
Secret Instantiation in Ad-Hoc Networks

Sandeep S. Kulkarni Mohamed G. Gouda Anish Arora

Department of Computer Department of Computer Sciences Department of Computer

Science and Engineering The University of Texas and Information Science

Michigan State University at Austin Ohio State University

East Lansing MI 48824 Austin, TX 78712 Columbus OH 43210

Abstract

In this paper, we focus our attention on the problem of assigning initial secrets to users in ad-
hoc network (respectively, sensors in a sensor network) so that they can use those secrets to ensure
authentication and privacy during their communication. The goal of this assignment is to ensure that
any two users can communicate securely with each other even though each user maintains only a small
number of secrets. With this motivation, we present a protocol that maintains O(

√
n) secrets per user

where n is the number of users in the system. We show that our secret distribution protocol suffices for
privacy and authentication as well as secure multihop communication between two users. Furthermore,
we show that the number of secrets maintained in this protocol is within a constant factor of the
optimal. For the case where user capability prevents them from maintaining the necessary secrets, we
propose two probabilistic protocols that maintain O(log n) secrets and where the probability of security
compromise between two users is inversely proportional to the number of secrets they maintain. Thus,
our protocols provide a continuum where the level of privacy and authentication depends upon user
requirements and capabilities.

Keywords : Ad-hoc networks, Sensor Networks, Security, Instantiating security, Scalability

1Email: sandeep@cse.msu.edu, gouda@cs.utexas.edu, anish@cis.ohio-state.edu

Web: http://www.cse.msu.edu/~sandeep, http://www.cs.utexas.edu/~gouda, http://www.cis.ohio-state.edu/

~anish

Tel: +1-517-355-2387, +1-512-471-9532, +1-614-292-1836

A preliminary version of this paper appears in Dependability Issues in Wireless Ad Hoc Networks and Sensor Networks,

2004

This work was partially sponsored by NSF CAREER CCR-0092724, DARPA Grant OSURS01-C-1901, ONR Grant

N00014-01-1-0744, NSF grant EIA-0130724, and a grant from Michigan State University.

1

1 Introduction

Security is typically an important issue in wireless ad-hoc networks, including sensor networks, where the
communication medium is broadcast in nature and, hence, an adversary can overhear all messages sent
by any user. For this reason, a sender must authenticate the receiver and encrypt any messages it sends.
One way to achieve this authentication and encryption is to ensure that the sender and the receiver share
a common secret that no other user in the network knows.

Another important issue in these networks is multihop communication. Specifically, if two users (re-
spectively, sensors) that need to communicate are not close to each other, they may require other users
(respectively, sensors) in the network to relay their messages. During such a relay, a user may require
that the intermediate users relaying the message cannot learn the contents of the message and that the
intermediate users cannot generate messages that incorrectly appear to be from the sender. Hence, we
focus on the problem of distributing initial secrets to users so that they can (even on a multihop path)
authenticate each other and communicate securely.

In systems with a trusted server, the problem of distributing initial secrets is often handled by assigning
each user a secret (e.g., password) that is known only to the user and the trusted server. In these systems
(e.g., [1–5]), when two users interact, they use this trusted server to authenticate each other and to
establish a secret that is known only to those two users. In many systems, especially in ad-hoc networks,
however, this approach is undesirable (respectively, impossible) as no trusted server is available when
two users need to communicate with each other. Also, in these systems, using certificates signed by a
trusted authority is undesirable, as the cost of encryption/decryption using them is often exorbitant.
(As an illustration, on MICA motes developed by UC Berkeley, encryption using public key is 100-1000
times slower than symmetric key encryption.) Thus, in these networks, the users must maintain sufficient
secrets so that any two users that need to communicate can use these secrets for authentication and/or
privacy.

Based on the role of intermediate users in a multihop communication, the solutions for initial key distri-
bution can be classified into two categories. In the first category of solutions (e.g., [6–9]), intermediate
users are trusted. Hence, if two non-neighboring users need to communicate, they route the messages
through the intermediate users that decrypt and re-encrypt the message. Thus, it suffices that the com-
municating users share a path such that every user on the path shares a secret with its predecessor and
its successor. However, in this case, compromise of a small number of users that act as intermediate users
can compromise the security completely.

Another category of solutions includes solutions where intermediate users are not trusted. Hence, if two
non-neighboring users communicate the solution guarantees that the intermediate users cannot violate
authentication and privacy. In other words, the intermediate users are only responsible for routing the
message. However, they should not be able to decrypt it. Clearly, in such a solution, compromise of
intermediate users does not affect system security as long as the communicating users share a secret that
is not known to the intermediate users. We follow the second approach and our solutions assume that the
intermediate users are only responsible for routing the messages, and they are not trusted for decrypting
and re-encrypting messages in transit. Thus, given any pair of users, it should be possible to identify a
secret that is known only to those two users.

However, the users often have limited memory and limited computing ability. Therefore, the number of
secrets they maintain and the amount of computation they perform should be small. Moreover, these
networks need to address the problem of scale as the number of users can be high and, hence, the number
of initial secrets that each user has should scale with the increase in the number of users.

1

Based on the above discussion, it follows that one of the important problems for security in ad-hoc
networks is to establish a scalable approach for instantiating security so that each user maintains only
a small number of secrets even though it can securely communicate (either with certainty or with high
probability) with all users in the network.

We present three protocols for instantiating security in wireless ad-hoc networks. In the first protocol,
the grid protocol, each user maintains O(

√
n) secrets where n is the number of users. This protocol

ensures privacy and authentication between any two users that need to communicate with each other.
It also ensures that in a multihop communication, intermediate users cannot learn the contents of the
communication they are relaying and that they cannot generate messages that appear to originate from
the sender. We also show that the number of secrets maintained in the grid protocol is within a constant
factor of the optimal.

Since in large systems, users may not be able to maintain even O(
√

n) secrets, privacy and authentication
cannot be guaranteed in them. For such systems, we present two protocols that provide probabilistic
security, i.e., in these protocols, the level of security, the probability that the two parties can communicate
using secrets that the intruder does not know, is proportional to the number of initial secrets that each
user maintains.

Contributions of the paper. The main contributions of the paper are as follows:

• We present a protocol where each user maintains O(
√

n) secrets, where n is the number of users in
the system. This protocol guarantees privacy and authentication, i.e., it ensures that the secrets
that are used by the communicating parties are not known to any other users in the system. We
also show that the number of secrets maintained in our protocol are within a constant factor of the
lower bound on the minimum secrets.

• We present two protocols for the case where the level of security is proportional to the number
of initial secrets that each user maintains. In these protocols, the probability of a compromise
is a(O(m)), where a < 1 and m is the number of secrets that each user maintains. Thus, in our
protocols, a small increase in the number of secrets maintained by a user substantially reduces
the probability of privacy compromise. It follows that our probabilistic protocols are especially
beneficial for the case where the users do not have the capability to maintain sufficient secrets to
ensure privacy. Finally, we show how our probabilistic protocols can resist identity attacks.

Organization of the paper. The rest of the paper is organized as follows: In Section 2, we precisely
state the problem of instantiating security in ad-hoc networks. Then, in Section 3, we present our protocol
that provides privacy and authentication. In Section 4, we show that the number of secrets maintained in
the protocol in Section 3 are within a constant factor of the optimal. In Sections 5.1 and 5.2, we present
our probabilistic protocols. In Section 6, we compare these protocols. In Section 7, we identify how our
protocols are affected by collusion among users. Finally, we make concluding remarks in Section 8.

2 Model and Problem Statement

As mentioned in the Introduction, each user in the network must know some initial secrets (keys). These
secrets will enable the user to obtain privacy and authentication when it communicates with other users.
In this section, we identify the precise requirements for the initial secret distribution.

We are interested in protocols where the secrets maintained by a user are independent, i.e., even if an
attacker knows a subset of the secrets that a user has, it should not be possible for the attacker to discover

2

the other secrets that user has. In other words, the knowledge of a subset of secrets does not assist the
attacker in identifying the remaining secrets through cryptanalytic attacks. Thus, even if two users use
a set of secrets to ensure security and the attacker is aware of all but one of those secrets, the attacker
cannot compromise that communication.

Furthermore, to compute the space requirement for secrets, we count all secrets that are need to be
stored by the user. To illustrate this issue, consider the case where a small number, say x, of secrets are
used initially to generate a large number, say y, of new secrets by some mathematical manipulation (e.g.,
using those in evaluating certain polynomials) of the original secrets. In such a case, if these y secrets are
stored by the user then the space requirement for this case is y. However, if these secrets are computed
on-the-fly then the space requirement is x.

Now, we consider different approaches that may be considered in static networks and argue that these
solutions are not suitable for ad-hoc networks and sensor networks. One possible approach for obtaining
privacy is to use certificates [10–12] and initially provide each user with a certificate signed by a trusted
authority (respectively, a group of trusted authorities). Thus, when two users communicate, they can
use these certificates to authenticate each other. However, as discussed in the Introduction, this solution
requires high computing power. The drawback of this solution suggests that we should use shared secrets
instead of certificates. We consider two simple protocols that use such shared secrets: single secret
protocol and full secret protocol.

Single secret protocol. The simplest protocol that ensures that the sender and the receiver share
at least one secret is to establish a single shared secret that all legitimate users in the network know.
It follows that intruders outside the network cannot learn about the communication between legitimate
users. While this approach is currently used in existing sensor networks [13], it is clear that in this
protocol, the compromise of one user compromises the security for all. Also, the single secret protocol
does not provide any security for multi-hop communication. Specifically, if a user j sends a message
to user k via l then j cannot prevent l from learning the contents of that message. Moreover, this
protocol cannot be used for providing authentication; in this protocol, the user only knows that it is
communicating with some legitimate user.

Full secret protocol. Another solution for sharing secrets between a sender and a receiver is to
establish a separate shared secret between every pair of users. Although, in this protocol, the compromise
of one user does not affect others and intermediate users cannot compromise privacy/authentication while
relaying messages, each user needs to maintain n−1 secrets where n is the number of users in the network.
In this protocol, if communication between two users is overheard by a third user then the probability
of privacy compromise is 0. Thus, when j wants to send a message to k via a user l, l cannot learn the
contents of that message. However, this solution becomes infeasible when when the number of users is
large and memory associated with each user is low.

Clearly, if we require that the secret shared between two users, say j and k, is not known to any other
user in the network, then each user must maintain n−1 secrets where n is the number of users. To reduce
the number of secrets, we allow j and k to share a collection of secrets, and require that no other user in
the network knows all the secrets in that collection. Clearly, in this situation, it would be possible for j

and k to use a combination of these secrets (e.g., by xor-ing these secrets, or by applying some one way
hash function to the collection of shared secrets) to ensure privacy and authentication. Thus, we define
the problem for guaranteed security as follows:

Problem for guaranteed security. Design a secret distribution protocol such that given any two
users j and k, they share a collection of secrets such that no other user in the network knows all the
secrets in that collection.

3

Notation. We use the phrase ‘A protocol solves the problem of guaranteed security’ if it solves the
above problem.

Also, as discussed in the introduction, it may be necessary to provide only probabilistic guarantees about
privacy/authentication when the number of keys required to solve the problem of guaranteed security is
more than what the users can maintain.

In the context of probabilistic communication, we consider the case where two users, say j and k, are
communicating and one other user, say l, is trying to compromise their communication. Hence, we define
the problem of probabilistic security as follows:

Problem for probabilistic security. Design a secret distribution protocol such that given three
randomly selected users, j, k and l, the probability that there is a secret (respectively, a collection of
secrets) that both j and k know but l does not know is proportional to the number of initial secrets that
j and k have.

Notation. We use the phrase ‘A protocol solves the problem of probabilistic security’ if it solves the
above problem.

Remark. The problem of probabilistic security could also be posed in the context of two or more
attackers working independently (or, working in collusion). While the solutions presented in this paper
could be easily evaluated to identify the probability of compromise in such a generalized version, these
extensions are outside the scope of the paper.

Intruder/Attacker Model. We assume the standard node-compromise attacker model (e.g., [6,7,9,
14–16]). If a user has been compromised by an attacker then it can utilize all the secrets that the user
had. It can do so either passively, i.e., by just listening to messages and attempting to decrypt them if
possible. Or, it can do so actively, for example, it can attempt to impersonate another user.

We make no assumptions about mobility in the network. Thus, the users may be mobile or static. We
only assume that an orthogonal approach is used to route messages (even in the presence of mobility) and
to deal with denial of service attacks. In other words, we only assume that any message sent by legitimate
users is delivered (even if users are mobile or the system is subject to a denial of service attack). The
approaches used for routing or for dealing with denial of service attacks are outside the scope of this
paper.

Initially, we assume that the intruders do not collude. Thus, an intruder is a single non-colluding device
that does not share its secrets with any other user. We address the issue of collusions in Section 7.
When such collusion is permitted, the colluding users can pool together their secrets in order to break
communication security.

3 Guaranteed Security Protocols

In this section, we present the grid protocol that extends the solution in [16] and solves the problem of
guaranteed security (privacy and authentication). We first present the single grid protocol in Section 3.1.
Then, we show how to reduce the number of secrets maintained by a user further while ensuring that the
probability of security compromise remains 0. Subsequently, in Section 4, we show that the number of
secrets maintained in these protocols are within a constant factor of the optimal.

4

3.1 Single Grid Protocol

Secret distribution protocol. In this protocol, each user has two types of secrets: direct secrets and
grid secrets: A direct secret is shared between exactly two users and each grid secret is shared among
multiple users. As the name suggests, the grid secrets are arranged in a 2-dimensional (2-D) grid.

For example, consider the case where we have 16 users u〈i,j〉, 0 < i, j < 4 (cf. Figure 1). Regarding grid
secrets, we also maintain 16 secrets k〈i,j〉, 0 < i, j < 4. The users and the grid secrets are arranged in a
4x4 grid. Thus, location 〈i, j〉, 0 < i, j < 4, is associated with user u〈i,j〉 and grid secret k〈i,j〉. Each user
gets the grid secrets associated with the nodes in its row and in its column. Thus, in Figure 1, user u〈2,3〉
gets the secrets k〈1,3〉, k〈2,3〉, k〈3,3〉, k〈4,3〉, k〈2,1〉, k〈2,2〉, and k〈2,4〉.

Each user maintains direct secrets with users in its row and in its column. Thus, in Figure 1, u〈2,3〉
maintains a separate direct secret with u〈1,3〉, u〈3,3〉, u〈4,3〉, u〈2,1〉, u〈2,2〉, and u〈2,4〉. (The direct secrets are
not shown in the figure.)

Note that a user is aware of its own location in the grid. However, it does not maintain the information
about grid locations of other users. Whenever, it needs to communicate with another user, it reveals its
grid location (in plain text) and also obtains the grid location of its communicating partner. Based on
these grid locations, they determine the secret that should be used to ensure that privacy and authenti-
cation are maintained. While an attacker may lie about its location in the grid, as we show in Theorem
3.1, it cannot impersonate another user.

3, 4

4, 4

2, 3 2, 4

1, 1 1, 2 1, 3 1, 4

Figure 1: Single grid protocol: A node marked 〈j, k〉 is associated with user u〈j,k〉 and grid secret k〈j,k〉

Secret selection protocol. When user A wants to communicate with user B and A is not aware of
the grid location of B, A sends a request to B that contains its own grid location. Let this location be
〈j1, k1〉. Upon reception of this request message, B also communicates its own grid location to A. Note
that this communication is done in plain text and, hence, an attacker listening to this communication
can learn its contents. However, this is permissible because our protocol does not assume that the grid
locations are secret, i.e., it is provides authentication and privacy even if the attacker knows the grid
location of all users.

Now, consider the case where A wants to send message m to B after it has learnt the grid location of B.
Let the locations of A and B be 〈j1, k1〉 and 〈j2, k2〉 respectively. In this case, A encrypts m using the
following secret selection protocol and sends it along with its own grid location (in plain text).

If (j1 6=j2 ∧ k1 6=k2) // Users are neither in same row nor in same column
Use the grid secrets k〈j1,k2〉 and k〈j2,k1〉

Else // Users are in the same row or column
Use the direct secret between u〈j1,k1〉 and u〈j2,k2〉

As discussed in Section 2, if multiple secrets are selected by the communicating users then a combination
of those secrets (using primitives such as xor or by applying a hash function such as MD5). Also, note

5

that the above protocol only focuses on what secrets the users should use. It does not address replay
attacks. In other words, an attacker may be able to replay messages that were sent earlier. Several
approaches, e.g., nonces and timestamps, have been designed for dealing with replay attacks [4,17]. Any
of these approaches could be used in this context.

Theorem 3.1 The single grid protocol solves the problem of guaranteed security.

Proof. Consider the case where two users, say u〈j1,k1〉 and u〈j2,k2〉
If u〈j1,k1〉 and u〈j2,k2〉 are in the same row (respectively, same column), they use the direct secret between
them. By definition, no other user has this secret. If u〈j1,k1〉 and u〈j2,k2〉 are not in the same row or same
column, they use the grid secrets k〈j1,k2〉 and k〈j2,k1〉. No other user in the network knows both these
secrets.

Now, if the user u〈j1,k1〉 uses the above selected secret(s), to communicate with u〈j2,k2〉, no other user can
decrypt that communication. Thus, privacy is guaranteed. Also, when u〈j2,k2〉 receives this message, it
can be sure that no user other than u〈j1,k1〉 generated that message. Thus, authentication is guaranteed.
Note that the properties of privacy and authentication are satisfied even if users are communicating on
a multi-hop path.

Theorem 3.2 In the single grid protocol, each user maintains 2
√

n− 1 grid secrets and 2(
√

n−1) direct
secrets.

3.2 Discussion about Grid Protocol

In this section, we discuss some of the questions raised by our probabilistic protocols and briefly discuss
some of its extensions. The grid protocol focuses on what secrets a user should have instead of how it gets
those secrets. The way in which a user gets its secrets could depend upon the application at hand. For
example, in case of sensor networks, the initial secrets could be provided during the initial programming
of those sensors, an operation that is typically done in a secure setting. Another approach in this context
is to have a trusted authority that is aware of all the secrets. In this approach, a joining user receives
its secrets from this trusted authority by a secure channel. One way to achieve such secure channel is
to require each user to share a secret with the trusted authority. Alternatively, users could be provided
with a public key of the trusted authority. Note that although the use of this public key is expensive
(100-1000 times the encryption cost compared with symmetric keys) and undesirable, this design would
be acceptable since the public keys are (very) rarely used. In this approach, the trusted authority plays
no role when two users need to communicate. Rather, it simply allows a user to obtain (typically in an
offline setting) the secrets that it would need for communicating with other users.

Another question in this context is dynamic addition of users in an ad-hoc network. We suggest that a
larger grid be used to accommodate a potential increase in the number of users. In such a larger grid,
each node would be associated with a secret but only a subset of nodes will be associated with a user.
Thus, some users may maintain some secrets that are not useful in communicating with existing users.
However, when new users are added to the network, those secrets would be used. In such an approach,
a new user would be assigned an unused location in the grid, and it would get the necessary secrets
accordingly. Once again, as discussed above, the approach in which a new user obtains these secrets is
dependent on the application at hand.

An extension of this protocol would be to allow the grid to grow dynamically. In this case, after a grid
is expanded, say by adding a row or column, the existing users would need additional secrets associated
with new nodes in its row/column. One approach to provide such secrets is to, intuitively, assign the
trusted authority a grid location, say 〈x, y〉. Thus, although the trusted authority has all secrets used by

6

all users, it behaves as a user located at 〈x, y〉 when providing new secrets to existing users. Now, the
trusted authority can use the secrets as prescribed by the grid protocol to communicate new secrets to
existing users. Hence, the trusted authority can guarantee that the new secrets are received only by users
that are authorized to have them. Furthermore, as discussed above, application dependent approaches
may be used in this context.

As mentioned in Section 2, the grid protocol provides guaranteed security in the absence of colluding
users. While we identify the collusion resistance of this protocol in Section 7, we would also like to note
that the approach in [16] for maintaining multiple grids in such a way that no two users are in the same
row/column in more than one grid could be used to further provide collusion resistance. Finally, the
problem considered in this paper, the problem of instantiating secrets, is orthogonal to the problem of
maintaining secrets [18]. In the problem of maintaining secrets, a user changes its shared secrets to thwart
an attacker that uses cryptanalytic techniques. While the problem of secret maintenance is outside the
scope of the paper, we note that approaches discussed above for distributing the initial secrets could also
be tailored to change the grid secrets used by different users.

3.3 Hierarchical Grid Protocol

Observe that in the single grid protocol, if two users are in the same row (respectively, column), they
maintain a direct secret. This direct secret is known to exactly two users. In other words, for each row
(respectively, column), full secret protocol is used. Thus, we can recursively apply the single grid protocol
to reduce the number of such secrets without compromising security. Let m denote the number of users
in a row. In the full secret protocol with m users, the number of secrets is m − 1. By contrast, in the
grid protocol with m users, the number of secrets is 4

√
m − 3. Hence, if m − 1 is larger than 4

√
m − 3,

it would be possible to reduce the number of secrets further.

To illustrate this approach, consider the 16x16 grid shown in Figure 2 (a). The users in topmost row
are numbered as 1, 2, ...16, and the users in rightmost column are numbered 16, 32, ..., 256. Based on the
single grid protocol, when users 1 and 48 communicate, they use grid secrets at locations marked with
an arrow in Figure 2 (a). However, when users 1 and 7 communicate they use the direct secret between
them. Instead of maintaining these direct secrets, we rearrange the users in each row and column into a
grid. For example, consider Figure 2 (b) and (c), where we have arranged the topmost row and rightmost
column into a grid. Once again, we use the grid protocol for these smaller grids and associate direct
secrets and grid secrets with these nodes. Thus, if two nodes that are in the same row in the original grid
but are on different row and different column on the subgrid then they can use the grid secrets associated
with the subgrid. Thus, when users 1 and 7 communicate, they use the grid secrets marked with an
arrow in Figure 2 (b). Moreover, when users 1 and 2 communicate, they use the direct secret between
them in Figure 2 (b). As we can see, when the number of users in a row is large enough such rearranging
will reduce the number of secrets further. Therefore, we can continue this process further until the grid
is small enough so that a row cannot be further arranged into a grid. With the above approach, the
number of secrets that each user will maintain is approximately equal to numsecrets (we have ignored
the -1 factor in this calculation), where

numsecrets = 2
√

n + 4(
√√

n) + 8(

√

√√
n) + ...

= (2 + ε)
√

n, where 0 ≤ ε ≤ 2

Theorem 3.3 The hierarchical grid protocol solves the problem of guaranteed security.

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

32

48

64

80

96

112

128

144

160

176
192

208

224

240

256 13 14 15 16

9 10 11 12

5 6 7 8

1 2 3 4 16 32 48 64

128

192

256

(a) (b) (c)

Figure 2: Hierarchical Grid Protocol. Arrows in (a) denote the secrets used by 1 and 48, and arrows in
(b) denote the secrets used by 1 and 7.

4 Lower Bound for the Problem of Instantiating Security

In this section, we show that the number of secrets maintained by the single grid protocol (respectively,
hierarchical grid protocol) is within a constant factor of the optimal. To precisely define this lower bound,
we consider the following definitions.

Definition (secretsu): secretsu denotes the secrets that user u has.

Definition (ms): ms = max(secretsu)

The goal of the lower bound result is to show that in any protocol that solves the problem of guaranteed
security, the value of ms in that protocol is at least

√
n. Note that the result allows the possibility that

some users maintain a small number of secrets that is considerably less than
√

n. However, some users
must maintain at least

√
n secrets.

To show this result, similar to the definitions of secretsu and ms, we define usersk, mu for each secret
as follows.

Definition (usersk): usersk denotes the number of users that have secret k.

Definition (mu): mu = max(usersk)

Now, we show that if a protocol solves the problem of guaranteed security then mu ≤ ms.

Theorem 4.1. If a protocol solves the problem of guaranteed security between n, n > 2, users then
mu ≤ ms.

Proof. We consider three cases depending upon the value of mu.

• mu = 1: In this case, given any two users they have no common secret. Hence, the problem of
guaranteed security cannot be solved.

• mu = 2: In this case, given any two users they must share a unique secret that is known to only
those two users. Hence, the only feasible protocol is the full secret protocol. For the full secret

8

protocol ms = n − 1. Moreover, since n > 2, the above theorem follows.

• mu > 2: Now, consider a secret, say s, that is shared by mu number of users. Let u1, u2, ..umu

denote the users that share secret s. Now, we show that user u1 must maintain at least mu secrets
and, hence, ms ≥ mu.

To show this, we first observe that mu ≥ 3. Hence, s cannot be used alone when u1 and u2

communicate. In other words, if u1 and u2 communicate then they must use at least one additional
secret (with/without combining it with s). In other words, to facilitate privacy/authentication
between u1 and u2, u1 must maintain at least one extra secret.

Continuing with this scenario, consider the communication between u1 and u3. Based on the above
discussion, to facilitate privacy/authentication between u1 and u3, u1 must maintain an additional
secret. Moreover, this secret cannot be the same as that shared with u2; otherwise, u2 can decrypt
communication between u1 and u3.

Based on the above discussion, it follows that for each user u2, ..umu, u1 must maintain an additional
secret. Combining it with the secret s, we observe that the secrets maintained by u1 is at least m.
Thus, ms ≥ mu.

Now, we prove the lower bound on the maximum number of secrets maintained by a user.

Theorem 4.2. If a protocol solves the problem of guaranteed security between n, n > 2, users then
ms ≥ √

n.

Proof. Note that ms denotes the maximum number of secrets that any user maintains. Now, let j be
a user that maintains ms (i.e., the maximum number) secrets. Based on the requirement of instantiating
secrets, between every pair of users, there must be at least one shared secret. Based on Theorem 4.1,
each secret is maintained by at most ms users. Thus, j can share secret with at most ms2 users. Since
ms <

√
n, j can share a secret with at most (

√
n−1)2 users. Since (

√
n−1)2 < n, this is a contradiction.

Thus, the maximum number of secrets maintained by a user is at least
√

n.

Theorem 4.3 The number of secrets maintained in the single grid protocol (respectively, hierarchical
grid protocol) is within a constant factor of the optimal.

Remark. Note that as discussed in Section 2, if two users share only a single secret then they would
need n − 1 secrets. Hence, to reduce the number of secrets, most users must share at least 2 secrets.
Using this observation, it is possible to extend the proof of Theorem 4.2 to show that some users must
maintain at least

√
2n secrets.

5 Protocols for Probabilistic Security

Based on the lower bound identified in Section 4, if users cannot maintain O(
√

n) secrets, then privacy
and authentication cannot be guaranteed. To deal with this negative result, we propose solutions for
probabilistic security where the probability of privacy compromise is inversely proportional to the num-
ber of secrets that users maintain. Before we discuss these protocols, we first introduce the notion of
effectiveness for a secret distribution protocol.

Definition (Effectiveness). We say that a secret distribution protocol is 〈s, p〉 effective if the
maximum number of secrets that any user has is s and given three randomly selected users, j, k and l,
the expected probability that l knows the secret (respectively, all the secrets) used by j and k is at most
p.

9

Definition (Storage dominate). Given two secret distribution protocols, pr1 and pr2, with effec-
tiveness 〈spr1

, ppr1
〉 and 〈spr2

, ppr2
〉 respectively, we say that pr1 storage dominates pr2 if spr1

≤ spr2
.

Definition (Security dominate). Given two secret distribution protocols, pr1 and pr2, with effec-
tiveness 〈spr1

, ppr1
〉 and 〈spr2

, ppr2
〉 respectively, we say that pr1 security dominates pr2 if ppr1

≤ ppr2
.

Definition (Dominate). Given two secret distribution protocols, pr1 and pr2, with effectiveness
〈spr1

, ppr1
〉 and 〈spr2

, ppr2
〉 respectively, we say that pr1 dominates pr2 if spr1

≤ spr2
and ppr1

≤ ppr2
.

Observation 5.1

• The single secret protocol is 〈1, 1〉 effective.

• The full secret protocol is 〈n−1, 0〉 effective.

• The single secret protocol storage dominates the full secret protocol.

• The full secret protocol security dominates the single secret protocol.

• The single grid protocol is 〈4√n − 3, 0〉 effective.

• The single grid protocol (respectively, hierarchical grid protocol) dominates the full secret protocol.

Thus, the single secret protocol and the full secret protocol (respectively, single/hierarchical grid protocol)
are two extremes for security distribution protocols. In this section, we focus on identifying protocols
that are 〈x, y〉 effective where 1 < x < O(

√
n) and 0 ≤ y < 1. Moreover, we focus on security protocols

where the level of security is adaptive, i.e., if the number of secrets that each user gets is increased then
the probability of a compromise is reduced. We present two such protocols in Sections 5.1 and 5.2. In
both these protocols, we focus on the issue of privacy. We show how these protocols can resist identify
attacks in Section 5.4.

5.1 Tree Protocol

In this section, we present the first probabilistic protocol, the tree protocol, for instantiating security.
First, in Section 5.1.1, we present the version of the tree protocol where only one tree is used. Then, in
Section 5.1.2, we present the version where multiple trees are used.

For each of these versions, we first identify the secret distribution protocol that determines the secrets
that each user should get. Then, we present the secret selection protocol; when two users need to
communicate, they use this protocol to determine a shared secret that they should use. Subsequently,
we compute the probability of compromise.

5.1.1 Single Tree Protocol

Secret distribution protocol. We organize the secrets in a tree (cf. Figure 3). Each non-leaf node is
associated with a secret and each leaf is associated with a user. Each user is assigned an ID that identifies
its location in the tree. Each user is provided the secrets along the path towards the root. Thus, user u1

has the secrets, k1, k2 and k4.

Secret selection protocol. When two users, say, j and k, want to communicate, similar to the grid
protocol, they first exchange their identities. Subsequently, they identify their least common ancestor.
Based on the secret distribution protocol, the shared secret associated with this ancestor will be available

10

u5 u7

Level 1

Level 2

Level 3

4

k1

k5 k6

k2 k3

k4 k7

u8u6
u1 u2 u3 u

Figure 3: Tree Protocol

to both j and k. Hence, the secret associated with the ancestor will be used for communication between
j and k.

For example, if users u1 and u2 want to communicate then they will use k4 whereas if users u1 and u5

want to communicate then they will use k1.

Computing the probability of security compromise. Let l be an intruder that can observe the
communication between j and k. We identify the probability that l is aware of the secret that j and k

use. During this analysis, let the degree of the secret-tree be d.

Now, we consider different cases based on the shared secret that j and k use during communication.
First, we consider the probability that j and k use the secret at the root (level 1). Such a situation arises
if k is not a descendant of the level-2-ancestor of j. Thus, the probability of this case is d−1

d
. And, in

this case, the probability that l is aware of the secret that j and k use is 1; all users in the secret-tree
have the secret associated with the root.

Next, we consider the probability that j and k use the secret at level 2 in the tree. Such a situation arises
if k is a descendant of the level-2-ancestor of j and k is not a descendant of the level-3-ancestor of j.
Thus, the probability of this case is 1

d
∗ d−1

d
. Moreover, l is aware of the shared secret between j and k

iff l is a descendant of the level-2-ancestor of j. Thus, the probability of this case is 1
d
.

Continuing thus, the probability, pcompromise, that l is aware of the shared secret used by j and k is:

pcompromise = d−1
d

.1(Σh
j=0(

1
d
)2j)

< d−1
d

.1(Σ∞
j=0(

1
d
)2j)

= d−1
d

1
1− 1

d2

= d
d+1

Theorem 5.2 The single tree protocol is 〈logd(n), d
d+1〉 effective.

From Theorem 5.2, it follows that as the degree, d, increases, the level of security decreases. Moreover,
as d increases, the number of secrets maintained by a user decreases. Thus, the tree protocol provides
the tradeoff between number of secrets maintained by users and the level of security provided to them.

5.1.2 Multiple Tree Protocol

In the single tree protocol, the probability of security compromise is minimized when d=2. With d=2,
when j and k want to communicate with each other, there is a 2

3 probability that a third user, l, knows
the secret used by j and k. We can reduce this probability further by using multiple secret-trees. We
discuss the secret distribution and secret selection protocol with such multiple trees, next.

11

Secret distribution protocol. In this protocol, the secrets are arranged in multiple trees. Similar to
the single tree protocol, in this protocol, each internal node in each tree is associated with a secret and
each leaf is associated with a user. Each tree includes all users. For each tree, the user gets the secrets
associated with its ancestors in that tree.

Secret selection protocol. For each secret-tree, j and k identify the secret associated with their least
common ancestors. Then, they use the combination of all these secrets (e.g., by xor-ing these secrets or
by passing those secrets through a one way hash function [19]) during communication. It follows that l

can learn the communication between j and k iff l knows all these secrets.

Clearly, if we use two trees where the position of all users is identical and if l knows the secret (used by
j and k) in the first tree then, by definition, l will know the secret in the second tree. Hence, when we
use multiple trees to reduce the probability of compromise the probability that l knows the secret in one
secret-tree should be independent of the probability that l knows the secret in another tree. This can be
achieved if there is no correlation between the location of a user across two trees.

Given K secret-trees, each with degree d, the probability that l knows secrets from all the trees is (d
d+1)K .

Thus, we have

Theorem 5.3 The multiple tree protocol with K trees is 〈Klogd(n), (d
d+1)K)〉 effective.

From Theorem 5.3, it follows that the number of secrets maintained by the tree protocol is O(log n).
Moreover, as the number of secrets maintained increases, so does the level of security. Thus, the tree
protocol provides the tradeoff between number of secrets maintained by users and the level of security
provided to them. In Section 6, we compare this protocol to the grid protocol.

Remark. Note that the above result is applicable for the case where K << n. If the number of trees
is close to n then the lack of correlation is not possible. Moreover, if the number of trees is close to the
number of users then the users would need to maintain a large number of secrets.

As an example, consider the case where we have 210 users and 10 secret-trees of degree 2 are maintained.
In each tree, a user maintains 10 secrets and the total number of secrets that a user maintains is 100. In
this case, the probability of a compromise is (2

3)10 = 1.73%. By contrast, if we maintain a separate secret
between every pair users then each user will need to maintain 210−1 secrets. Multiple tree protocol is
even more effective when the number of users is high. For example, if there are 220 users and we maintain
50 secret-trees then the probability of a compromise is 1.56∗10−9 when users maintain only 1000 secrets.
By contrast, a user would need over a million secrets if we were to maintain a separate secret between
every pair of users.

Users with different capabilities. If the users in the network have different capabilities then for
that case we can extend the multiple tree protocol. Towards this end, we proceed as follows: Based on
the maximum capability of any user, we identify the number of trees used. A user with lower capability
will only maintain keys from the first few trees. Now, if j and k communicate and j has lower capabilities
than k then they will use only secrets from those trees for which j has maintained the secrets. Thus, when
two users with different capabilities communicate, they can obtain a level of security that is proportional
to the minimum of their capabilities.

5.2 Complementary Tree Protocol

In this section, we present the second probabilistic protocol, the complementary tree protocol. Similar
to the tree protocol in Section 5.1, this protocol arranges secrets in a tree (respectively, multiple trees).
However, the secret distribution protocol and secret selection protocol are different. Once again, as in
Section 5.1, we first present the single complementary tree protocol and multiple complementary tree

12

protocol.

5.2.1 Single Complementary Tree Protocol

Secret distribution protocol. Similar to the tree protocol, we organize the secrets in the tree of
degree d. In this protocol, we require that d ≥ 3 (cf. Figure 4). All nodes in the tree except the root are
associated with a secret. Each leaf of the tree is associated with a user. (Note that a leaf is associated
with a user as well as a secret.)

The secret distribution is as follows: For each level (except level 1), the user gets secrets associated with
the siblings of its ancestors (including itself). Thus, user u1 gets secrets k2, k3 (level 2), k5, k6 (level 3),
k14 and k15 (level 4). A user does not get the secrets associated with its ancestors.

u
25k

9u
21k

8u
20k

7u
19k

3u
15k

2u
14k

1 13

k

15u
27k

14u
26k

u

8k7k6k5k4k

2k

k

13

3k1k

12k11k10k9

Figure 4: Complementary Tree Protocol

Secret selection protocol. When two users, say j and k, want to communicate, they first identify
their least common ancestor. Let z be the least common ancestor of j and k. Let x denote the child
of z that is an ancestor of j. Likewise, let y denote the child of z that is an ancestor of k. Now, to
communicate, j and k use the secrets associated with all children of z except x and y.

For example, if u1 and u2 want to communicate, they use the secret k15. If users u1 and u9 want to
communicate then they will use the secret k5. And, if u1 and u15 want to communicate then they will
use the secret k3.

Computing the probability of security compromise. Let l be the intruder that can observe
the communication between j and k. We, now, identify the probability that l is aware of the secret(s)
used by j and k. Now, consider different cases based on the shared secrets that j and k use during
communication. Since no secrets are associated with the root, first consider the case where j and k use
the secret(s) at level 2. Such a situation occurs if k is not a descendant of the level-2-ancestor of j. Thus,
the probability of this case is d−1

d
. And, in this case, the probability that l is aware of all the secrets is 2

d
;

l knows all the secrets used by j and k iff l is a descendant of the level-2-ancestor of j or l is a descendant
of the level-2-ancestor of k.

Next, we consider the probability that j and k use the secret at level 3 in the tree. Such a situation
arises if k is a descendent of the level-2-ancestor of j and k is not a descendent of the level-3-ancestor
of j. Thus, the probability of this case is 1

d
∗ d−1

d
. Moreover, l is aware of the shared secret(s) between

j and k iff l is a descendant of the level-3-ancestor of j or l is a descendant of the level-3-ancestor of k.
Thus, the probability of this case is 2

d
∗ 1

d
.

Continuing thus, the probability, pcompromise, that l is aware of the secret(s) used by j and k is

pcompromise = d−1
d

.2
d
(Σh

j=0(
1
d
)2j)

13

< d−1
d

.2
d
(Σ∞

j=0(
1
d
)2j)

= d−1
d

2
d

1
1− 1

d2

= 2
d+1

Theorem 5.4 The single complementary tree protocol is 〈(d−1)logd(n), 2
d+1〉 effective.

5.2.2 Multiple Complementary Tree Protocol

It is possible to reduce the probability of compromise in the complementary tree protocol even further
if we maintain multiple trees. More specifically, as in Section 5.1.2, if we maintain K trees where there
is no correlation between user locations in different trees, the probability of security compromise will be
((2

d+1)K). Thus, we have

Theorem 5.5. The multiple complementary tree protocol with K trees is 〈K(d−1)logd(n), (2
d+1)K)〉

effective.

Similar to the tree protocol, from Theorem 5.5, it follows that the number of secrets maintained by the
complementary tree protocol is O(log n). Moreover, as the number of secrets maintained increases, so
does the level of security. Thus, the complementary tree protocol also provides the tradeoff between
number of secrets maintained by users and the level of security provided to them.

From the above discussion, it follows that the higher the value of d, the lower the probability of compro-
mise. However, when two nodes need to communicate, they need to use a combination of d−2 secrets
per tree. This suggests that the value of d should be small. In fact, it is desirable to let d be 3 and
use multiple trees. To see this, observe that if we maintain one tree with d=4, then the probability of
security compromise is 2

5 . By contrast, using two trees of degree 3, the probability of security compromise
is (2

4)2 (= 1
4). In both cases, the users need to use two secrets during communication. Thus, for the

multiple complementary tree protocol, the optimal value of d is 3. (We would like to note that we will
reach the same conclusion even if we consider the number of secrets that a user maintains instead of the
number of secrets it uses during communication.)

5.3 Discussion about Probabilistic Protocols

In this section, we discuss some of the questions raised by our probabilistic protocols and briefly discuss
some of their extensions. Once again, similar to grid protocol in Section 3, the tree protocol also focuses on
what secrets need to be distributed rather than how those secrets are distributed. Approaches discussed
in Section 3, providing the initial secrets during initial programming of sensor networks or providing the
initial secrets through the trusted authority, can be used to achieve the secret distribution.

We note that the distribution of keys in the above probabilistic protocols is based on the logical key
hierarchy [20] and complementary key hierarchy [21]. The protocols in [20, 21] focus on the problem of
maintaining security in a group communication. Hence, in these protocols, the group controller (trusted
authority) changes the secrets when the group membership changes so that a leaving (respectively, joining)
user cannot access the future (respectively, past) communication.

While the problem considered in this paper is different than the problem considered in [20,21], the results
from [20, 21] can be used in solve the problem of secret maintenance or secret revocation (e.g., [22–24]).
For example, if some user is compromised and, hence, needs to be removed so that it cannot communicate
with other users. In such a case, the trusted authority could use the protocol from [20, 21] to change

14

the secrets that the compromised user shared with others. Moreover, in this case, based on the results
in [20, 21], the number of encryptions/messages for performing such secret maintenance for a tree is
O(logn).

5.4 Resisting Identity Attacks

So far, in the probabilistic protocols, we have focused on the issue of privacy during communication.
Privacy deals with the case where two users need to communicate in such a way that no other user
can decrypt the communication between them. For this reason, while designing a solution for privacy,
one need not worry about the case where a user lies about its identity. In this section, we focus on
authentication which needs to deal with the case where a user lies about its identity. As discussed in
Section 3, the grid protocol already enables authentication. Hence, we focus on the probabilistic protocols
discussed above and the two protocols (single secret protocol and full secret protocol) discussed in Section
2. For each of these protocols, we focus on the issue of authentication, where one user can determine if
its communication partner is truly the one it claims to be. For this section, consider the case where user
j wants to validate the identity of the user who claims to be k.

We begin with the single secret protocol considered in Section 2. Since this protocol uses only one secret
that is shared between all legitimate users, j has no way to authenticate k. The single secret protocol
only allows j to conclude that the user it is communicating with is a legitimate user; j cannot verify
whether it is k or some other user.

The full secret protocol in Section 2 solves the problem of authentication. If some user l pretends to be
k then it will not be able to produce the secret shared between j and k. Hence, when j verifies that its
communication partner knows the secret shared between j and k, it can conclude that its communication
partner is k.

In the context of the tree protocol (respectively, complementary tree protocol), the user identity is
determined by its location in the tree (respectively, all trees). Hence, solving the problem of authentication
in the tree protocol is more complex. Specifically, an attacker, say l, can pretend that it is at such a
location that it must use the secret associated with the root while communicating with j. Hence, to
apply the tree protocol for authentication, we need to ensure that the location of l in one tree is related
to its location in another tree. Specifically, if there exists a function f such that given a location xk of k

in one tree, the location of xk in the next tree is f(xk) then even if l lies about its location in one tree, it
is constrained on the locations that it can use in the next tree. By choosing any function f that permutes
the given set of numbers in such a way that correlation between the level of the common ancestor between
xj and xk and the level of the common ancestor between f(xj) and f(xk) is small, we can use the tree
protocol for (probabilistic) authentication. Likewise, the complementary tree protocol can be used to
provide probabilistic authentication. While identifying such a function f for arbitrary networks remains
an open problem, we have found some simple functions that achieve the above property for a small set
of users. The problem of identifying such functions is outside the scope of this paper.

6 Comparison of Proposed Protocols

In this section, we compare the protocols presented in Sections 3 and 5. We first analytically compare
the tree protocol and the complementary tree protocol. Then, we compute the probability of security
compromise in these protocols for different values of n, the number of users in the network. Subsequently,
we compare these two protocols with the grid protocol. These results show that a reasonable level of
security can be obtained by maintaining a small percentage of secrets maintained by the (single) grid

15

protocol.

Since the number of secrets in the grid protocol are within a constant factor of the minimum number of
secrets that users need to maintain, it follows that the tree protocol and the complementary tree protocol
are especially useful to provide a reasonable level of security by maintaining a small number of secrets.
Finally, we compare the tree protocol and complementary tree protocol with the full secret protocol.

Analytical modeling of probabilistic protocols. Suppose that a user maintains m secrets in the
tree protocol. Thus, m

log2n
trees are maintained (For simplicity, we ignore the issue of partial trees). The

level of security with m secrets is (2
3)

(m
log2n

)

Recalling that the degree of the tree in the complementary tree protocol is 3, each user maintains 2 keys
per tree per level, and that the probability of compromise by using one tree is 1

2 , if each user maintains

m secrets then the probability of compromise is (1
2)

(m
2log3n

)

From the above analysis, in the tree protocol and the complementary tree protocol, the probability of
compromise is of the form aO(m), a < 1, where m is the number of secrets that a user maintains. In
terms of the probability of compromise, the complementary tree protocol is slightly better. In terms of
simplicity, however, the tree protocol is better than the complementary tree protocol.

Comparing the probability of compromise in the probabilistic protocols. Now, we compare
the probability of compromise for the tree protocol and the complementary tree protocol as we vary the
number of users and the number secrets that they maintain. During this comparison, we use the optimal
version of these protocols, i.e., we let the degree of the tree to be 2 in the tree protocol and let the degree
of the tree to be 3 in the complementary tree protocol.

Figure 5(a) shows the effect of the number of secrets on the probability of security compromise in the
tree protocol. As we can see, even if the number of users in the network is large, small number of secrets
suffice to ensure that the probability of compromise is small. For example, if we maintain 100 secrets with
each user in a network consisting of 64k users, the probability of compromise is less than 10%. Moreover,
maintaining additional 20 secrets reduces the probability to approximately 5%.

0.025
0.05

0.1

0.2

0.4

0.5

20 40 60 80 100 120

P
ro

ba
bi

lit
y

of
 C

om
pr

om
is

e

Number of Secrets Maintained by a User

(Tree Protocol)

256
1024
4096

16384
65536

262144
1048576
4194304

16777216

0
0.025
0.05

0.1

0.2

0.4

0.5

20 40 60 80 100 120

P
ro

ba
bi

lit
y

of
 C

om
pr

om
is

e

Number of Secrets Maintained by a User

(Complementary Tree Protocol)

81
729

6561
59049

531441
4782969

14348907

(a) (b)

Figure 5: Probability of security compromise vs. number of secrets maintained by a user. (Each plot
corresponds to the total users in the system, e.g., ‘256’ corresponds to a system where there are a total
of 256 users.)

Figure 5(b) shows the effect of the number of secrets on the probability of security compromise in the

16

complementary tree protocol. As we can see, even in this protocol, the probability of security compromise
decreases quickly with a small increase in the number of secrets that users maintains.

Figure 6 compares the tree protocol with the complementary tree protocol. As shown in this figure, for
the same number of secrets that a user maintains, the probability of compromise in the complementary
tree protocol is less than that in the tree protocol.

0
0.025

0.05

0.1

0.2

0.4

0.5

20 40 60 80 100 120

P
ro

ba
bi

lit
y

of
 C

om
pr

om
is

e

Number of Secrets Maintained by a User

(Comparison of Tree Protocol and Complementary Tree Protocol)

tree-100
compl tree-100

tree-10000
compl tree-10000

tree-1000000
compl tree-1000000

Figure 6: Comparison of Tree Protocol and Complementary Tree Protocol, (Each plot corresponds to the
total users in the system, e.g., ‘tree-100’ (respectively, ‘compl tree-100’) corresponds to a system where
tree protocol (respectively, complementary tree protocol) is used for a system of 100 users.)

Tradeoff between guaranteed security and probabilistic security. Figure 7 compares the
cost of deterministic security versus probabilistic security. More specifically, we ask the question: How
much security could be obtained by using the tree protocol (respectively, complementary tree protocol) if
we maintain only a certain percentage of secrets maintained by the grid protocol? Figure 7 (a) compares
the tree protocol and the grid protocol. Based on this graph, we observe that for a group of 10,000 users,
maintaining only 20% of the secrets is sufficient to ensure that the probability of security compromise is
approximately 6%. Figure 7(b) compares the complementary tree protocol and the grid protocol. From
this graph, we observe that for a group of 10,000 users, maintaining only 20% of the secrets is sufficient
to ensure that the probability of security compromise is approximately 3%. When the number of users
is large, the percentage of secrets required for the same level of security is further reduced. For example,
in the complementary tree protocol, for 100,000 users, maintaining only 10% of secrets is sufficient to
ensure that the probability of compromise is less than 2.5%.

Comparing the tree protocol and the complementary tree protocol with the full secret
protocol. The ability of the tree protocol and the complementary tree protocol to reduce the
probability of compromise becomes even more clear if we compare them to the full secret protocol.
Figure 8 compares these probabilistic protocols with the full secret protocol. As these graphs show,
maintaining only a small percent of secrets is sufficient to keep the level of security compromise low.
(Note that in these graphs, we began with 10% of the secrets maintained by the full secret protocol.
Then, we reduced this percentage to 0.1%.)

17

0
0.025
0.05

0.1

0.2

0.4

0.5

1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 C

om
pr

om
is

e

Number of Users

(Tree Protocol)

50
25
20
10
5

0
0.025
0.05

0.1

0.2

0.4

0.5

1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 C

om
pr

om
is

e

Number of Users

(Complementary Tree Protocol)

50
25
20
10
5

(a) (b)

Figure 7: Probability of compromise if we maintain a certain percentage of secrets used by the grid
protocol. (Each plot corresponds to the percentage of secrets maintained, e.g., ‘50’ corresponds to the
tree protocol (respectively, complementary tree protocol) that maintains 50% of the secrets maintained
by the grid protocol.)

7 Effect of Collusion

In our protocols for instantiating security, so far, we assumed that collusion does not occur, i.e., two
or more users do not collaborate (by sharing keys). We compute the effect of the collusion on our
grid protocol. Similar analysis can also be used to compute probability of security compromise in the
probabilistic protocols in the presence of collusion. We first consider the case where two users collude
and then consider a more general case where a collection of w users collude where w ≤ √

n.

Effect of collusion between 2 users. Consider an example where two users collude in the single
grid protocol. Note that a direct secret is shared between exactly two users. Hence, if a user leaks that
secret to a third user, only the users that shared that direct secret are affected. Hence, we only focus
on the issue where colluding users share the grid secrets. Without loss of generality, we can assume that
these users are located in grid locations 〈1, 1〉 and 〈2, 2〉 (cf. Figure 1).

For each user j, there are (
√

n − 1)2 users with whom j shares a grid secret. Thus, the number of pairs
〈j, k〉 that use a grid secret is n(

√
n − 1)2. Now, we identify the number of these pairs that colluding

users can affect.

Clearly, users locations 〈1, 1〉, 〈1, 2〉, 〈2, 1〉, and 〈2, 2〉 cannot communicate with any user securely; the
secrets they use are known to the colluding users. Thus, the number of affected pairs in this case is:
4(
√

n − 1)2.

For the remaining users in the first row, their communication is compromised when they communicate
with any user in the second row (except where direct secret is used). (For example, when user 〈1, 3〉
communicates with user 〈2, 4〉 communicate, the secrets they use are known to the colluding users.)
Since the same scenario applies to the users in the second row (respectively, first and second column),
the number of affected pairs in this case is: 4(

√
n − 1)(

√
n − 2)).

Finally, for all other users (i.e., except those in the first/second row/column), their communication is
affected only when they talk with users at locations 〈1, 1〉, 〈1, 2〉, 〈2, 1〉, and 〈2, 2〉. Hence, the number of
affected pairs in this case is 4(

√
n−2)2. Thus, the total affected pairs are 4(

√
n−1)2 + 4(

√
n−1)(

√
n−2))

18

0
0.025
0.05

0.1

0.2

0.4

0.5

1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 C

om
pr

om
is

e

Number of Users

(Tree Protocol)

10
5
1

0.5
0.1

0
0.025
0.05

0.1

0.2

0.4

0.5

1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

of
 C

om
pr

om
is

e

Number of Users

(Complementary Tree Protocol)

10
5
1

0.5
0.1

(a) (b)

Figure 8: Probability of compromise if we maintain a certain percentage of secrets used by the full secret
protocol. (Each plot corresponds to the percentage of secrets maintained, e.g., ‘10’ corresponds to the
tree protocol (respectively, complementary tree protocol) that maintains 10% of the secrets maintained
by the full secret protocol.)

+ 4(
√

n − 2)2. Thus, probability that pair is affected is 4((
√

n−1)2+(
√

n−1)(
√

n−2))+(
√

n−2)2)
n(

√
n−1)2

.

Effect of collusion among w users. We can also extend this result for the case where w users
collude, where w ≤ √

n. Without loss of generality, let these users be 〈1, 1〉, ...〈w,w〉.
In this case, the users 〈j, k〉 where j, k ≤ w cannot communicate securely with any user. Hence, the
number of affected pairs is: w2(

√
n−1)2. Likewise, the remaining users in the first k rows will be affected

if they communicate with other users in the first k rows (except where direct secret is used). Hence, the
affected pairs are 2w(w − 1)(

√
n − 1)(

√
n − w). Finally, for the remaining users, their communication is

affected only when they communicate with users 〈j, k〉, where j, k ≤ num. Hence, the number of pairs
affected is: w2(

√
n−w)2. Combining these numbers, the total number of affected pairs is: w2(

√
n−1)2 +

2w(w − 1)(
√

n − 1)(
√

n − w) + w2(
√

n − w)2. In other words, the probability that a pair is affected is
w2(

√
n−1)2 + 2w(w−1)(

√
n−1)(

√
n−w) + w2(

√
n−w)2(

√
n−2)2)

n(
√

n−1)2
.

Figure 9 shows the effect of the number of colluding users. As we can see, when the number of colluding
users is small, the probability of compromise is low.

8 Conclusion

In this paper, we presented three protocols for instantiating security in ad-hoc networks where each user
begins with a set of initial secrets. These protocols allow users to obtain privacy and authentication
while communicating with each other. Moreover, when two users communicate over a multi-hop path,
they can ensure that intermediate users can neither learn the contents of the transmitted messages nor
generate messages that incorrectly appear to originate from the sender.

First, we presented the grid protocol that ensured that solved the problem of guaranteed security, i.e., it
ensured that when two users, say j and k communicate, the set of secrets they use is not known to any
other user. This protocol maintained O(

√
n) secrets where n is the number of users in the network. We

also showed that the number of secrets maintained by the grid protocol is within a constant factor of
optimal (cf. Section 4).

19

0

0.2

0.4

0.6

0.8

1

100 1000 10000 100000

P
er

ce
nt

ag
e

of
 U

se
r

P
ai

rs
 A

ffe
ct

ed

Number of Total Users

Effect of Colluding Users

2 colluding users
5 colluding users

10 colluding users

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

of
 U

se
r

P
ai

rs
 A

ffe
ct

ed

Number of Colluding Users

Effect of Colluding Users

100 total users
400 total users
900 total users

1600 total users
2500 total users

10000 total users
40000 total users

(a) (b)

Figure 9: Effect of Colluding Users on Grid Protocol

Based on the optimality of the number of secrets maintained by the grid protocol, when the number
of users is large and users cannot maintain all these secrets, their only choice is to use to provide
probabilistic authentication and privacy. For these cases we presented two probabilistic protocols where
the probability of a security compromise is proportional to the secrets they can maintain. In these two
probabilistic protocols, the number of secrets maintained by a user is O(log n), where n is the number
of users. Moreover, as shown in Section 6, in these probabilistic protocols, maintaining a small number
of secrets ensured that the probability of security compromise is low.

Our probabilistic protocols can also be tailored to deal with the case where the users have different
capabilities. Thus, it is possible that each user maintains secrets that depend on its capability. When
two users communicate, their level of security will be decided by the user with lower capabilities.

The results in this paper also provide a tradeoffs encountered in ad hoc networks. Specifically, for
the case where the network requires guaranteed security, the grid protocol may be used. For the case
where processing power or memory may prevent users from maintaining the secrets required by the grid
protocol, they can use the tree protocol (respectively, complementary tree protocol). Moreover, if a subset
of users requires a higher level of security than others, they can choose to maintain secrets associated
with a larger number of trees. Thus, when these users communicate among themselves, the probability
of security compromise will be low. Finally, the tree protocol (respectively, complementary tree protocol)
can be combined with the grid protocol. In such a combination, we can partition the users in subgroups.
Each subgroup can implement the grid protocol. And, these grids would be used as leaves in the tree
protocol. With such an approach, it would be possible to ensure that communication within a subgroup
is always secure where the communication across subgroups is secure with some probability.

To improve the security further and to reduce the window of vulnerability, users should use their initial
secrets to establish a new disposable secret and use that new secret during further communication. With
such a change, security can be compromised only if the adversary can eavesdrop during the establishment
of the new secret. Thus, if an adversary moves into the talking range of two users that have established
their disposable secret then it would not be able to learn about the communication between them.

There is a small gap between the lower bound on the number of secrets (
√

2n) and the number of secrets
maintained (2

√
n + o(

√
n)) in the hierarchical tree protocol. The question of whether this gap can be

closed remains open.

20

References

[1] A. Perrig, R. Szewczyk, J. Tyger, V. Wen, and D. Culler. Spins: Security protocols for sensor
networks. Wireless Networks, 8:521–534, 2002.

[2] M. Tatebayashi, N. Matsuzaki, and D.B. Newman Jr. Key distribution protocol for digital mobile
communications systems. Advances in Cryptology, 1990.

[3] V. Varadharajan and Y. Mu. Design of secure end-to-end protocols for mobile systems. Wireless,
1996.

[4] R. Needham and M. Schroeder. Using encryption for authentication in large networks of computers.
Communications of ACM, 21:993–999, 1978.

[5] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. Tyger. Spins: Security protocols for sensor
networks. International Conference on Mobile Computing and Networks, pages 189–199, 2001.

[6] H. Chan, A. Perrig, and D. Song. Random key predistribution schemes for sensor networks. IEEE
Symposium on Security and Privacy, 2003.

[7] L. Eschenauer and V. Gilgor. A key management scheme for distributed sensor networks. ACM
Conference on Computer and Communications Security (CCS), pages 41–47, 2002.

[8] W. Du, J. Deng, Y. Han, and P. Varshney. A pairwise key pre-distribution scheme for wireless sensor
networks. ACM Conference on Computer and Communications Security (CCS), pages 42–51, 2003.

[9] D. Liu and P. Ning. Establishing pairwise keys in distributed sensor networks. ACM Conference on
Computer and Communications Security (CCS), pages 52–61, 2003.

[10] J. Kong, P. Zefros, H. Luo, S. Lu, and L. Zhang. Providing probust and ubiqutious security support
for mobile ad-hoc networks. IEEE International Conference on Network Protocols, 2001.

[11] J. Hubaux, L. Buttyan, and S. Capkun. The quest for security in mobile ad-hoc networks. ACM
Symposium on Mobile Ad Hoc Networking & Computing, 2001.

[12] L. Zhou and Z. Haas. Securing ad hoc networks. IEEE Network, 13(6), 1999.

[13] Chris Karlof, Naveen Sastry, and David Wagner. Tinysec: Link layer security for tiny devices.
Available at http://www.cs.berkeley.edu/~nks/tinysec/, 2003.

[14] R. Blom. Non-public key distribution. Advances in Cryptology: Crypto, pages 231–236, 1982.

[15] C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro, and M. Yung. Perfectly secure key
distribution for dynamic conferences. Advances in Cryptology, pages 344–355, 1992.

[16] Li Gong and David J. Wheeler. A matrix key-distribution scheme. Journal of Cryptology: the
journal of the International Association for Cryptologic Research, 2(1):51–59, 1990.

[17] J. Steiner, C. Neuman, and J. Schiller. Kerbores: An authentication service for open network
systems. Proceeds of Winter Technical Conference USENIX, pages 191–202, 1988.

[18] V. Naik, S. Bapat, A. Arora, , and M. Gouda. Whisper: Local secret maintenance in sensor networks.
Workshop on Principles of Dependable Systems, 2003.

21

[19] R. Rivest. The MD5 message-digest algorithm. RFC 1321, Internet Activities Board, 1992.

[20] Chung Kei Wong, Mohamed Gouda, and Simon S. Lam. Secure group communications using key
graphs. IEEE/ACM Transactions on Networking, 2000.

[21] S. S. Kulkarni and B. Bruhadeshwar. Adaptive rekeying for secure multicast. IEICE/IEEE Joint
Special Issue on Assurance Systems and Networks, Transactions on Communications, 2003.

[22] Jianying Zhou, Feng Bao, and Robert H. Deng. Validating digital signatures without ttp’s time-
stamping and certificate revocation. Information Security, 6th International Conference, pages 96–
110, 2003.

[23] Johannes Blomer and Alexander May. Key revocation with interval cover families. Selected Areas
in Cryptography, 2001.

[24] H. Krawczyk, M. Bellare, and R. Canetti. Hmac: Keyed-hashing for message authentication. RFC
2104, 1997.

22

