
Retransmission policies for multihomed transport protocols*

Armando L. Caro Jr. 1,a, Paul D. Amer b,*, Randall R. Stewart c

a Internetwork Research Department, BBN Technologies, 10 Moulton St, Cambridge, MA 02138, USA
b Protocol Engineering Lab, CIS Department, University of Delaware, Newark, DE 19716-2586, USA
c Internet Technologies Division, Cisco Systems, Suite 200, 4875 Forest Drive, Columbia, SC 29206

Received 8 March 2005; received in revised form 6 October 2005; accepted 7 October 2005

Available online 28 November 2005

Abstract

We evaluate three retransmission policies for transport protocols that support multihoming (e.g. SCTP). The policies dictate whether

retransmissions are sent to the same peer IP address as the original transmission, or sent to an alternate peer IP address. Each policy presents

tradeoffs based on the paths’ bandwidth, delay, loss rate, and IP destination reachability. We find that sending all retransmissions to an alternate

peer IP address is useful when the primary IP address becomes unreachable, but often degrades performance in non-failure scenarios. On the other

hand, sending all retransmissions to the same peer IP address as the original transmission reverses the tradeoffs. We balance the tradeoffs by

proposing a hybrid policy that sends fast retransmissions to the same peer IP address as the original transmission, and sends timeout

retransmissions to an alternate peer IP address. We show that even with extensions which we proposed to improve the policies’ performance, the

hybrid policy is the best performing policy in failure and non-failure scenarios.

q 2005 Elsevier B.V. All rights reserved.

Keywords: SCTP; Transport protocols; Multihoming; Failover; Failure detection; Retransmission policy
1. Introduction

A host is multihomed if it can be addressed by multiple IP

addresses, as is the case when the host has multiple network

interfaces. Multihoming can be expected to be the rule rather

than the exception in the near future as cheaper network

interfaces and Internet access motivate content providers to

have simultaneous connectivity through multiple ISPs, and

more home users install wired and wireless connections for
0140-3664/$ - see front matter q 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2005.10.017

* Disclaimer. The views and conclusions contained in this document are

those of the authors and should not be interpreted as representing the official

policies, either expressed or implied, of the Army Research Laboratory or the

US Government.
* Corresponding author. Tel.: C1 302 831 1944; fax: C1 302 831 8458.

E-mail addresses: acaro@bbn.com (A.L. Caro), amer@cis.udel.edu (P.D.

Amer), rrs@cisco.com (R.R. Stewart).
1 This research results from the author’s PhD dissertation, while with the

Protocol Engineering Lab, CIS Department, University of Delaware. Prepared

through collaborative participation in the Communications and Networks

Consortium sponsored by the US Army Research Laboratory under the

Collaborative Technology Alliance Program, Cooperative Agreement

DAAD19-01-2-0011. The US Government is authorized to reproduce and

distribute reprints for Government purposes notwithstanding any copyright

notation thereon. Supported in part by the University Research Program of

Cisco Systems, Inc.
added flexibility and fault tolerance. Furthermore, wireless

devices may be simultaneously connected through multiple

access technologies, such as wireless LANs (e.g. 802.11) and

cellular networks (e.g. GPRS, CDMA).

The current transport protocol workhorses, TCP and UDP,

do not support multihoming; TCP allows binding to only one

network address at each end of a connection. When TCP was

designed, network interfaces were expensive components, and

hence multihoming was beyond the ken of research.

Two recent transport layer protocols, the Stream Control

Transmission Protocol (SCTP) [23,9] and the Datagram

Congestion Control Protocol (DCCP) [18] support multi-

homing at the transport layer. The motivation for multihoming

in DCCP is mobility [17], while SCTP is driven by a broader

and more generic application base—fault tolerance. We use

SCTP in our experiments primarily because of its relative

maturity and our focus on fault tolerance, but we believe the

results and conclusions presented in this paper apply in general

to reliable SACK-based transport protocols that support

multihoming.

SCTP allows binding of one transport layer association

(SCTP’s term for a connection) to multiple IP addresses at each

end of the association. SCTP’s n to m binding allows a

multihomed sender with n interfaces to send to any of a

multihomed receiver’s m destination addresses. For example,

an SCTP multihomed association between hosts A and B in
Computer Communications 29 (2006) 1798–1810
www.elsevier.com/locate/comcom

http://www.elsevier.com/locate/comcom


Fig. 1. Example multihoming topology.

A.L. Caro et al. / Computer Communications 29 (2006) 1798–1810 1799
Fig. 1 could be bound to both IP addresses at each host:

({A1,A2}, {B1,B2}). Such an association allows data trans-

mission from host A to host B to be sent to either B1 or B2.

Currently, SCTP uses multihoming for fault tolerance

purposes only, and not for concurrent multipath transfer [14].

Each endpoint chooses a single peer IP address as the primary

destination address to transmit new data during normal

transmission. If the primary destination address becomes

unreachable, the SCTP sender detects the failure, and fails

over to using an alternate destination address without requiring

action by the user or application layer.

When data is lost, a sender uses an alternate destination

address for retransmissions. SCTP’s current retransmission

policy [23] states that “when its peer is multihomed, an

endpoint SHOULD try to retransmit [data] to an active

destination transport address that is different from the last

destination address to which the [data] was sent.” This policy,

which we refer to as AllRtxAlt (All Retransmissions to

Alternate), attempts to improve the chance of success by

sending all retransmissions to an alternate destination address

[22]. The underlying assumption is that loss indicates either

that the network path to the primary destination is congested, or

the primary destination is unreachable. Thus, retransmitting to

an alternate destination might avoid yet another loss of the

same data.

We show that this policy actually degrades performance in

many circumstances. We explore two alternative retransmis-

sion policies and find that the best policy, for both failure and

non-failure scenarios, is to send (a) fast retransmissions to the

primary destination, and (b) timeout retransmissions to an

alternate destination. We show that this hybrid policy performs

best when combined with two enhancements: our Multiple Fast

Retransmit algorithm, and either timestamps or our Heartbeat

After RTO mechanism. The Multiple Fast Retransmit

algorithm reduces the number of timeouts. Timestamps and

the Heartbeat After RTO mechanism both improve perform-

ance when timeouts are common by providing extra RTT

measurements and maintaining low RTO values.

This paper combines and extends results published by the

authors in three incremental conference publications [5–7],

thereby documenting the complete development of this

research. Section 2 demonstrates the problem with SCTPs

current retransmission policy (AllRtxAlt) by comparing it to an

alternative policy, AllRtxSame (All Retransmissions to Same).

Section 3 introduces and evaluates a third hybrid policy,

FrSameRtoAlt (Fast Retransmissions to Same, Timeouts to

Alternate), which attempts to balance the tradeoffs between
AllRtxAlt and AllRtxSame. Section 4 introduces and evaluates

three extensions to further improve the performance of the

three policies. Section 5 compares the policies’ performance

with their best extensions in non-failure scenarios, and Section

6 compares them in failure scenarios. Section 7 concludes the

paper.

2. AllRtxAlt’s problem

AllRtxAlt is the retransmission policy currently specified

for SCTP in RFC2960. This policy attempts to bypass transient

network congestion and path failures by sending all retransmis-

sions to an alternate destination. Intuitively, we would expect

that sending retransmissions to an alternate path would be

beneficial, particularly when the alternate path’s quality is

better (i.e. higher bandwidth, lower delay, and/or lower loss).

Similarly, when the alternate path’s quality is worse, we expect

sending retransmissions to the same destination as their

original transmission should provide better performance. To

test these hypotheses, we evaluate the performance of

AllRtxAlt and the AllRtxSame policy—send all retransmis-

sions to the same destination as their original transmission [6].

2.1. Analysis methodology

We evaluate the retransmission policies using University of

Delaware’s SCTP module [8] for the ns-2 network simulator

[3]. Fig. 2 illustrates the network topology simulated: a dual-

dumbbell topology whose core links have a bandwidth of

10 Mbps and a one-way propagation delay of 25 ms. Each

router, R, is attached to five edge nodes. One of these five nodes

is a dual-homed node for an SCTP endpoint, while the other

four are single-homed and introduce cross-traffic that creates

loss for the SCTP traffic.

The links to the dual-homed nodes have a bandwidth of

100 Mbps and a one-way propagation delay of 10 ms. The

single-homed nodes also have 100 Mbps links, but their

propagation delays are randomly chosen from a uniform

distribution between 5 and 20 ms. The end-to-end one-way

propagation delays range between 35 and 65 ms. These delays

roughly approximate reasonable Internet delays for distances

such as coast-to-coast of the continental US, and eastern US

to/from western Europe. Also, each link (both edge and core)

has a buffer size twice the link’s bandwidth-delay product.

Our configuration has two SCTP endpoints (sender A,

receiver B) on either side of the network, which are attached to

the dual-homed edge nodes. A has two paths, labeled primary



Fig. 2. Simulation network topology with cross-traffic, congestion-based loss, and no failures.

A.L. Caro et al. / Computer Communications 29 (2006) 1798–18101800
and alternate, to B. Each single-homed edge node has eight

traffic generators (labeled P1–P8), each introducing cross-

traffic based on a Pareto distribution. The cross-traffic packet

sizes are chosen to roughly resemble the distribution found on

the Internet: 50% are 44 bytes, 25% are 576 bytes, and 25% are

1500 bytes [1,10]. The aim is to simulate an SCTP data transfer

over a network with self-similar cross-traffic, which resembles

the observed nature of traffic on data networks [20].

We simulate a 4 MB file transfer with different network

conditions, controlled by varying the load introduced by cross-

traffic. All loss experienced is due to congestion at the routers;

no loss is due to bit errors. The aggregate levels of cross-traffic

on each path range from 5 to 11 Mbps. Although we

independently control the levels of cross-traffic on each of

the core links, the controls for the cross-traffic on each forward-

return path pair are set the same. Each simulation has three

parameters:

1 level of cross-traffic (in Mbps) on the primary path;

2 level of cross-traffic (in Mbps) on the alternate path;

3 AllRtxAlt vs AllRtxSame policy.
2.2. Results

We compare the transfer times using AllRtxAlt versus

AllRtxSame under various loss rates, with all else being equal

(bandwidth, delay, etc.). Since loss in our simulations only

occurs due to congestion, we do not set the loss rate. Instead,

we calculate the observed loss rate for a transfer after the

simulation has completed. The loss rate is calculated as the

number of SCTP packets dropped divided by the number of

SCTP packets transmitted.

We collected results for 0–10% loss on the primary and

alternate paths, but due to space constraints in this paper, we do

not include all results (more detailed results appear in [4]).
Fig. 3 presents the results for transfers with {3, 5, 8}% primary

path loss. The graphs compare the file transfer time using

AllRtxAlt versus AllRtxSame at various loss rates on the

alternate path. Without failures, AllRtxSame never uses the

alternate path, and therefore is unaffected by the alternate

path’s loss rate. Thus, AllRtxSame’s transfer times are

represented as a band parallel to the x-axis. This band outlines

the upper and lower bounds of the 90% confidence interval. For

example, we are 90% confident that the average 4 MB file

transfer time at 3% primary path loss lies between 34.3 and

35.1 s.

AllRtxAlt’s transfer times are grouped by ranges of

alternate path loss rates. The graph depicts the mean and the

90% confidence interval for each of these groups. The 90%

confidence interval is calculated using an acceptable error of

10% of the mean. That is, we ran enough simulations to

estimate the mean and 90% confidence interval with an

acceptable error of at most 10% of the mean. For example,

when the primary path’s loss rate is 3% and the alternate path’s

loss rate is 1.5–2.5%, the 4 MB file transfer time is on average

42.8 s with a 90% confidence interval between 41.1 and 44.5 s.

The graphs show that for {3, 5}% primary path loss,

AllRtxSame outperforms AllRtxAlt for all alternate path loss

rates (except 0%). Even when the alternate path’s loss rate is

better (i.e. lower) than the primary’s, retransmitting on the

alternate path degrades performance. This trend remains for all

loss rates. Consider the results for 8% primary path loss. The

anticipated benefits of AllRtxAlt only appear for alternate path

loss rates of 0–3%. In other words, even if the alternate path’s

loss rate is up to 3% better (5–8%), it is better to retransmit data

on the primary path with its an 8% loss rate. Clearly, this

behavior is not what the SCTP authors expected when

specifying the current retransmission policy.

Intuition tells us that when an alternate path’s conditions are

better than the primary’s, then AllRtxAlt should improve

performance, and when the conditions are worse on the



Fig. 4. Example RTO dynamics with 8% primary path loss and 5% alternate

path loss.

Fig. 3. AllRtxAlt vs AllRtxSame at {3, 5, 8}% primary path loss.

A.L. Caro et al. / Computer Communications 29 (2006) 1798–1810 1801
alternate path, then AllRtxAlt should degrade performance.

However, our results show that often the former expectation

does not hold. Furthermore, independent results by other

researchers confirm that AllRtxAlt degrades performance [11].

2.3. Stale RTOs

Following analysis of several experiment traces, we

attribute AllRtxAlt’s poor performance to stale RTO values

for the alternate path. Due to Karn’s algorithm [16], successful
retransmissions on the alternate path cannot be used to update

the RTT estimation of the alternate path. Timeouts on

retransmissions, however, exponentially increase the RTO.

The only traffic on the alternate path which updates the RTT

estimate are the periodic heartbeat probes used to determine

destination reachability, but these heartbeats are transmitted

relatively infrequently (approximately every 30 s [23]). In

many cases the RTO is exponentially increased more

frequently than it can be reduced by an RTT estimate. The

result is an overly conservative (i.e. too large) RTO on the

alternate path for the majority of the association. Thus, anytime

a retransmission on the alternate path is lost, a timeout occurs

and the timeout is likely to be unnecessarily long. In addition,

each timeout further contributes to the problem by doubling the

RTO value.

Fig. 4 illustrates the dynamics of the RTO values for the

primary path (8% loss rate) and the alternate path (5% loss rate)

during a 4 MB file transfer using AllRtxAlt. This specific

transfer sent a total of 2889 original transmissions on the

primary path, of which 229 had to be retransmitted on the

alternate path, and of those retransmissions, 14 were lost and

re-retransmitted on the primary path. The RTO value of the

primary path stays relatively low (average is 2.3 s) during most

of the transfer, because successful new data transmission on the

primary path updates the RTT estimation and reduces the RTO



A.L. Caro et al. / Computer Communications 29 (2006) 1798–18101802
value (most likely back to the minimum of 1 s). On the other

hand, the alternate path with a lower loss rate maintains an

average RTO value of 5.9 s—more than double the primary’s.

Fig. 4’s graph for the alternate path shows that the alternate

path’s RTO reduces only three times. In other words, only three

heartbeats are successfully acked and used to measure the

alternate path’s RTT. The graph also shows seven timeouts

exponentially increasing the RTO value of the alternate path.

3. Balancing the tradeoffs

We have demonstrated the tradeoffs between AllRtxAlt and

AllRtxSame. AllRtxSame generally provides better perform-

ance, but AllRtxAlt may improve performance if the alternate

path’s loss rate is low enough to overcome the stale RTO

problem. The difficulty in practice is that a sender generally has

no prior knowledge about the paths’ conditions. Without such

information, the best a sender can do is balance the tradeoffs.

To do so, we introduce the FrSameRtoAlt policy—a hybrid of

AllRtxAlt and AllRtxSame. FrSameRtoAlt sends (a) fast

retransmissions to the same destination as their original

transmissions, and (b) timeout retransmissions to an alternate

destination [7]. Since timeouts tend to occur more often at

higher loss rates, this policy increases the use of the alternate

path as the primary path’s loss rate increases. This section

evaluates FrSameRtoAlt against AllRtxAlt and AllRtSame.

We determine whether FrSameRtoAlt does indeed balance the

tradeoffs between the other two policies.

3.1. Analysis methodology

Fig. 5 illustrates the network topology used, which is based

on the topology previously presented in Fig. 2. But instead of

using cross-traffic to induce congestion-based loss, we

introduce uniform loss on these paths (0–10% each way) at

the core links. We realize that the cross-traffic approach used in

Fig. 2 is a more realistic approach, but the simulation time for

this technique became impractical. To evaluate if Fig. 5’s

simplified model could still provide meaningful results, we

compared representative simulations using the cross-traffic

model from Fig. 2 and the simpler uniform loss model from

Fig. 5. Although the absolute results differed for those

examples compared, relative relationships remained consist-

ent—leading to the same conclusions. We therefore proceeded

with the simpler uniform loss model.
Fig. 5. Simulation network topology with random loss.
The topology in Fig. 5 maintains the same link bandwidths

and delays used in Fig. 2. The core links have 10 Mbps

bandwidth and 25 ms one-way delay, and the edge links have

100 Mbps bandwidth and 10 ms one-way delay. Thus, the end-

to-end one-way delay on either path is 45 ms, which is a

reasonable delay within the continental US.

We simulate a 4 MB file transfer with three input parameters

for each simulation: (1) the primary path’s loss rate, (2) the

alternate path’s loss rate, and (3) one of the three retransmis-

sion policies. Each parameter set is simulated with 60 different

seeds.

3.2. Results

Fig. 6 illustrates the results for {3, 5, 8}% primary path loss

rates. For each graph in Fig. 6, the alternate path’s loss rate is

varied on the x-axis, ranging from 0 to 10%. The graphs in

Fig. 6 compare the average transfer time of a 4 MB file using

one of the three policies: AllRtxAlt, AllRtxSame,

FrSameRtoAlt.

We ensure statistical confidence by calculating the 90%

confidence interval with an acceptable error of 10% of the

mean. The 90% confidence intervals are not shown in the

graphs for clarity. These intervals vary for different loss rates

and retransmission policies, but on average the 90% confidence

interval is about G2–5 s around the mean. The largest 90%

confidence interval is about G13 s around the mean; as

expected, larger confidence intervals tend to occur for higher

loss rates and policies that use the alternate path more often.

Fig. 6 clearly shows, as expected, that AllRtxSame’s

performance is uninfluenced by the alternate path’s loss rate

or by the stale RTO problem. Following the same trends

observed in Section 2, the graphs in Fig. 6 also show that

AllRtxAlt may improve performance when the alternate path’s

loss rate is lower than the primary’s, but the stale RTO problem

dominates performance. First, AllRtxAlt does worse than

AllRtxSame when both paths have the same bandwidth, delay,

and loss rate. Second, AllRtxAlt degrades performance more

often than it improves performance, and the degree to which

AllRtxAlt degrades performance is significantly higher than

the degree to which it improves performance. For example,

when the primary path loss rate is 5%, AllRtxAlt improves

performance over AllRtxSame by 21% when the alternate path

loss rate is 0%, but degrades performance by more than double

(108%) when the alternate path loss rate is 10%.

FrSameRtoAlt, a hybrid policy, compromises between the

advantages and disadvantages of AllRtxAlt and AllRtxSame.

At low primary path loss rates (e.g. top graph in Fig. 6),

FrSameRtoAlt and AllRtxSame perform similarly. Most lost

packets at such loss rates are detected by the fast retransmit

algorithm, and thus are retransmitted to the same destination.

The relatively few timeouts that occur in these conditions are

not enough to significantly influence the results.

As the primary path loss rate increases, AllRtxSame and

FrSameRtoAlt begin to perform differently. An increase in the

number of timeouts causes FrSameRtoAlt to send more traffic

to the alternate destination. As a result, FrSameRtoAlt’s



Fig. 7. Possible policy-extension combinations.

Fig. 6. AllRtxAlt, AllRtxSame, and FrSameRtoAlt at {3, 5, 8}% primary path

loss.

A.L. Caro et al. / Computer Communications 29 (2006) 1798–1810 1803
performance depends more on the alternate path’s loss rate.

However, since FrSameRtoAlt does not send fast retransmis-

sions to the alternate destination, the alternate path’s loss rate

influences FrSameRtoAlt’s performance less than AllRtxAlt’s.

FrSameRtoAlt’s improvements are not as great as AllRtxAlt’s,

but neither are the degradations. Furthermore, FrSameRtoAlt

improves performance to a greater extent than it degrades

performance. For example, when the primary path loss rate is
8%, FrSameRtoAlt improves performance over AllRtxSame

by 13% when the alternate path loss rate is 0%, but degrades

performance by only 3% when the alternate path loss rate is

10%. To contrast, AllRtxAlt offers a 36% improvement and

68% degradation under the same conditions.

Since loss conditions of paths are unknown a priori, we need

to consider overall performance. From the results in this

section, we conclude that AllRtxAlt is the worst policy.

AllRtxSame and FrSameRtoAlt perform about the same with

FrSameRtoAlt offering a slight advantage when primary path

loss rates are high.
4. Performance enhancing extensions

We now introduce three performance enhancing policy

extensions. The motivation behind these extensions is to

determine if the relative relationships between the retransmis-

sion policies remain unchanged even after improving each of

one’s performance.
4.1. Heartbeat after RTO (HAR)

When a timeout occurs, the Heartbeat After RTO (HAR)

mechanism sends a heartbeat immediately to the destination on

which a timeout occurred. This behavior is in addition to the

normal data retransmission behavior (specified by the

retransmission policy) that remains unchanged. Since AllRtx-

Same sends timeout retransmissions to the same destination,

HAR is not applicable (see Fig. 7). The extra heartbeats

introduced by HAR try to alleviate the stale RTO problem of

AllRtxAlt and FrSameRtoAlt. With HAR, a sender updates an

alternate destination’s RTT estimate more frequently, thus

resulting in a better RTT estimate on which to base the RTO

value [5].

For example, suppose a packet is lost in transit to the

primary destination, and later gets retransmitted to an alternate

destination. Also suppose that the retransmission times out.

The lost packet is retransmitted again to yet another alternate

destination (if one exists; otherwise, the primary).

More importantly, a heartbeat is also sent to the alternate

destination which timed out. If the heartbeat is successfully

acked, that destination acquires an additional RTT measure-

ment to help reduce its recently doubled RTO.



A.L. Caro et al. / Computer Communications 29 (2006) 1798–18101804
4.2. Timestamps (TS)

The timestamp (TS) mechanism is similar to TCP’s

timestamp mechanism. By including timestamps in each

packet, the retransmission ambiguity problem is resolved.

That is, the sender can distinguish between acks for original

transmissions and acks for retransmissions. Thus, Karn’s

algorithm can be eliminated, and successful retransmissions

can be used to update the RTT estimate and maintain a more

accurate RTO value. This feature is especially useful in

alleviating the stale RTO problem of AllRtxAlt and

FrSameRtoAlt [5].

Note that this extension’s motivation is to evaluate how

much performance can be improved by eliminating the

retransmission ambiguity problem. One alternative solution,

incurring less packet overhead, may be to use flag(s) in the data

and sack headers to signal whether the data/sack is for an

original transmission or retransmission.
4.3. Multiple fast retransmit (MFR)

The multiple fast retransmit (MFR) algorithm introduces

extra state at the sender to allow lost fast retransmissions to be

fast retransmitted again instead of incurring a timeout. For

example, suppose a sender has a window of data in flight to the

receiver, and packet x is lost. Data successfully received at the

receiver are sacked, and any sacks for packets sent after x serve

as missing reports for packet x. When the sender receives four

such missing reports, the standard fast retransmit algorithm is

triggered and packet x is retransmitted.2 At this point, MFR

state stores the highest packet currently outstanding, n. This

way, if the retransmission of x is also lost, the sender can detect

the loss with another four missing reports. However, this time

only sacks for packets greater than n can serve as missing

reports, because the sacks up to n were already in flight when x

was fast retransmitted the first time [5].

MFR applies to AllRtxSame and FrSameRtoAlt. Since

AllRtxAlt sends fast retransmissions to an alternate path, MFR

could cause spurious fast retransmissions when path delays are

different. For example, imagine a fast retransmission scenario

where the primary path’s RTT is shorter than the alternate

path’s. After a fast retransmission is sent on the alternate path,

new data sent on the primary path may arrive at the receiver

first. If so, the receiver uses sacks to convey this reordering to

the sender. However, the sender’s MFR algorithm will

mistakenly interpret the reordering as loss of the fast

retransmitted data, and incorrectly trigger another fast

retransmission of the same data.

Although MFR prevents some timeouts, it does not provide

additional RTT samples for alternate destinations, and thus

inevitable timeouts continue to suffer from the stale RTO

problem. MFR may be combined with HAR or timestamps to
2 SCTP [23] requires four missing reports to trigger a fast retransmit, whereas

TCP requires only three analogous dupacks [2].
address stale RTOs. Fig. 7 illustrates all ten policy-extension

combinations.

4.3.1. Performance evaluation

This section independently examines each policy, with its

possible extensions. We determine which extension(s) pro-

vides the best improvement to each policy. For our evaluation,

we use the methodology presented in Section 1.

4.3.2. AllRtxAlt’s extensions

Fig. 8 presents the results for AllRtxAlt and its extensions

with {3, 5, 8}% primary path loss rates. As the graphs show,

both the Heartbeat After RTO (HAR) and Timestamps (TS)

extensions drastically improve AllRtxAlt’s performance. HAR

improves performance by as much as 38, 43, and 45% for

primary path loss rates of 3, 5, and 8%, respectively. TS

improves performance by slightly larger margins—as much as

45, 51, and 50%.

Both HAR and TS provide more RTT measurements of the

alternate destination and reduce the occurrence of stale RTOs.

Since HAR is a reactive mechanism that only obtains an extra

measurement when timeouts occur, TS has an advantage of

HAR. TS is proactive and offers more opportunities to measure

the alternate path’s RTT. Although TS adds a 12-byte overhead

into each packet, the overhead does not adversely impact

performance. We conclude TS is the better extension for

AllRtxAlt.

4.3.3. AllRtxSame’s extensions

Fig. 9 presents the results for AllRtxSame and its

extensions. Since AllRtxSame’s performance is independent

of the alternate path’s conditions, we plot all the results in a

single graph with the primary path’s loss rate on the x-axis.

The graph shows that the Multiple Fast Retransmit (MFR)

extension is able to avoid timeouts and increase AllRtxSame’s

performance. For example, MFR improves AllRtxSame’s

performance by 8, 10, and 11% under 3, 5, and 8% primary

path loss rates. TS only improves performance when the

primary path’s loss rate is high. For example, including TS

improves performance by 6–8% when the primary path’s loss

rate is 8%, but provides no benefit at 3% and 5% primary path

loss. At high loss rates, timeouts may occur frequently enough

that no RTT measurement is obtained between timeouts. Thus,

TS improves performance by allowing a successful timeout

retransmission to be used for measuring the RTT, which in turn

decreases the exponentially backed-off RTO. Combining MFR

and TS provides the best performance for AllRtxSame.

4.3.4. FrSameRtoAlt’s extensions

FrSameRtoAlt qualifies for five extension combinations,

three of which include the Multiple Fast Retransmit (MFR)

extension. Fig. 10 shows that individually, MFR provides

greater improvement than either the Heartbeat After RTO

(HAR) or Timestamps (TS) extension. Using HAR or TS alone,

at best, provides 2, 5, and 9% improvement at 3, 5, and 8%

primary path loss, respectively. MFR alone, on the other hand,

improves performance by as much as 10, 16, and 14%. MFR’s



Fig. 8. AllRtxAlt and its extensions at {3, 5, 8}% primary path loss.

Fig. 9. AllRtxSame and its extensions across all primary path loss rates.

A.L. Caro et al. / Computer Communications 29 (2006) 1798–1810 1805
ability to avoid some timeouts has dramatic effects on

FrSameRtoAlt’s performance, because the stale RTO problem

on the alternate path is also avoided.

Combining HAR or TS with MFR in general provides no

added improvement; some marginal improvement occurs when

the loss rate is high on the primary and alternate paths. For

example, with 8% primary path loss and 10% alternate path

loss, MFRCHAR and MFRCTS perform similarly and

provide an additional 4–5% improvement over MFR alone.
Thus, FrSameRtoAlt performs best when combined with either

MFRCHAR or MFRCTS. However, we recommend that

MFRCTS be used, since TS (or any mechanism that

eliminates the retransmission ambiguity) has other orthogonal

applications, such as the Eifel algorithm [21,19].
5. Non-failure scenarios

This section revisits our performance comparison of the

three policies in non-failure scenarios, but this time each policy

is combined with our recommended extension(s):

† AllRtxAlt with Timestamps (AllRtxAltCTS);

† AllRtxSame with Multiple Fast Retransmit and Time-

stamps (AllRtxSameCMFRCTS);

† FrSameRtoAlt with Multiple Fast Retransmit and Time-

stamps (FrSameRtoAltCMFRCTS).

First, we evaluate their performance when both the primary

and alternate paths have equal RTTs. Then, we assess the

influence of the alternate path’s delay. Finally, we consider

three paths to determine if relative performance of the

retransmission policies is influenced by the degree of multi-

homing. For readability throughout the remainder of this paper,

we refer to AllRtxAltCTS, AllRtxSameCMFRCTS, and

FrSameRtoAltCMFRCTS as simply AllRtxAlt, AllRtxSame,

and FrSameRtoAlt, respectively.
5.1. Analysis methodology

We again use the methodology presented in Section 1 for

our evaluation, but in this section we investigate alternate path

RTTs. The primary path remains unchanged (see Fig. 11).

However, the alternate path’s core link has three possible one-

way delays: 25, 85, and 500 ms (i.e. end-to-end RTTs of 90,

210, and 1040 ms). These values sample reasonable RTTs

experienced on the Internet. Although 1040 ms may seem



Fig. 10. FrSameRtoAlt with its extensions at {3, 5, 8}% primary path loss.

Fig. 11. Simulation network topology with random loss, 90 ms primary path

RTT, and {90, 210, 1040} ms alternate path RTT.

A.L. Caro et al. / Computer Communications 29 (2006) 1798–18101806
large, flows passing through cellular networks often experience

RTTs as high as 1 or more seconds [12,13,15].

Note that we do not simulate different link bandwidths.

Lowering the alternate path’s bandwidth simply increases the

RTT, which we already independently control. Thus, the

bandwidths remain constant in all our simulations.
5.2. Symmetric path delays

Fig. 12 illustrates the results for {3, 5, 8}% primary path loss

rates, a 90 ms primary path RTT, and a 90 ms alternate path

RTT. Our first observation is that the extensions reduced the

performance gap between the three retransmission policies

(compare Fig. 12 with Fig. 6). For 3% primary path loss, the

three policies perform relatively the same (less than 5%

difference) for 0–4% alternate path loss. Higher alternate path

loss rates cause AllRtxAlt to degrade performance by as much

as 20%, while the results for AllRtxSame and FrSameRtoAlt

remain unchanged.

When the primary path loss rate is 5%, AllRtxSame and

FrSameRtoAlt again perform similarly. AllRtxAlt, on the other

hand, improves performance by as much as 10% and degrades

performance by as much as 14%, depending on the alternate

path’s loss rate (generally an unknown metric). Comparing this

relatively low degradation to the degradation of 108%

presented in Section 2 for the same network conditions, the

stale RTO problem seems to have been completely eliminated.

The results for 8% primary path loss further confirm this

observation. AllRtxAlt and FrSameRtoAlt outperform AllRtx-

Same across nearly all alternate path loss rates, and do about

the same (within 2% of each other) when that alternate path

loss rate is higher than 8%.

Overall, the results in Fig. 12 do not present a strong

argument for a single best policy. FrSameRtoAlt outperforms

AllRtxSame, but deciding between AllRtxAlt and FrSameR-

toAlt is not straightforward. FrSameRtoAlt provides only

conservative gains, but does not degrade performance at all.

AllRtxAlt may provide more significant gains, but risks the

potential of degradation of the same magnitude.
5.3. Asymmetric path delays

We find that increasing the alternate path’s RTT to slightly

more than double (210 ms) does not significantly affect

performance. Although the results are not shown, the graphs

are similar to those in Fig. 12. Hence, we push the limits further

and present the performance of a 1040 ms alternate path RTT

in Fig. 13.

The most obvious result is that AllRtxAlt’s heavy use of the

alternate path significantly degrades performance when the

alternate path delay is large (no surprise). AllRtxSame’s



Fig. 12. AllRtxAltCTS, AllRtxSameCMFRCTS, and FrSameRtoAltC
MFRCTS at {3, 5, 8}% primary path loss, 90 ms primary path RTT, and

90 ms alternate path RTT.

Fig. 13. AllRtxAltCTS, AllRtxSameCMFR, and FrSameRtoAltCMFRCTS

at {3, 5, 8}% primary path loss, 90 ms primary path RTT, and 1040 ms

alternate path RTT.

A.L. Caro et al. / Computer Communications 29 (2006) 1798–1810 1807
performance remains unchanged, as expected. FrSameRtoAlt’s

results, however, prove interesting. At 3% primary path loss,

few timeouts occur. Hence, the alternate path is rarely used and

FrSameRtoAlt’s results remain unchanged. With a 5 and 8%

primary path loss rate, FrSameRtoAlt degrades performance

compared to AllRtxSame, but given the large difference in path

delays, this degradation is minor. The alternate path’s delay is
more than 10 times that of the primary, but in the worst case,

FrSameRtoAlt degrades performance by only % and 24% for

primary path loss rates of 5 and 8%, respectively.

5.4. Three paths

To determine if our conclusions hold when the number of

paths between the endpoints increases, we add an additional

alternate path to the topology in Fig. 11. We configure both

alternate paths to have the same properties (bandwidths,



Fig. 14. Simulation network topology with random loss, equal delays, and

primary path failure.

A.L. Caro et al. / Computer Communications 29 (2006) 1798–18101808
delays, and loss rates). Otherwise, the number of simulation

parameters would quickly become unmanageable. The results

(not shown) are similar to those for two paths. That is, the

relationships between the policies remain the same. We expect

that the trends will remain the same for configurations with

more than three paths between endpoints.

6. Failure scenarios

We again evaluate the performance of the three policies

with their best performing extension(s), this time focusing on

failure scenarios, an important criteria in the overall evaluation.

After all, a key motivation for supporting multihoming at the

transport layer is improved failure resilience. Hence, a

multihomed transport layer should use a retransmission policy

that performs well when the primary destination becomes

unreachable.

6.1. Failover algorithm

In our evaluation, we assume a failover algorithm similar to

that of SCTP. Each endpoint uses both implicit and explicit

probes to dynamically maintain knowledge about the reach-

ability of its peer’s IP addresses. Transmitted data serve as

implicit probes to a destination (generally, the primary

destination), while explicit probes, called heartbeats, period-

ically test reachability and measure the RTT of idle

destinations. Each timeout (for data or heartbeats) on a

particular destination increments an error count for that

destination. The error count per destination is cleared whenever

data or a heartbeat sent to that destination is acked. A

destination is marked as failed when its error count exceeds the

failover threshold (called Path.Max.Retrans in SCTP).

If the primary destination fails, the sender fails over to an

alternate destination address and continues probing the primary

destination with heartbeats. Failover is temporary in that a

sender resumes sending new data to the primary destination if

and when a future probe to the primary destination is

successfully acked. If more than one alternate destination

address exists, RFC2960 [23] leaves the alternate destination

selection method unspecified. We assume a round-robin

selection method.

RFC2960 [23] recommends default settings of: minimum

RTOZ1 s, maximum RTOZ60 s, and Path.Max.Retrans

(PMR)Z5. Using these defaults, the first timeout towards

failure detection takes 1 s in the best case. Then, the

exponential back-off procedure doubles the RTO on each

subsequent timeout towards failure detection. With PMRZ5,

six consecutive timeouts are needed to detect failure, taking at

least 1C2C4C8C16C32Z63 s. In the worst case, the

first timeout takes the maximum of 60 s, and the failure

detection time requires 6!60Z360 s.

The failover details in this section are important for our

analysis of the retransmission policies’ performance in failure

scenarios. However, we believe that the conclusions are

independent of the actual failure detection method and/or

parameters.
6.2. Analysis methodology

We use the same methodology described in Section 1, but in

this section we introduce failure scenarios. The topology in

Fig. 14 shows that the both paths have the same characteristics,

except that the primary path’s core link experiences a bi-

directional failure. We simulate a link breakage between the

routers on the core path at two different times. The first set of

failure experiments experience the link breakage at timeZ4 s

into the transfer. With 0% loss on the primary path, about half

of the 4 MB file transfer is complete by this time. The second

set’s link breakage occurs at timeZ6.8 s into the transfer,

specifically chosen to occur during the last RTT of the 4MB file

transfer when the primary path’s loss rate is 0%. In both failure

scenarios, the link remains down until the end of the

simulation.
6.3. Results

To gauge the performance during failure scenarios, we not

only measure the file transfer time, we also consider the

timeliness of data. File transfer in a failure scenario can be

divided into three periods: (1) before failure, (2) during failure

detection, (3) after failover. The first period has been covered

in Section 5.

The second period, failure detection, is important for both

file transfer time and data timeliness. Fast failover time

improves file transfer time, because the sender is able to

resume ‘normal’ transmission more quickly. As expected, we

find that the failure detection time is similar for the three

retransmission policies.

The retransmission policy affects timeliness of data in that it

determines whether a transfer is blocked during the failure

detection process. AllRtxSame delivers no data to the peer until

the entire failure detection process completes and failover occurs.

For example, with 0% primary path loss, the sender has 30 lost

data packets outstanding when failure occurs in our first failure

scenario (link breakage at timeZ4 s). AllRtxAlt and FrSameR-

toAlt successfully retransmit these 30 packets after the first

timeout in the failure detection process, thus delaying them by

only 1 s (or whatever the primary path’s RTO is at that point).

Furthermore, during each subsequent timeout that contributes to

failure detection, the sender successfully retransmits one packet



A.L. Caro et al. / Computer Communications 29 (2006) 1798–1810 1809
to the alternate destination. On the other hand, with AllRtxSame

the sender successfully retransmits the initial 30 lost packets only

after the failure detection completes, delaying them by at least

63 s! This delay may be unacceptable to applications requiring

timely data delivery.

During the third period, the sender has only one available

path for transmission in our simulations. (The results in Section
Fig. 15. AllRtxAltCTS, AllRtxSameCMFRCTS, and FrSameRtoAltC
MFRCTS with primary path failure at timeZ4 s.
5 apply to scenarios where more than one path is available

during the third period.) Fig. 15 presents the final transfer

times for failure at timeZ4 s. As the graphs show, the

primary path’s loss rate has minimal influence on the file

transfer time. Comparing these results with those in Fig. 12

suggests that the third period has heaviest influence on file

transfer time. Since failure occurs relatively early in the file

transfer, the remaining portion of the transfer is large enough

that its sole use of the alternate path is the most influential

factor on file transfer time. Even the policies themselves do not

provide much difference (at most 9%) in performance. Since

there is only one available path in the third period, all three

retransmission policies perform similarly, differing only by the

extensions used.

As a worst case example, the file transfer times for 0%

primary path loss and failure at timeZ6.8 s are shown in

Fig. 16. Since this failure scenario has a link breakage in the

last RTT of the data transfer, the second period (i.e. failure

detection) is the most influential factor on file transfer time.

Fig. 16 shows that AllRtxSame’s blocking behavior during

failure detection has drastic effects on the results. The file

transfer with AllRtxSame takes about 70 s to complete,

whereas it only takes about 8–18 s (depending on the alternate

path’s loss rate) with AllRtxAlt and FrSameRtoAlt. The reason

is that AllRtxSame is unable to complete the transfer until after

failover occurs, but AllRtxAlt and FrSameRtoAlt are able to

finish the transfer during failure detection. Note that this

example indeed represents a worst-case situation for AllRtx-

Same, and was diabolically conceived.

In summary, all three policies provide similar throughput

performance for large transfers during failure scenarios.

However, AllRtxSame’s blocking failure detection behavior

degrades performance if the failure coincidentally occurs near

the end of the transfer and/or data timeliness is important.

Hence, AllRtxAlt and FrSameRtoAlt are recommended for

failure scenarios.
Fig. 16. AllRtxAltCTS, AllRtxSameCMFRCTS, and FrSameRtoAltC

MFRCTS with primary path failure at timeZ6.8 s.



A.L. Caro et al. / Computer Communications 29 (2006) 1798–18101810
7. Conclusion

We have evaluated three retransmission policies for

multihomed transport protocols, using SCTP to demonstrate

the concepts. Without a priori knowledge about the available

paths, a sender cannot have a static policy that decides where to

retransmit lost data and expect to guarantee the best

performance. Through simulation, we have measured and

demonstrated the tradeoffs of three policies in non-failure and

failure conditions. Our results show that the retransmission

policy which best balances the tradeoffs is (1) send fast

retransmissions to the same peer IP address as the original

transmission, and (2) send timeout retransmissions to an

alternate peer IP address. We have shown that this hybrid

policy performs best when combined with two enhancements:

our Multiple Fast Retransmit algorithm, and either timestamps

or our Heartbeat After RTO mechanism. The Multiple Fast

Retransmit algorithm reduces the number of timeouts. Time-

stamps and the Heartbeat After RTO mechanism both improve

performance when timeouts are common by providing extra

RTT measurements and maintaining low RTO values—an

important feature for alternate paths that are mostly idle.
Acknowledgements

The authors acknowledge Ryan Bickhart, Janardhan

Iyengar, Sourabh Ladha, and the anonymous reviewers for

their valuable comments and suggestions.
References

[1] CAIDA: Packet Sizes and Sequencing, March 1998, http://traffic.caida.org

[2] M. Allman, V. Paxson, W. Stevens, TCP Congestion Control, RFC2581,

IETF, April 1999.

[3] U.C. Berkeley, LBL, USC/ISI, and Xerox Parc. ns-2 Documentation and

Software, Version 2.27, January 2004, www.isi.edu/nsnam/ns

[4] A. Caro, End-to-End Fault Tolerance Using Transport Layer Multi-

homing, Phd Dissertation, CIS Dept., University of Delaware, August

2005.

[5] A. Caro, P. Amer, J. Iyengar, R. Stewart. Retransmission policies with

transport layer multihoming, in: ICON 2003, Sydney, Australia,

September 2003.
[6] A. Caro, P. Amer, R. Stewart. Transport layer multihoming for fault

tolerance in FCS Networks, in: MILCOM 2003, Boston, MA, October

2003.

[7] A. Caro, P. Amer, R. Stewart. Retransmission schemes for end-to-end

failover with transport layer multihoming, in: GLOBECOM 2004, Dallas,

TX, November 2004.

[8] A. Caro, J. Iyengar, ns-2 SCTP module, http://pel.cis.udel.edu

[9] A. Caro, J. Iyengar, P. Amer, S. Ladha, G. Heinz, K. Shah, SCTP: a

proposed standard for robust internet data transport, IEEE Computer 36

(11) (2003) 56–63.

[10] K. Claffy, G. Miller, K. Thompson. The nature of the beast: recent

traffic measurements from an internet backbone, INET 1998, April

1998.

[11] M. Duke, T. Henderson, P. Spagnolo, J. Kim, G. Michael, Stream control

transport protocol (sctp) performance over the land mobile satellite

channel, in MILCOM 2003, Boston, MA, October 2003.

[12] A. Gurtov, M. Passoja, O. Aalto, M. Raitola, Multi-layer protocol tracing

in a GPRS network, in: International Conference on Ubiquitous

Computing, September 2002.

[13] H. Inamura, G. Montenegro, R. Ludwig, A. Gurtov, F. Khafizov, TCP

over Second (2.5G) and Third (3G) Generation Wireless Networks,

RFC3481, February 2003.

[14] J. Iyengar, K. Shah, P. Amer, R. Stewart. Concurrent multipath transfer

using SCTP multihoming, in: SPECTS 2004, San Jose, California, July

2004.

[15] R. Jayaram, I. Rhee. A case for delay-based congestion control for CDMA

2.5G networks, in: International Conference on Ubiquitous Computing,

October 2003.

[16] P. Karn, C. Partridge. Improving round-trip time estimates in reliable

transport protocols, in: ACM SIGCOMM 1987, August 1987.

[17] E. Kohler, Datagram Congestion Control Protocol Mobility and Multi-

homing, draft-kohler-dccp-mobility-00.txt, July 2004, (work in progress).

[18] E. Kohler, M. Handley, S. Floyd, Datagram Congestion Control

Protocol (DCCP), draft-ietf-dccp-spec-09.txt, November 2004, (work in

progress).

[19] S. Ladha, S. Baucke, R. Ludwig, P. Amer, On making SCTP robust to

spurious retransmissions, ACM SIGCOMM Computer Communication

Review 34 (2) (2004) 123–135.

[20] W. Leland, M. Taqqu, W. Willinger, D. Wilson. On the self-similar nature

of ethernet traffic, in: ACM SIGCOMM 1993, San Francisco, CA,

September 1993.

[21] R. Ludwig, R. Katz, The eifel algorithm: making TCP robust against

spurious retransmissions, ACM Computer Communications Review 30

(21) (2000) 30–36.

[22] R. Stewart, Q. Xie, Stream Control Transmission Protocol (SCTP): A

Reference Guide, Addison Wesley, New York, NY, 2001.

[23] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor,

I. Rytina, M. Kalla, L. Zhang, V. Paxson, Stream Control Transmission

Protocol, RFC2960, October 2000.

http://traffic.caida.org
http://www.isi.edu/nsnam/ns
http://pel.cis.udel.edu

	Retransmission policies for multihomed transport protocols
	Introduction
	AllRtxAlts problem
	Analysis methodology
	Results
	Stale RTOs

	Balancing the tradeoffs
	Analysis methodology
	Results

	Performance enhancing extensions
	Heartbeat after RTO (HAR)
	Timestamps (TS)
	Multiple fast retransmit (MFR)

	Non-failure scenarios
	Analysis methodology
	Symmetric path delays
	Asymmetric path delays
	Three paths

	Failure scenarios
	Failover algorithm
	Analysis methodology
	Results

	Conclusion
	Acknowledgements
	References


