
Towards a Unified View on Space and Time in Sensor Networks∗

Kay Römer and Friedemann Mattern
Institute for Pervasive Computing

ETH Zurich
{roemer,mattern }@inf.ethz.ch

Abstract

In wireless sensor networks, many applications rely on the
ability of sensor nodes to estimate their physical location
and time with respect to a common reference scale. This ne-
cessity is reflected by the development of a significant num-
ber of algorithms for localization and time synchronization
for sensor networks in the recent past. However, research
on location estimation on the one hand and on time syn-
chronization on the other hand has been largely separated.
Despite this, models, requirements, techniques, and algo-
rithms of the two domains are rather similar and in some
respects closely related. The purpose of this paper is to
make this affinity explicit, with the hope of stimulating a
mutual fertilization and enabling a better understanding of
both domains.

1 Introduction

In wireless sensor networks – large wireless networks of
tiny computing and sensing devices –, space and time
play a crucial role, since sensor nodes are used to col-
laboratively monitor physical phenomena and their spatio-
temporal properties. Consequently, a number of techniques
and distributed algorithms for location estimation and for
time synchronization have been developed specifically for
sensor networks. Research in these two domains has been
performed by mostly separated research communities.

A closer look on both research domains reveals that there
are many similarities1. This does affect a variety of aspects
of location estimation and time synchronization, ranging
from applications and requirements to basic approaches and
concrete algorithmic techniques. The purpose of this paper
is to point out this close affinity. The hope is that this could
lead to a better understanding of both domains and to a mu-
tual fertilization, where results from one domain could be
adopted by the other.

The remainder of this paper is structured as follows. In
Section 2 we point out uses of space and time in sensor net-
works. Section 3 presents a common model for location

∗This work was partly supported by NCCR-MICS, a center supported
by the Swiss National Science Foundation under grant no. 5005-67322.

1We acknowledge that there are also significant differences, but this
paper focuses on the similarities.

(a) (c)(b)

Figure 1: Applications of space and time. (a) interaction of an
external observer with the sensor network, (b) interaction among
sensor nodes, (c) interaction of the sensor network with the moni-
tored real world.

estimation and time synchronization and discusses various
requirements and basic approaches to location estimation
and time synchronization based on this model. In Section
4 we discuss the structure of distributed algorithms for lo-
cation estimation and time synchronization. In particular,
we will point out that both kinds of algorithms are based on
few common structural elements. Section 5 presents vari-
ous limitations and trade-offs of this class of algorithms and
Section 6 concludes the paper.

2 Uses of Space and Time

Figure 1 illustrates three important use classes of space and
time in sensor networks. Typically, a sensor network is
tasked by and reports results to an external observer (a).
A sensor network also interacts with the physical world
through distributed sensors and possibly also through actua-
tors (c). Finally, the sensor nodes interact among each other
to coordinate distributed computations (b). The following
paragraphs will discuss applications of space and time in
these three domains.

2.1 Sensor Network – Observer

In many applications, a sensor network interfaces to an ex-
ternal observer for tasking, reporting results, and manage-
ment. This external observer may be a human operator (as
depicted in Figure 1) or a computer system. Tasking a sen-
sor network often involves the specification of regions of

1

interest in spacetime such as “only during the night” or “the
area south of ...”. Since the observer is typically interested
in a physical phenomenon of the real world (and not in in-
dividual sensor nodes), such spacetime addressing is often
preferable over addressing individual nodes or groups of
nodes by identifiers.

As a sensor network reports monitoring results to the ob-
server, many spatio-temporal properties of observed phys-
ical phenomena are of interest. For example, time and lo-
cation of occurrence of a reported physical event are often
crucial to associate event reports with the originating physi-
cal events. Properties such as size, shape, speed, trajectory,
density do all refer to the categories time and space.

2.2 Sensor Network – Real World

In sensor networks, many different sensor nodes distributed
over an area may be involved in the observation of a single
physical phenomenon. One of the key functions of a sensor
network is therefore the assembly of many distributed ob-
servations into a coherent estimate of the original physical
phenomenon – a process known as data fusion. Space and
time are key ingredients for data fusion. For example, many
sensors can only detect the proximity of an observed object.
Higher-level information, such as speed, size, or shape of
an object can then only be obtained by correlating data from
multiple sensor nodes whose locations are known. The ve-
locity of a mobile object, for example, can be estimated by
the ratio of the spatial and temporal distances between two
consecutive object sightings by different sensor nodes. As
another example, the size and shape of a widespread object
can be approximated by the union of the coverage areas of
the sensor nodes that concurrently detect the object.

Since many different instances of a physical phenomenon
can occur in spatio-temporal proximity, one of the tasks of
a sensor network is the separation of sensor samples, that
is, the partitioning of sensor samples into groups that each
represent a single physical phenomenon. Spatio-temporal
relationships (e.g., distance) among sensor samples are a
key element for separation.

Spatio-temporal coordination among sensor nodes may
also be necessary to ensure correctness and consistency of
distributed measurements [9]. For example, if the sampling
rate of sensors is low compared to the temporal frequency
of an observed phenomenon, it may be necessary to ensure
that sensor readout occurs concurrently at all sensor nodes
in order to avoid false observation results. This is also an
issue for sensor calibration as explained in [2]. Likewise,
the spatial distribution of sensors has an impact on the cor-
rectness of observation results. For example, in order to
estimate the average of a certain physical quantity over a
certain physical area (e.g., average room temperature), it is
typically not sufficient to simply calculate the average over
all sensor nodes covering the area, because then areas with
higher node density would be overrepresented in the result-
ing average value.

It is anticipated that in the future large-scale and com-
plex actuation functions will be realized by coordinated use
of many simple distributed actuator nodes that are part of
a sensor network. Similar to distributed measurements,
spatio-temporal coordination will then also be an important
ingredient for consistent distributed actuation.

2.3 Within a Sensor Network

Time and location are also valuable concepts for intra-
network coordination among different sensor nodes. As
sensor networks are essentially distributed systems, many
traditional uses of the concepts of time and location do also
apply to wireless sensor networks. Liskov [12] points out
a number of uses of time in distributed systems in gen-
eral such as for concurrency control (e.g., atomicity, mutual
exclusion), security (e.g., authentication), data consistency
(e.g., cache consistency, consistency of replicated data), and
communication protocols (e.g., at-most-once message de-
livery).

One particularly important example for concurrency con-
trol is the use of time-division multiplexing in wireless
communication, where multiple shared access to a com-
mon communication medium may be realized by assign-
ing time slots with exclusive access to the communicating
peers. This may require the participating sensor nodes to
share a common view on physical time. A prominent use of
spatial information for network coordination is geographic
node addressing and routing, where geographic locations
replace the use of node identifiers.

A number of approaches intend to improve energy ef-
ficiency by selectively switching sensor nodes or compo-
nents thereof into power-saving sleep modes. In order to
ensure seamless operation of the sensor network despite of
this, spatio-temporal coordination among sensor nodes may
be required. The algorithm presented in [27], for exam-
ple, extends the lifetime of dense networks by switching
off nodes such that the remaining nodes are sufficient to
cover the area of interest. To ensure coverage, node loca-
tions must be known. Another way of extending network
lifetime is to periodically switch off radio transceivers of
sensor nodes, since their power consumption is rather high
even when only listening to the network. Temporal coor-
dination is required to ensure that activity periods of sen-
sor nodes overlap in time in order to enable communication
(see, e.g., [28]).

Another service of importance for sensor network ap-
plications is temporal message ordering [19]. Many data-
fusion algorithms have to process sensor readings ordered
by the time of occurrence (e.g., in the approach for velocity
estimation sketched above). However, highly variable mes-
sage delays in sensor networks imply that messages from
distributed sensor nodes typically do not arrive at a receiver
in the order they have been sent. Reordering messages ac-
cording to the time of sensor readout requires temporal co-
ordination among sensor nodes.

2

The close relationship between time and space in the
physical world is also reflected by methods for time syn-
chronization and location estimation themselves. For exam-
ple, methods for location estimation based on the measure-
ment of time of flight or time difference of arrival of certain
signals typically require synchronized time. The other way
round, location information may also help to achieve time
synchronization. This is due to the fact that time synchro-
nization approaches often have to estimate message delays.
One component of the message delay is the time of flight
of the carrier signal between two nodes, which can be cal-
culated if the distance between sender and receiver and the
propagation speed of the carrier signal are known.

3 Locating Nodes in Spacetime

In this section we develop a common model for location
estimation and time synchronization. Using this model, we
will discuss various requirements on and different classes of
time synchronization and localization.

One possible way to model physical space is to do this
as a three-dimensional real-valued vector space. Likewise,
physical time can be modeled as a one-dimensional real-
valued vector space. These two vector spaces are often
combined to form a four-dimensional vector space known
asspacetime. To indicate points in spacetime, a coordinate
system is used, consisting of the vectoro (the origin) and
four linearly independent vectorse1, e2, e3, e4 (the axes).
To avoid relativistic effects and to simplify our discussion,
we assume that a coordinate system has the following prop-
erties:e4 = (0, 0, 0, t), theei are mutually orthogonal (i.e.,
inner product is zero), and|e1| = |e2| = |e3|. In other
words, the space axese1, e2, e3 form a Cartesian coordinate
system,e4 is the time axis, and|e1|, |e2|, |e3| and|e4| are the
space and time units, respectively. Any pointp in spacetime
can now be specified by its coordinates(p1, p2, p3, p4) with
respect to the coordinate system(o, e1, e2, e3, e4), such that
p is given byo + p1e1 + p2e2 + p3e2 + p4e4.

Under these assumptions, the spatial dis-
tance between two pointsp and q is given by√

(p1 − q1)2 + (p2 − q2)2 + (p3 − q3)2, and the tem-
poral distance is given by|p4 − q4|.

The above model allows a holistic view on localization
and time synchronization as follows. If a sensor node is
modeled as a pointp in spacetime, localization and time
synchronization can be considered as determining the cur-
rent coordinates ofp with respect to a given coordinate sys-
tem. We refer to this process aslocating a sensor node in
spacetime.

Note that it is quite common to use different coordinate
systems. However, using a simple coordinate transforma-
tion scheme, the coordinatespi of a given pointp can be
transformed into coordinatesp′

i in a primed coordinate sys-
tem, as depicted in Figure 2 for a two-dimensional coordi-
nate system.

In the remainder of the paper we will simply use the terms

p
2

p
1

p’
2

p’
1

o+e 2
o’+e’2

o’+e’1

o+e 1

o’

o

p

Figure 2:A point p in spacetime and its coordinatespi andp′
i in

two different coordinate systems.

localization / locationas an abbreviation for localization /
location in spacetime. We will uselocalization / location in
time and localization / location in spacewhen specifically
referring to time and space.

Localization in spacetime comes in many different fla-
vors and with many different requirements and practical
constraints, which are discussed in the following sections.

3.1 Internal vs. External

With external localization in spacetime, a given coordinate
system is used as a reference. With internal localization,
there exists no predefined coordinate system. The nodes of
a sensor network then have to agree on a single coordinate
system, but which one is actually chosen is irrelevant.

Note that external localization is a special case of inter-
nal synchronization, since a coordinate transformation can
be applied to map coordinates w.r.t. an arbitrary coordi-
nate system used for internal synchronization to coordinates
w.r.t. a predefined external coordinate system.

External localization is mostly used when interfacing
to the real world and observers, since there are well-
established coordinate systems used in daily life such as
the coordinate system defined by Universal Transverse Mer-
cator (UTM) space coordinates and Coordinated Universal
Time (UTC). For spatio-temporal coordination among sen-
sor nodes, internal localization is often sufficient.

3.2 Global vs. Local

In order to be able to compare two pointsp andq in space-
time, the coordinates of the two points must be known
w.r.t. a single coordinate system. The most obvious way to
achieve this is to have all network nodes use a single global
coordinate system. In this case, any sensor node can easily
compare any two points in spacetime obtained from any two
nodes.

However, the use of a single global coordinate system is
not the only possible solution. As illustrated in Figure 3,
small sets of nodes or even single nodes may use a local co-
ordinate system each. If points in spacetime remain within

3

transformation

coordinate

Figure 3: Small sets of nodes may use local coordinate system.
If a point in spacetime is passed beyond the scope of such a local
coordinate system, a coordinate transformation is applied.

the scope of such a local coordinate system, they can be eas-
ily compared. However, if coordinates of points in space-
time are passed across the border between the scopes of two
different local coordinate systems, a coordinate transforma-
tion must be applied to the point.

When to prefer the one or the other approach depends
on the actual application. Maintaining a coordinate system
across a set of distributed network nodes requires commu-
nication among the participating nodes. However, compar-
ing points within the scope of a single coordinate system
then comes for free. Local coordinate systems typically
do not require active communication among nodes using
different coordinate systems. Passing points across a co-
ordinate system boundary, however, requires to compute a
suitable transformation between the two involved coordi-
nate systems, which then has to be applied to the affected
points.

Therefore, a reasonable approach would be to cluster
nodes based on their interaction patterns, where each cluster
has a local coordinate system. If two nodes do frequently
exchange points in spacetime, they should end up in the
same cluster. If there is strong interaction among all nodes
in the network, using a single global coordinate system is
likely the better choice.

3.3 Point Estimates vs. Bounds

Actual implementations of localization in spacetime are
based on measurements. Since measurements are always
afflicted with errors, only estimates of the coordinates of a
point in spacetime can be obtained in practice. Despite this,
it is often convenient to use such point estimates as if they
were correct in the absolute sense.

Another approach is to explicitly deal with errors in mea-
surements by specifying bounds on the actual coordinates
of a point in spacetime, where one assumes that the true
value lies within the bounds. Common ways of specifying
bounds are bounding boxes and spheroids. In the special
case of (one-dimensional) time, both map to intervals.

Both point estimates and bounds have advantages and
disadvantages that influence the choice of one over of the

other. Basically, point estimates are convenient to use due
to the simplicity of point arithmetic and because statements
in terms of the abstract spacetime model can be directly ap-
plied to the point estimates. However, the use of point es-
timates may lead to wrong results. For example, for two
point estimateŝp andq̂ wherep̂4 < q̂4 holds,p may despite
of this actually represent a later point in time thanq.

While the use of explicit bounds is often more complex
and inconvenient, and sometimes rather imprecise, errors
like the above one can be avoided. However, the use of
bounds also introduces situations where it is impossible to
decide on a certain expression. For example, if bounding
boxes (i.e., intervals) are used to represent points in time,
it cannot be determined whether one point is earlier than
another if the corresponding intervals overlap. While the
introduction of such undecidable situations may seem un-
desirable from a technical point of view, they explicitly rep-
resent fundamental limitations of the system and alert the
application or user about it, instead of making arbitrary and
potentially wrong decisions.

Yet another approach to deal with the imprecision of lo-
calization algorithms is the use of probability distributions
over spacetime. However, due to the practical difficulty
of dealing with probability distributions, this approach is
currently not used in distributed algorithms for sensor net-
works.

3.4 Points vs. Distances

In the previous discussions we assumed that points in space-
time originating from different nodes in the sensor network
are compared. However, there are also applications where
individual nodes locally measure distances between points
in spacetime and where it is sufficient to compare distances
measured at different sensor nodes.

As an example, consider an application where sensor
nodes measure the time during which a certain phenomenon
can be sighted and where the sighting durations at different
sensor nodes must be compared (e.g., to estimate the accel-
eration of a mobile object). Here, the actual points in time
when the phenomenon appeared or disappeared are irrele-
vant. However, it is important that different sensor nodes
measure the same duration given identical physical stimuli.

Obviously, measuring and comparing distances is a spe-
cial case of measuring and comparing points in spacetime,
since a distance can be easily calculated when the points are
given w.r.t. a common coordinate system.

3.5 Scope and Lifetime

A scopedefines a subset of nodes where localization in
spacetime is required. Alifetimedefines a time interval dur-
ing which localization is required. The two extremes are ev-
erywhere/continuous (e.g., time synchronization to coordi-
nate access to the communication channel) and on-demand,
where localization is only performed where and when actu-

4

ally needed (e.g., to estimate the location of a an instanta-
neous physical event).

Both lifetime and scope requirements can vary from ap-
plication to application and may change dynamically and in
unpredictable ways. In many sensor network applications,
scope and lifetime are correlated with the occurrence of the
observed physical phenomena. For example, to locate an
object moving through a sensor network, nodes that can de-
tect the object might define the scope and the lifetime.

With everywhere/continuous localization, the localiza-
tion procedure is performed permanently on all nodes, such
that an up-to-date estimate of the current location in space-
time is immediately available whenever requested by the
application. With on-demand localization, the localization
procedure is performed only where (i.e., on a certain node)
and when the application requests the current location in
spacetime. The result is only available after a delay caused
by the execution of the localization algorithm.

The overheads of the two approaches depend on the fre-
quency of the application requesting localization. If rarely
requested, on-demand localization may be more efficient.
If frequently requested, continuous localization is likely to
be more efficient. In sensor networks, where activity is of-
ten triggered by the occurrence of rare physical events, the
on-demand approach is certainly a promising technique for
achieving resource efficiency.

3.6 Precision

A localization algorithm yields a point estimate or bounds
on a sensor node’s actual positionp in spacetime. Precision
is a measure for how well this result matches the ground
truth locationsp of nodes across the network over time. For
algorithms returning point estimates, theinstantaneouspre-
cision for a given node at a given point in time is usually
expressed in terms of the distance between the point esti-
mate andp. Algorithms that return bounds are error-free
if p is actually enclosed by the bounds. However, the pre-
cision of bound-based algorithms can be expressed by the
uncertainty of the bounds (e.g., the volume of a bounding
box, the length of an interval).

To derive the overall precision of an algorithm within the
scope and during lifetime, the instantaneous precisions of
the nodes have to be combined. The combined precision
then has to be accumulated over time to arrive at a sin-
gle value that characterizes precision. Common ways of
combining instantaneous precision values of many nodes
are maximum, average, and standard deviation. A variant
often found in the literature is the maximum error after re-
moving a given percentage (e.g., 5%) of the largest errors.
The combined precision typically improves during the exe-
cution of an algorithm and approaches a stable value in the
steady state. The combined precision in the steady state can
be used to express the overall precision of an algorithm.

Requirements on the precision may heavily vary from ap-
plication to application. This applies both to quality and

quantity. With respect to quality, an application might re-
quire a certain average precision, other applications may re-
quest a certain maximum error. The requirements on the
distribution of precision over the network and over time
may also vary from application to application. With re-
spect to quantity, required precision is closely related to
the temporal frequency and spatial detail of the phenom-
ena that require localization in spacetime. For localization
in time, precision requirements range from a maximum er-
ror of few micro seconds (e.g., for controlling access to the
communication channel) to seconds or even minutes (e.g.,
for activating a sensor network during certain times of the
day). With respect to location, precision requirements range
from a maximum error of some centimeters (e.g., locating
a shooter [22]) to tens or even hundreds of meters (e.g., lo-
cating an animal herd).

As mentioned in Section 3.5, the scope of localization
in sensor networks is often defined by a set of collocated
sensor nodes that cooperate in monitoring a close-by event
in the real world. For this kind of application, the precision
among this set of collocated nodes typically must be high.
However, the precision among nodes which are far apart in
space may not be important. We will return to this issue in
Sections 5.1.

3.7 Other Quality-of-Service Aspects

Besides the aspects discussed so far, a number of additional
QoS characteristics of localization in spacetime are of prac-
tical relevance. Two prominent examples are robustness and
security. A robust localization algorithm delivers correct
location estimates even in the presence of well-defined, ac-
cidental failures. Another aspect is secure verification of
location estimates, where spoofed locations can be detected
(see, e.g., [4]).

4 Distributed Algorithms for Local-
ization in Spacetime

Many practical distributed algorithms for localization in
space (e.g., [1, 7, 14, 16, 20, 21]) and time (e.g., [5, 8, 13,
23, 24]) are based on a few common structural elements. In
this section we point out these structural elements and dis-
cuss various concrete instances of these elements found in
existing algorithms.

Consider Figure 4. Part (a) shows two kinds of nodes:
black reference nodes with known locations and white client
nodes with unknown locations. In part (b), a gray client
node measures its distance∆i from a number of neighbor-
ing reference nodes. Using the locationSi of the references
and the measured∆i, the gray node infers its own location
in spacetime. The node can now also act as a reference for
other client nodes in subsequent iterations of the algorithm
as illustrated in part (c). Eventually, all nodes should be
able to measure distances to a sufficient number of neigh-

5

∆
∆

∆

∆

∆

∆

(a) (b) (c)

1

2

3 1

2

S S

S

S

S

S

1 3

2

1

3
3

2

Figure 4:Client nodes infer their location in spacetime by mea-
suring spatio-temporal relationships∆ (e.g., Euclidean distance,
message delay) to black reference nodes with known locationsS
in spacetime. The process is iteratively applied. The figure shows
from the left to the right, a sequence of three snapshots.

boring reference nodes in order to estimate their location in
spacetime.

The meaning of the symbols∆ and S has to be inter-
preted in a rather broad sense here.S is any state informa-
tion of a node that is relevant to the localization algorithm.
Examples forS are time, location, orientation, and address
of a node.S may also include confidence values that char-
acterize the precision of the respective bits of state informa-
tion. ∆ is a spatio-temporal relationship between a client
node and one or more reference nodes. Examples include
Euclidean distance, hop distance, message delay, and angle
with respect to the orientation of the client.∆ may also
include confidence values.

A pair (S, ∆) can be interpreted as aconstrainton the
possible spacetime locations of a client node. For example,
if S is a location of a reference node in space and∆ its
Euclidean distance, then the location of the client node is
constrained to the hull of a sphere with radius∆ centered
atS. As we will show in Section 4.2, a constraint may also
involve multiple reference nodes, such that∆ is a relation-
ship among a client node and any number of reference nodes
(e.g., client node is closer to reference1 than to reference
2). Also, reference nodes need not be network neighbors of
the client node.

A second structural element of localization algorithms is
a procedure forcombining multiple constraints. As pointed
out above, a single constraint limits the possible locations of
a client node, but the resulting solution space often does not
satisfy precision requirements. Hence, multiple constraints
have to be combined (e.g., intersected) to further cut down
the solution space (e.g., to a single point in spacetime).

A third important component of localization algorithms
are rules toselect constraints. In dense networks with many
reference nodes, there is a large set of possibilities for ob-
taining constraints that involve different sets of reference
nodes. While a large number of constraints may result in
very precise location estimates, the overhead for combining
such numerous constraints may be prohibitive. Hence, the
goal is to select a small number of tight constraints that is
sufficient to achieve a certain precision. This selection pro-

cess is not trivial, as it depends on a number of parameters
such as the precision of the state information of the indi-
vidual reference nodes, but also on a particular combination
of reference nodes. Also, certain reference nodes may only
become available after they have estimated there location
themselves. Often, an overlay structure (e.g., spanning tree,
clustering) is constructed to ease this selection process. For
example, a client node may use its parent in a spanning tree
as a reference node. Essentially, constraint selection can be
interpreted as the approach an algorithm takes to structure
localization in multi-hop networks (i.e., across space).

The fourth important element of localization algorithms
is an approach tomaintain localization over time, since a
single estimate of a node’s location in spacetime is quickly
invalidated due to the progress of time and due to mobility.
The conceptually simplest approach to this problem is to
repeat a one-shot localization frequently.

Last but not least, abootstrapping mechanismis needed
to provide initial reference nodes that act as seeds for dis-
tributed localization algorithms.

A concrete algorithm for localization in spacetime can
often be considered as a combination of concrete instances
of the above five categories and additional “glue” elements.
Many practical algorithms consist of several phases in order
to improve precision or other performance metrics. In each
phase, different instances of the five categories may be used.
For example, several algorithms consist of a first phase to
obtain rough location estimates for all nodes. In a second
phase, the so-called refinement phase, these initial estimates
are further improved.

In the following sections we will discuss the above struc-
tural elements in more detail.

4.1 Bootstrapping

Obtaining constraints typically requires a number of ref-
erence nodes with known locations in spacetime. Boot-
strapping consists in providing such initial reference nodes
with location estimates. The most commonly used approach
to solve the bootstrapping problem is the provision of so-
called anchor nodes which are able to estimate their loca-
tions by means of an out-of-band localization mechanism
such as GPS. While anchors are a natural way to solve the
bootstrapping problem and allow for good precision due to
providing location “fixpoints” throughout large networks,
they also come with a significant overhead: a certain por-
tion of the nodes must be equipped with additional hard-
ware (e.g., GPS receivers) and an additional infrastructure
is often needed (e.g., GPS satellites). We will discuss issues
with anchors in more detail in Section 5.1.

It is also possible to solve the bootstrapping problem
without the use of anchors. Consider for example Figure
5, where three nodes 1, 2, and 3 with mutual Euclidean
distancesd12, d23, d13 are depicted. The nodes define a
coordinate system as follows. The origin is given by the
position of node 1. The positive x axis is given by a ray

6

1

2

3

d
23

d
12

d13

y

x

Figure 5: Three non-collinear nodes with known mutual
distancesdij define an unambiguous coordinate system for
two-dimensional space.

starting at node node 1 passing through node 2. The pos-
itive y axis is given by a ray starting at node 1 that is or-
thogonal to the x axis and that extends into the half plane
(defined by the x axis) that contains node 3. In this co-
ordinate system, the coordinates of the three nodes are
(0, 0), (0, d12), and (X,

√
d2
12 −X2), respectively, with

X = (d2
12 + d2

13 − d2
23)/2d12 (e.g., [3, 17]).

Note that a coordinate system constructed this way is
not unambiguous, any other coordinate system could have
been used as well. Hence, in contrast to anchor-based ap-
proaches, anchor-free approaches are not suitable for exter-
nal localization (cf. Section 3.1). Also, the coordinate sys-
tem changes when one of the initial reference nodes moves,
invalidating the location estimates of all nodes whose po-
sitions have been estimated with respect to this coordinate
system. The precision of anchor-based algorithms is often
superior to anchor-free approaches, since anchor nodes may
be distributed over the network to act as fixpoints for local-
ization. With anchor-free approaches, nodes far away from
the reference nodes that define an initial coordinate system
may experience significant imprecision due to accumulating
errors.

4.2 Obtaining Constraints

The general form of a constraint is({S1, ..., SN},∆),
whereN reference nodes and their respective state infor-
mationSi is involved.∆ represents a spatio-temporal rela-
tionship among these reference nodes and the client node.
While Si are typically retrieved from a reference node by
means of a message exchange,∆ is usually a measured
quantity. In most cases,∆ is either represented by a point
estimate (e.g., distance =X) or by bounds (e.g., distance
> X and/or distance< Y).

For localization in time, the delay of network messages is
typically used as a foundation for∆ measurements. A sin-
gle message exchange from a reference to a client node can
be used to define a lower bound (i.e., either 0 or a known
minimum message delay) on the temporal distance between

reference and client. A round-trip message exchange be-
tween client and reference can be used to derive lower and
upper bounds on the temporal distance (e.g., [18]). The av-
erage of these bounds can be used as a point estimate of the
temporal distance (e.g., [8, 24]). A broadcast message is
usually received almost concurrently by a set of receivers.
Hence, a broadcast message that is received by a reference
node and a client node can be interpreted as a virtual mes-
sage from the reference to the client with a negligible delay
(e.g., [6]).

For localization in space, distance-dependent properties
of propagating signals (e.g., sound, radio) such as received
signal strength or time of flight are typically used as a foun-
dation for∆ measurements. Two common forms of con-
straints are based on Euclidean distances (e.g., bounds or
point estimates for the distance from a reference) and angles
(e.g., bounds or point estimates for the direction of arrival
of a signal from a reference). Rough distance bounds can
be exploiting the fact that communicating nodes cannot be
farther apart than the maximum communication range (e.g.,
[1]). Angle measurements typically require more complex
hardware such as directional antennas or antenna arrays.
Two common constraints that involve multiple references
are “closer to” relationships (i.e., client is closer to refer-
ence 1 than to reference 2) and distance differences (i.e.,
client isX meters closer to reference 1 than to reference 2).

4.3 Combining Constraints

A single constraint can be interpreted as a region in space-
time that contains the location of a client. Combining mul-
tiple constraints typically consists of two steps. In a first
step, “bad” constraints are eliminated from the set of avail-
able constraints. One example of such bad constraints are
outliers that represent a region in spacetime that does not
overlap with the regions defined by some or all other con-
straints. After this step, the remaining constraints should
have a non-empty intersection that contains the prospective
location estimate of the client.

In a second step, the intersection or a point in the inter-
section of the remaining constraints is computed. In many
cases, this can be achieved analytically, for example by
solving an equation system. In some cases, a closed-form
solution cannot be derived or the computational overhead
may be prohibitively high. An approximative solution that
trades off computational overhead for memory is to subdi-
vide the solution space into pixels, where each pixel has an
associated bit that is set to “1” initially. For each available
constraint, the pixels that are outside the region represented
by the constraint are set to “0”. Eventually, the remaining
“1” pixels form an approximation of the intersection region
(e.g., [10]).

Due to measurement errors, it may happen that there is
no sufficiently large subset of constraints with a non-empty
intersection. This is often the case if the constraints use∆
relationships that are point estimates (e.g., distance =X)

7

rather than bounds. Here, an optimization problem may be
set up by requiring the solution point to minimize a certain
error metric. A commonly used error metric is the distance
between a point and a constraint, which is defined as the
minimal distance to any point contained in the region de-
fined by the constraint. A typical objective function for the
optimization problem is then to minimize the sum of the
squared distances between the solution point and each con-
straint.

For localization in time, constraints define regions that
are either points or intervals. In case of intervals, the in-
tersection interval can be computed as the maximum of the
lower bounds and the minimum of the upper bounds. In
case of point estimates, the average of all constraints is
typically used, which minimizes the sum of the squared
error distances. If confidence values are available for the
constraints, a weighted average may be used instead (e.g.,
[20, 23]).

Let us consider some commonly used examples for con-
straint combination in algorithms for localization in space.
A very simple approach is based on centroids (e.g., [1]),
where multiple distance-bound constraints are given (i.e.,
distance from reference is at mostX). Here, each constraint
defines a sphere. A point close to the intersection of such a
set of spheres can be obtained by computing the centroid of
the locations of the according reference points.

Another commonly used approach is multilateration to
combine multiple distance constraints, where the region de-
fined by each such constraint can be interpreted as the hull
of a sphere. Multilateration finds the intersection point of
a set of at least 4 spheres in three-dimensional space. In
case of exactly four spheres, a linear equation system can
be derived and solved to find the intersection point. For
more than 4 constraints a minimum-square-error optimiza-
tion problem can be derived, also resulting in a linear equa-
tion system (e.g., [15, 20, 21]).

One further approach is based on triangle tests, where a
node performs a check to see whether it is located inside the
triangle formed by three reference nodes (e.g., [10]). Such a
test is based on the following property: a node located out-
side the triangle can be moved such that the distances to all
anchors are either all increased or all decreased simultane-
ously. In contrast, all movements of a node located inside
the triangle will increase the distance to some anchors and
decrease the distance to some anchors simultaneously. In
dense networks, the following approximative triangle test
can be used: a node is assumed to be in the triangle, if no
neighbor of the node is further from or closer to all three an-
chors simultaneously. For this test, “closer to” constraints
are used.

4.4 Selecting Constraints

At each point during the execution on a localization al-
gorithm, a certain set of reference nodes are available for
each client node. Using these reference nodes, a number

of “good” constraints must be selected out of the large set
of possible constraints. This selection is based on the qual-
ity of the state information of the reference nodes, on the
quality of the spatio-temporal relationship and on temporal
aspects. For example, a better set of references may be-
come available in a future iteration. However, the algorithm
might not be able to proceed if a node chooses to wait for
better references to become available, since the node itself
then cannot act as a reference for other nodes.

There are two different ways to approach this problem.
Structuredapproaches first construct an overlay topology
that controls selection of reference nodes and triggers client
nodes to start measurements. A common overlay topology
are trees. For each anchor, a spanning tree of the network
is constructed with the anchor at the root. A client node be-
comes active as soon as its parent has estimated its location
and can thus act as a reference (e.g., [5, 8, 24]). Another
typical overlay topology are clusters, where nodes in a clus-
ter establish a local coordinate system and estimate their
locations in terms of this reference grid. Adjacent clusters
must share a number of nodes to allow for the derivation
of a coordinate transformation between these clusters (e.g.,
[3, 6]).

While such structured approaches ease the selection of
reference nodes, there is an additional overhead for con-
structing and maintaining the overlay topology. For exam-
ple, if nodes fail or move, the overlay topology has to be
updated to reflect this change. In contrast,unstructuredap-
proaches do not explicitly construct an overlay topology
(e.g., [13, 21]). Instead, each node actively monitors its
neighborhood for a sufficient set of references to become
available. While this approach avoids the overheads of
topology construction, it introduces an overhead due to a
potentially large number of constraints.

Approaches for localization in time often use structured
approaches, since a small number of constraints is usually
sufficient to achieve the requested level of precision. With
localization in space, significant measurement errors and a
high degree of freedom due to the three dimensions of space
typically requires the use of many constraints. Hence, many
approaches for localization in space are unstructured.

4.5 Maintaining Localization over Time

A single run of a localization algorithm allows each node to
estimate its location in spacetime at a certain point in time.
However, as time progresses, the precision of this one-shot
estimate may decrease quickly due to node mobility or due
to the progress of time. Obviously, the algorithm can be ex-
ecuted one more time to obtain up-to-date estimates. The
resulting precision over time then depends on the frequency
of execution. However, since each execution of the algo-
rithm takes a certain amount of time, this frequency can-
not be arbitrarily increased. Hence, the maximum precision
over time is also limited. Alternatively, if a certain target
precision is requested by the application, the execution fre-

8

quency may be calculated to be just high enough to provide
the requested precision (see, e.g., [24]). For localization in
space it is also possible to limit re-execution to nodes that
have changed their location (e.g., [20]) in the meantime.

One way to further improve precision over time is the
use of sensors to measure the location in spacetime locally
without referring to other nodes. This technique is also
known asdead reckoning. Hardware clocks, for example,
are dead-reckoning devices for estimating the current time.
Accelerometers may be used to measure movements and
can hence provide estimates of the current position in space
(see, e.g., [25]). However, dead-reckoning devices typically
suffer from significant errors that accumulate over time and
can therefore only be used to bridge the short gap between
two consecutive runs of a localization algorithm. For ex-
ample, typical hardware clocks suffer from an unknown
clock drift between 10 and 100 parts per million. After one
minute, the deviation from real time is then between 0.6 and
6 milliseconds. For location estimation using accelerome-
ters, there is a quadratic relationship between acceleration-
measurement errors and errors in the computed location es-
timate.

Another way of improving the precision isprediction,
where based on location estimates from the past a current
estimate is computed. Besides the past behavior, prediction
requires a model of how a node can move through space-
time. With respect to time, such a model is rather simple
as real-time progresses at a constant rate. The situation
gets more complicated for space, where nodes can move
in complex patterns. However, it is often possible to derive
constraints on the possible locations (e.g., only on roads),
bounds on speed and acceleration. For example, if there
is an upper bound on the speed of a node, we can derive
bounds on the possible locations of a node at timet1 given
the node’s location at timet0 < t1. Technically, prediction
can be achieved by fitting a curve (often a polynomial with
low degree) to a set of locations in spacetime observed in
the recent past. As with dead reckoning techniques, predic-
tion often experiences significant errors which are mainly
subject to the accuracy of the used model.

Many time synchronization algorithms (e.g., [6, 13]) use
a combination of prediction and dead reckoning. Basically,
the hardware clock (i.e., a dead reckoning device) is used
to implement progression of time. However, due to clock
drift hardware clocks may run faster or slower than “syn-
chronized time”. To compensate this clock drift, the relative
rate difference between synchronized time and the hardware
clock in the recent past is used to predict the rate difference
in the future. The predicted rate difference is then used
to compensate the error due to a wrong rate of the hard-
ware clock. Common approaches to implement such a rate
compensation are linear regression and phase-locked loops.
With linear regression, a line is fitted to to a set of time es-
timates from the past, where the slope of the line character-
izes the rate difference. With phase-locked loops, the phase
offsets between synchronized time and hardware clock are

integrated over time and used to control the frequency of the
hardware oscillator.

4.6 Examples

We conclude this section by giving some examples for lo-
calization in space and time in sensor networks from the
literature. We present two anchor-based algorithms and two
anchor-free algorithms, in each case one for localization in
time and one for localization in space. Please note the sim-
ilarities among each pair of algorithms.

4.6.1 Anchor-Based Algorithms

Flooding Time-Synchronization Protocol [13]. The
node with the lowest node ID is elected as the anchor whose
local time serves as a reference time for synchronization. If
this node fails, then the node with the lowest ID in the re-
maining network is elected as the new anchor. The anchor
periodically broadcasts a synchronization message that con-
tains its current local time. Nodes which have not received
this message yet use the message contents to derive a con-
straint and broadcast the message to its neighbors. Each
node collects eight such constraints and uses linear regres-
sion on these eight data points to estimate time offset and
rate difference to the anchor. The algorithm is repeatedly
executed to maintain synchronization over time.

Ad Hoc Positioning System [15]. It is assumed that a
fraction of the nodes are anchors with known locations. The
algorithm supports several localization methods, we will
sketch the method “dv-distance” here, where nodes must
be able to measure distances to neighbors in order to de-
rive a distance constraint. Anchors regularly broadcast a
message containing their location. In addition, this message
contains a field that holds an estimate of the distance from
the anchor which is initialized to zero. Nodes which have
not received this message yet measure the distance to the
sender, which is then added to the distance field in the mes-
sage to obtain an estimate of the node’s distance from the
anchor. Then, the message is broadcast to the neighbors of
the nodes. Eventually, each node will end up with distance
estimates for at least 4 anchors and uses multilateration to
compute its location. If a node changes its location, it lis-
tens to the broadcasts again in order to update its location
estimate.

4.6.2 Anchor-Free Algorithms

Reference-Broadcast Synchronization [6]. This algo-
rithm denotes some nodes as beacon nodes which fre-
quently broadcast messages to a set of client nodes that
should be synchronized (cf. Section 4.2). The clients that
receive such a broadcast then exchange their respective re-
ception times to obtain mutual constraints. Each client col-
lects multiple such constraints and uses linear regression
to compute relative time offsets and rate differences to the

9

other client nodes. The offset and rate difference between
a pair of client nodes defines a coordinate transformation
between the local time scales (i.e., coordinate systems) of
these nodes. To extend this scheme to multi-hop networks,
the network is clustered such that a single beacon can syn-
chronize all nodes in its cluster. Gateway nodes that par-
ticipate in two or more clusters independently take part in
the reference-broadcast procedure of all their clusters. By
knowing offsets and rate differences to nodes in all adjacent
clusters, gateway nodes can compute coordinate transfor-
mations between all adjacent clusters. Time synchroniza-
tion across multiple hops is then provided by transforming
clock readings between the local time scales (i.e., coordi-
nate systems) of the nodes.

Self-Positioning Algorithm [3]. In the first phase of this
algorithm, each node measures distances to its neighbors
and broadcasts these distances to its neighbors. After this,
each node knows the distance to each of its neighbors and
the distances between some pairs of its neighbors. Then
each node constructs a local coordinate system using two of
its neighbor nodes (cf. Section 4.1). In the second phase,
coordinate transformations are computed between the co-
ordinate systems of adjacent nodes. In the third phase, a
global coordinate system is selected and coordinate trans-
formations are computed to transform the local coordinate
systems to this global system. For this, a set of nodes called
the Location Reference Group (LRG) is elected such that
the degree of mobility of the centroid of these nodes is small
in order to avoid frequent adjustments of the global coordi-
nate system. The global coordinate system is then defined
by the average of the local coordinate systems of the nodes
in the LRG (i.e., origin is centroid of the origins of the indi-
vidual coordinate systems, axis vectors are averages of the
axis vectors of the individual coordinate systems).

5 Limitations and Trade-offs

Sensor networks are subject to various challenges that have
to be met by algorithms for localization in spacetime. In
the following paragraphs we briefly summarize these chal-
lenges, before discussing various trade-offs and limitations
of algorithms with respect to these challenges.

Infrastructure. In many applications, sensor networks
have to be deployed in remote, unexploited, or hostile re-
gions. Sensor networks therefore often cannot rely on so-
phisticated hardware infrastructure. For example, under
dense foliage or inside buildings, GPS cannot be used since
there is no free line of sight to the GPS satellites.

Energy and Other Resources. Sensor-network applica-
tions often require that sensor nodes be small and cheap.
This has a number of important implications. First of all,
the amount of energy that can be stored in or scavenged by

Figure 6:Collocated nodes (white) may end up with a large rela-
tive error due to using different chains of reference nodes (gray).

small devices is typically very limited due to the low en-
ergy density of currently available and foreseeable technol-
ogy. To ensure longevity despite this limited energy budget,
energy-efficient design both in hardware and software be-
comes a dominating goal. Additionally, computing, storage,
and communication capabilities of individual sensor nodes
are rather limited due to size and energy constraints.

Network Dynamics. Due to their deployment in the
physical environment, sensor networks are subject to a high
degree of network dynamics. Sensor nodes can be mobile
(e.g., [11]), die due to depleted batteries or due to environ-
mental influences, and new sensor nodes may be added at
any point in time. This results in frequent changes in the
network topology and in temporary network partitions. Mo-
bile nodes can transport messages across partition bound-
aries by storing a received message and forwarding it as
soon as a new partition is entered. The end-to-end delay
of such message paths is very unstable and hard to predict.

Configuration. After initial deployment, it is often infea-
sible to physically access the sensor nodes for hardware or
software maintenance. The large number of nodes also pre-
cludes manual configuration of individual nodes. While tra-
ditional networks such as the Internet do also consist of a
large number of nodes, there are also many human network
administrators who each care for a manageable number of
computers. With sensor networks, however, a small number
of human operators, if any, may be responsible for thou-
sands or even millions of sensor nodes.

5.1 Anchor Infrastructure

The number, distribution, and arrangement of anchor nodes
in a network is a key parameter for the performance of an
anchor-based localization algorithm. In this section, we dis-
cuss various aspects of such an anchor infrastructure.

In order to obtain precise location estimates, the anchors
must define an unambiguous coordinate system at the least.
With respect to time, the local time scale of any single node
defines such an unambiguous time coordinate system. For
space, at least four anchors are required. Three anchors
typically result in two possible coordinate systems, but one
of them can often be excluded due global constraints about
possible locations of nodes.

10

However, such a minimum number of anchors is often not
sufficient. Energy considerations and interference issues of-
ten limit the effective range of anchors. With radio commu-
nication, for example, the energy consumption grows with
range to the power ofk, where typically2 ≤ k ≤ 4. Hence,
in large networks with small anchor range, typically a sig-
nificant portion of nodes cannot directly obtain constraints
for a sufficient number of anchor nodes. In this case an it-
erative approach can be applied, where nodes first estimate
their locations using anchors and then act as “secondary”
references for other nodes. As measurement errors accu-
mulate along such chains, the error in the estimated loca-
tion is the larger, the more iterations are required (i.e., the
larger the distance to the anchor is). Depending on the pre-
cision of the∆i, this error can be significant. With some ap-
proaches for measuring∆i used in practice (e.g., measuring
Euclidean distance based on received radio signal strength),
the error can be as high as 50% in realistic settings [20].

One particular problem with using a minimum number of
anchors is that collocated nodes may end up with large rel-
ative errors due to using different chains of reference nodes
as depicted in Figure 6. This can be problematic, since col-
located sensor nodes often cooperate in observing a nearby
physical event and thus may need a very small relative error.
For example, estimates of the distance between the collo-
cated nodes may include significant errors if the nodes use
different paths. Local refinement procedures as described
in [20] can somewhat improve the local consistency.

To achieve a reasonable precision, typically a large num-
ber of anchors is required, such that the maximum distance
of any client node from a sufficient number of anchors is
small. In [20], between 5% and 10% of all nodes, and
in [21], between 10% and 20% of all nodes are anchors.
However, a large number of anchors requires an out-of-band
mechanism for providing the anchors with precise location
estimates. Such an out-of-band mechanism may be a seri-
ous drawback, since it typically implies additional hardware
infrastructure, and special hardware must be attached to the
sensor nodes. One typical example for such an out-of-band
mechanism is GPS with its satellite infrastructure and re-
sulting constraints, where anchor nodes must be equipped
with expensive and energy-intensive GPS receivers.

In order to ensure that each node in the network has a
sufficient number of neighbors which can act as anchors,
the network must have a certain minimum density. In other
words, each node in the network must have a certain min-
imum number of neighbors. This also implies that nodes
at the edge of the network (with a lower number of neigh-
bors) typically experience a reduced precision. Network
density is particularly important if the collected constraints
are loose, since then many constraints are needed to achieve
precise location estimates. In [20], for example, each node
has an average of 7 to 12 neighbors in order to achieve a
reasonable precision.

The arrangement of the anchors is also of importance for
the achieved precision of localization in spacetime. Obvi-

(a) (b)

d d
d d

1 2 1 2

e
e

1 2

2

1 2

2

Figure 7: Localization error is much larger if anchor nodes are
almost collinear.

ously, anchors should be evenly distributed across the sen-
sor network in order to ensure that any node has a sufficient
number of anchors in its vicinity. However, also the relative
arrangement of anchors with respect to each other has an in-
fluence on the localization accuracy. For example, collinear
anchors (i.e., anchor nodes that fall on a line in 3D space)
and also approximately collinear anchors result in signifi-
cantly reduced precision for localization in space. This is
illustrated for localization in 2D space in Figure 7. In part
(a), the errore2 in distance measurement results in a small
error in the estimated location (dotted circle) w.r.t. the ac-
tual location of the node (solid circle). In part (b), where
anchor nodes are almost collinear (i.e., fall on a point in 2D
space), the same errore2 results in a much larger error in
the estimated location.

In summary, a minimum set of anchors may lead to poor
precision for iterative algorithms in large networks. A rea-
sonable precision typically requires a much larger number
of anchor nodes and an out-of-band mechanism for boot-
strapping anchor locations with high precision. The ac-
tual deployment of the anchor nodes requires precautions
to avoid collinearity. Depending on the quality of the con-
straints, networks must have a certain minimum density in
order to achieve a reasonable precision.

5.2 Energy and Other Resources

As noted in Section 3.5, it is quite common that applica-
tions do only require a very limited scope and lifetime of
localization, where actual scope and lifetime requirements
depend on the occurrence of events in the physical environ-
ment. Hence, a significant amount of resources and energy
could be saved if localization is only performed where and
when needed and with the required precision.

However, algorithms for localization in spacetime are of-
ten not well suited for on-demand localization. This is due
to two main reasons. Firstly, localization of a single node
typically requires the cooperation of many other nodes to
act as references for obtaining constraints. For on-demand
localization, (recursively) providing a sufficient number of
reference nodes on-demand would be needed. However,
managing this process is a complex task. For example, as
noted in the previous section, the number and relative ar-
rangement of the anchors must be considered by such a

11

mechanisms, as this is crucial for the achieved precision.
Moreover, such selective localization may induce signifi-
cant management overheads.

Secondly, many algorithms require a significant amount
of convergence time for achieving the requested precision.
For example, [13] reports a convergence time of 10 minutes
in a network of only few tens of nodes. Hence, if a node re-
quests localization, a significant amount of time will elapse
before a location estimate with sufficient precision can be
provided.

5.3 Network Dynamics

At the beginning of Section 5 we mentioned the various ef-
fects of network dynamics found in sensor networks. These
effects may have a significant impact on the performance
and applicability of localization algorithms.

An important implicit assumption of many localization
algorithms is thatbeforethe location of a node can be es-
timated, the node must obtain constraints involving a suffi-
cient number of reference nodes. These references in turn
must also be able to obtain constraints from a sufficient
number of other reference nodes, and so on. Overall, in or-
der to locate a node, there must be “constraint paths” from a
client node to a sufficient number of initial references. This
typically means that a sufficient portion of the network must
be connected before localization can be performed.

However, a number of application projects (e.g., [11]) ex-
plore settings, where sensor nodes are mobile and network
connectivity is sporadic. Such a situation is illustrated in
Figure 8. Nodes 1 and 2 collect sensor readings while being
disconnected from the network. After some time, node 2
sends its collected data to node 3 (e.g., a mobile base sta-
tion as in [11]) while in communication range. Later on,
when node 2 has already left communication range of node
3, node 1 sends its collected data to node 3 while in com-
munication range. Node 3 now is to fuse data from nodes 1
and 2, which requires the locations in spacetime of nodes 1
and 2 while they collected the data. Note that there is no net-
work connection between nodes 1 and 2 at any point in time.
In such settings, many localization algorithms may not be
applicable due to the above implicit connectivity assump-
tion. This problem is addressed, for example, in [17, 18].

As noted in the previous section, many algorithms take
a significant amount of convergence time before delivering
the requested precision. It is typically assumed that the net-
work remains stable during the execution of the algorithm.
However, node mobility and other effects of network dy-
namics may invalidate this assumption. This may lead to
significantly increased convergence times (see, e.g., [23]),
or may also prevent the algorithm from converging at all.
In the latter case, the effective precision may reduce signif-
icantly.

Some algorithms construct an explicit overlay topology
as noted in Section 4.4. Network dynamics may break these
topologies or make them inefficient. Maintaining these

topologies under a high degree of network dynamics may
become an unacceptable resource overhead.

5.4 Configuration

Localization algorithms may require a number of configu-
ration parameters whose values differ from node to node.
Typical examples for these parameters are the set of refer-
ence nodes to use, network link calibration parameters (e.g.,
minimum delay of a wireless link), and sensor calibration
parameters (e.g., for distance measurements).

While some of these parameters can be automatically
configured and adapted, this is not so easy for other param-
eters. For example, calibration may be a particularly tricky
issue in sensor networks, because typical low-cost sensors
used on sensor nodes are very sensitive to environmental pa-
rameters such as temperature and humidity. If these sensors
are exposed to a harsh and dynamic physical environment,
the output of the sensors includes significant errors. Addi-
tionally, sensor orientation, wear, and dirt lead to system-
atic but dynamically changing errors. In [26], for example,
the authors observed an average error of approx. 75% for
distance measurements with uncalibrated sensors based on
time of flight of an ultrasound signal. Hence, calibration pa-
rameters often cannot be statically configured, but must be
dynamically updated to reflect the changing setup.

6 Conclusion

In this paper, we showed that space and time are closely
related in the context of sensor networks: in terms of ap-
plications, models, requirements, basic approaches, and in
terms of concrete algorithmic techniques.

To even go a step further, we can consider localization in
both time and space assensor calibrationproblems. A sen-
sor is a physical device that takes a certain physical quan-
tity as input and produces a variable electrical signal as out-
put that is usually converted to a digital number using an
analog-to-digital converter. Calibration then consists of en-
forcing a certain mapping between the observed physical
quantity and the sensor output. For example, if a sensor is
exposed to a temperature ofT ◦C, then the sensor should
outputT . Localization in space can then be considered as
the task of calibrating a location sensor to a given coordinate
system. Localization in time can likewise be considered as
the task of calibrating a time sensor to a given coordinate
system. Note that hardware clocks can be considered as
sensors that measure the period of a physical process with
periodic behavior (e.g., an oscillating quartz).

It would be worthwhile to examine the use of known
techniques from time synchronization and node localization
in the more general context of calibration. It particular, it is
quite likely that many of the observations in this paper could
be generalized to calibration. For example, the classifica-
tion in Section 3 can be directly transferred to calibration. It
is also thinkable that distributed calibration algorithms will

12

1

2

E 1

3

1

2

E 2

3

1

2

3

E 2

1

2

3

E
1

(a) (b) (c) (d)

Figure 8:Message transport across partition boundaries. (a-b) Sensor nodes 1 and 2 collect sensor readings while disconnected from
the network. (c-d) Later, sensor nodes 1 and 2 report their findings to node 3 for data fusion. At no point in time there is a network
connection between node 1 and 2.

consist of structural elements similar to those we identified
in Section 4.

References
[1] N. Bulusu, J. Heideman, and D. Estrin. GPS-less Low Cost

Outdoor Localization for Very Small Devices.IEEE Per-
sonal Communications, 7(5):28–34, October 2000.

[2] V. Bychkovskiy, S. Megerian, D. Estrin, and M. Potkonjak.
A Collaborative Approach to In-Place Sensor Calibration. In
IPSN, Palo Alto, USA, April 2003.

[3] S. Capkun, M. Hamdi, and J. P. Hubaux. GPS-free Posi-
tioning in Mobile Ad Hoc Networks. In34th International
Conference on System Sciences, Hawaii, January 2001.

[4] S. Capkun and J. P. Hubaux. Secure positioning of wireless
devices with application to sensor networks. InInfocom, Mi-
ami, USA, March 2005.

[5] H. Dai and R. Han. Tsync: A lightweight bidirectional time
synchronization service for wireless sensor networks.ACM
SIGMOBILE Mobile Computing and Communications Re-
view, 8(1):125–139, January 2004.

[6] J. Elson, L. Girod, and D. Estrin. Fine-Grained Network
Time Synchronization using Reference Broadcasts. InOSDI
2002, Boston, USA, December 2002.

[7] L. Evers, S. Dulman, and P. Havinga. A distributed precision
based localization algorithm for ad-hoc networks. InPER-
VASIVE 2004, pages 269–286, Vienna, Austria, April 2004.

[8] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava.
Timing-sync protocol for sensor networks. InProceedings of
the First ACM Conference on Embedded Networked Sensor
Systems (SenSys), November 2003.

[9] D. Ganesan, S. Ratnasamy, H. Wang, and D. Estrin. Cop-
ing with Irregular Spatio-Temporal Sampling in Sensor
Networks. SIGCOMM Computer Communication Review,
34(1):125–130, 2004.

[10] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Ab-
delzaher. Range-free localization schemes for large scale
sensor networks. InMobicom, San Diego, USA, September
2003.

[11] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and
D. Rubenstein. Energy-Efficient Computing for Wildlife
Tracking: Design Tradeoffs and Early Experiences with Ze-
braNet. InProc. ASPLOS X, San Jose, USA, October 2002.

[12] B. Liskov. Practical Uses of Synchronized Clocks in Dis-
tributed Systems. Distributed Computing, 6(4):211–219,
1993.

[13] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The flooding
time synchronization protocol. InSenSys, Baltimore, USA,
November 2004.

[14] A. Nasipuri and K. Li. A directionality based location dis-
covery scheme for wireless sensor networks. InWSNA, At-
lanta, USA, September 2002.

[15] D. Niculescu and B. Nath. Ad hoc positioning system (aps).
In GLOBECOM, San Antonio, USA, November 2001.

[16] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan.
The Cricket Location-Support System. InMobicom 2000,
Boston, USA, August 2000.

[17] H. Ritter, J. Schiller, and T. Voigt. Demand-based Location
Determination in Wireless Sensor Networks. InAdjuct Proc.
EWSN 2004, Berlin, Germany, January 2004.

[18] K. Römer. Time Synchronization in Ad Hoc Networks. In
MobiHoc 2001, Long Beach, USA, October 2001.

[19] K. Römer. Temporal message ordering in wireless sensor
networks. InIFIP Mediterranean Workshop on Ad-Hoc Net-
works, pages 131–142, Madhia, Tunisia, June 2003.

[20] C. Savarese, J. M. Rabaey, and K. Langendoen. Robust Posi-
tioning Algorithms for Distributed Ad-Hoc Wireless Sensor
Networks. InUSENIX Annual Technical Conference, Mon-
terey, USA, June 2002.

[21] A. Savvides, C. C. Han, and M. Srivastava. Dynamic Fine-
Grained Localization in Ad-Hoc Networks of Sensors. In
Mobicom 2001, Rome, Italy, July 2001.

[22] G. Simon, A. Ledezczi, and M. Maroti. Sensor Network-
Based Countersniper System. InProc. SenSys, Baltimore,
USA, November 2004.

[23] W. Su and I. F. Akyildiz. Time-diffusion synchronization
protocol for sensor networks.IEEE/ACM Transactions on
Networking, 2004. To appear.

[24] J. v. Greunen and J. Rabaey. Lightweight time synchroniza-
tion for sensor networks. InWSNA, Atlanta, USA, Septem-
ber 2003.

[25] E. Vildjiounaite, E. J. Malm, J. Kaartinen, and P. Alahuhta.
Location Estimation Indoors by Means of Small Computing
Power Devices, Accelerometers, Magnetic Sensors, and Map
Knowledge. InPERVASIVE 2002, Zurich, Switzerland, Au-
gust 2002.

13

[26] K. Whitehouse and D. Culler. Calibration as Parameter
Estimation in Sensor Networks. InWSNA, Atlanta, USA,
September 2002.

[27] Y. Xu, J. Heidemann, and D. Estrin. Geography-Informed
Energy Conservation for Ad-Hoc Routing. InMobiCom,
Rome, Italy, July 2001.

[28] W. Ye, J. Heidemann, and D. Estrin. An Energy-Efficient
MAC Protocol for Wireless Sensor Networks. InIEEE Info-
com 2002, New York, USA, June 2002.

14

