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Abstract— Efficient compression and transmission of images forwarding it to the destination subject to a specific image
in a resource constrained multihop wireless network is consid- quality constraint. In particular, we propose two data exchange
ered. Distributed image compression is proposed as a means 0y athods of distributed wavelet transform and investigate their
overcome the computation and/or power limitation of individual . . .
nodes by sharing the processing of tasks. It has the additional Performance 'n term; of energy Consumptlon and image qual-
benefit of extending the overall lifetime of the network by ity over a mUltIhOp wireless network. Simulation results show
distributing the computation load among otherwise idle pro- that our scheme prolongs the system lifetime by up4to

cessors. Two design alternatives for energy efficient distributed times and has a total energy consumption comparable to the
image compression are proposed and investigated with respect santralized algorithm

to energy consumption and image quality. Simulation results . . .
show that the proposed scheme prolongs the system lifetime at a  IN Section I, we examine related work. The system model is
normalized total energy consumption comparable to centralized described in Section Ill. Section IV introduces the distributed

image compression. image compression schemes. Simulations of the proposed
schemes are presented in Section V. We conclude the paper
in Section VI.
Advances in visual sensors [1], [2] and wireless communica-
tion have enabled the development of low-cost, low-power vi- Il. RELATED WORK
sual multihop wireless networks, which have recently emerged
for a variety of applications, including environmental and Up to our knowledge, distributed image compression in
habitat monitoring, target tracking and surveillance [3], [4ireless ad hoc networks has not been studied in the literature.
However, representing visual data requires a large amounthgwever, our work has been inspired by a variety of other
information, leading to high data rates, which in turn requirdesearch efforts. We describe below some of the ideas and
high computation and communication energy. Consequentigsic concepts that inspired our work, and reflect on how our
visual sensor networks present several challenges beyaveik relates to current research in the area of sensor network
those common to low data rate sensing, such as acoustigplications.
temperature or pressure. While early research efforts in wireless sensor networks
We consider compressing and transmitting images indid not investigate the issues of node collaboration, focusing
multihop wireless network. We focus on the design aniore on issues in the design and packaging of small, wireless
performance evaluation of distributed image compression dkvices [5], [6], more recent efforts (e.g. [7], [8]) have con-
gorithms. Distributed image compression in sensor networkislered node collaboration issues such as data “aggregation”
is beneficial for two common scenarios. One scenario @ “fusion”. Our approach of distributed image compression
when nodes have extremely constrained computation pow@lls within the domain of techniques that apply the concept of
Hence, any single node may not have sufficient computationnetwork processing.e. processing in the network by com-
power to completely compress a large raw image. In thigiting over the data as it flows through the nodes. It is worth
case, a distributed method to share the processing taskigding that current aggregation functions (e.g., “maximum”
necessary. Another scenario is that even when nodes angl “average” [7]) are limited to scalar data. Our approach
not extremely computation power constrained, but are batte@gn be viewed as an extension to vector data aggregation.
operated, distributing the computation load among otherwiBgeviousdistributed signal processing/compressiproblems
idle processors of other nodes extends the overall lifetime @.9. [9], [10]) exploit correlations between data at close-by
the network. sensors in order to jointly compress or fuse the correlated
In this research, we have made a first attempt at the desigformation resulting in savings in communication energy.
and performance evaluation of distributed image compressibusion of correlated images is not discussed in this paper.
in energy constrained multihop wireless (e.g. ad hoc or sensor)n parallel distributed computing theorfL1], a problem (or
networks. By exploiting the characteristics of the Discretiask) is divided into multiple sub-problems (or sub-tasks) of
Wavelet Transform (DWT), we propose a distributed imagemaller size (in terms of resource requirements). Every node
compression scheme where nodes compress an image whilves each subproblem by running the same local algorithm,

I. INTRODUCTION



and the solution to the original problem is obtained by combimeducing the communication energy. The goal of our previous
ing the outputs from the different nodes. Our approach to therk [18] is to minimize theoverall energy consumption of
design of distributed image compression is similar in concepiye network by computing the optimal compression parame-
in that we distribute the task of image encoding/compressiters as a function of the network density. (It turns out that
to multiple smaller image encoding/compression sub-tasksaximal compression at the source is not always optimal).
However, a key difference is that distributed computatio@Gentralized image compression was used at the source nodes
theory typically focuses on maximizing the speed of executiavhich may limit the lifetime of the network. Distributed image
of the task while our primarily concern here is reducing theompression was not discussed in [18].
total energy consumption subject to a required image quality.Finally, we believe it is appropriate to also mention some
Thus, our proposed approach of image compression iof- the projects related to visual sensor networks. In [22], a
tersects with the literature on parallel wavelet transforndata centric routing protocol is proposed for efficient image
which primarily focuses on parallel DWT on special purposeetrieval in wireless ad hoc networks by using metadata of
hardware (e.g., application specific VLSI architectures [12jnages. The issue of the transmission/encoding of the image,
FPGAs [13], DSPs [14]) or general purpose multiprocessonce located, is not studied. A topology control approach to
systems [15], [16]. The difference, of course, is that previousaximize the network lifetime of a wireless video surveillance
parallel wavelet transform research assumes the energy cotivork by arranging nodes location is presented in [23].
of data movement between processors to be zero or very
small compared to the wavelet transform computation. This . SYSTEM MODEL
assumption is no longer valid in multihop wireless networks We consider a densely deployed multihop wireless network
due to costly wireless communication among nodes. Furth@r- which some of the nodes are camera-equipped. Every
more, the main objective of previous parallel wavelet transforoamera-equipped node can respond to an image query by
is to speedup the transform. Wireless nodes operating generating a raw image (e.g. a snapshot of its sensing area in
battery power will possibly have their primary objective athe case of a sensor network) and transmitting this image to the
the conservation of their energy reserves rather than algoritll@stination (sink). When sending an image request (query), the
run time. destination node specifies the desired image quality. A cluster
Distributed Fast Fourier Transform (FFT) in a sensor nebased routing mechanism is assumed to be in place such that
work was considered in [17]. Our work on DWT is similamodes can self-organize into a two-tiered cluster (e.g. [24]).
in spirit, in the sense that FFT and DWT are two signal prdn this initial investigation, the communication environment is
cessing techniques. However, our problem has two additior@lsumed to be contention-free. skssionrefers to a source
dimensions. First, DWT is just one component of the imageending one image to a destination, in response to receiving a
compression and transmission problem, and in that semegquest from the destination. It is worth noting that there are
our problem includes more complex network-wide challengeypically multiple sessions at a time.
Second, while the spectrum of possible outcomes of an FFT igFor this study, we use a transceiver energy dissipation model
limited, in the sense that the FFT is either successfully cormimilar to the one proposed in [25]. The energy consumed in
puted or not, the image encoding and transmission probleransmission per bit is
offers a wide continuum of solutions in terms of the received N
image quality. Erx =€+ €ad @)
Recently, applications of classical image processing tecfld the energy consumed in reception per bit is
nigues in sensor networks have gained a lot of interest for
the parallels between image processing and sensor networks. Erx =€ 2)

By mapping individual sensors as pixels in an image, [19

examined cleaning of uncorrelated sensor noise, and t\&gereea is the energy c_hssmatgd_per bit pa? €e IS €NEIGy
consumed by the circuit per bit, is the distance between a

decentralized detection of edges. Ganesan et al. [20] have ; . .
. . . . Ifeless transmitter and a receiver, ah& o < 4 is the path
proposed a generalized hierarchical architecture for mulii- 5 .
) . 0Ss parameter [26]. The energy consumed in computation per
resolution querying of regularly placed sensor networks that
: S
is based on wavelet transforms. Servetto [21] also exploits

wavelet transforms to decorrelate sensor data to address the Epwr =7 ®)

sensor broadcast problem where every sensor observes @f\ére~ is the energy dissipated for one level wavelet trans-
one pixel. These works focus on the correlation between senfgin compression (described in Section IV-A) per bit. The

nodes. In this paper, we consider nodes observing an imagfergy spent in quantization and entropy coding per bit is
instead of a pixel and investigate the problem of compressing

and transmitting images in sensor networks. Egnt = 0. (4)

A comment regarding our previous work on image com- The performance metric in this paper sgstem lifetime

pression in sensor networks is in order. Traditionally, maxim hich is defined as the time duration from the time instant
image compression (source coding) is implemented at the

source in order to reduce the number of bits transmitted thugSection V describes how andé are estimated.
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where z(i, j) (&(4,7)) are the pixel values of the original Transform
(reconstructed) image, andis the number of bits per pixel ®)

(bpp) of the original image. We recognize that the PSNR does
not always accurately model perceptual image quality, but vi@. 1. A typical wavelet-based image compression (a)encoder (b)decoder.
use it because it is a commonly used metric in the literature. In
addition, we also show a few examples on a test image to show
certain aspects of the received image that are not revealedSgyeral ways wavelet transforms can decompose a signal

the PSNR value. into various sub-bands. These include uniform decomposition,
octave-band decomposition, and adaptive or wavelet-packet
IV. DISTRIBUTED IMAGE COMPRESSION decomposition [33]. Out of these, octave-band decomposition

Since we are investigating the problem of transmittiniy the most common, and hence is used in this paper. This is a
images in multihop wireless networks, it is beneficial to stafon-uniform band splitting method that decomposes the lower
by describing some of the background of image compressigquency part into narrower bands and the high-pass output
as it relates to this paper. Then we describe our approachabfeach level is left without any further decomposition.

distributed image compression. The octave-band decomposition procedure can be described
_ as follows. A Low Pass Filter (LPF) and a High Pass Filter
A. Background on Image Compression (HPF) are chosen, such that they exactly halve the frequency

A common characteristic of most images is that the neigfange of the input signal. First, the LPF is applied for each
boring pixels are correlated and therefore contain reduf@w of data, thereby getting the low frequency components
dant information. Image compression aims at reducing teé the row. When viewed in the frequency domain, the
number of bits needed to represent an image by removiagtput data contains frequencies only in the first half of the
the spatial and spectral redundancies as much as possiéfiginal frequency range because the LPF is a half band filter.
Among a variety of image compression algorithms, JPEG [28herefore, the output of the LPF can be sub-sampled by
is a commonly used standard for still image compressioaccording to Shannon’s sampling theorem, in which case the
More recently, the wavelet transform has gained widespre@dtput data will contain only half the original number of
acceptance in signal processing in general, and in imaggmples. Then, the HPF is applied for the same row of data,
compression research in particular. In many app"catior@’,]d similarly the high pass components are separated. The low
wavelet-based schemes (also referred to as subband cod@iif} high pass components are arranged into a row of output
outperform other coding schemes. Wavelet-based codingdita as illustrated in Fig. 2(a). This procedure is performed on
more robust under transmission and decoding errors, and a@dorows, which we term “1-D wavelet transform.” Next, the
facilitates progressive transmission of images. Because of tH8fering is done for each column of the intermediate output
inherent multi-resolution nature [29], wavelet coding schemééta. This whole procedure (including both row and column
are especially suitable for applications whesealability and operations) is called a “2-D wavelet transform.” The resulting
tolerable degradatiorare important. Thus, we choose the newwo-dimensional array of coefficients, depicted in Fig. 2(b),
wavelet-based image compression standard JPEG2000 [30f@Rtains four bands of data, each labeled as LL (low-low),
the image compression scheme in this study. HL (high-low), LH (low-high) and HH (high-high). The LL

Wavelet transform coding first transforms the image from igand can be further decomposed in the same manner, thereby
spatial domain representation to a different type of represdioducing even more sub-bands as shown in Fig. 2(c). This can
tation using wavelet transform and then codes the transformie@i repeated up to any level, thereby resulting in a pyramidal
values (coefficients) [31]. A typical wavelet-based imagéecomposition as depicted in Fig. 2.
compression system is shown in Fig. 1. It consists of threeFollowing the wavelet transform operation, bit allocation
components; Forward/Reverse Wavelet Transform, Qudg4], quantization and entropy coding [35] are applied to get
tizer/Dequantizer and Entropy Encoder/Decoder. In terms ife final compressed image.
energy dissipation of JPEG2000 compression/decompression, =
wavelet transform is the dominant part [32]. B. Distributed Wavelet Transform

The fundamental concept behind wavelet transform is toThe basic idea of the proposed distributed image com-
split up the frequency band of a signal (image in our caspjession is distributing the workload of wavelet transform to
and then to code each subband using a coder and bit reg@geral groups of nodes along the path from the source to the
accurately matched to the statistics of the band. There a®stination. The key issue in the design of distributed wavelet-
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Fig. 3. Traditional data partitioning approach: divide by rows/columns for

one wavelet decomposition level. The setRf (i = 1,2,...,n) is the data
to be wavelet transformed. The sethf(i = 1,2, ...,m) is the 2-D wavelet
Hénsform results.

(c) Two level decomposition (d) Three level decomposition

Fig. 2. lllustration of wavelet spectral decomposition and ordering. L stan
for low frequency component and H stands for high frequency component.

their received data then send the intermediate results back to

based image compression @ata exchangge.g. exchange c;. ¢; combines the results and divides data by columnB;to
of raw image or intermediate results). The importance steragain. These nodes process data and send the results (Level 1
from the wireless communication energy that is incurred kata in Fig. 4) to the next cluster head. After receiving
different data exchange schemes. In the research of pardie results,c; chooses a part of the results (corresponding
wavelet transform, data is broadcasted to all processorstaolLL in Fig. 2(b)) and distributes it to the set of nodés
speedup the execution time [36] which may increase tfig:1, pa2, p2s andpas). co Will code and send the other part
energy consumption. We proposed two data exchange schewiethe received data (corresponding to LH, HL and HH in
and compare between them with respect to image quality afig. 2(b)) directly to the next cluster heagl. The nodes
energy consumption; 1)Method 1: Divide by rows/columnsn Ps (p21, p22, p2s andpas) will also send their processed
2)Method 2: Tiling. results (corresponding to Level 2 wavelet decomposition as

1) Method 1:In this method, we consider the data partitionin Fig. 2(c)) tocs after running 1-D wavelet transform twice.
ing scheme proposed in traditional parallel wavelet transfor@epending on the image quality specified by the query (which
[36] when applied to a multihop wireless network. Fig. 3 application-dependent), this procedure may continue;on
illustrates the data partitioning scheme for one wavelet decofid its following nodes until the final compressed image
position level. At first, the data is partitioned into blocks reaches the destination (sink) node. It should be noted that,
R1,Rs, ..., R, where each block consists of one or mor@s shown in Fig. 4, the cluster heads, (c; and c3) have to
rows. Then, each node runs 1-D wavelet transformRn collect and transmit the intermediate 1-D wavelet transform
Once the 1-D wavelet transform is completed on all rowgesults (indicated by two-way arrows) during each wavelet
one node collects the intermediate resats Q, ..., Q,, and decomposition level.
divides the results inton blocks I3, Is,. .., I,,. Then each  2) Method 2: Tiling, which is used in JPEG [28], can
node applies 1-D wavelet transform dp. Finally, a node also be used in wavelet based image compression. Normally,
gathers the 2-D wavelet transform resulis Js, ..., J,,,. This the wavelet decomposition is computed on the entire image,
data exchange scheme does not result in any image quality lagsich inhibits annoying compression blocking artifacts that
compared to the traditional centralized scheme. occur at low bit rate coding. However, JPEG2000 [30] also

An example of distributed image compression using fowupports the concept of image tiling for operation in low
nodes in each cluster is shown in Fig. 4. After receiving memory environments. In this case, the image is partitioned
qguery from a source node the cluster head; selects a set of into tiles (blocks), and then each block is sent to a node
nodesP; in the cluster which will take part in the distributedto do 2-D wavelet transformindependently Once a node
wavelet transform then informs. s divides the raw image completes its 2-D wavelet transform, it sends the result back
data by rows and transmits them & (pi11, p12, p13 and to a center node. The processing of tiles independently leads
p14).- Those nodes run 1-D wavelet transform algorithm oto a rate-distortion loss and blocking artifacts as the number
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image compression in a multihop wireless network. Three levels of wave composition.s is the source noded is the destination node:; is the
decompositions is the source nodel is the destination (sink) node; is the cluster head of cluste. ¢

cluster head of clustet. Two-way arrows between cluster heads and nodes
indicate that the cluster heads collect and transmit the 1-D wavelet transform
results during each wavelet decomposition level.
same method as in the centralized JPEG2000 image compres-

sion. In the Embedded Block Coding method which is used in

of tiles and/or processors is increased [16]. We found th3EG2000 standard [38], each subband (corresponding to LL,
the quality loss and blocking artifacts are small when tHeH, HL and HH component at each wavelet decomposition
number of tiles is small or when the bit rate of compresséevel) is divided into small blocks called “code blocks.” And
image is not very low. Fig. 5 illustrates the image qualitthen each code bloékis coded independently. More details
degradation of tiling. It is observed that the quality loss aff Embedded Block Coding in JPEG2000 can be found in
tiling with four tiles (Fig. 5(c)) compared to the result withou{30], [39]. It is worth noting that the nodes will compress the
tiling (Fig. 5(a)) is smaller thard.2dB in terms of PSNR. coefficients which do not need further wavelet transform at the
The blocking artifacts are also negligible with a moderate hitirget bit rate. For instance, those coefficients corresponding
rate (Fig. 5(d)). Therefore, it is still applicable in distributedo LH, HL and HH components at each decomposition level
wavelet-based image compression if the number of tiles Wsll be compressed to the target bit rate.
small or for not very low bit rate. Post processing techniquesit is worth noting that, in the proposed distributed wavelet
can also be applied at the destination to cope with the blockitransform, nodes run entropy coding before exchanging data
artifacts [37]. (whether raw image pixels or transformed LL coefficients)

Fig. 6 shows an example of distributed image compressitm save communication energy . This is in contrast to the
using four tiles and three wavelet decomposition levels. Siroentralized or traditional parallel version of wavelet transform,
ilar to Method 1, after receiving a query from a source nodghere data exchange occurs without any entropy coding. The
s, the cluster head; selects a set of node3, in the cluster reason is that traditional approaches are not concerned with
which will take part in the distributed wavelet transform thethe communication energy cost and thus the entropy coding
informsss. s divides the raw image data into tiles and transmitis applied only once, after the required level of wavelet
them to P,. Those nodes run 2-D wavelet transform on thettecomposition is reached (as depicted in Fig. 1).
received image data then send the results (Level 1 data in
Fig. 6)individually to the next cluster heag}. Foreachtile, c, V. PERFORMANCEEVALUATION
chooses a part of the results (corresponding to LL in Fig. 2(b))In this section, we perform two sets of simulations that
and sends it to one of the processing nodes,(p22, P23 compare our proposed distributed image compression with the
andp24). c2 Will also combine the other parts of the receivedentralized algorithm based on two performance metrics: total

data (Corresponding to LH, HL and HH in Flg 2(b)) from albnergy Consumption and system lifetime.
tiles then code and send the result directly to the next cluster .
headcs. In this way, the final compressed image reaches the Simulations and Experiments Setup

destination node. This section presents the simulation scenarios for the eval-
C. Quantization and Coding uation of the performance of the proposed protocols, the

The b_it allocation, qua_nti?ation _StEp and eerp_y codingzthe size of code blocks is a flexible parameter. A typical size of the code
method in the proposed distributed image compression use blek is 64 by 64.



(a) JPEG2000 without tiling. Bit rate i9.1bpp. PSNR = (b) JPEG2000 with a tile sizé4 x 64 pixels. Bit rate is0.1bpp.
29.30dB. PSNR = 25.12dB.

(c) JPEG2000 with a tile siz256 x 256 pixels. Bit rate is0.1bpp. (d) JPEG2000 with a tile sizé4 x 64 pixels. Bit rate is0.5bpp.
PSNR =29.12dB. PSNR = 35.67dB.

Fig. 5. Compression of Lena image.

experimental procedure for estimating the parameters of tb@mpression are chosen as follows. Every node is assumed to
computation energy model and the simulation details regardingve an image.enaof size512 x 512 pixels with 8 bits per
the distribution of the wavelet transform tasks among ttgxel (bpp). We fix the number of nodes running distributed
nodes. wavelet transform within each wavelet decomposition level to
1) Simulation setupfor each network topology, the node$€e 4. Let L denote the desired decomposition level of wavelet
organize into clusters according to a clustering algorithniransform. The maximum value @ffor every image is chosen
[42]. During each of the two sets of simulations reported, te be5%. For simplicity, the desired image quality is given
values of the parameters of our proposed distributed imaeterms of the bit rate of final compressed image for this set

4It is chosen according to the size of the test image and to be compatible

3The choice of clustering algorithm is arbitrary and is done simply fowith centralized image compression scheme. The effect of decomposition level

simulation purpose. We leave the examination of using other clustering the image quality and energy consumption is out of the scope of this paper
algorithms in our proposed distributed image compression for future researahd can be found in [18].



of simulations. Similar trends are observed for other values ®°[4 wvenoaii=3
not reported here (for space considerations). 5 | Conratzed (o)
While our above approaches divide the computation work-z 7o > M:ESS%EE% 3
load of a single JPEG2000 image compression among multipldf =-S5
nodes in each wavelet decomposition level, they only consideg |
the response of a single query (defined earlier as “session”
between a source and a destination. If the processing nod‘§
sets were chosen a priori and fixed throughout the systent |
lifetime, it is easy to see that those unlucky nodes chosen tc%
be processing nodes would run out of their energy quickly. e ao-
Thus, in the simulation, we include randomized rotation ofg
the processing node set such that it rotates among the varioué&m,
nodes among sessions in order to not drain the battery of &
single node. In this way nodes will evenly share the workload
of the network. 2% 5 10 5 i 20 2

2) Computation and communication energy parameters: Psamce beem souree sndcsinaton (on)
The values of the parameters of the computation energy mogligl 7. Normalized total energy dissipation per raw image bit versus distance
(3) and (4) are estimated as follows. We have employdgtween source and destination for different desired decomposition llevel
JouleTrack  [27] to estimate the energy consumption fof? = Lorp
an existing JPEG2000 codef41]. The experiment data in
terms of energy expended by a StrongARM SA -1100 proces-
sor at 206Mhz is measured when running JPEG2000 image
compression algorithm on test imagena (512x512). From
the experiment, the value of in (3) is estimated to be
220 x 10~ Joule/bit and the value of in (4) is estimated to
be 20 x 10~% Joule/bit.

i+ 1" level of decomposition is only /4 of i*" level

in the case of octave-band decomposition).

2) For each session, since the data closer to the destination
are in a more compressed form than those further

upstream (towards the source), the communication cost

. L of the node(s) closer to the destination is smaller than
The values of the parameters of the wireless communication

: the communication cost of its previous node on the path.
energy model (1) and (2) are the typical valugs= 100 x ) . .
10~ 12 Joule/bit/m? and e, = 50 x 10~ Joule/bit as for The required number of wavelet decomposition levels in

example in [42]. The communication range of a netand pr?ctlie IS typ|czally smal: (e.g. the default aand recommended
is chosen to ba0m for all nodes in this study, and = 2. value for ‘]PEG ,000 Implementation n [41]3sMost sensor
o L network applications are assumed to involve a reasonably large
3) Distributed operation in small networkstn the case
L . . . . . number of sensors and the number of hops between the source
of distributed image compression, if there are no sufficien L . . .
L2 . nd destination (sink) is most likely large enough to have at
nodes to organize into the required number of clusters, (for g
. ..~ . ‘least5 clusters for one wavelet decomposition level per cluster.
example, the distance between source and destination is fefy .
. or the reasons above, the nodes closest to the sink are less
large enough) the last node(s) on the path to the destinatjoh . : ;
) . likely to be overburdened with computational requirements.
may have to perform multiple wavelet transform operations
on the remaining data until the required decomposition levelds Results

reached. We call this the "last-hop overload.” This may poten- . ) .
tially cause the nodes closer to the destination to deplete theift) T0tal Energy ConsumptionVe consider a network with

energies faster. For example, will compute the remaining 200 nodes randomly placed in an areal@bm x 125m. The

two wavelet transform levels on corresponding data in Fig.r@d? clpsest to the center is chosen 'to bg the source. The

before sending the final compressed image to the destinatiffStination nodes are chosen with varied distance ftora

if the required wavelet decomposition level was 25 hops_be_twe_en the source and_ th_e destination. Th_e tqtal
We believe that for most common scenarios (except maysgergy dissipation of a session, which includes communication

some pathological cases), the last-hop overload will not hav?@ong nodes and distributed image compression, is measured

significant effect on the system lifetime. There are two intuitive’” different source destination distance. T
reasons for this: The comparison between the total energy dissipation of

. ) the three schemes (centralized, distributed Method 1 and dis-
1) The computational cost at the higher levels of wavelgli, ied Method 2) is shown in Fig. 7 and Fig. 8. We examine
decomposition is small compared to the lower levelge energy consumption with respect to the distance between
of decomposition (e.g., the computational cost at thg,rce and destination for different wavelet decomposition
level L and image qualityQ. It is observed in these figures
5All options of this JPEG2000 coder are the default values except decoffrat the total energy consumption of Method 1 is much higher
position level that is chosen to Hesince~ is the energy dissipated for one than the other two under all circumstance. The total energy

level wavelet image compression per bit. Recall thatounts the energy =<' H'* ] ’ ! _
consumed by wavelet transform, quantization and entropy coding. dissipation for Method 2 is slightly higher than centralized
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o= ) : h . System lifetime comparison: distributed versus centralized for
between source and destination for different desired image qulify = 5. ¥ b

different desired decomposition levél @ = 1bpp.

image compression (where only source node runs JPEG2000

image compression algorithm), particularly for moderate @by gjfferent network sizes. On the other hand, the results of
high bit rate quality requirement. However, in terms of systefjethod 2 of the distributed approach result in a much longer
lifetime, the distributed approach of Method 2 has betigfetime since it divides the computation workload uniformly
performance, as described in the next simulation results. (statistically speaking) among all the nodes in the network. The
2) System Lifetime:In this section, we only compare esyits show that considerably longer system lifetime (e.g., up
Method 2 (and not Method 1) with the centralized imagg) 4 times with large network size) can be achieved when

compression since it is shown in the previous section that j§ing distriouted image compression (Method 2) algorithm.

performs much better than Method 1 in terms of total energy o . .
consumption. It is observed that the system lifetime of distributed image

We consider five connected networks of si¥e— 25. 50 compression scheme (Method 2) increases as the network size

100, 200 or 500 nodes. Nodes are randomly placed in asquaitrécreases for small to moderate network size, then almost
area with average node degree (i.e. number of neighborikﬁﬁcomes flat for large network size. We provide an intuitive
nodes) to ba 0. The area size is computed to keep the netWofsk(planation for this observation. Consider first the case of very

asymptotically connectédWe choose the node which is thesmall network size (in terms of number of nodes). In this case,
closest to the center of the field as the source. For evdf§ source and destination are very close to each other as is the

session, the destination is randomly chosen. Each nodecige in a small network, our propgsed distributed'scheme can
initially given 1 Joule of energy. The simulation is stoppetﬁ‘Ot b_e z_;lpplled because (_)f insufficient node_s and it defaults to
if any node in the network depletes its energy. The syste%va”at'on of the centralized schemt_a. In this case, the_so_urce
lifetime in terms of number of sessions is measured for boffpdes Perform most of the processing and tend to fail first,

distributed and centralized image compression. limiting the lifetime of the network.

The comparison between the system lifetime achieved byAs the network size increases, it becomes more likely that
using our approach against a centralized scheme is shavare are sufficient nodes between the source and destination
in Fig. 9 and Fig. 10. Very similar trends are observed fao implement the proposed distributed scheme and hence
different values of@ and L in these figures. In the caseextend the network lifetime. However, observe that the first
of conventional centralized image compression, the souregel wavelet transform is the most consuming in terms of
node “dies” quickly since it consumes power at a very higbomputation energy, and hence the processing nodes in the
rate compared to other nodes in the network. The systehuster closest to the source are more likely to deplete their
lifetime of centralized image compression is almost constaatergies first. Since this number is fixed in our simulations,

the lifetime of the network remains constant as the network

SLet L denote the side length of the square. letlenote the average gjze grows to very large sizes. Increasing the number of

degree of a node. From [43], we know that this average node degree should . d : h clust di th t K
be ©(log N) to keep the network asymptotically connected. The side Ieng@lrocessmg nodes In each cluster would increase the networ

L of every network size is calculated from lifetime, but the overall trend (saturation for a specific number
of processing nodes) will still be observed (simulations not
L =|d\/Nm/g]

reported here for this case since the curves are similar to the
reported results).
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