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Abstract— Efficient compression and transmission of images
in a resource constrained multihop wireless network is consid-
ered. Distributed image compression is proposed as a means to
overcome the computation and/or power limitation of individual
nodes by sharing the processing of tasks. It has the additional
benefit of extending the overall lifetime of the network by
distributing the computation load among otherwise idle pro-
cessors. Two design alternatives for energy efficient distributed
image compression are proposed and investigated with respect
to energy consumption and image quality. Simulation results
show that the proposed scheme prolongs the system lifetime at a
normalized total energy consumption comparable to centralized
image compression.

I. I NTRODUCTION

Advances in visual sensors [1], [2] and wireless communica-
tion have enabled the development of low-cost, low-power vi-
sual multihop wireless networks, which have recently emerged
for a variety of applications, including environmental and
habitat monitoring, target tracking and surveillance [3], [4].
However, representing visual data requires a large amount of
information, leading to high data rates, which in turn requires
high computation and communication energy. Consequently,
visual sensor networks present several challenges beyond
those common to low data rate sensing, such as acoustics,
temperature or pressure.

We consider compressing and transmitting images in a
multihop wireless network. We focus on the design and
performance evaluation of distributed image compression al-
gorithms. Distributed image compression in sensor networks
is beneficial for two common scenarios. One scenario is
when nodes have extremely constrained computation power.
Hence, any single node may not have sufficient computation
power to completely compress a large raw image. In this
case, a distributed method to share the processing task is
necessary. Another scenario is that even when nodes are
not extremely computation power constrained, but are battery
operated, distributing the computation load among otherwise
idle processors of other nodes extends the overall lifetime of
the network.

In this research, we have made a first attempt at the design
and performance evaluation of distributed image compression
in energy constrained multihop wireless (e.g. ad hoc or sensor)
networks. By exploiting the characteristics of the Discrete
Wavelet Transform (DWT), we propose a distributed image
compression scheme where nodes compress an image while

forwarding it to the destination subject to a specific image
quality constraint. In particular, we propose two data exchange
methods of distributed wavelet transform and investigate their
performance in terms of energy consumption and image qual-
ity over a multihop wireless network. Simulation results show
that our scheme prolongs the system lifetime by up to4
times and has a total energy consumption comparable to the
centralized algorithm.

In Section II, we examine related work. The system model is
described in Section III. Section IV introduces the distributed
image compression schemes. Simulations of the proposed
schemes are presented in Section V. We conclude the paper
in Section VI.

II. RELATED WORK

Up to our knowledge, distributed image compression in
wireless ad hoc networks has not been studied in the literature.
However, our work has been inspired by a variety of other
research efforts. We describe below some of the ideas and
basic concepts that inspired our work, and reflect on how our
work relates to current research in the area of sensor network
applications.

While early research efforts in wireless sensor networks
did not investigate the issues of node collaboration, focusing
more on issues in the design and packaging of small, wireless
devices [5], [6], more recent efforts (e.g. [7], [8]) have con-
sidered node collaboration issues such as data “aggregation”
or “fusion”. Our approach of distributed image compression
falls within the domain of techniques that apply the concept of
in-network processing, i.e. processing in the network by com-
puting over the data as it flows through the nodes. It is worth
noting that current aggregation functions (e.g., “maximum”
and “average” [7]) are limited to scalar data. Our approach
can be viewed as an extension to vector data aggregation.
Previousdistributed signal processing/compressionproblems
(e.g. [9], [10]) exploit correlations between data at close-by
sensors in order to jointly compress or fuse the correlated
information resulting in savings in communication energy.
Fusion of correlated images is not discussed in this paper.

In parallel distributed computing theory[11], a problem (or
task) is divided into multiple sub-problems (or sub-tasks) of
smaller size (in terms of resource requirements). Every node
solves each subproblem by running the same local algorithm,



and the solution to the original problem is obtained by combin-
ing the outputs from the different nodes. Our approach to the
design of distributed image compression is similar in concept,
in that we distribute the task of image encoding/compression
to multiple smaller image encoding/compression sub-tasks.
However, a key difference is that distributed computation
theory typically focuses on maximizing the speed of execution
of the task while our primarily concern here is reducing the
total energy consumption subject to a required image quality.

Thus, our proposed approach of image compression in-
tersects with the literature on parallel wavelet transform,
which primarily focuses on parallel DWT on special purpose
hardware (e.g., application specific VLSI architectures [12],
FPGAs [13], DSPs [14]) or general purpose multiprocessor
systems [15], [16]. The difference, of course, is that previous
parallel wavelet transform research assumes the energy cost
of data movement between processors to be zero or very
small compared to the wavelet transform computation. This
assumption is no longer valid in multihop wireless networks
due to costly wireless communication among nodes. Further-
more, the main objective of previous parallel wavelet transform
is to speedup the transform. Wireless nodes operating on
battery power will possibly have their primary objective as
the conservation of their energy reserves rather than algorithm
run time.

Distributed Fast Fourier Transform (FFT) in a sensor net-
work was considered in [17]. Our work on DWT is similar
in spirit, in the sense that FFT and DWT are two signal pro-
cessing techniques. However, our problem has two additional
dimensions. First, DWT is just one component of the image
compression and transmission problem, and in that sense
our problem includes more complex network-wide challenges.
Second, while the spectrum of possible outcomes of an FFT is
limited, in the sense that the FFT is either successfully com-
puted or not, the image encoding and transmission problem
offers a wide continuum of solutions in terms of the received
image quality.

Recently, applications of classical image processing tech-
niques in sensor networks have gained a lot of interest for
the parallels between image processing and sensor networks.
By mapping individual sensors as pixels in an image, [19]
examined cleaning of uncorrelated sensor noise, and the
decentralized detection of edges. Ganesan et al. [20] have
proposed a generalized hierarchical architecture for multi-
resolution querying of regularly placed sensor networks that
is based on wavelet transforms. Servetto [21] also exploits
wavelet transforms to decorrelate sensor data to address the
sensor broadcast problem where every sensor observes only
one pixel. These works focus on the correlation between sensor
nodes. In this paper, we consider nodes observing an image
instead of a pixel and investigate the problem of compressing
and transmitting images in sensor networks.

A comment regarding our previous work on image com-
pression in sensor networks is in order. Traditionally, maximal
image compression (source coding) is implemented at the
source in order to reduce the number of bits transmitted thus

reducing the communication energy. The goal of our previous
work [18] is to minimize theoverall energy consumption of
the network by computing the optimal compression parame-
ters as a function of the network density. (It turns out that
maximal compression at the source is not always optimal).
Centralized image compression was used at the source nodes
which may limit the lifetime of the network. Distributed image
compression was not discussed in [18].

Finally, we believe it is appropriate to also mention some
of the projects related to visual sensor networks. In [22], a
data centric routing protocol is proposed for efficient image
retrieval in wireless ad hoc networks by using metadata of
images. The issue of the transmission/encoding of the image,
once located, is not studied. A topology control approach to
maximize the network lifetime of a wireless video surveillance
network by arranging nodes location is presented in [23].

III. SYSTEM MODEL

We consider a densely deployed multihop wireless network
in which some of the nodes are camera-equipped. Every
camera-equipped node can respond to an image query by
generating a raw image (e.g. a snapshot of its sensing area in
the case of a sensor network) and transmitting this image to the
destination (sink). When sending an image request (query), the
destination node specifies the desired image quality. A cluster
based routing mechanism is assumed to be in place such that
nodes can self-organize into a two-tiered cluster (e.g. [24]).
In this initial investigation, the communication environment is
assumed to be contention-free. Asessionrefers to a source
sending one image to a destination, in response to receiving a
request from the destination. It is worth noting that there are
typically multiple sessions at a time.

For this study, we use a transceiver energy dissipation model
similar to the one proposed in [25]. The energy consumed in
transmission per bit is

ETX = εe + εadα (1)

and the energy consumed in reception per bit is

ERX = εe (2)

whereεa is the energy dissipated per bit perm2, εe is energy
consumed by the circuit per bit,d is the distance between a
wireless transmitter and a receiver, and2 ≤ α ≤ 4 is the path
loss parameter [26]. The energy consumed in computation per
bit is

EDWT = γ (3)

whereγ is the energy dissipated for one level wavelet trans-
form compression (described in Section IV-A) per bit. The
energy spent in quantization and entropy coding per bit is1

EENT = δ. (4)

The performance metric in this paper issystem lifetime,
which is defined as the time duration from the time instant

1Section V describes howγ andδ are estimated.



when the network starts working until the first node in the
network fails due to depleted energy.

Image quality is measured using the Peak Signal-To-Noise
Ratio (PSNR) metric, which is defined (in decibels) as

PSNR = 20log10
2b − 1

E‖x(i, j)− x̂(i, j)‖
where x(i, j) (x̂(i, j)) are the pixel values of the original
(reconstructed) image, andb is the number of bits per pixel
(bpp) of the original image. We recognize that the PSNR does
not always accurately model perceptual image quality, but we
use it because it is a commonly used metric in the literature. In
addition, we also show a few examples on a test image to show
certain aspects of the received image that are not revealed by
the PSNR value.

IV. D ISTRIBUTED IMAGE COMPRESSION

Since we are investigating the problem of transmitting
images in multihop wireless networks, it is beneficial to start
by describing some of the background of image compression
as it relates to this paper. Then we describe our approach of
distributed image compression.

A. Background on Image Compression

A common characteristic of most images is that the neigh-
boring pixels are correlated and therefore contain redun-
dant information. Image compression aims at reducing the
number of bits needed to represent an image by removing
the spatial and spectral redundancies as much as possible.
Among a variety of image compression algorithms, JPEG [28]
is a commonly used standard for still image compression.
More recently, the wavelet transform has gained widespread
acceptance in signal processing in general, and in image
compression research in particular. In many applications,
wavelet-based schemes (also referred to as subband coding)
outperform other coding schemes. Wavelet-based coding is
more robust under transmission and decoding errors, and also
facilitates progressive transmission of images. Because of their
inherent multi-resolution nature [29], wavelet coding schemes
are especially suitable for applications wherescalability and
tolerable degradationare important. Thus, we choose the new
wavelet-based image compression standard JPEG2000 [30] as
the image compression scheme in this study.

Wavelet transform coding first transforms the image from its
spatial domain representation to a different type of represen-
tation using wavelet transform and then codes the transformed
values (coefficients) [31]. A typical wavelet-based image
compression system is shown in Fig. 1. It consists of three
components; Forward/Reverse Wavelet Transform, Quan-
tizer/Dequantizer and Entropy Encoder/Decoder. In terms of
energy dissipation of JPEG2000 compression/decompression,
wavelet transform is the dominant part [32].

The fundamental concept behind wavelet transform is to
split up the frequency band of a signal (image in our case)
and then to code each subband using a coder and bit rate
accurately matched to the statistics of the band. There are
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Fig. 1. A typical wavelet-based image compression (a)encoder (b)decoder.

several ways wavelet transforms can decompose a signal
into various sub-bands. These include uniform decomposition,
octave-band decomposition, and adaptive or wavelet-packet
decomposition [33]. Out of these, octave-band decomposition
is the most common, and hence is used in this paper. This is a
non-uniform band splitting method that decomposes the lower
frequency part into narrower bands and the high-pass output
at each level is left without any further decomposition.

The octave-band decomposition procedure can be described
as follows. A Low Pass Filter (LPF) and a High Pass Filter
(HPF) are chosen, such that they exactly halve the frequency
range of the input signal. First, the LPF is applied for each
row of data, thereby getting the low frequency components
of the row. When viewed in the frequency domain, the
output data contains frequencies only in the first half of the
original frequency range because the LPF is a half band filter.
Therefore, the output of the LPF can be sub-sampled by2
according to Shannon’s sampling theorem, in which case the
output data will contain only half the original number of
samples. Then, the HPF is applied for the same row of data,
and similarly the high pass components are separated. The low
and high pass components are arranged into a row of output
data as illustrated in Fig. 2(a). This procedure is performed on
all rows, which we term “1-D wavelet transform.” Next, the
filtering is done for each column of the intermediate output
data. This whole procedure (including both row and column
operations) is called a “2-D wavelet transform.” The resulting
two-dimensional array of coefficients, depicted in Fig. 2(b),
contains four bands of data, each labeled as LL (low-low),
HL (high-low), LH (low-high) and HH (high-high). The LL
band can be further decomposed in the same manner, thereby
producing even more sub-bands as shown in Fig. 2(c). This can
be repeated up to any level, thereby resulting in a pyramidal
decomposition as depicted in Fig. 2.

Following the wavelet transform operation, bit allocation
[34], quantization and entropy coding [35] are applied to get
the final compressed image.

B. Distributed Wavelet Transform

The basic idea of the proposed distributed image com-
pression is distributing the workload of wavelet transform to
several groups of nodes along the path from the source to the
destination. The key issue in the design of distributed wavelet-
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Fig. 2. Illustration of wavelet spectral decomposition and ordering. L stands
for low frequency component and H stands for high frequency component.

based image compression isdata exchange(e.g. exchange
of raw image or intermediate results). The importance stems
from the wireless communication energy that is incurred by
different data exchange schemes. In the research of parallel
wavelet transform, data is broadcasted to all processors to
speedup the execution time [36] which may increase the
energy consumption. We proposed two data exchange schemes
and compare between them with respect to image quality and
energy consumption; 1)Method 1: Divide by rows/columns;
2)Method 2: Tiling.

1) Method 1:In this method, we consider the data partition-
ing scheme proposed in traditional parallel wavelet transform
[36] when applied to a multihop wireless network. Fig. 3
illustrates the data partitioning scheme for one wavelet decom-
position level. At first, the data is partitioned inton blocks
R1, R2, . . . , Rn where each block consists of one or more
rows. Then, each node runs 1-D wavelet transform onRi.
Once the 1-D wavelet transform is completed on all rows,
one node collects the intermediate resultsQ1, Q2, . . . , Qn and
divides the results intom blocks I1, I2, . . . , Im. Then each
node applies 1-D wavelet transform onIi. Finally, a node
gathers the 2-D wavelet transform resultsJ1, J2, . . . , Jm. This
data exchange scheme does not result in any image quality loss
compared to the traditional centralized scheme.

An example of distributed image compression using four
nodes in each cluster is shown in Fig. 4. After receiving a
query from a source nodes, the cluster headc1 selects a set of
nodesP1 in the cluster which will take part in the distributed
wavelet transform then informss. s divides the raw image
data by rows and transmits them toP1 (p11, p12, p13 and
p14). Those nodes run 1-D wavelet transform algorithm on
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Fig. 3. Traditional data partitioning approach: divide by rows/columns for
one wavelet decomposition level. The set ofRi (i = 1, 2, . . . , n) is the data
to be wavelet transformed. The set ofJi (i = 1, 2, . . . , m) is the 2-D wavelet
transform results.

their received data then send the intermediate results back to
c1. c1 combines the results and divides data by columns toP1

again. These nodes process data and send the results (Level 1
data in Fig. 4) to the next cluster headc2. After receiving
the results,c2 chooses a part of the results (corresponding
to LL in Fig. 2(b)) and distributes it to the set of nodesP2

(p21, p22, p23 andp24). c2 will code and send the other part
of the received data (corresponding to LH, HL and HH in
Fig. 2(b)) directly to the next cluster headc3. The nodes
in P2 (p21, p22, p23 and p24) will also send their processed
results (corresponding to Level 2 wavelet decomposition as
in Fig. 2(c)) toc3 after running 1-D wavelet transform twice.
Depending on the image quality specified by the query (which
is application-dependent), this procedure may continue onc3

and its following nodes until the final compressed image
reaches the destination (sink) node. It should be noted that,
as shown in Fig. 4, the cluster heads (c1, c2 and c3) have to
collect and transmit the intermediate 1-D wavelet transform
results (indicated by two-way arrows) during each wavelet
decomposition level.

2) Method 2: Tiling, which is used in JPEG [28], can
also be used in wavelet based image compression. Normally,
the wavelet decomposition is computed on the entire image,
which inhibits annoying compression blocking artifacts that
occur at low bit rate coding. However, JPEG2000 [30] also
supports the concept of image tiling for operation in low
memory environments. In this case, the image is partitioned
into tiles (blocks), and then each block is sent to a node
to do 2-D wavelet transformindependently. Once a node
completes its 2-D wavelet transform, it sends the result back
to a center node. The processing of tiles independently leads
to a rate-distortion loss and blocking artifacts as the number
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Fig. 4. Illustration of data exchange Method 1 of distributed wavelet-based
image compression in a multihop wireless network. Three levels of wavelet
decomposition.s is the source node.d is the destination (sink) node.ci is the
cluster head of clusteri. Two-way arrows between cluster heads and nodes
indicate that the cluster heads collect and transmit the 1-D wavelet transform
results during each wavelet decomposition level.

of tiles and/or processors is increased [16]. We found that
the quality loss and blocking artifacts are small when the
number of tiles is small or when the bit rate of compressed
image is not very low. Fig. 5 illustrates the image quality
degradation of tiling. It is observed that the quality loss of
tiling with four tiles (Fig. 5(c)) compared to the result without
tiling (Fig. 5(a)) is smaller than0.2dB in terms of PSNR.
The blocking artifacts are also negligible with a moderate bit
rate (Fig. 5(d)). Therefore, it is still applicable in distributed
wavelet-based image compression if the number of tiles is
small or for not very low bit rate. Post processing techniques
can also be applied at the destination to cope with the blocking
artifacts [37].

Fig. 6 shows an example of distributed image compression
using four tiles and three wavelet decomposition levels. Sim-
ilar to Method 1, after receiving a query from a source node
s, the cluster headc1 selects a set of nodesP1 in the cluster
which will take part in the distributed wavelet transform then
informss. s divides the raw image data into tiles and transmits
them toP1. Those nodes run 2-D wavelet transform on their
received image data then send the results (Level 1 data in
Fig. 6) individually to the next cluster headc2. Foreachtile, c2

chooses a part of the results (corresponding to LL in Fig. 2(b))
and sends it to one of the processing nodes (p21, p22, p23

andp24). c2 will also combine the other parts of the received
data (corresponding to LH, HL and HH in Fig. 2(b)) from all
tiles then code and send the result directly to the next cluster
headc3. In this way, the final compressed image reaches the
destination node.

C. Quantization and Coding

The bit allocation, quantization step and entropy coding
method in the proposed distributed image compression use the
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Fig. 6. Illustration of data exchange Method 2 of distributed wavelet-
based image compression in a wireless multihop network. Three levels of
decomposition.s is the source node.d is the destination node.ci is the
cluster head of clusteri.

same method as in the centralized JPEG2000 image compres-
sion. In the Embedded Block Coding method which is used in
JPEG2000 standard [38], each subband (corresponding to LL,
LH, HL and HH component at each wavelet decomposition
level) is divided into small blocks called “code blocks.” And
then each code block2 is coded independently. More details
of Embedded Block Coding in JPEG2000 can be found in
[30], [39]. It is worth noting that the nodes will compress the
coefficients which do not need further wavelet transform at the
target bit rate. For instance, those coefficients corresponding
to LH, HL and HH components at each decomposition level
will be compressed to the target bit rate.

It is worth noting that, in the proposed distributed wavelet
transform, nodes run entropy coding before exchanging data
(whether raw image pixels or transformed LL coefficients)
to save communication energy . This is in contrast to the
centralized or traditional parallel version of wavelet transform,
where data exchange occurs without any entropy coding. The
reason is that traditional approaches are not concerned with
the communication energy cost and thus the entropy coding
is applied only once, after the required level of wavelet
decomposition is reached (as depicted in Fig. 1).

V. PERFORMANCEEVALUATION

In this section, we perform two sets of simulations that
compare our proposed distributed image compression with the
centralized algorithm based on two performance metrics: total
energy consumption and system lifetime.

A. Simulations and Experiments Setup

This section presents the simulation scenarios for the eval-
uation of the performance of the proposed protocols, the

2The size of code blocks is a flexible parameter. A typical size of the code
block is 64 by 64.



(a) JPEG2000 without tiling. Bit rate is0.1bpp. PSNR =
29.30dB.

(b) JPEG2000 with a tile size64 × 64 pixels. Bit rate is0.1bpp.
PSNR = 25.12dB.

(c) JPEG2000 with a tile size256× 256 pixels. Bit rate is0.1bpp.
PSNR = 29.12dB.

(d) JPEG2000 with a tile size64 × 64 pixels. Bit rate is0.5bpp.
PSNR = 35.67dB.

Fig. 5. Compression of Lena image.

experimental procedure for estimating the parameters of the
computation energy model and the simulation details regarding
the distribution of the wavelet transform tasks among the
nodes.

1) Simulation setup:For each network topology, the nodes
organize into clusters according to a clustering algorithm3

[42]. During each of the two sets of simulations reported, the
values of the parameters of our proposed distributed image

3The choice of clustering algorithm is arbitrary and is done simply for
simulation purpose. We leave the examination of using other clustering
algorithms in our proposed distributed image compression for future research.

compression are chosen as follows. Every node is assumed to
have an imageLenaof size512× 512 pixels with 8 bits per
pixel (bpp). We fix the number of nodes running distributed
wavelet transform within each wavelet decomposition level to
be4. Let L denote the desired decomposition level of wavelet
transform. The maximum value ofL for every image is chosen
to be54. For simplicity, the desired image qualityQ is given
in terms of the bit rate of final compressed image for this set

4It is chosen according to the size of the test image and to be compatible
with centralized image compression scheme. The effect of decomposition level
on the image quality and energy consumption is out of the scope of this paper
and can be found in [18].



of simulations. Similar trends are observed for other values
not reported here (for space considerations).

While our above approaches divide the computation work-
load of a single JPEG2000 image compression among multiple
nodes in each wavelet decomposition level, they only consider
the response of a single query (defined earlier as “session”)
between a source and a destination. If the processing node
sets were chosen a priori and fixed throughout the system
lifetime, it is easy to see that those unlucky nodes chosen to
be processing nodes would run out of their energy quickly.
Thus, in the simulation, we include randomized rotation of
the processing node set such that it rotates among the various
nodes among sessions in order to not drain the battery of a
single node. In this way nodes will evenly share the workload
of the network.

2) Computation and communication energy parameters:
The values of the parameters of the computation energy model
(3) and (4) are estimated as follows. We have employed
JouleTrack [27] to estimate the energy consumption for
an existing JPEG2000 coder5 [41]. The experiment data in
terms of energy expended by a StrongARM SA -1100 proces-
sor at 206Mhz is measured when running JPEG2000 image
compression algorithm on test imageLena (512x512). From
the experiment, the value ofγ in (3) is estimated to be
220×10−9Joule/bit and the value ofδ in (4) is estimated to
be 20× 10−9Joule/bit.

The values of the parameters of the wireless communication
energy model (1) and (2) are the typical valuesεa = 100 ×
10−12Joule/bit/m2 and εe = 50 × 10−9Joule/bit as for
example in [42]. The communication range of a noded and
is chosen to be10m for all nodes in this study, andα = 2.

3) Distributed operation in small networks:In the case
of distributed image compression, if there are no sufficient
nodes to organize into the required number of clusters, (for
example, the distance between source and destination is not
large enough) the last node(s) on the path to the destination
may have to perform multiple wavelet transform operations
on the remaining data until the required decomposition level is
reached. We call this the ”last-hop overload.” This may poten-
tially cause the nodes closer to the destination to deplete their
energies faster. For example,c4 will compute the remaining
two wavelet transform levels on corresponding data in Fig. 6
before sending the final compressed image to the destination,
if the required wavelet decomposition level was5.

We believe that for most common scenarios (except maybe
some pathological cases), the last-hop overload will not have a
significant effect on the system lifetime. There are two intuitive
reasons for this:

1) The computational cost at the higher levels of wavelet
decomposition is small compared to the lower levels
of decomposition (e.g., the computational cost at the

5All options of this JPEG2000 coder are the default values except decom-
position level that is chosen to be1 sinceγ is the energy dissipated for one
level wavelet image compression per bit. Recall thatγ counts the energy
consumed by wavelet transform, quantization and entropy coding.
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Fig. 7. Normalized total energy dissipation per raw image bit versus distance
between source and destination for different desired decomposition levelL.
Q = 1bpp.

i + 1th level of decomposition is only1/4 of ith level
in the case of octave-band decomposition).

2) For each session, since the data closer to the destination
are in a more compressed form than those further
upstream (towards the source), the communication cost
of the node(s) closer to the destination is smaller than
the communication cost of its previous node on the path.

The required number of wavelet decomposition levels in
practice is typically small (e.g. the default and recommended
value for JPEG2000 implementation in [41] is5. Most sensor
network applications are assumed to involve a reasonably large
number of sensors and the number of hops between the source
and destination (sink) is most likely large enough to have at
least5 clusters for one wavelet decomposition level per cluster.
For the reasons above, the nodes closest to the sink are less
likely to be overburdened with computational requirements.

B. Results

1) Total Energy Consumption:We consider a network with
500 nodes randomly placed in an area of125m× 125m. The
node closest to the center is chosen to be the source. The
destination nodes are chosen with varied distance from1 to
25 hops between the source and the destination. The total
energy dissipation of a session, which includes communication
among nodes and distributed image compression, is measured
for different source destination distance.

The comparison between the total energy dissipation of
the three schemes (centralized, distributed Method 1 and dis-
tributed Method 2) is shown in Fig. 7 and Fig. 8. We examine
the energy consumption with respect to the distance between
source and destination for different wavelet decomposition
level L and image qualityQ. It is observed in these figures
that the total energy consumption of Method 1 is much higher
than the other two under all circumstance. The total energy
dissipation for Method 2 is slightly higher than centralized
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Fig. 8. Normalized total energy dissipation per raw image bit versus distance
between source and destination for different desired image qualityQ. L = 5.

image compression (where only source node runs JPEG2000
image compression algorithm), particularly for moderate or
high bit rate quality requirement. However, in terms of system
lifetime, the distributed approach of Method 2 has better
performance, as described in the next simulation results.

2) System Lifetime:In this section, we only compare
Method 2 (and not Method 1) with the centralized image
compression since it is shown in the previous section that it
performs much better than Method 1 in terms of total energy
consumption.

We consider five connected networks of sizeN = 25, 50,
100, 200 or 500 nodes. Nodes are randomly placed in a square
area with average node degree (i.e. number of neighboring
nodes) to be10. The area size is computed to keep the network
asymptotically connected6. We choose the node which is the
closest to the center of the field as the source. For every
session, the destination is randomly chosen. Each node is
initially given 1 Joule of energy. The simulation is stopped
if any node in the network depletes its energy. The system
lifetime in terms of number of sessions is measured for both
distributed and centralized image compression.

The comparison between the system lifetime achieved by
using our approach against a centralized scheme is shown
in Fig. 9 and Fig. 10. Very similar trends are observed for
different values ofQ and L in these figures. In the case
of conventional centralized image compression, the source
node “dies” quickly since it consumes power at a very high
rate compared to other nodes in the network. The system
lifetime of centralized image compression is almost constant

6Let L denote the side length of the square. Letg denote the average
degree of a node. From [43], we know that this average node degree should
be Θ(log N) to keep the network asymptotically connected. The side length
L of every network size is calculated from

L = bd
√

Nπ/gc
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Fig. 9. System lifetime comparison: distributed versus centralized for
different desired decomposition levelL. Q = 1bpp.

for different network sizes. On the other hand, the results of
Method 2 of the distributed approach result in a much longer
lifetime since it divides the computation workload uniformly
(statistically speaking) among all the nodes in the network. The
results show that considerably longer system lifetime (e.g., up
to 4 times with large network size) can be achieved when
using distributed image compression (Method 2) algorithm.

It is observed that the system lifetime of distributed image
compression scheme (Method 2) increases as the network size
increases for small to moderate network size, then almost
becomes flat for large network size. We provide an intuitive
explanation for this observation. Consider first the case of very
small network size (in terms of number of nodes). In this case,
the source and destination are very close to each other as is the
case in a small network, our proposed distributed scheme can
not be applied because of insufficient nodes and it defaults to
a variation of the centralized scheme. In this case, the source
nodes perform most of the processing and tend to fail first,
limiting the lifetime of the network.

As the network size increases, it becomes more likely that
there are sufficient nodes between the source and destination
to implement the proposed distributed scheme and hence
extend the network lifetime. However, observe that the first
level wavelet transform is the most consuming in terms of
computation energy, and hence the processing nodes in the
cluster closest to the source are more likely to deplete their
energies first. Since this number is fixed in our simulations,
the lifetime of the network remains constant as the network
size grows to very large sizes. Increasing the number of
processing nodes in each cluster would increase the network
lifetime, but the overall trend (saturation for a specific number
of processing nodes) will still be observed (simulations not
reported here for this case since the curves are similar to the
reported results).
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VI. CONCLUSION AND FUTURE WORK

In this paper, we studied the problem of energy efficient
image encoding/transmission in multi-hop wireless networks.
The design and evaluation of two design alternatives for
distributed image compression scheme is presented. We use a
combination of tiling of images, and load balancing by nodes
rotation to achieve much longer system lifetime compared to
the centralized image compression. The proposed scheme is
simple and easy to implement. Performance evaluation shows
that this distributed scheme can have significantly longer
system lifetime while satisfying the performance constraint
in terms of a target image quality compared to a centralized
approach.

This work provides an important proof of concept that
shows the benefits and feasibility of distributed image com-
pression. Several aspects of future research are the impact
of wireless link errors, and the use of multi-path routing to
enhance the performance of distributed image compression.
In the future, we plan to validate our approach on a sensor
network testbed.
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