a reference to a client node masufficiently large subset of constraints with a non-empty
be used to define a lower bound (i.e., either 0 or a knowriersection. This is often the case if the constraintsAise
minimum message delay) on the temporal distance betweelationships that are point estimates (e.g., distancé)=



rather than bounds. Here, an optimization problem may de“good” constraints must be selected out of the large set
set up by requiring the solution point to minimize a certaiof possible constraints. This selection is based on the qual-
error metric. A commonly used error metric is the distandty of the state information of the reference nodes, on the
between a point and a constraint, which is defined as tngality of the spatio-temporal relationship and on temporal
minimal distance to any point contained in the region daspects. For example, a better set of references may be-
fined by the constraint. A typical objective function for theome available in a future iteration. However, the algorithm
optimization problem is then to minimize the sum of theight not be able to proceed if a node chooses to wait for
squared distances between the solution point and each dwmiter references to become available, since the node itself
straint. then cannot act as a reference for other nodes.

For localization in time, constraints define regions that There are two different ways to approach this problem.
are either points or intervals. In case of intervals, the i8tructuredapproaches first construct an overlay topology
tersection interval can be computed as the maximum of that controls selection of reference nodes and triggers client
lower bounds and the minimum of the upper bounds. thodes to start measurements. A common overlay topology
case of point estimates, the average of all constraintsare trees. For each anchor, a spanning tree of the network
typically used, which minimizes the sum of the squarasl constructed with the anchor at the root. A client node be-
error distances. If confidence values are available for themes active as soon as its parent has estimated its location
constraints, a weighted average may be used instead (eugd, can thus act as a reference (e.g., [5, 8, 24]). Another
[20, 23])). typical overlay topology are clusters, where nodes in a clus-

Let us consider some commonly used examples for cder establish a local coordinate system and estimate their
straint combination in algorithms for localization in spacéocations in terms of this reference grid. Adjacent clusters
A very simple approach is based on centroids (e.g., [1f)ust share a number of nodes to allow for the derivation
where multiple distance-bound constraints are given (i.ef,a coordinate transformation between these clusters (e.g.,
distance from reference is at md§). Here, each constraint[3, 6]).
defines a sphere. A point close to the intersection of such &Vhile such structured approaches ease the selection of
set of spheres can be obtained by computing the centroideference nodes, there is an additional overhead for con-
the locations of the according reference points. structing and maintaining the overlay topology. For exam-

Another commonly used approach is multilateration tge, if nodes fail or move, the overlay topology has to be
combine multiple distance constraints, where the region dgdated to reflect this change. In contraststructuredap-
fined by each such constraint can be interpreted as the putlaches do not explicitly construct an overlay topology
of a sphere. Multilateration finds the intersection point ¢¢.9., [13, 21]). Instead, each node actively monitors its
a set of at least 4 spheres in three-dimensional space.néighborhood for a sufficient set of references to become
case of exactly four spheres, a linear equation system eamilable. While this approach avoids the overheads of
be derived and solved to find the intersection point. Fmpology construction, it introduces an overhead due to a
more than 4 constraints a minimum-square-error optimizeotentially large number of constraints.
tion problem can be derived, also resulting in a linear equa-Approaches for localization in time often use structured
tion system (e.g., [15, 20, 21]). approaches, since a small number of constraints is usually

One further approach is based on triangle tests, whersufficient to achieve the requested level of precision. With
node performs a check to see whether it is located inside kbealization in space, significant measurement errors and a
triangle formed by three reference nodes (e.g., [10]). Suchigh degree of freedom due to the three dimensions of space
test is based on the following property: a node located otypically requires the use of many constraints. Hence, many
side the triangle can be moved such that the distances t@alproaches for localization in space are unstructured.
anchors are either all increased or all decreased simultane-
ously. In contrast, all movements of a node located inside o o .
the triangle will increase the distance to some anchors #¢h® Maintaining Localization over Time

decrease the distance to some anchors simultaneously. In o .
étsmgle run of a localization algorithm allows each node to

dense networks, the following approximative triangle tee imate its location in spacetime at a certain point in time
can be used: a node is assumed to be in the triangle, ifI—r|%?(5l’wever as time pro reF;ses the precision ofpthis one-shét
neighbor of the node is further from or closer to all three an-_. ' prog o P S
: . “ " . (%stlmate may decrease quickly due to node mobility or due
chors simultaneously. For this test, “closer to constralqs ) ! .
are used. 0 the progress of time. Obviously, the algorithm can be ex-
ecuted one more time to obtain up-to-date estimates. The
resulting precision over time then depends on the frequency
4.4 Selecting Constraints of execution. However, since each execution of the algo-
rithm takes a certain amount of time, this frequency can-
At each point during the execution on a localization ahot be arbitrarily increased. Hence, the maximum precision
gorithm, a certain set of reference nodes are available émer time is also limited. Alternatively, if a certain target

each client node. Using these reference nodes, a nunyirecision is requested by the application, the execution fre-



guency may be calculated to be just high enough to providéegrated over time and used to control the frequency of the
the requested precision (see, e.g., [24]). For localizationhardware oscillator.

space it is also possible to limit re-execution to nodes that

have changed their location (e.g., [20]) in the meantime. 4.6 Examples

One way to further improve precision over time is the ] ) o
use of sensors to measure the location in spacetime |OC¥H? conclude this section by giving some examples for lo-

without referring to other nodes. This technique is al§&iiZation in space and time in sensor networks from the
known asdead reckoning Hardware clocks, for example literature. We present two anchor-based algorithms and two
are dead-reckoning devices for estimating the current tirf@chor-free algorithms, in each case one for localization in
Accelerometers may be used to measure movements %W@_and one for Iocallzfsmon in space. Please note the sim-
can hence provide estimates of the current position in spA@gties among each pair of algorithms.

(see, e.g., [25]). However, dead-reckoning devices typically

suffer from significant errors that accumulate over time add6.1  Anchor-Based Algorithms

can therefore only be used to bridge the short gap betW(]A:(fn

two consecutive runs of a localization algorithm. For ex—OOding Time-Synchronization Protocol [13]. The
9 ) node with the lowest node ID is elected as the anchor whose

ample, typical hardware clocks suffer from an unknovsigcal time serves as a reference time for synchronization. If
clock drift between 10 and 100 parts per million. After on y )

minute, the deviation from real time is then between 0.6 aﬁ'ds. nOde fails, th_en the node with the lowest ID in the re-
- . . . maining network is elected as the new anchor. The anchor
6 milliseconds. For location estimation using accelerome-

ters, there is a quadratic relationship between acceleratiE%E'Odlca”y broadcasts a synchronization message that con-

. . tains its current local time. Nodes which have not received
measurement errors and errors in the computed location ﬁs- .
timate this message yet use the message contents to derive a con-

straint and broadcast the message to its neighbors. Each

Another way of improving the precision srediction node collects eight such constraints and uses linear regres-
where based on location estimates from the past a curtggh on these eight data points to estimate time offset and
estimate is computed. Besides the past behavior, predictigf difference to the anchor. The algorithm is repeatedly

requires a model of how a node can move through spaggecuted to maintain synchronization over time.

time. With respect to time, such a model is rather simple
as real-time progresses at a constant rate. The Situa}i\?ﬁHoc Positioning System [15]. It is assumed that a

gets more complicated for space, where nodes can rTH‘)r\z/a%tion of the nodes are anchors with known locations. The

in complex patterns. However, it is often possible to deriv: orithm supports several localization methods, we wil

constraints on the possible Iocat_|ons (e.g., only on r_oadg gtch the method “dv-distance” here, where nodes must
bounds on speed and acceleration. For example, if there . . .
. e able to measure distances to neighbors in order to de-
is an upper bound on the speed of a node, we can derive

) . ) rivé a distance constraint. Anchors regularly broadcast a
bounds on the possible locations of a node at timgiven g Y

the node’s location at tim + Technicallv. rediction message containing their location. In addition, this message
can be achieved by fittin &Jaf:url\}e (often a )glpnomial Wi ontains a field that holds an estimate of the distance from
y gac . poly 1e anchor which is initialized to zero. Nodes which have
low degree) to a set of locations in spacetime observed in . ) .
. : X ot received this message yet measure the distance to the
the recent past. As with dead reckoning techniques, precﬂc- L : L
. ) S . - sénder, which is then added to the distance field in the mes-
tion often experiences significant errors which are mamz)((i btai : fh de’s di f h
subject to the accuracy of the used model ge to obtain an estimate 0 the node’s |stance_ rom the
. o _ ' anchor. Then, the message is broadcast to the neighbors of
Many time synchronization algorithms (e.g., [6, 13]) usfie nodes. Eventually, each node will end up with distance
a combination of prediction and dead reckoning. Basicalpstimates for at least 4 anchors and uses multilateration to
the hardware clock (i.e., a dead reckoning device) is us&hpute its location. If a node changes its location, it lis-

to implement progression of time. However, due to clogkns to the broadcasts again in order to update its location
drift hardware clocks may run faster or slower than “syrstimate.

chronized time”. To compensate this clock drift, the relative

rate difference between synchronized time and the hardwgre ,  \ 1o
clock in the recent past is used to predict the rate difference

in the future. The predicted rate difference is then usB@ference-Broadcast Synchronization [6]. This algo-

to compensate the error due to a wrong rate of the hanthm denotes some nodes as beacon nodes which fre-
ware clock. Common approaches to implement such a rqtently broadcast messages to a set of client nodes that
compensation are linear regression and phase-locked lospsuld be synchronized (cf. Section 4.2). The clients that
With linear regression, a line is fitted to to a set of time eseceive such a broadcast then exchange their respective re-
timates from the past, where the slope of the line charactegption times to obtain mutual constraints. Each client col-
izes the rate difference. With phase-locked loops, the ph#sets multiple such constraints and uses linear regression
offsets between synchronized time and hardware clock swecompute relative time offsets and rate differences to the

Free Algorithms



other client nodes. The offset and rate difference between . . :
a pair of client nodes defines a coordinate transformation B "O
between the local time scales (i.e., coordinate systems) of .

these nodes. To extend this scheme to multi-hop networks, e ;'O
the network is clustered such that a single beacon can syn- . .
chronize all nodes in its cluster. Gateway nodes that par- o

ticipate in two or more clusters independently take part glgure 6:Collocated nodes (white) may end up with a large rela-
|

the reference-broadcast procedure of all their clusters. {2 error due to using different chains of reference nodes (gray).

knowing offsets and rate differences to nodes in all adjacen
clusters, gateway nodes can compute coordinate transfor-

mations between all adjacent clusters. Time synchronizgyy|| devices is typically very limited due to the low en-
tion across multiple hops is then provided by transformirgqy density of currently available and foreseeable technol-
clock readings between the local time scales (i.e., coorgly. To ensure longevity despite this limited energy budget,
nate systems) of the nodes. energy-efficient design both in hardware and software be-
comes a dominating goal. Additionally, computing, storage,
Self-Positioning Algorithm [3]. In the first phase of this and communication capabilities of individual sensor nodes
algorithm, each node measures distances to its neightsgrather limited due to size and energy constraints.
and broadcasts these distances to its neighbors. After this,

each node knows the distance to each of its neighbors Wc{ . . .
the distances between some pairs of its neighbors. Th enwork Dynamics. Due to their deployment in the
P 9 ' sical environment, sensor networks are subject to a high

each node constructs a local coordinate system using wooF ; 7
) . . degree of network dynamics. Sensor nodes can be mobile
its neighbor nodes (cf. Section 4.1). In the second phasée ; . :
; . €.9., [11]), die due to depleted batteries or due to environ-
coordinate transformations are computed between the cg- ;
: . . mental influences, and new sensor nodes may be added at
ordinate systems of adjacent nodes. In the third phase, a

. : . dny point in time. This results in frequent changes in the
global coordinate system is selected and coordinate trangy P g 9

. . nétwork topology and in temporary network partitions. Mo-
formations are computed to transform the local coordin & .
. . ile nodes can transport messages across partition bound-
systems to this global system. For this, a set of nodes ca

e : . L
the Location Reference Group (LRG) is elected such thaa{{es by storing a rgceyed message and forwarding it as
sgon as a new partition is entered. The end-to-end delay

the degree of mobility of the centroid of these nodes is smaﬁ ch message paths is verv unstable and hard to predict
in order to avoid frequent adjustments of the global coorcﬂ- su Ssage pahs IS very uns predict.
nate system. The global coordinate system is then defined
by the average of the local coordinate systems of the no@&mfiguration.  After initial deployment, it is often infea-
inthe LRG (i.e., origin is centroid of the origins of the indisible to physically access the sensor nodes for hardware or
vidual coordinate systems, axis vectors are averages ofgbfiware maintenance. The large number of nodes also pre-
axis vectors of the individual coordinate systems). cludes manual configuration of individual nodes. While tra-
ditional networks such as the Internet do also consist of a
L large number of nodes, there are also many human network
5 Limitations and Trade-offs administrators who each care for a manageable number of
computers. With sensor networks, however, a small number

Sensor networks are Subject to various Cha”enges that Wﬁuman OperatorS, if any, may be responsib'e for thou-
to be met by algorithms for localization in spacetime. lg§ands or even millions of sensor nodes.

the following paragraphs we briefly summarize these chal-
lenges, before discussing various trade-offs and limitations
of algorithms with respect to these challenges. 5.1 Anchor Infrastructure

o The number, distribution, and arrangement of anchor nodes
Infrastructure. In many applications, sensor network, 5 network is a key parameter for the performance of an
have to be deployed in remote, unexploited, or hostile tgschor-based localization algorithm. In this section, we dis-
gions. Sensor networks therefore often cannot rely on $¢ss various aspects of such an anchor infrastructure.
phisticated hardware infrastructure. For example, undefj, orqer to obtain precise location estimates, the anchors
dense foliage or inside buildings, GPS cannot be used Sifgest define an unambiguous coordinate system at the least.
there is no free line of sight to the GPS satellites. With respect to time, the local time scale of any single node

defines such an unambiguous time coordinate system. For

Energy and Other Resources. Sensor-network applica-space, at least four anchors are required. Three anchors
tions often require that sensor nodes be small and chagpically result in two possible coordinate systems, but one
This has a number of important implications. First of algf them can often be excluded due global constraints about
the amount of energy that can be stored in or scavengeddogsible locations of nodes.
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However, such a minimum number of anchors is often not
sufficient. Energy considerations and interference issues of-
ten limit the effective range of anchors. With radio commu-y,
nication, for example, the energy consumption grows with Lo
range to the power df, where typically2 < k < 4. Hence,
in large networks with small anchor range, typically a sig=- Y-~ ‘
nificant portion of nodes cannot directly obtain constraints
for a sufficient number of anchor nodes. In this case an it- (@) (b)
erative approach can be applied, where nodes first estimate
their locations using anchors and then act as “secondagygyre 7: Localization error is much larger if anchor nodes are
references for other nodes. As measurement errors aGfhost collinear.
mulate along such chains, the error in the estimated loca-

tion is the larger, the more iterations are required (i.e., the

larger the distance to the anchor is). Depending on the pP¥Sly; anchors should be evenly distributed across the sen-
cision of theA;, this error can be significant. With some ap°r network in order to ensure that any node has a sufficient
proaches for measurinty; used in practice (e.g., measuringumber of anchors in its vicinity. However, also the relative
Euclidean distance based on received radio signal strengfifjaZngement of anchors with respect to each other has an in-
the error can be as high as 50% in realistic settings [20]. luénce on the localization accuracy. For example, collinear
One particular problem with using a minimum number &nchors (e., anphor nodes.that fall on a fine in :.SD spap_e)
. . and also approximately collinear anchors result in signifi-
anchors is that collocated nodes may end up with large rél-

: : . . antly reduced precision for localization in space. This is
ative errors due to using different chains of reference nodgs

as depicted in Figure 6. This can be problematic, since o Hstrated for localization in 2D space in Figure 7. In part

. . zf&B the error, in distance measurement results in a small
located sensor nodes often cooperate in observing a near

) . error in the estimated location (dotted circle) w.r.t. the ac-
physical event and thus may need a very small relative error. : N
) . al location of the node (solid circle). In part (b), where
For example, estimates of the distance between the collo- : : L
: - : anchor nodes are almost collinear (i.e., fall on a pointin 2D
cated nodes may include significant errors if the nodes use . .
. ' .space), the same erres results in a much larger error in
different paths. Local refinement procedures as descrltg

) . : e estimated location.
in [20] can somewhat improve the local consistency. In summary, a minimum set of anchors may lead to poor

To achieve a reasonable precision, typically a large NUB}acision for iterative algorithms in large networks. A rea-
ber of an_chors is required, suc_h_that the maximum d|star_§gﬁmb|e precision typically requires a much larger number
of any client node from a sufficient number of anchors & anchor nodes and an out-of-band mechanism for boot-
small. In [20], between 5% and 10% of all nodes, angranning anchor locations with high precision. The ac-
in [21], between 10% and 20% of all nodes are anchofg,| deployment of the anchor nodes requires precautions
However, a large number of anchors requires an out-0f-b3gd,giq collinearity. Depending on the quality of the con-

mechanism for providing the anchors with precise Iocatigr&aims, networks must have a certain minimum density in
estimates. Such an out-of-band mechanism may be a s§fiier to achieve a reasonable precision.

ous drawback, since it typically implies additional hardware
infrastructure, and special hardware must be attached to the
sensor nodes. One typical example for such an out-of-bahd ENnergy and Other Resources

mechanism is GPS with its satellite infrastructure and 'RS noted in Section 3.5. it is quite common that applica-

sgltmg cons_tralnts, where a_mchor_ nodes must_be equ%qs do only require a very limited scope and lifetime of
with expensive and energy-intensive GPS receivers. localization, where actual scope and lifetime requirements
In order to ensure that each node in the network hagiépend on the occurrence of events in the physical environ-
sufficient number of neighbors which can act as anchoggent. Hence, a significant amount of resources and energy
the network must have a certain minimum density. In othgsuld be saved if localization is only performed where and
words, each node in the network must have a certain mihen needed and with the required precision.
imum number of neighbors. This also implies that nodesyowever, algorithms for localization in spacetime are of-
at the edge of the network (with a lower number of neiglen not well suited for on-demand localization. This is due
bors) typically experience a reduced precision. Netwog two main reasons. Firstly, localization of a single node
density is particularly important if the collected constrain§§pica||y requires the cooperation of many other nodes to
are loose, since then many constraints are needed to achi¥&s references for obtaining constraints. For on-demand
precise location estimates. In [20], for example, each nagealization, (recursively) providing a sufficient number of
has an average of 7 to 12 neighbors in order to achievgeference nodes on-demand would be needed. However,
reasonable precision. managing this process is a complex task. For example, as
The arrangement of the anchors is also of importance farted in the previous section, the number and relative ar-
the achieved precision of localization in spacetime. Obvangement of the anchors must be considered by such a
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mechanisms, as this is crucial for the achieved precisitopologies under a high degree of network dynamics may
Moreover, such selective localization may induce signifsiecome an unacceptable resource overhead.
cant management overheads.

Secondly, many algorithms require a significant amougty
of convergence time for achieving the requested precision.
For example, [13] reports a convergence time of 10 minutescalization algorithms may require a number of configu-
in a network of only few tens of nodes. Hence, if a node reation parameters whose values differ from node to node.
guests localization, a significant amount of time will elapSg/pical examples for these parameters are the set of refer-
before a location estimate with sufficient precision can leace nodes to use, network link calibration parameters (e.g.,
provided. minimum delay of a wireless link), and sensor calibration

parameters (e.g., for distance measurements).
. While some of these parameters can be automatically
5.3 Network Dynamics configured and adapted, this is not so easy for other param-
At the beginning of Section 5 we mentioned the various eeTgers. _For example, calibration may be.a particularly tricky
fects of network dynamics found in sensor networks. Thesa c N sensor networks, because _typlcal IOW'COSI Sensors
used on sensor nodes are very sensitive to environmental pa-

effects may have a significant impact on the performance -~
2 I . rameters such as temperature and humidity. If these sensors
and applicability of localization algorithms.

AN tant implicit i ¢ localizati are exposed to a harsh and dynamic physical environment,
n important Implicit assumption of many localizationy, output of the sensors includes significant errors. Addi-

algorithms is thabeforethe location of a node can be eS"onaIIy sensor orientation, wear, and dirt lead to system-
timated, the node must obtain constraints involving a suffiz . but, dynamically changi’ng err’ors. In [26], for example
cient number of reference r_10des. Th_ese references |n WL authors observed an average error of ai)prox. 75% f,or
must also be able to obtain constraints from a sum(.:'e(ﬂgtance measurements with uncalibrated sensors based on
number of other reference nodes, and so on. Overall, in fife of flight of an ultrasound signal. Hence, calibration pa-

dgr tolocate a nodel, t.here must be (.:o.n.stralnt paths frorpa?neters often cannot be statically configured, but must be
client node to a sufficient number of initial references. Th

typically means that a sufficient portion of the network mué?nammally updated to reflect the changing setup.
be connected before localization can be performed.
However, a number of application projects (e.g., [11))eg Conclusion
plore settings, where sensor nodes are mobile and network
connectivity is sporadic. Such a situation is illustrated in this paper, we showed that space and time are closely
Figure 8. Nodes 1 and 2 collect sensor readings while betegated in the context of sensor networks: in terms of ap-
disconnected from the network. After some time, nodepfications, models, requirements, basic approaches, and in
sends its collected data to node 3 (e.g., a mobile base &ams of concrete algorithmic techniques.
tion as in [11]) while in communication range. Later on, To even go a step further, we can consider localization in
when node 2 has already left communication range of nasisth time and space aensor calibratiorproblems. A sen-
3, node 1 sends its collected data to node 3 while in coBbr is a physical device that takes a certain physical quan-
munication range. Node 3 now is to fuse data from nodesity as input and produces a variable electrical signal as out-
and 2, which requires the locations in spacetime of nodegk that is usually converted to a digital number using an
and 2 while they collected the data. Note that there is no ngiralog-to-digital converter. Calibration then consists of en-
work connection between nodes 1 and 2 at any pointin tinigrcing a certain mapping between the observed physical
In such settings, many localization algorithms may not l@antity and the sensor output. For example, if a sensor is
applicable due to the above implicit connectivity assumpxposed to a temperature PC, then the sensor should
tion. This problem is addressed, for example, in [17, 18].output7". Localization in space can then be considered as
As noted in the previous section, many algorithms takige task of calibrating a location sensor to a given coordinate
a significant amount of convergence time before deliveriggstem. Localization in time can likewise be considered as
the requested precision. It is typically assumed that the nidle task of calibrating a time sensor to a given coordinate
work remains stable during the execution of the algorithmystem. Note that hardware clocks can be considered as
However, node mobility and other effects of network dysensors that measure the period of a physical process with
namics may invalidate this assumption. This may lead jperiodic behavior (e.g., an oscillating quartz).
significantly increased convergence times (see, e.g., [23])it would be worthwhile to examine the use of known
or may also prevent the algorithm from converging at atechniques from time synchronization and node localization
In the latter case, the effective precision may reduce signif-the more general context of calibration. It particular, it is
icantly. quite likely that many of the observations in this paper could
Some algorithms construct an explicit overlay topolodye generalized to calibration. For example, the classifica-
as noted in Section 4.4. Network dynamics may break the®s in Section 3 can be directly transferred to calibration. It
topologies or make them inefficient. Maintaining these also thinkable that distributed calibration algorithms will

Configuration
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Figure 8:Message transport across partition boundaries. (a-b) Sensor nodes 1 and 2 collect sensor readings while disconnected from
the network. (c-d) Later, sensor nodes 1 and 2 report their findings to node 3 for data fusion. At no point in time there is a network
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connection between node 1 and 2.
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consist of structural elements similar to those we identifig?] B. Liskov. Practical Uses of Synchronized Clocks in Dis-
in Section 4.
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