
www.elsevier.com/locate/comcom

Computer Communications 29 (2006) 3170–3181
Analysis and evaluation of a multiple gateway
traffic-distribution scheme for gateway clusters

Pan-Lung Tsai *, Chin-Laung Lei

Department of Electrical Engineering, National Taiwan University, Taipei 106, Taiwan

Received 11 August 2005; received in revised form 20 April 2006; accepted 27 April 2006
Available online 24 May 2006
Abstract

Next-generation Internet gateways are expected to deal with higher volume of network traffic and also perform more sophisticated tasks
besides packet forwarding. As the scale-up approach does not escape from the tradeoff between functionality and performance, architectural
improvements such as clustering become necessary in the design of future Internet gateways. In this paper, we investigate different clustering
architectures for high-performance, feature-rich Internet gateways and formally define the optimization problem behind these architectures
as Multiple Gateway Traffic-Distribution Problem, both in a discrete and a continuous form. In addition to proposing various algorithms that
solve the problem exactly and approximately, we also develop an on-line, self-adjusting scheme based on the solution algorithms. The
numerical results of simulation suggest that the proposed approximate solution algorithms are effective and efficient, and the derived
adaptive scheme is able to make the best decision on traffic distribution when dealing with the dynamic nature of network traffic in practice.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Internet gateway; Approximation algorithm; Self-dispatching; Scalability; Cluster computing
1. Introduction

As the Internet keeps evolving, more and more network
applications and services have been invented to provide a
wide variety of advanced functions. In addition to deploy-
ing dedicated servers for each of these innovative applica-
tions and services, researchers and vendors have also
spent their efforts on developing novel approaches to seam-
lessly integrate new functions with existing routing archi-
tectures. As a result, next-generation Internet routers,
especially those deployed on the edges (i.e., the access rou-
ters mentioned in [1]), are expected to accomplish sophisti-
cated tasks like URL filtering, anti-virus, anti-spam, and
bandwidth control, rather than just routing.

In this paper, we use a more general term, gateways, to
represent such versatile routers. Following this terminolo-
0140-3664/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2006.04.015

* Corresponding author. Tel.: +886 2 33663700x6604; fax: +886 2
23638247.

E-mail addresses: charles@fractal.ee.ntu.edu.tw (P.-L. Tsai), lei@
cc.ee.ntu.edu.tw (C.-L. Lei).
gy, gateways need to implement some or all of the
advanced traffic-processing functions including packet fil-
tering, packet rewriting, packet scheduling, connection
splicing, and even pattern matching within the payloads,
in addition to the primitive packet forwarding, fragmenta-
tion, and reassembly. On the other hand, the advancement
of networking technologies and optical components has
resulted in a data rate of multiple gigabits per second or
even higher in modern computers and communication net-
works. Consequently, though it is possible to build a stan-
dard router that performs basic packet forwarding at very
high speed [2,3], the tradeoff between functionality and per-
formance prevents current implementation of gateways
from processing network packets in wire speed. Under such
circumstances, a more scalable solution for the design and
implementation of the gateways is highly desired.

Although hardware-based solutions (e.g., using ASICs)
have been long proven in the field to be capable of deliver-
ing high throughput for well-defined operations [4], they
are also infamous for their inflexibility. In particular, the
revision of hardware designs in response to the invention

mailto:charles@fractal.ee.ntu.edu.tw
mailto:lei@ cc.ee.ntu.edu.tw
mailto:lei@ cc.ee.ntu.edu.tw

P.-L. Tsai, C.-L. Lei / Computer Communications 29 (2006) 3170–3181 3171
of new protocols is both time-consuming and costly. Con-
versely, software-based network systems [5–8] are flexible
enough but usually fail to achieve satisfactory performance
for demanding applications. Since the scale-up approach
[9] applying to a single network system is still governed
by the tradeoff between functionality and performance,
gateway clusters [10,11] that follow the scale-out approach
[9] are proposed as the remedy.

In this paper, we investigate different clustering architec-
tures and formally define the problem of traffic distribution
over clustered gateways. Following the formal definition of
the optimization problem, we propose a number of algo-
rithms for solving the problem exactly and approximately.
We also develop an on-line, self-adjusting scheme based on
the solution algorithms. The rest of the paper is organized
as follows. Section 2 reviews the two broad categories of
clustering architectures as well as the models that help to
construct the traffic-distribution scheme for gateway clus-
ters. Section 3 formally defines the traffic-distribution
problem and presents the solution algorithms, followed
by the simulation results of the algorithms in Section 4.
Section 5 describes the proposed adaptive scheme based
on the solution algorithms, and Section 6 concludes the
paper by summarizing our achievements.

2. Related work

Clustering can be viewed as an architectural improve-
ment to the design of network systems. A cluster is inher-
ently scalable under the condition that the input load is
elegantly distributed over the clustered units. In this sec-
tion, we first examine the two broad categories of clustering
architectures, one with a dedicated traffic dispatcher and
the other without any (as shown in Fig. 1), as well as their
corresponding traffic-dispatching techniques. Then we out-
line the construction of the traffic-distribution scheme and
also discuss the literatures relevant to our modeling.

2.1. Gateway clusters with dedicated traffic dispatchers

A straightforward approach to distribute processing
load over multiple gateways within a cluster is to deploy
a dedicated traffic dispatcher in front of the gateways so
a b

Gateway
Cluster Dispatcher

Gateway
Cluster

Fig. 1. Two categories of gateway clusters: (a) a gateway cluster with a
dedicated traffic dispatcher, and (b) a fully decentralized gateway cluster.
The squares represent hosts that generates input load and the circles
represent individual gateways. The arrows with dashed lines depict the
path of network traffic.
that the dispatcher may redirect individual network pack-
ets to different gateways. The decision of redirection can
be made according to simple rules such as statically round
robin, or it can be as flexible as evaluating complicated cri-
teria like selecting the gateway with least load over the past
10 s. As long as the traffic dispatcher is carefully designed,
it is possible to keep the load of the clustered gateways bal-
anced over time and thus to maximize the throughput of
the entire cluster.

There are several options for the traffic-dispatching
mechanisms adopted in this architecture. The dispatcher
may make use of standard routing, network address trans-
lation (with network-layer headers being altered) [12], tun-
neling (e.g., GRE [13,14] and IP-within-IP [15]), etc., or
hybrid mechanisms [16,17], depending on the performance
requirements, granularity of traffic dispatching, and the
complexity of the application running on the gateways
behind the dispatcher.

The primary advantages of using a dedicated dispatcher
are its simplicity and flexibility. Since the issue of load distri-
bution is isolated and can be taken care of solely by the dis-
patcher, the gateways in the cluster may focus on
application-specific processing and are virtually independent
from one another and from the dispatcher. In addition, the
dispatcher itself may serve as the representative entity of
the entire gateway cluster to other hosts on the network
and hence help the cluster maintain the property of transpar-
ency without additional mechanisms. The features of sim-
plicity and flexibility together make such dispatcher-based
clustering architecture applicable to many classes of network
applications and services, ranging from layer 3 to layer 7 in
OSI models, and inspire network-equipment manufacturers
to create products such as server load balancers [18–20].

2.2. Gateway clusters with self-dispatching mechanisms

Despite the advantages mentioned above, the major
drawback of the dispatcher-based clustering architecture
is obvious. The centralized design adopted makes the dis-
patcher the potential performance bottleneck and a single
point of failure. In contrast to the dispatcher-based cluster-
ing architecture, the second architecture described in this
section completely eliminates the need for traffic dispatch-
ers by taking advantage of various self-dispatching tech-
niques, and can be fully decentralized.

To accomplish the task of traffic dispatching and main-
tain the transparency at the same time, gateway clusters
adopting this second architecture usually perform special
processing on ARP [21] requests (e.g., proxy ARP
[22,23]) and frame filtering. For example, the clustered
units in [24] are configured to answer ARP requests either
with a nonexistent Ethernet address or with a layer-2 mul-
ticast address so that the switch residing between the clus-
ter and other hosts will always flood the frames sent to the
cluster. In [25], the clustered units are simply configured
with the same layer-2 address to ensure that ARP replies
will contain the correct answer. The gateway cluster

3172 P.-L. Tsai, C.-L. Lei / Computer Communications 29 (2006) 3170–3181
proposed in [11] first generates a number of virtual MAC
addresses and uses them as the answers when replying
ARP requests. These solutions are transparent in that all
of them successfully create an undistinguishable illusion
of a single node (i.e., a node with a single network-layer
address) for the multiple units in a cluster. Refs.
[10,26,27] adopt a dissimilar approach, in which no partic-
ular measures are taken to hide the real identities of the
clustered units from hosts, and network packets first arrive
at some clustered unit unaffectedly and then may be rerout-
ed to other clustered units for further processing.

Among these solutions, Refs. [11,25] explicitly incorpo-
rate adaptive load-distribution mechanisms, while Ref. [24]
only makes use of static load-balancing algorithm, which
must be configured manually and does not respond to
the variation of input load and the status change of the
clustered nodes. On the other hand, each clustered unit in
[10,26,27] does not attempt to balance the load by influenc-
ing the way in which the incoming traffic arrives, but
instead transfers the excess load to other units afterwards,
and hence may cause network packets to make a detour
before they get processed. Refs. [26,27] also only focus on
the processing of Web traffic, while Ref. [24] recognizes
more protocols including TCP, UDP, GRE, whereas Ref.
[11] is applicable to virtually all applications and services
at or above the network layer.

Take the clustering architecture adopted in [11] as an
example. Fig. 2 depicts more details of the corresponding
traffic-distribution mechanism. In the phase of initial setup,
the hosts that generate input traffic to the gateway cluster
are first partitioned into a number of logical host groups.
The partitioning is controlled by a predefined mapping
function, which takes the MAC addresses of the hosts as
the input. An individual virtual gateway, which has its
own virtual MAC address, is then assigned to each host
a

Gateway
Cluster Physical

Gateway Host

Fig. 2. The clustering architecture and the traffic-distribution mechanism of in
logical host groups (with some of the physical connections to the hosts being
virtual gateways, and the assignment of the virtual gateways to the physical g
group. Finally, the distribution of input traffic is accom-
plished by assigning the virtual gateways (or, equivalently,
the flows generated by host groups) to the physical gate-
ways in the cluster. As the assignment of the virtual gate-
ways to the physical gateways is going to be recomputed
periodically based on the measured volume of input traffic,
the distribution of input traffic also changes dynamically in
response to the variation of traffic volume and the resulting
load differences of physical gateways. Section 3 formally
defines the problem of determining the optimal assign-
ments of the virtual gateways (i.e., the flows) to the physi-
cal gateways and also discusses the corresponding solution
algorithms.

2.3. Modeling traffic distribution for gateway clusters

In order to increase the overall system utilization and
hence scale the throughput of gateway clusters, we must
find a way to optimally distribute the input traffic among
the individual gateways in gateway clusters. The approach
we take to constructing the traffic-distribution scheme for
gateway clusters is outlined as follows.

We first put our focus on how to optimally distribute the
input traffic with respect to a finite period of time. Suppose
that the traffic sent to a gateway cluster for further process-
ing in certain time interval can be divided into a number of
individual flows with known sizes. Then we just come up
with a variant of the deterministic task-scheduling problem
[28,29] with respect to the given time interval. Since the siz-
es of individual flows are known, this problem belongs to
the category of global static scheduling according to the
widely accepted taxonomy in [30]. As a result, optimally
distributing the input traffic among multiple gateways
can be treated as solving a series of the varied deterministic
task-scheduling problem instances.
b

Gateway
Cluster Virtual

Gateway Host Group

terest: (a) the network topology, and (b) the partitioning of the hosts into
omitted), the one-to-one correspondence between the host groups and the
ateways.

1 Note that MGTDPv2 is very much similar to the linear programming
relaxation of a well-studied problem, Multiple Subset Sum Problem

(MSSP) [31,32,34]. In fact, constraint (4) is the only difference between
MGTDPv2 and the linear programming relaxation of MSSP. The linear
programming relaxation of MSSP is often denoted by C(MSSP), and
C(MSSP) is known to be solvable in linear time. Despite the high
similarity of MGTDPv2 and C(MSSP), no polynomial-time algorithms
that generate exact solutions to MGTDPv2 have been reported yet.

P.-L. Tsai, C.-L. Lei / Computer Communications 29 (2006) 3170–3181 3173
Taking a closer examination, we realize that we are not
concerned with the processing order of individual flows
(i.e., the schedule) but only care about the allocation of the
processing power offered by the gateways. Therefore, we fur-
ther abstract the traffic-distribution problem with respect to
certain time interval into a form that is closely related to the
multiple knapsack problem [31,32], which [33] also uses to
model the resource allocation in a telecommunication net-
work. Section 3 provides the formal definition of the problem
and presents a number of corresponding solution algorithms.

The final step to constructing the traffic-distribution
scheme is to deal with the dynamic nature of the input traf-
fic. Based on the problem formulation as well as the solu-
tion algorithms we propose, we develop a round-based,
self-adjusting traffic-distribution scheme that can be
applied to gateway clusters and works in an on-line fash-
ion. Further details are described in Section 5.

3. Traffic-distribution problem

Suppose that the input traffic consists of n individual
flows and all these n flows are going to be processed by
the m gateways in a cluster. Let Load (f, t) denote the num-
ber of packets belonging to flow f with respect to time
interval [t � Dt, t). The goal of the traffic-distribution prob-
lem is to optimally assign the n flows, which are denoted by
Fj, j = 1,2,3, . . . ,n, to the m gateways, which are denoted
by Gi, i = 1,2,3, . . . ,m, so that the total number of packets
processed by the gateway cluster is maximized. Section 3.1
gives the formal definition of the problem.

3.1. Traffic distribution over multiple gateways

If we use Cap (g) to represent the processing capability of
gateway g in packets per second, then the total number of
packets that individual gateways are able to process in time
interval [t � Dt, t) can be denoted by Cap (Gi) · Dt,
i = 1,2,3, . . . ,m. By setting weights wj = Load (Fj, t),
j = 1,2,3, . . . ,n, and capacities ci = Cap (Gi) · Dt,
i = 1,2,3, . . . ,m,wecandefineMultipleGatewayTraffic-Dis-

tribution Problem Version 1 (MGTDPv1) with respect to time
interval [t � Dt, t) as the following linear integer formulation.

Multiple Gateway Traffic-Distribution Problem Version 1

(MGTDPv1). Given a set of n flows, each of which contains
wj packets with respect to time interval [t � Dt, t),
j = 1,2,3, . . . ,n, and a set of m gateways, each of which
is capable of processing ci packets in the same time interval,
i = 1,2,3, . . . ,m, the objective is to

maximize
Xm

i¼1

Min
Xn

j¼1

wjxij; ci

 !

subject to
Xm

i¼1

xij 6 1; j ¼ 1; 2; 3; . . . ; n; ð1Þ

xij 2 f0; 1g; i ¼ 1; 2; 3; . . . ;m;
j ¼ 1; 2; 3; . . . ; n; ð2Þ

where Min (x,y) denotes the smaller one of x and y.
Without loss of generality, it is assumed that n P m,
wj > 0, j = 1,2,3, . . . ,n, ci > 0, i = 1,2,3, . . . ,m, wmin 6 cmin,
wmax 6 cmax, and

Pn
j¼1wj > cmax, where wmin and wmax

denote the minimum and the maximum of wj’s,
j = 1,2,3, . . . ,n, respectively, and cmin and cmax denote the
minimum and the maximum of ci’s, i = 1,2,3, . . . ,m,
respectively. These assumptions are valid throughout the
text.

Each binary variable xij, i = 1,2,3, . . . ,m,
j = 1,2,3, . . . ,n, denotes whether flow Fj is assigned to
gateway Gi (represented by xij = 1) or not (represented
by xij = 0), and constraint (1) prevents a single flow from
being assigned to more than one gateway. Note that
when Fj is assigned to Gi (i.e., xij = 1), the packets
belonging to flow Fj are directed to Gi and consume
some processing power of Gi. By definition, Gi cannot
process more than ci packets in time interval [t � Dt, t)
even if more packets are directed to it (in this case, the
excess packets are simply discarded), and this is the rea-
son why Min (x,y) is involved in the evaluation of the
objective function.

The problem of traffic distribution over multiple gate-
ways can also be written in a continuous form, resulting
in Multiple Gateway Traffic-Distribution Problem Version

2 (MGTDPv2). This second version eliminates the use of
Min (x,y) in the calculation of the objective values and is
defined as follows.

Multiple Gateway Traffic-Distribution Problem Version 2

(MGTDPv2).1 Given a set of n flows, each of which con-
tains wj packets with respect to time interval [t � Dt, t),
j = 1,2,3, . . . ,n, and a set of m gateways, each of which
is capable of processing ci packets in the same time interval,
i = 1,2,3, . . . ,m, the objective is to

maximize
Xm

i¼1

Xn

j¼1

wjxij

subject to
Xn

j¼1

wjxij 6 ci; i ¼ 1; 2; 3; . . . ;m; ð3Þ

jXjj 6 1; j ¼ 1; 2; 3; . . . ; n; ð4Þ
0 6 xij 6 1; i ¼ 1; 2; 3; . . . ;m;

j ¼ 1; 2; 3; . . . ; n; ð5Þ

where Xj = {xij|xij > 0, i = 1,2,3, . . . ,m}.
The interpretation of each variable xij,

i = 1,2,3, . . . ,m, j = 1,2,3, . . . ,n, has changed in
MGTDPv2. When flow Fj is assigned to gateway Gi

3174 P.-L. Tsai, C.-L. Lei / Computer Communications 29 (2006) 3170–3181
(now represented by xij > 0), it is now permissible for Gi

to process only a fraction of all packets belonging to
flow Fj, as stated in constraint (5). On the other hand,
constraint (4) still prevents a single flow from being
assigned to more than one gateway. The newly intro-
duced constraint (3) effectively limits the total number
of packets to be processed by each gateway and hence
helps to simplify the objective function.

At the first glance, the original problem of MGTDPv1

seems to be transformed into an easier one by relaxing
constraint (2) to constraint (5). However, the existence
of constraint (3) in MGTDPv2 actually comes to balance.
To prove that the two problems share the same optimal
solution values, we first introduce the following lemmas.

Lemma 12. For every feasible solution of MGTDPv1, there

exists a feasible solution of MGTDPv2 such that the solution

value of the latter is equal to that of the former.
Lemma 23. For every feasible solution of MGTDPv2, there

exists a feasible solution of MGTDPv1 such that the solution

value of the latter is greater than or equal to that of the

former.
Let �zð1Þ and �zð2Þ denote the optimal solution values
of MGTDPv1 and MGTDPv2, respectively. The follow-
ing theorem asserts the equality of optimal solution
values.

Theorem 1. MGTDPv1 and MGTDPv2 share the same

optimal solution values. That is, �zð1Þ ¼ �zð2Þ.
Proof. Since the optimal solution of MGTDPv1 is also a
feasible solution of the same problem, according to Lemma
1, there exists a feasible solution of MGTDPv2 such that
the corresponding solution value, which is denoted by
z(2), is equal to �zð1Þ. By definition, zð2Þ 6 �zð2Þ. Therefore,
we have �zð1Þ ¼ zð2Þ 6 �zð2Þ.

Similarly, since the optimal solution of MGTDPv2 is
also a feasible solution of the same problem, according to
Lemma 2, there exists a feasible solution of MGTDPv1 such
that the corresponding solution value, which is denoted by
z(1), is greater than or equal to �zð2Þ. By definition, zð1Þ 6 �zð1Þ.
Therefore, we have �zð2Þ 6 zð1Þ 6 �zð1Þ.

As �zð1Þ 6 �zð2Þ and �zð2Þ 6 �zð1Þ both hold, we conclude that
�zð1Þ ¼ �zð1Þ and hence prove the theorem. h

Two key findings regarding MGTDPv2 are stated by the
following theorem and corollary. They provide some hints
about what the optimal solutions of MGTDPv2 look like
and may help to find better algorithms that solve the
problem.

Theorem 24. In an optimal solution of MGTDPv2, if there

exist one or more unassigned flows, all gateways must be fully

loaded.
2 For the complete proof of Lemma 1, please refer to Appendix A.
3 For the complete proof of Lemma 2, please refer to Appendix A.
4 For the complete proof of Theorem 2, please refer to Appendix A.
Corollary 1. In an optimal solution of MGTDPv2, if there

exist some unassigned flows, the optimal solution value must

be maximal (i.e.,
Pm

i¼1ci).
3.2. Solutions to the traffic-distribution problems

The brute-force algorithm can be used to solve the
traffic-distribution problems by examining the solution
values of all possible assignments of each flow to every
gateway. However, the running time of such algorithm
is O((m + 1)n), which is exponential and hardly accept-
able even with small values of m and n. Fortunately,
we may improve the running time with branch-and-bound

techniques. The improved algorithm examines one flow
after another, and the branching part involves generating
all possibilities in each round by assigning the flow of
interest to every gateway. The bounding part eliminates
some of these possibilities that are determined to be inca-
pable of producing better solution values than the best
solution value ever produced. We simply take the smaller
of the sum of the remaining capacities and the sum of
the numbers of packets associated with all unassigned
flows in each round as the filtering criterion (i.e., the
upper bound) used in the bounding part, and evaluate
the surviving possibilities by the depth-first search. Note
that theoretically the branch-and-bound techniques do
not change the worst-case running time of the algorithm,
but the time required for solving general cases encoun-
tered in real-world applications can be effectively reduced
to an acceptable level.

Though an algorithm that solves all instances of the
traffic-distribution problems in polynomial running time
is not known yet, we have developed three different poly-
nomial-time approximation algorithms that produce rea-
sonably good solutions for real-world applications. The
description of the algorithms follows the notations used
to describe MGTDPv1 and the solution produced is
denoted by the disjoint subsets Wi’s, i = 0,1,2, . . . ,m,
of set W = {wjjj = 1,2,3, . . . ,n},5 where W

ð1Þ
0 comprises

the numbers of the packets which are not going to be
processed by any gateway, each of the remaining W

ð1Þ
i ,

i = 1,2,3, . . . ,m, comprises the numbers of the packets
that are going to be processed by gateway Gi, and
[m

i¼0W
ð1Þ
i ¼W. Before each of the following algorithms

begins, an extra step is taken to ensure that the elements
in W are sorted in a descending order (i.e.,
w1 P w2 P w3 P � � �P wn).

Algorithm 1: Sequential Assignment

1. for i from 0 to m do

2. Wi ‹ /
3. j ‹ 1, i ‹ 1, w ‹ 0
5 Throughout this paper, all sets are treated as multisets. That is, the
multiplicity of elements in each set is respected.

P.-L. Tsai, C.-L. Lei / Computer Communications 29 (2006) 3170–3181 3175
4. while i 6 m do

5. while w < ci do

6. w ‹ w + wj, Wi ‹ Wi [wj, j ‹ j + 1
7. if j > n then

8. return Wi’s, i = 0,1,2, . . . ,m, as the solution
9. i ‹ i + 1, w ‹ 0
10. while j 6 n do

11. W0 ‹ W0 [wj, j ‹ j + 1
12. return Wi’s, i = 0,1,2, . . . ,m, as the solution

Algorithm 2: Greedy Assignment

1. for i from 0 to m do

2. Wi ‹ /, vi ‹ ci

3. for j from 1 to n do

4. k ‹ 1
5. for i from 2 to m do

6. if vi > vk then

7. k ‹ i

8. if vk 6 0 then

9. while j 6 n do

10. W0 ‹ W0 [wj, j ‹ j + 1
11. return Wi’s, i = 0,1,2, . . . ,m, as the solution
12. else

13. Wk ‹ Wk [wj, vk ‹ vk – wj

14. return Wi’s, i = 0,1,2, . . . ,m, as the solution

Algorithm 3: Best-Fit Assignment

1. for i from 0 to m do
2. Wi ‹ /, vi ‹ ci

3. for j from 1 to n do

4. k ‹ 0
5. for i from 1 to m do

6. if vi > wj then

7. if k = 0 then

8. k ‹ i

9. else
10. if vi < vk then

11. k ‹ i

12. if k = 0 then

13. k ‹ 1
14. for i from 2 to n do

15. if vi > vk then

16. k ‹ i

17. if vk 6 0 then
18. while j 6 n do

19. W0 ‹ W0 [wj, j ‹ j + 1
20. return Wi’s, i = 0, 1, 2, . . . ,m, as the solution
21. else

22. Wk ‹ Wk [wj, vk ‹ vk – wj

23. return Wi’s, i = 0,1,2, . . . ,m, as the solution

In Algorithm 1, all wj’s, j = 1,2,3, . . . ,n, are processed
sequentially, resulting in a running time of O(m + n). Algo-
rithm 2 follows the rule of always assigning the flow with
the largest associated number of packets to the gateway
with the most remaining capacity, and the running time
is O(n Æ m). Algorithm 3 adopts the best-fit strategy and
also runs in O(n Æ m) time. As a matter of fact, the running
time of Algorithm 2 and Algorithm 3 can be further
reduced to O(n Æ lg(m)) by making use of appropriate data
structures such as priority queues.

Note that these relatively fast algorithms are just
approximation algorithms and they do not guarantee to
derive the optimal solution values for all problem instanc-
es. For example, given a problem instance of m = 3, n = 8,
and W = {5, 5, 4, 4, 3, 3, 3, 3}, Algorithm 1 outputs
W0 = /, W1 = {5, 5}, W2 = {4, 4, 3}, W3 = {3, 3, 3},
resulting in a solution value of 29, Algorithm 2 outputs
W0 = /, W1 = {5, 3, 3}, W2 = {5, 3, 3}, W3 = {4, 4},
resulting in a solution value of 28, and Algorithm 3 also
gives the same output as Algorithm 1 does, whereas the
optimal solution value is actually 30, with one possible
solution being W0 = /, W1 = {5, 5}, W2 = {4, 3, 3},
W3 = {4, 3, 3}, which can be derived by the aforemen-
tioned branch-and-bound algorithm.

4. Evaluation of traffic-distribution algorithms

Fig. 3 shows three different scenarios in which the gate-
ways of interest may become the bottlenecks and hence
limit the efficiency of the communication networks.

The topology shown in Fig. 3(a) usually appears in
campus networks, and Fig. 3(b) depicts the typical set-
tings for networks that connect to the Internet. In
Fig. 3(c), there exists a mutual agreement between the
gateways, and the direct network traffic between the local
area networks receives special treatments when passing
through the gateways. A commonly referred example of
the topology in Fig. 3(c) is the deployment of virtual pri-
vate networks.

In the first scenario, the gateway has to process the
aggregated traffic from multiple local area networks and
may become the performance bottleneck because of the
large volume of network traffic. In the second case, the
owner of the local area network may want to enforce
access-control policies on the edge of the network. As a
result, the gateway often incorporates various advanced
packet-processing functions in addition to basic packet for-
warding and hence needs much more computation power
than ordinary edge routers do. The gateways in Fig. 3(c)
are usually required to carry out application-specific com-
putation-intensive operations such as encryption, decryp-
tion, and authentication. All of these scenarios may
benefit from the clustering solutions. In this section, we
evaluate the performance of the proposed traffic-distribu-
tion algorithms following the scenario shown in Fig. 1(a).
A real-world application that corresponds to the scenarios
shown in Fig. 1(c) is described in [11].

Fig. 4 depicts a clustering solution of the gateway in
Fig. 3(a). Suppose that traffic generated by the hosts con-
sists of n individual flows and there are m gateways in
the cluster. In this section, we will examine the effectiveness

Gateway

LAN LAN

LAN LAN
LAN

WAN

Gateway
LAN

WAN

Gateway
LAN

a b c

Fig. 3. Three different scenarios in which the gateways are likely to become performance bottlenecks: (a) multiple local area networks sharing a common
gateway, (b) a local area network connected to a wide area network via an edge gateway, and (c) two local area networks communicating with each other
through special-purpose gateways.

3176 P.-L. Tsai, C.-L. Lei / Computer Communications 29 (2006) 3170–3181
and the efficiency of the algorithms described in Section 3.2
with respect to different values of m and n.

In our simulation, the gateway units are assumed to be
identical and each of them is able to process 10 packets
in the given time interval. Without loss of generality, we
also assume that the numbers of packets belonging to
individual flows are sorted in a descending order. In other
words, the capacities c1 = c2 = c3 = � � � = cm = 10 and the
weights w1 P w2 P w3 P � � �P wn. Recall other assump-
tions made previously in Section 3.1. Putting everything
together, now we have n P m, 1 6 wj 6 10,
j = 1,2,3, . . . ,n,

Pn
j¼1wj > 10, and w1 P w2 P w3 P � � �

P wn.
The simulation program first generates every possible

problem instance of MGTDPv1 by enumerating all pos-
sibilities of wj’s, j = 1,2,3, . . . ,n, satisfying the con-
straints mentioned above, with respect to the given
value of n, and computes the optimal solution value of
every problem instance with respect to the given values
of m and n by executing the branch-and-bound algo-
rithm. Then it continues to run the algorithms proposed
in Section 3.2 and computes the respective differences
between the approximate solution values and the optimal
solution values. Tables 1 and 2 show the results of the
simulation.

In Table 1, the first two columns contain the values of m

and n, respectively, and the third column shows the total
number of problem instances with respect to the given val-
LAN LAN

LAN LAN

Gateway
Cluster

Fig. 4. Improving the throughput of the network in Fig. 3(a) by replacing
the gateway with a cluster of collaborating gateway units.
ues of m and n. Each data cell in the remaining columns of
Table 1 contains two numbers. The first one is the number
of problem instances with respect to which an algorithm
fails to derive the optimal solution values, and the second
one (surrounded by a pair parentheses) is the maximum
of the differences between the respective optimal solution
values and the respective solution values derived by the
algorithm.

Taking the case where m = 4 and n = 16 as an example,
there are 2,042,975 possibilities of wj’s, j = 1,2,3, . . . ,n,
resulting in 2,042,975 distinct problem instances in total.
Among these problem instances, Algorithm 1 (i.e., the
algorithm of sequential assignment) fails to derive the opti-
mal solution values in 14,010 cases, Algorithm 2 (i.e., the
algorithm of greedy assignment) fails in 46 cases, Algo-
rithm 3 (i.e., the algorithm of best-fit assignment) fails in
18 cases, and the algorithm of random assignment, which
is expected to perform the worst, fails in 958,796 cases.
Among these failed cases, the solution values computed
by Algorithm 1 can be as bad as 10 less than the optimal
solution values for some problem instances (comparing to
the full capacity of 4 · 10 = 40, a deviation of 10 is relative-
ly large), while the solution values computed by Algorithm
2 and Algorithm 3 are very close to the respective optimal
solution values in all problem instances, with the deviations
no more than 2 and 1, respectively. On the other hand, the
solution values computed by the algorithm of random
assignment can be arbitrarily bad and may change from
one test to another. The measured maximum deviation in
this particular test is 27, which is (not surprisingly) the larg-
est among the four algorithms.

In Table 2, the first two columns also contain the values
of m and n, respectively, and the third column shows the
number of different assignments to be evaluated when solv-
ing a single problem instance using the brute-force algo-
rithm. Each data cell in the fourth column of Table 2
again contains two numbers. This time the first one is the
maximum among the numbers of different assignments
tried by the branch-and-bound algorithm when computing
the optimal solution values for individual problem instanc-
es, and the second one is the average of the same numbers
over all problem instances with respect to the given values
of m and n.

Table 2
Efficiency of the algorithms

m n Exact solution Approximate solution

Number of different
assignments evaluated
by brute force

Number of different assignments
evaluated by branch-and-bound:
maximum (average)

Number of different assignments
evaluated by each of the proposed
algorithms and the random one

2 2 9 2 (1.67) 1
4 81 8 (1.74) 1
8 6,561 9 (1.01) 1

16 43,046,721 1 (1.00) 1

4 4 625 10 (3.40) 1
8 390,625 8,525 (35.12) 1

16 152,587,890,625 7,783,779 (6.49) 1

8 8 43,046,721 78 (11.35) 1

Table 1
Effectiveness of the algorithms

m n Number of problem instances Approximate solution: number of suboptimal assignments (maximum deviation)

Sequential assignment Greedy assignment Best-fit assignment Random assignment

2 2 30 20 (8) 0 (0) 0 (0) 16 (10)
4 688 308 (8) 0 (0) 0 (0) 446 (10)
8 24,306 238 (4) 1 (1) 1 (1) 4,802 (10)

16 2,042,975 0 (0) 0 (0) 0 (0) 12,761 (10)

4 4 688 559 (16) 0 (0) 0 (0) 411 (20)
8 24,306 16,201 (16) 242 (2) 18 (1) 22,833 (29)

16 2,042,975 14,010 (10) 46 (2) 18 (1) 958,796 (27)

8 8 24,306 23,465 (32) 0 (0) 0 (0) 20,664 (43)

P.-L. Tsai, C.-L. Lei / Computer Communications 29 (2006) 3170–3181 3177
For example, when m = 4 and n = 16, the brute-force
algorithm needs to scan over all (4 + 1)16 =
152,587,890,625 possible assignments only to determine
the optimal solution value for a single problem instance.
On the contrary, the branch-and-bound algorithm is able
to derive the optimal solution value by evaluating no more
than 7,783,779 different assignments, and the average num-
ber of assignments evaluated by the branch-and-bound
algorithm for a single problem instance is 6.49. (However,
it generally takes longer to generate a worth-evaluating
assignment in the branch-and-bound algorithm, so the
worst-case speed-up is actually not as high as
152,587,890,625/7,783,779 � 19,603.) Our simulation also
shows that it takes only 64.09 s for the branch-and-bound
algorithm to solve all of the 2,042,975 distinct problem
instances on a machine with an Intel Pentium 4 2.4 GHz
processor. That is, a single problem instance can be solved
in 31.37 ls on average in this particular case.

The last column of Table 2 simply points out the fact
that each of the algorithms of sequential assignment,
greedy assignment, best-fit assignment, and random assign-
ment attempts to generate and evaluate only one possible
assignment. Although the time to generate the assignment
may vary slightly across the four algorithms, they are much
more efficient than the branch-and-bound algorithm and
the brute-force algorithm are.
Tables 1 and 2 together demonstrate the effectiveness
and the efficiency of the algorithms. As indicated by the
results of simulation, the branch-and-bound algorithm is
capable of reducing the time required to exactly solve given
problem instances to a great extent. In addition, though
Algorithm 2 and Algorithm 3 may fail to derive optimal
solution values in a few cases, they run much faster than
the branch-and-bound algorithm and the deviations are
quite small. The algorithms of sequential assignment and
random assignment run even faster and are also easy to
implement, but the quality of the derived solution values
are relatively poor.

5. Adaptive traffic-distribution scheme

With the help of the problem formulation, the analysis,
and the solution algorithms presented previously, we are
ready to construct an on-line, self-adjusting traffic-distribu-
tion scheme that is able to deal with the dynamic nature of
the input traffic.

As mentioned in Section 2.3, the workings of the traffic-
distribution scheme can be viewed as solving a series of
MGTDP problem instances. However, as the input traffic
changes over time and the flow sizes are generally not
known in advanced, we must first figure out the input
parameters for each problem instance by means of certain

3178 P.-L. Tsai, C.-L. Lei / Computer Communications 29 (2006) 3170–3181
predictive techniques. Let vector Uk = (uk,1,uk,2,uk,3, . . . ,
uk,n) represent the flow sizes observed by the gateway clus-
ter of interest in kth time interval [(k � 1) Æ Dt,k Æ Dt), and
let vector Vk+1 = (vk+1,1,vk+1, 2,vk+1,3, . . . ,vk+1,n) denote
the derived values to be used as an estimation of the flow
sizes with respect to next time interval [k Æ Dt, (k + 1) Æ Dt),
where k = 1,2,3, . . . ,1. We adopt the method of exponen-
tially weighted moving average to compute the input
parameters for next problem instance based on the latest
observation and the historical data of flow sizes.

Initially we randomly assign the n flows to the m individ-
ual gateways. At the end of the first time interval, we set
V2 = U1. For k > 1, we derive Vk+1 at the end of kth time
interval as follows.

vkþ1;j ¼ a � uk;j þ ð1� aÞ � vk;j; j ¼ 1; 2; 3; . . . ; n;

where coefficient a is adjustable within range [0,1] and con-
trols the influence of the recently observed flow sizes on the
calculation of Vk+1. Then we take the elements of Vk+1

along with other input parameters to run one of the solu-
tion algorithms presented in Section 3.2, and reassign the
flows accordingly.

The implementation of the adaptive traffic-distribution
scheme mentioned above is straightforward in clustering
architectures with dedicated dispatchers. In this case,
the scheme simply runs on the dedicated dispatchers
since the dispatchers themselves have all necessary infor-
mation. In contrast, implementing the traffic-distribution
scheme in clustering architectures without any dispatch-
ers involves gathering the observed flow sizes before
the derivation of the input parameters for next round
and getting all gateways informed of the new flow
assignment afterwards. An intuitive idea is to delegate
such responsibility of information gathering, decision
making, and result propagation to one of the gateways
(e.g., the gateway with the smallest identification num-
ber). Alternatively, each gateway may also collect the
information from one another and then derive the result
by itself.
Table 3
Benefit of using multiple approximate solution algorithms

m n Number of
problem instances

Number of problem
instances for which
one or more approximate
solution values are suboptimal
(minimum/maximum
nonzero deviation)

2 2 30 20 (1/8)
4 688 308 (1/8)
8 24,306 239 (1/4)

16 2,042,975 0 (�/�)

4 4 688 559 (1/16)
8 24,306 16,211 (1/16)

16 2,042,975 14,028 (1/10)

8 8 24,306 23,465 (1/32)
Since the worst-case running time of the brute-force
solution algorithm is exponentially bounded, the approxi-
mate solution algorithms proposed in Section 3.2 are pref-
erable in the cases of a larger number of flows (for finer
granularity) or more than a few gateways (for higher limit
of throughput). In fact, each of the approximate solution
algorithms is able to make the flow-assignment decision
very quickly, so it becomes both viable and beneficial for
the decision makers (i.e., the dispatchers, the delegate gate-
ways, or all gateways, depending on the clustering architec-
tures and the implementation) to run more than one
available approximate solution algorithms (either indepen-
dently or collaboratively) and then select the best one from
the results. Table 3 shows the benefit of running multiple
approximate solution algorithms within a single round.
The numbers are derived from the results of the simulation
described in the previous section.

6. Conclusions

In this paper, we investigate different clustering archi-
tectures and dispatching techniques for scaling the
throughput of gateways, and formally define the problem
of Multiple Gateway Traffic-Distribution Problem both in
a discrete form (MGTDPv1) and in a continuous form
(MGTDPv2). We also prove that the two versions of
the problem share the same optimal solution values. Since
no polynomial-time algorithms that generate exact solu-
tions to MGTDPv1 or MGTDPv2 have been reported
yet, we propose three different approximation algorithms,
one of which runs in O(m + n) time and the other two
run in O(n Æ m) time, where m is the number of gateways
in the cluster and n is the number of flows, to solve the
problem efficiently.

The numerical results of simulation show that the
branch-and-bound algorithm with a properly selected
upper-bound function and the depth-first strategy may
greatly reduce the time required to derive the optimal solu-
tion values so that it becomes feasible to adopt the exact
Number of problem
instances for which
two or more approximate
solution values are suboptimal
(minimum/maximum
nonzero deviation)

Number of problem
instances for which all
three approximate
solution values are suboptimal
(minimum/maximum
nonzero deviation)

0 (�/�) 0 (�/�)
0 (�/�) 0 (�/�)

1 (1/2) 0 (�/�)
0 (�/�) 0 (�/�)

0 (�/�) 0 (�/�)
250 (1/11) 0 (�/�)

41 (1/5) 5 (1/4)

0 (�/�) 0 (�/�)

P.-L. Tsai, C.-L. Lei / Computer Communications 29 (2006) 3170–3181 3179
solution algorithm to gateway clusters with small cluster
sizes (i.e., with small values of m) and moderate traffic-dis-
patching granularity (i.e., with moderate values of n). Bet-
ter yet, the results also indicate that the algorithms of
greedy assignment and best-fit assignment, both of which
can be easily improved to run in O(n Æ lg(m)) time, are able
to produce approximate solution values that are close to
the optimal solution values. At last, an on-line, self-adjust-
ing scheme based on the solution algorithms is developed
to scale the performance of gateway clusters by effectively
and efficiently dealing with the imbalance caused by the
dynamic nature of network traffic.
Appendix A. Proofs of Lemma 1, Lemma 2, and Theorem 2

A feasible solution of MGTDPv1 can be denoted by the

disjoint subsets W
ð1Þ
i ’s, i = 0, 1, 2, . . . ,m, of set

W = {wjjj = 1,2,3, . . . ,n}, where W
ð1Þ
0 comprises the num-

bers of the packets which are not going to be processed

by any gateway, each of the remaining W
ð1Þ
i ,

i = 1,2,3, . . . ,m, comprises the numbers of the packets
that are going to be processed by gateway Gi, and

[m
i¼0W

ð1Þ
i ¼W. Based on the values of xij’s,

i = 1,2,3, . . . ,m, j = 1,2,3, . . . ,n, in the feasible solution,

W
ð1Þ
i ’s, i = 0,1,2, . . . ,m, are derived by W

ð1Þ
0 ¼

fwjj8i xij¼0;i¼1;2;3; ... ;m;j¼1;2;3; ... ;ng and W
ð1Þ
i ¼

fwjjxij>0;j¼1;2;3; . . . ;ng, i = 1,2,3, . . . ,m. Though the
same criteria can also be applied to a feasible solution of
MGTDPv2 and help derive another disjoint subsets

W
ð2Þ
i ’s, i = 0,1,2, . . . ,m, of set W, the feasible solution can-

not be denoted by W
ð2Þ
i ’s, i = 0,1,2, . . . ,m, alone because

some of the elements in W
ð2Þ
i ’s, i = 0,1,2, . . . ,m, may con-

tribute only part of itself to the solution value (i.e., when
0 < xij < 1 holds for an element’s corresponding xij).
Instead, a feasible solution of MGTDPv2 is determined

by considering W
ð2Þ
i ’s, i = 0,1,2, . . . ,m, and the corre-

sponding xij’s, i = 1,2,3, . . . ,m, j = 1,2,3, . . . ,n, at the

same time. We use xð1Þij ’s, i = 1,2,3, . . . ,m, j = 1,2,3, . . . ,

n, and xð2Þij ’s, i = 1,2,3, . . . ,m, j = 1,2,3, . . . ,n, to denote

the corresponding xij’s, i = 1,2,3, . . . ,m, j = 1,2,3, . . . ,n,

with respect to each elements of W
ð1Þ
i ’s, i = 0, 1, 2, . . . ,m,

and W
ð2Þ
i ’s, i = 0,1,2, . . . ,m, respectively. These notations

are useful when we prove the following lemmas.

Lemma 3. For every feasible solution of MGTDPv1, there
exists a feasible solution of MGTDPv2 such that the
solution value of the latter is equal to that of the former.
Proof. Let W
ð1Þ
i ’s, i = 0,1,2, . . . ,m, denote a feasible solu-

tion of MGTDPv1, and let z(1) denote the corresponding
solution value.A feasible solution of MGTDPv2 can be

constructed from W
ð1Þ
i ’s, i = 0,1,2, . . . ,m, as follows.Let

W
ð2Þ
i ’s, i = 0,1,2, . . . ,m, and xð2Þij ’s, i = 1,2,3, . . . ,m,
j = 1,2,3, . . . ,n, denote the feasible solution that we are
going to construct, and let z(2) denote the corresponding

solution value.For every W
ð1Þ
i such that

P
w2W

ð1Þ
i

w 6 ci,

i = 0,1,2, . . . ,m, we set W
ð2Þ
i ¼W

ð1Þ
i and xð2Þij ¼ xð1Þij for

every element w 2W
ð1Þ
i , where j is the index of w in W.

Doing so ensures that the contribution of W
ð2Þ
i to z(2) is

equal to the contribution of W
ð1Þ
i to z(1).For every W

ð1Þ
i such

that
P

w2W
ð1Þ
i

w > ci, we first use W
ð1Þ
i ¼ fwi1 ;wi2 ;wi3 ; . . . ;

wikg to denote it, where k ¼ jWð1Þ
i j.Next, we determine the

value of positive integer s such that
Ps�1

j¼1wij < ci andPs
j¼1wij P ci, in which case wis is referred to as the split ele-

ment.Then we set W
ð2Þ
i ¼ fwi1 ;wi2 ;wi3 ; . . . ;wisg, xð2Þij ¼ 1 for

every element w 2W
ð2Þ
i n fwisg, where j is the index of w

in W,xð2Þij ¼ 1
wis
ðci �

P
w2W

ð2Þ
i nfwis g

wÞ for the split element,

where j is the index of the split element in W, and

xð2Þij ¼ 0 for every element w 2W
ð1Þ
i nW

ð2Þ
i , where j is the

index of w in W. As a result, the contribution of W
ð2Þ
i to

z(2) is equal to ci, which is also the same as the contribution

of W
ð1Þ
i to z(1). Finally, for every element w 2W

ð1Þ
0 , we set

the values of all xð2Þij ’s, i = 0,1,2, . . . ,m, to 0, where j is

the index of w in W, and set W
ð2Þ
0 ¼W n [m

i¼1W
ð2Þ
i .

Following the procedure mentioned above, we can
guarantee that the contribution of W

ð2Þ
i to z(2) is exactly

the same as the contribution of W
ð1Þ
i to z(1) for every

i = 1,2, . . . ,m. Therefore, we conclude that zð2Þ ¼Pm
i¼1

P
w2W

ð2Þ
i

wxð2ÞiIWðwÞ ¼
Pm

i¼1Minð
P

w2W
ð1Þ
i

w;ciÞ¼ zð1Þ, where
IY (x) denotes the index of element x in set Y, and hence
prove the lemma. h
Lemma 4. For every feasible solution of MGTDPv2, there
exists a feasible solution of MGTDPv1 such that the solu-
tion value of the latter is greater than or equal to that of the
former.
Proof. Let W
ð2Þ
i ’s, i = 0,1,2, . . . ,m, and xð2Þij ’s,

i = 1,2,3, . . . ,m, j = 1,2,3, . . . ,n, denote a feasible solu-
tion of MGTDPv2, and let z(2) denote the corresponding
solution value. A feasible solution of MGTDPv1 can be

constructed from W
ð2Þ
i ’s, i = 0,1,2, . . . ,m, and xð2Þij ’s,

i = 1,2,3, . . . ,m, j = 1,2,3, . . . ,n, as follows. Let W
ð1Þ
i ’s,

i = 0,1,2, . . . ,m, denote the feasible solution that we are
going to construct, and let z(1) denote the corresponding

solution value. We simply set W
ð1Þ
i ¼W

ð2Þ
i for every

i = 1,2,3, . . . ,m and xð1Þij ¼ dx
ð2Þ
ij e for every i = 1,2,3, . . . ,

m and every j = 1, 2, 3, . . . ,n. As a result, we conclude that

zð1Þ ¼
Pm

i¼1

Pn
j¼1wjx

ð1Þ
ij ¼

Pm
i¼1

Pn
j¼1wjdxð2Þij eP

Pm
i¼1

Pn
j¼1

wjx
ð2Þ
ij ¼ zð2Þ and hence prove the lemma. h

Let �W
ð2Þ
i ’s, i = 0,1,2, . . . ,m, denote the derived disjoint

subsets of W with respect to an optimal solution of
MGTDPv2. We prove Theorem 2 as follows.

3180 P.-L. Tsai, C.-L. Lei / Computer Communications 29 (2006) 3170–3181
Theorem 3. In an optimal solution of MGTDPv2, if there
exist one or more unassigned flows, all gateways must be
fully loaded. That is,

j �Wð2Þ
0 j > 0)

X
w2 �W

ð2Þ
i

w ¼ ci; i ¼ 1; 2; 3; . . . ;m:
Proof. Let ẑð2Þ denote the solution value of an optimal
solution of MGTDPv2 with one or more unassigned flows,
and let Fq denote one of these unassigned flows. Suppose
that there exist an under loaded gateway, which is denoted
by Gp. Following these notations, the number of packets
belonging to Fq is wq, the number of packets to be
processed by Gp is

P
w2 �W

ð2Þ
p

w, and the remaining capacity of

Gp is ci �
P

w2 �W
ð2Þ
p

w. Since Gp is not fully loaded, we haveP
w2 �W

ð2Þ
p

w < ci and ci �
P

w2 �W
ð2Þ
p

w > 0.

We may construct another feasible solution of
MGTDPv2 from the given optimal solution by assigning
Fq to Gp as follows. Let z(2) denote the solution value of this

newly constructed solution. By definition, zð2Þ 6 ẑð2Þ. In the
case of wq 6 ci �

P
w2 �W

ð2Þ
p

w, we change the value of the

corresponding xpq from 0 to 1. Then the number of packets
to be processed by Gp becomes

P
w2 �W

ð2Þ
p

wþ wqxpq ¼P
w2 �W

ð2Þ
p

wþ wq, resulting in zð2Þ ¼ ẑð2Þ þ wq. Since wq > 0,

we have zð2Þ > ẑð2Þ, which is a contradiction. In the case of
wq > ci �

P
w2 �W

ð2Þ
p

w, we change the value of the corre-

sponding xpq from 0 to 1
wq
ðci �

P
w2 �W

ð2Þ
p

wÞ, which still

satisfies 0 6 xpq 6 1. Then the number of packets to be
processed by Gp becomes

P
w2 �W

ð2Þ
p

wþ wqxpq ¼P
w2 �W

ð2Þ
p

wþ ðci �
P

w2 �W
ð2Þ
p

wÞ ¼ ci, resulting in zð2Þ ¼ ẑð2Þ þ
ðci �

P
w2 �W

ð2Þ
p

wÞ. Since ci �
P

w2 �W
ð2Þ
p

w > 0, we have

zð2Þ > ẑð2Þ, which is also a contradiction. Therefore, we
conclude that such gateway must not exist and hence prove
the theorem. h
References

[1] Srinivasan Keshav, Rosen Sharma, Issues and trends in router design,
IEEE Communications Magazine 36 (5) (1998) 144–151.

[2] Craig Partridge, Philip P. Carvey, Ed Burgess, Isidro Castineyra,
Tom Clarke, Lise Graham, Michael Hathaway, Phil Herman,
Allen King, Steve Kohalmi, Tracy Ma, John Mcallen, Trevor
Mendez, Walter C. Milliken, Ronald Pettyjohn, John Rokosz,
Joshua Seeger, Michael Sollins, Steve Storch, Benjamin Tober,
Gregory D. Troxel, David Waitzman, Scott Winterble, A 50-Gb/s
IP router, IEEE/ACM Transactions on Networking 6 (3) (1998)
237–248.

[3] Yang Xu, Zhiwei Dai, Bin Liu, Wenjie Li, A scalable 10 Gb/s line-
rate router with DiffServ support, in: Proceedings of the International
Conference on Communication Technology (ICCT 2003), vol. 1,
April 2003, pp. 407–411.

[4] Werner Bux, Wolfgang E. Denzel, Ton Engbersen, Andreas Herkers-
dorf, Ronald P. Luijten, Technologies and building blocks for fast
packet forwarding, IEEE Communications Magazine 39 (1) (2001)
70–77.
[5] Dan Decasper, Zubin Dittia, Guru Parulkar, Bernhard Plattner,
Router plugins: a software architecture for next-generation routers,
IEEE/ACM Transactions on Networking 8 (1) (2000) 2–15.

[6] Scott Karlin, Larry Peterson, VERA: An extensible router architec-
ture, Computer Networks 38 (3) (2002) 277–293.

[7] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, M. Frans
Kaashoek, The click modular router, ACM Transactions on Com-
puter Systems (TOCS) 18 (3) (2000) 263–297.

[8] Yitzchak Gottlieb, Larry Peterson, A comparative study of extensible
routers, in: Proceedings of the 5th IEEE Conference on Open
Architectures and Network Programming (OPENARCH 2002), June
2002, pp. 51–62.

[9] Bill Devlin, Jim Gray, Bill Laing, George Spix, Scalability terminol-
ogy: farms, clones, partitions, and packs: RACS and RAPS,
Microsoft Research, Technical Report MS-TR-99-85, December
1999.

[10] Young Bae Jang, Jung Wan Cho, A cluster-based router architecture
for massive and various computations in active networks, in:
Proceedings of the 17th International Conference on Information
Networking (ICOIN 2003), Lecture Notes in Computer Science, vol.
2662, February 2003, pp. 326–335.

[11] Pan-Lung Tsai, Chun-Ying Huang, Yun-Yin Huang, Chia-Chang
Hsu, Chin-Laung Lei, A clustering and traffic-redistribution scheme
for high-performance IPsec VPNs, in: Proceedings of the 12th IEEE
International Conference on High Performance Computing (HiPC
2005), Lecture Notes in Computer Science, vol. 3769, December 2005,
pp. 432–443.

[12] Pyda Srisuresh, Kjeld Borch Egevang, Traditional IP network address
translator (Traditional NAT) RFC 3022, 2001.

[13] Stan Hanks, Tony Li, Dino Farinacci, Paul Traina, Generic routing
encapsulation (GRE) RFC 1701, 1994.

[14] Stan Hanks, Tony Li, Dino Farinacci, Paul Traina, Generic routing
encapsulation over IPv4 networks RFC 1702, 1994.

[15] Charles Perkins, IP encapsulation within IP, RFC 2003, 1996.
[16] Om P. Damani, P. Emerald Chung, Yennun Huang, Chandra

Kintala, Yi-Min Wang, ONE-IP: Techniques for hosting a service
on a cluster of machines, Journal of Computer Networks and ISDN
Systems 29 8-13 (1997) 1019–1027.

[17] The Linux Virtual Server Project – Linux Server Cluster for Load
Balancing. <http://www.linuxvirtualserver.org//>.

[18] F5 Networks, Inc., F5 Networks – BIG-IP – Local Traffic Manage-
ment. <http://www.f5.com/f5products/products/bigip/ltm//>.

[19] Foundry Networks, Inc., Foundry networks: products: scalable and
high-performance application traffic management and web optimiza-
tion switches. <http://www.foundrynet.com/products/webswitches/
serveriron//>.

[20] Radware Ltd., Web Server Director for Server Farms: Load
Balancing Web Server: Radware. <http://www.radware.com/
content/products/wsd//>.

[21] David C. Plummer, An ethernet address resolution protocol, RFC
826 (1982).

[22] Jon Postel, Multi-LAN address resolution, RFC 925, 1984.
[23] Smoot Carl-Mitchell, John S. Quarterman, Using ARP to implement

transparent subnet gateways, RFC 1027, 1987.
[24] Microsoft Corporation, Windows 2000 network load balancing

technical overview. <http://www.microsoft.com/technet/prodtechnol/
windows2000serv/deploy/confeat/nlbovw.mspx/>.

[25] Sujit Vaidya, Kenneth J. Christensen, A single system image server
cluster using duplicated MAC and IP addresses, in: Proceedings of the
26th IEEE Conference on Local Computer Networks (LCN 2001).

[26] Luis Aversa, Azer Bestavros, Load balancing a cluster of web servers:
using distributed packet rewriting, in: Proceedings of the 19th
IEEE International Performance, Computing, and Communications
Conference (IPCCC ’00), 2000, pp. 24–29.

[27] Azer Bestavros, Mark Crovella, Jun Liu, David Martin, Distributed
packet rewriting and its application to scalable server architectures,
in: Proceedings of the 6th IEEE International Conference on
Network Protocols (ICNP ’98), 1998, pp. 290–297.

http://www.linuxvirtualserver.org/
http://www.f5.com/f5products/products/bigip/ltm/
http://www.foundrynet.com/products/webswitches/serveriron/
http://www.foundrynet.com/products/webswitches/serveriron/
http://www.radware.com/content/products/wsd/
http://www.radware.com/content/products/wsd/
http://www.microsoft.com/technet/prodtechnol/windows2000serv/deploy/confeat/nlbovw.mspx
http://www.microsoft.com/technet/prodtechnol/windows2000serv/deploy/confeat/nlbovw.mspx

Chin-Laung Lei received the B.S. degree in electri-

cal engineering from National Taiwan University

in 1980, and the Ph.D. degree in computer science

from the University of Texas at Austin in 1986.

From 1986 to 1988, he was an assistant profes-

sor of the Computer and Information Science

Department at the Ohio State University, Colum-

bus, Ohio, U.S.A. In 1988 he joined the faculty of

the Department of Electrical Engineering, Nation-

al Taiwan University, where he is now a professor.

His current research interests include computer and

network security, cryptography, parallel and distributed processing, design

and analysis of algorithms, and operating system design.

Dr. Lei is amember of the Institute ofElectrical andElectronics Engineers

and the Association for Computing Machinery.

P.-L. Tsai, C.-L. Lei / Computer Communications 29 (2006) 3170–3181 3181
[28] Hesham El-Rewini, Hesham H. Ali, Ted Lewis, Task scheduling in
multiprocessing systems, IEEE Computer 28 (12) (1995) 27–37.

[29] Mario J. Gonzalez Jr., Deterministic processor scheduling, ACM
Computing Surveys 9 (3) (1977) 173–204.

[30] Thomas L. Casavant, Jon G. Kuhl, A taxonomy of scheduling in
general-purpose distributed computing systems, IEEE Transactions
on Software Engineering 14 (2) (1988) 141–154.

[31] Hans Kellerer, Ulrich Pferschy, David Pisinger, Knapsack Problems,
Springer Verlag GmbH, Berlin, 2004, ISBN: 3-540-40286-1.

[32] Silvano Martello, Paolo Toth, Knapsack Problems Algorithms and
Computer Implementations, Wiley, New York, 1990, ISBN: 0-471-
92420-2.

[33] Shane Dye, Leen Stougie, Asgeir Tomasgard, Approximation algo-
rithms and relaxations for a service provision problem on a
telecommunication network, Discrete Applied Mathematics 129 (1)
(2003) 63–81.

[34] Alberto Caprara, Hans Kellerer, Ulrich Pferschy, The multiple subset
sum problem, SIAM Journal on Optimization 11 (2) (2000) 308–319.

[34] Alberto Caprara, Hans Kellerer, Ulrich Pferschy, The multiple subset
sum problem, SIAM Journal on Optimization 11 (2) (2000) 308–319.

Pan-Lung Tsai received the B.S. degree in
mechanical engineering and the M.S. degree in
electrical engineering from National Taiwan
University in 1997 and 1999, respectively.

Currently he is a Ph.D. candidate in the
Department of Electrical Engineering, National
Taiwan University. His research interests include
software agents, mobile computing, network
security, and distributed processing.

Mr. Tsai is a student member of the Institute
of Electrical and Electronics Engineers and the
Association for Computing Machinery.

	Analysis and evaluation of a multiple gateway traffic-distribution scheme for gateway clusters
	Introduction
	Related work
	Gateway clusters with dedicated traffic dispatchers
	Gateway clusters with self-dispatching mechanisms
	Modeling traffic distribution for gateway clusters

	Traffic-distribution problem
	Traffic distribution over multiple gateways
	Solutions to the traffic-distribution problems

	Evaluation of traffic-distribution algorithms
	Adaptive traffic-distribution scheme
	Conclusions
	Proofs of Lemma 1, Lemma 2, and Theorem 2
	References

