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Abstract—the extensibility and evolution of network services and protocols had become a major research issue in recent years. 
The 'programmable' and 'active' network paradigms have been trying to solve the problems emanating from the immutable 
organization of network software layers by allowing arbitrary custom codes to be embedded inside network layers. In this work, 
we propose a new approach for building extensible network systems to support cross-layer optimization. The fundamental idea is 
to perform a simple, light-weight meta-engineering on the classical OSI protocols' organization to make it interactive and 
transparent. The protocols become (interactive) since they can provide event notification to service subscribers, and they become 
(transparent) since they also allow controlled access to their state information. Actual protocol extensions (or modifications) can 
then be performed at the application space by what we call Transientware Modules. This organization provides the infrastructure 
needed for easy and practical extensions of the current network services and it becomes much easier to address other difficult 
issues like security and flexibility. We call this mechanism Interactive Transparent Networking (InTraN) and we call the 
extended kernel InTraN-enabled. We have realized a FreeBSD implementation of the extensible InTraN-enabled kernel. In this 
paper, we present a formal EFSM-based model for the proposed meta-engineering and illustrate the principles through a real 
example of TCP extension. Then, we demonstrate how it can be used to realize equivalents of other protocol modifications by 
showing the InTraN model of 'Snoop' [4]. 
 
Keywords: interactive transparent networking, active networks, interactive TCP, protocol meta-engineering. 

 

1. Introduction 
Traditional network software stack has been designed 
with a pseudo-layered organization. Each layer is 
intended to offer a specific sub-service in the overall 
task of high level communication between application 
end-points. This organization used to be a blessing but 
no longer. These network layers, the organization of the 
services and their specific implementations now turn out 
to be quite rigid and frustratingly immutable. The 
increased sophistication and complex communication 
needs of the applications as well as the increased 
diversification of the underlying network infrastructure 
now require more dynamic and informed adaptive 
extension (or modification) of the existing protocols. 
Some situations even call for new functionalities and 
services as well [6]. The end-to-end paradigm has tried 
to address this demand by proposing application layer 
extensions (such as RTP [29]). Almost by definition any 
‘network’ adaptation requires awareness about the 
dynamics of events and the status within the ‘network’. 
Fundamentally, network adaptation requires triggers 
that originate from the network infrastructure. However, 
the end-to-end approach faces difficulty due to the 

classical 'black box' design. Network software layers 
have been designed as a closed box from the 
application's point of view [28]. Therefore, to 
circumvent this problem, end-to-end solutions try to 
estimate an approximation of network states by external 
measurements such as probe-packets [1, 8, and 25]. A 
key advantage is that end-to-end modules can run as 
application level components. Thus, they are 
dramatically easy to realize without requiring any 
modification in the network software layers. Early end-
to-end solutions were therefore quite successful and 
inspiring. However, as more complicated solutions were 
attempted, it became evident that there is often a 
substantial handicap in the timeliness and the type of 
information that can be estimated from application layer 
functions only. The network remains completely non-
communicative and silent from all its end-points. Some 
states and statistics are indeed readily available in the 
end-point lower layer modules (such as RTT, loss 
information, power level, etc). But, because of the black 
box design, this information remains out of reach from 
the end-to-end modules. These upper modules have to 
play a frustrating game of guessing these network states 
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by indirect and often redundant means. In contrast to 
end-to-end approach, researchers however have 
proposed various direct and custom modifications (or 
enhancements) to network protocols. However, these 
enhancements were viewed as requiring serious changes 
within networking software layers. Thus a majority of 
otherwise bright ideas have faced a serious acceptance 
problem. Most of these solutions achieved very limited 
success towards real implementation and deployment. 
The paradigm of active and programmable networking 
attempted to find a holistic framework for custom 
modifications within network software layers [5, 9]. In a 
way, such customized networking approach can be 
considered as diametrically opposite to the end-to-end 
approach.  To make protocols more adaptive, it allows 
installing modifications/extensions right into the 
network layer where all the events (triggers) and state 
information are readily available. Unfortunately, this 
approach introduces another set of even more serious 
problems. Typically the network system space has not 
been designed for multi-user execution environment. 
Thus, issues like resource sharing and security has 
remained unresolved in active and programmable 
network systems. Apparently both of these two 
approaches have the noble goal towards building 
evolvable, flexible, and extensible network services and 
have very attractive properties. But, as of today, both 
are still facing their unique set of formidable 
difficulties.  

Is it possible to combine the best of both? It seems an 
innovative solution may be formulated if a distinction 
can be made between the information trigger needed to 
initiate adaptation, and the actual action code. The 
programmable network took the approach of keeping 
both within network layers, while the end-to-end 
networking approach took the approach of keeping both 
at the application layer. It seems there might be a third 
approach which may be able to keep the best of both. 

In this research we present an experimental system 
which takes advantage of this distinction. It seems the 
need for changing and embedding custom components 
inside network software stems from two realities: first, 
we are seeing that the data in every communication 
pathway has to be processed in custom and adaptive 
ways. No finite set of pre-agreed, fixed protocols may 
ever foresee and satisfy all cases. Secondly, these 
customizations are very dynamic and communication-
case specific. Many of the triggers for the 
accompanying custom actions originate right inside the 
network software. However, instead of embedding 
codes to create customized actions within network 

layers, the new approach suggests creating a mechanism 
to pull-up the required state information (of the service 
or protocol) into the application layer. Then, the actual 
actions can be formulated by programmable 
components running at the application layer. We call the 
new paradigm Interactive Transparent Networking 
(InTraN). The scheme creates handles to be able to 
push-down the generated actions into the target network 
layer if needed. This relieves lower network layers from 
housing costly custom components and from dealing 
with complex issues regarding security and resource 
sharing. The attraction is that the application space 
already has a well developed provision to run custom 
codes, share resources, and handle security issues for 
managing multiple trust domains, etc, much of that can 
be reused. 

What are the potential costs? Yes, InTraN still requires 
some reorganization in the network software. However, 
in contrast to creating a network software organization 
which can house custom codes, as proposed in active 
networking, it requires creating a network software 
organization which can facilitate service state 
information exchange. Some meta-engineering of the 
protocol is still required, though it is much lighter. 
Compared to the active networking approach there is 
also a potential concern about performance degradation 
since actions are performed in relatively upper layer, 
though it is expected to be much faster than the end-to-
end approach since much of the state information can 
now be derived from the local network protocol end-
point. However, the potential advantage of easy 
extensibility seems to be very lucrative.  

We have recently implemented a transparent FreeBSD 
based on the InTraN paradigm. As an instance of 
interactive protocols, we have also implemented an 
interactive version of an otherwise legacy TCP, which 
we call interactive-TCP (iTCP). There are already some 
excellent proposals for network protocol enhancements 
and extensions. However, despite their functional 
advantages, many of these creative solutions faced a 
crippling deployment problem because they required 
highly individualized changes within the network 
software. To test the extension power of our approach, 
we have selected one such instance based on TCP 
derivatives—the 'Snoop' protocol proposed by 
Balakrishnan et al. [4]. We demonstrate how it can be 
easily implemented at the application level and operate 
on demand within the InTraN paradigm. Through this 
real implementation we explore the reorganization 
requirement in network software layers, the formal 
meta-engineering process of the involved protocols, and 
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the transientware based extension mechanisms. Along 
that, we expose the performance and security issues 
associated with this new approach and provide a 
comparative picture. 

The paper is organized as follows: in section 2 we 
formally explain the InTraN paradigm using SDL 
language. In section 3 we present iTCP—a simplified 
version of TCP with InTraN meta-engineering. In 
section 4 we show how the InTraN paradigm can be 

Table 1. Main components of the InTraN framework 

Component Definition 
Protocol Entity (PE) A communication protocol instance that provides specific communication service in the 

protocol stack (e.g., TCP). It is described as an EFSM and has been meta-engineered 
according to the InTraN paradigm—we use PE and EFSM interchangeably in the paper.  

Subscriber Program (SP) A user program that uses network services (e.g., video server). It is regarded as a potential 
subscriber of the InTraN service. 

Transientware Module (TM) A piece of code that is specifically designed to handle one or more events in a certain PE. 
One or more TMs can implement a protocol modification/extension at the application layer 
instead of embedding the code in the network layer itself. 

Subscription Manager (SM) An interface between application layer components (i.e., SPs, TMs) and network 
components (i.e., PEs). One SM manages the subscription preferences of a single SP. It 
handles subscription requests, maintains updated information about active TMs, and 
handles their read/write requests. 
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Figure 2. InTraN channel extension. 
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Table 2. Types of Transientware Modules 

TM Type Definition 
Signal-Only  
 

A TM Ti is bound to an event ei in protocol P. When event ei occurs, Ti is only activated. It is not allowed to 
access protocol's internal variables. No TM-instance record is created for Ti in the SM. 

Read-Only  
 

A TM Ti is bound to an event ei in protocol P. When event ei occurs, Ti is activated and a TM-instance record is 
created for Ti in the SM. Ti is granted read-only access to readable variables in P (i.e., all variables v PV ′∈ ). 

Read-Write  
 

Same as Signal-Only mode, but in addition to that, Ti is granted write access to modifiable variables in P (i.e., all 
variables v PV ′′∈ ).  



KHAN/ZAGHAL EFSM Meta Modeling/ Revised Draft, April 2006 
 

4

used to model 'Snoop'. In section 5 we discuss 
performance and security issues and we conclude in 
section 6. 

2. Interactive Transparent Networking 
(InTraN) 
2.1 Background 
The proposed interactivity and transparency is achieved 
via formal meta-engineering of the network protocols so 
that a selected subset of their states can be engineered to 
be accessible by upper-layer service subscribers in a 
controlled manner. We use SDL (Specification and 
Description Language)1 [12, 30] to formally describe (a) 
the protocol meta-engineering process and (b) the 
network software organization needed to support the 
interactivity and transparency. First let us briefly review 
SDL. The programming model used by SDL is based on 
extended finite state machines (EFSM) [7, 12]. SDL 
augments the finite state machine model by providing 
variables and timers and by supporting object-oriented 
programming. We describe the protocol meta-
engineering mechanism of InTraN by assuming an 
abstract communication protocol whose behavior is 
described by an EFSM. We demonstrate how this 
EFSM exposes protocol’s internal state to achieve 
controlled yet secure transparency. Informally, the 
EFSM is composed of states and transitions among 
them. For a transition to occur, the system must receive 
an event from the environment which triggers 
corresponding actions. After performing the actions, the 
EFSM produces output signals to the environment. An 
SDL system is composed of several protocol entities; 
each entity is designed as a single EFSM. Formally, an 
EFSM is a 6-tuple (S, 0s , E, f, O, V), where S is a set of 
states, 0s  is an initial state, E is a set of events, f  is a 
state transition function, O is a set of output signals, and 
V is a set of variables. The function f returns a next 
state, a set of output signals, and an action list for each 
combination of a current state and an input event. An 
EFSM also uses predicates to control the behavior of the 
protocol. These predicates usually allow similar states to 
be grouped therefore reducing the total number of states 
[12]. Upon receiving an event, the machine checks a 
predicate that is composed of variables, logical 
operators (e.g., AND, OR), and relational operators 
(e.g., <, =, >). If a predicate is true, the EFSM performs 
the actions and produces output signals (if applicable).  

                                                 
1 SDL is an ITU-standardized language for the formal description of 
communication protocols. It is also suited for any application based on 
the finite state machine concept, such as circuit design. 

2.2 A framework for the InTraN paradigm 
2.2.1 Components and architecture 
The main components of the InTraN framework are 
shown in table 1 and its basic architecture is shown in 
figure 1. A Subscriber Program (SP) starts by binding 
an event in a specific PE with a TM via a special 
Subscription API. The SM maintains updated 
information about all active subscriptions. When a 
subscribed event occurs in a PE, it signals the SM which 
responds by activating the TM bound to the event. A 
special Access API allows active TMs to access PE's 
internal data through the SM.  

According to the SDL language, EFSMs can 
communicate only through specific channels. Protocol 
Entities (PEs) can perform input and output operations 
to exchange user data and control messages through 
these channels. In order to integrate InTraN in this 
setup, we need to create a communication channel 
between every PE and the Subscription Manager (SM). 
These channels will serve as interaction mediums 
between PEs and TMs through the SM. Figure 2 shows 
the basic architecture of an abstract system with a stack 
of three protocols. Normal information flow from/to 
user application goes through channels (CP3, CP2, and 
CP1), to augment with InTraN, we added channels (TP3, 
TP2, and TP1). These new channels—which we call T-
type channels—are used by PEs to pass event signals 
and exchange data between PEs and the SM.  

TMs are also classified into three types based on their 
access privileges to protocol's internal variables. These 
are shown in table 2. A TM is granted read-only access 
to a subset of PE's local data (variables). In certain 
circumstances the TM is allowed even to modify a 
subset of these accessible variables as long as this 
modification serves the intentions of the protocol 
designer. Let PV  be the set of all variables in the PE, the 
designer can designate a subset of PV  called PV ′  as 
read-only, and a subset of PV ′  called PV ′′  as read-write 
(i.e., PPP VVV ⊆′⊆′′ ). In table 3 we define three types of 
variables: A, B, and C, based on their access level. In 
addition, the protocol designer should designate a subset 
of protocol's events as subscribable. Let PE  be the set 
of all events in protocol entity P, and PE′  be the set of 
subscribable events in P, then PP EE ⊆′ .   

2.2.2 SP-SM Interfacing: Subscription Mechanism 
The IntTraN framework offers a Subscription API for 
SPs to manipulate their subscription preferences at the 
SM. The three primitives of the Subscription API are 
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shown in table 4. A Subscriber Program (SP) which opts 
to subscribe with protocol entity P must associate an 
event in PE′  with a TM via the Bind() operation. The 
binding between events and TMs is one-to-many 
relationship. i.e., a SP can bind one or more events to a 

specific TM, but a specific event can be bound to one 
TM only by a specific SP. This restriction is needed to 
avoid ambiguity when event signals are sent to the SM. 
The SP can use the Unbind() operation to cancel an 
existing subscription, or the Update() operation to 

Table 3. Types of variables and their access privileges 
Type Set TM access privilege 

A PP VV ′−  No access 

B PP VV ⊆′  Read only 

C PP VV ′⊆′′  Read and write 

 

Table 4. Subscription API 

Primitive Meaning 
Bind(e, P, TM) Associates a TM with an event e in 

protocol P. The TM is invoked 
whenever the specified event occurs. 

Unbind(e, P, TM) Remove the association between TM 
and the event e. 

Update(e, P, TM) Remove the current association of 
event e and replace it with a new 
association with TM. 

Table 5. InTraN Access API and Signals 

Access API (TM-SM interface) 
ReadVar(T, V) The TM (T) issues a read request to the SM to retrieve the value of variable (V) from its correspondent PE.  
WriteVar(T, V, val) The TM issues a write request to the SM to write the value (val) to variable (V) in its correspondent PE. 

Return(val, F) The SM returns the value (val) of a variable (V) to a TM which is blocking on a ReadVar(V) request. If the 
flag (F) is (true), then (val) is valid, otherwise, the TM just ignores (val). 

Invoke(TM) The SM invokes a registered TM after receiving an Event() signal 

Finish(TM) The TM signals the SM that it is going to terminate. The SM responds by removing the TM-instance of the 
terminating TM. 

T-type Channel Signals (SM-PE interface) 
GetVal(V) The SM signals the PE to read the value of the local variable (V) 
SetVal(V, val) The SM signals the PE to write the value (val) to the local variable (V) 

SetFlag(SF, val) The SM signals the PE to set the subscription flag (SF) by sending (val=true) or to reset the flag (SF) by 
sending (val=false). This signal will activate/deactivate the event in PE which is associated with (SF).  

Event(evt, PE) The PE Notifies the SM that event (evt) has just occurred in protocol (PE)  
ExpVal(V, val) The PE exports the value (val) of local variable (V) to the SM 

Figure 3. TM interfacing between the PE and the TM for three scenarios. 
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replace the current association of an event with a new 
one. The three subscription primitives can be used 
dynamically during run-time for maximum flexibility. 
For example, a SP can start by binding e1 to TM1 by 
calling Bind(e1,P,TM1). Later (e.g., after certain time 
has elapsed), it may call Update(e1,P,TM2) to change 
the association of e1 from TM1 to TM2. 

2.2.3 TM-SM-PE Interfacing: Access Mechanism 
All communication between the TM and the PE must go 
through the SM. The SM provides the interfacing 
between all TMs and the PEs through a special Access 
API and signals. These are shown in table 5. We impose 
this mode of communication to preserve the integrity of 
the system and to let the SM enforce access privileges as 
specified by the designer. 

Figure 3 explains the interfacing provided by the SM. 
The figure shows the sequence of operations that gets 
executed when (a) a PE issues an Event() signal, (b) a 
TM issues a ReadVar() request, and (c) a TM issues a 
WriteVar() request. We explain the three scenarios 
below: 

(a) TM Invocation and Termination 
When a subscribed event (signal) is consumed in 
the EFSM of a PE, the signal Event(ei, P) is sent to 
the SM indicating the event type and the protocol. 
The SM looks into its subscription lists to find 
which TMs are currently bound to such (event, 
protocol) pair, and then it activates them by the 
Invoke(TM) operation. Whenever the SM activates 
a TM, it also creates a record in its data store that 
we call (TM-Instance) to be able to handle any 
future requests that might be made by the TM. 
When the TM finishes, and before it is terminated, 
it sends a Finish(TM) request to the SM. The SM 
then removes the TM-Instance record of the 
terminating TM. 

(b) Read Access 
When a TM wants to read the value of a certain 
variable vi from the underlying PE, it sends a 
ReadVar(vi) request to the SM, then it blocks 
waiting for the value of vi. The SM checks if the 
requested value is accessible (i.e., Pi Vv ′∈ ) and if 
the TM that issued the read request is eligible (i.e., 
it is Read-Only or Read-Write type). If this is true, 
the SM issues a GetVal(vi) signal to the PE 
specifying the name of the requested variable, 
otherwise it replies with a Return(-1, false) to the 
TM. When the PE receives a GetVal(vi) signal it 
returns the value of vi to the SM via a signal 

ExpVal(val). The SM then forwards the value val to 
the TM via a Return(val, true) operation. 

(c) Write Access 
As we mentioned earlier, some TMs can modify 
certain variables in the EFSM of the PE. If a 
variable v is modifiable (i.e., PVv ′′∈ ), then, its value 
can be overwritten by a Read-Write-type TM. 
However, the protocol designer should be careful 
when choosing the members of PV ′′  in each PE. 
Technically, since a TM in the InTraN framework 
represents a soft alternative for hardcode protocol 
modifications, this relaxation should make TMs 
even more dynamic and powerful. On the EFSM 
level of the PE, modifying a variable can trigger a 
state transition; this, of course, should reflect the 
intention of the designer. Therefore, protocol 
modifications can be realized through a group of 
carefully designed TMs which can manipulate 
certain properties of the EFSM through interaction; 
(reading from) and (writing to) protocol's local 
variables. As with the reading case, writing to PE's 
local variables must go through the SM. The TM 
makes a write request and passes the variable name 
and its new value to the SM via a WriteVar(vi,val) 
operation. If vi is modifiable and the TM is Read-
Write type, the SM generates a signal 
SetVal(vi,val) to the PE. Otherwise, it simply 
ignores this WriteVar() request. When the EFSM 
of the PE consumes the SetVal() signal, it simply 
runs the assignment vi := val. 

2.2.4 Protocol Meta-Engineering 
The meta-engineering of a PE involves adding new 
events and transitions to its EFSM. The SM should be 
able to tell the PE which events in its PE′  set are 
currently subscribed by SPs. These events will be 
marked in the EFSM, so that, whenever any one of them 
occurs, the EFSM sends a signal to the SM over its T-
type channel. 

Figure 4 depicts the necessary meta-engineering of the 
EFSM of any classical protocol entity P in order to 
make it InTran enabled—new components are shown in 
shaded SDL symbols. Let Si be any state in P, Ei be any 
subscribable event, and Ui be any un-subscribable event, 
then the following components are added to the EFSM: 

1) A new transition triggered by the signal SetVal(di, 
val).   

2) A new transition triggered by the signal GetVal(di). 
3) A new transition triggered by the signal SetFlag(Ei, 

val) 
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4) For every Ei a Boolean flag (SEi,) is created in P to 
remember the current subscription status of Ei. SEi is 
set to true if Ei is currently subscribed. We augment 
the transition of Ei right after the SDL input symbol 

as shown in figure 4. After consuming Ei, the EFSM 
checks the associated subscription flag (SEi) of the 
consumed event. If SEi = true (i.e., an SE is currently 
subscribed to Ei), the EFSM outputs the signal 

Figure 4. Protocol meta-engineering extension. 
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Event(Ei, P) to the SM. Otherwise, no action is 
taken.  

The SM uses the SetFlag() signal to manage 
subscription flags (i.e., SEi flags) as follows: Assume an 
SP made the subscription: Bind(Ei, Pj, TMk), the SM 
registers this subscription instance in its internal data 
store, and then checks if there are other SPs currently 
subscribed to Ei. If no active subscription instance is 
found, the SM sends the signal SetFlag(Ei, true) to the 
EFSM of protocol Pj. When the EFSM consumes this 
signal, it enables Ei signaling by setting the subscription 
flag SEi associated with Ei to true. However, if the SM 
does find at least one active subscription instance to Ei 
in its data store, this indicates that Ei signaling is already 
enabled, and therefore the SM takes no further action. 
Conversely, if an SP made Unbind(Ei, Pj, TMk), the SM 
updates its internal data store, and also checks if any SP 
is still subscribed to Ei after executing the Unbind(). If 
at least one such instance is found, the SM takes no 
further action, but if the Unbind() has caused the last 
subscription instance of Ei to be deleted from the data 
store, the SM sends the signal SetFlag(Ei, false) to the 
EFSM of protocol Pj to disable Ei signaling service. The 
SetVal() and GetVal() signals correspond to the write-
access and read-access operations which were described 
in the previous sub-section. 

2.2.5 Security Model 
Since InTraN exposes the internal state of the protocol 
to entities running in the user space (i.e., TMs), it must 
address the correctness and safety issues of the 
underlying protocol appropriately. We can claim that 
access modes that only involve signaling or reading are 
safe (i.e., Signal-Only and Read-Only TMs). We have to 
be concerned only when a TM is allowed to write to 
protocol's internal variables (i.e., Read-Write mode). 

Here, we propose a security model which allows 
controlled access to protocol's variables while 
maintaining system stability. We define two role types 
who can be involved in any InTraN-based solution: (1) 
protocol designer, and (2) TM designer. The 
components given by the protocol designer must run 
with super-user access. He basically performs the one 
time meta-engineering of protocol entities. This 
includes, deciding the three classes of protocol's 
variables (A, B, and C), identifying subscribable events 
(i.e., PE′ ), and extending the EFSM by adding InTraN 
components. The TM designer can be any user; s/he 
implements a particular protocol solution/extension by 
coding one or more TMs. S/he uses the facilities offered 

by the underlying InTraN-enabled system to implement 
the intended solution.  

It can be seen that only when a TM of type Read-Write 
tries to update a C type variable, then system security 
(or protocol stability) can be compromised—we define 
this combination as the dangerous combination. The 
danger may come from two sources: (1) a flaw in the 
protocol design (e.g., wrong type declaration), and (2) a 
malicious TM of type Read-Write. When a system is 
running with a dangerous combination, the operating 
system can optionally activate a guarding program that 
verifies any attempts made by TMs to update C type 
variables. If the update is safe, it is allowed to proceed. 
But, if the update may cause instability in the system 
(i.e., it is attempting to change a timer or an index 
variable) then the write operation is blocked 
immediately and the offending TM is shut down. The 
guarding program itself is simple and can be 
implemented as an operating system utility. Basically, it 
needs to know which updates on any PE's internal 
variables are safe and which are not regardless of 
protocol designer classifications in table 3. This is 
determinable by static impact analysis of the protocols 
EFSM. This way, the integrity of the InTraN-enabled 
system can be preserved even in the presence of 
potential design flaws. 

What are the performance implications of this added 
security? We can show that by careful implementation 
the overhead should be very small. Here, we propose an 
implementation path using event-driven run-time 
screening, but other choices can be taken as well, such 
as static analysis of the TM source code (similar to that 
of [14]). The SM can be programmed to initiate a 
special thread program to handle the WriteVar() 
operation and the dangerous combination. Figure 5 
describes the basic algorithm: Assuming a TM called 
(Twrite) has issued the following write operation: 
WriteVal(Twrite, v, value). First, the SM consults the 
TM-instance of Twire to retrieve the protocol entity P 
associated with it. Next, this operation must pass the 
initial screening at the SM (i.e., the SM checks if Twrite 
is Read-Write type TM and v is C type). If the write 
operation passes this test successfully, then the SM 
invokes the guarding program to perform a second-level 
independent screening and waits for its decision. The 
SM passes two parameters to the guarding program: 
target variable v and target protocol entity P. If the 
guarding program finds that this write operation is safe, 
it sends a GREEN signal to the SM to approve it, the SM 
then continues normally by issuing a SetVal(v, value) 
signal to P. Otherwise (i.e., the write operation is not 
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safe), it sends a RED signal to the SM which responds 
by canceling the write operation and shutting down 
Twrite. Let N be the number of PEs in the system and 
let K be the maximum number of unsafe variable 
updates in any PE. Then, the guarding program will 
make O (N+K) comparisons in the worst case. 

Besides this operation, the application and the TMs run 
in the user space of the native operating system with all 
the usual security protections. Thus, the rest of the 
InTraN-enabled system remains as secure as the original 
non-extended system. If we compare this to the active 
networking model for example, we cannot find a peer 
security strategy.  

3. Interactive-TCP (iTCP) 
We demonstrate the InTraN principles outlined in the 
previous section by means of a simplified TCP protocol. 
First, we formally describe the abstract protocol using 
SDL, and then we augment the protocol by adding 
InTraN components. [32] Described a simple sliding 
window protocol in SDL that featured positive 
acknowledgments and retransmission mechanisms. We 
transformed this protocol into simplified TCP by 
adding congestion control support. The new version 
features the slow start/congestion avoidance 
mechanism [15], and the fast retransmit/fast recovery 
mechanism [16]. 

3.1 The SDL model  
The simplified TCP service can be modeled as a 
composition of three blocks, Transmitter Entity (TE), 
Receiver Entity (RE), and Medium. The Medium 
represents the underlying unreliable service (e.g., IP 
and lower layers) while TE and RE represent the two 
endpoints of a TCP connection. Figure 6 describes the 
composition. The sending and receiving applications 
are located in the environment. They interact with the 
system via two service access points modeled by two 
unidirectional channels, ST (from the environment to 
the TE) and SR (from RE to the environment). The 
channel ST carries the AppWrite signal from the writer 
application to the TE, and the channel SR carries the 
AppRead signal from the RE to the reader application. 

The TE uses a bidirectional channel MT to send data 
(via a SendData signal) and to receive 
acknowledgments (via a RecvACK signal) over the 
Medium. One the opposite side, the RE also uses a 
bidirectional channel MR to receive data (via a 
RecvData signal) and to send acknowledgments (via a 
SendACK signal) through the Medium. 

In figure [appx1] (please see last 4 pages) we formally 
present in SDL notation the fundamental part of TCP's 
congestion control and flow control mechanisms at the 
sender (Transmitter Entity). The system describes a 
unidirectional data service. In this abstract description, 
we only focus on the sliding window and congestion 
control aspects of TCP, many of the details in 
conventional TCP are hidden, such as: buffer size 
issues, sequence number calculations (e.g., sequence 
number wrap around), and checksum tests. Furthermore, 
many of the details are hidden inside procedure calls, 
e.g., CalcRTO(). 

The EFSM of this system is depicted in figure 7 and is 
described as:  

 S = {Slow Start, Data Transfer, Fast Recovery, 
Closed Window}, 

 0s  = Slow Start, 
 E = {AppWrite, RecvACK, rexmt timeout}, 

Figure 6. Half-duplex TCP service composition. 
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 O = {SendData}, 
 V = {seqno, ackno, RAW, dACK, pACK, FRFlag, 
RTO, rexmt, Cwnd, Swnd, LU, LS, ExpBoff}. 

 f = {T0, T1, …, T20}. These transitions are labeled 
in figure appx1. 

3.2 EFSM of iTCP 
Interactive-TCP is a real interactive transport protocol 
based on the InTraN framework. We wanted to track 
two events in TCP: ‘retransmission timer timeout’ and 
'receiving third duplicate ACK’. Both events signify 
packet loss and usually cause TCP to trigger congestion 
control procedures. 

The augmented EFSM of our Transmitter protocol 
becomes: (InTraN additions are shown in bold) 

 S = {Slow Start, Data Transfer, Fast Recovery, 
Closed Window}, 

 0s  = Slow Start, 
 E = {AppWrite, RecvACK, RexmtTimeout, GetVal, 
SetVal, SetFlag}, 

 O = {SendData, ExpVal, Event}, 
 V = {seqno, ackno, RAW, dACK, pACK, FRFlag, 
RTO, rexmt, Cwnd, Swnd, LU, LS, ExpBoff, RA, 
RT}. 

 f is augmented as we described in figure 4 (i.e., by 
adding three transitions for the GetVal, SetVal, and  
SetFlag events, and modifying existing transitions 
of subscribable events in every state).  

Where RA and RT are the Boolean subscription flags 
associated with events RecvACK,and RexmtTimeout 
respectively. We chose the sets PE′ , B, and C as 
follows: 

 PE′ = {RecvACK, RexmtTimeout},  
 B = {dACK, Swnd, RAW}, 
 C = {}. 

The InTraN-added members of E (i.e., GetVal, SetVal, 
and SetFlag) are for internal SM use only. Therefore, 
they are not included in PE′  (i.e., they cannot be 
subscribed by a SP). The same applies to the 
subscription flags (RA and RT) which cannot be 
included in the set B or C. 

3.3 The TMs 
We have experimented iTCP with elastic video traffic 
by allowing an adaptive video transcoder [8] to intercept 
the video stream and modify the generation bit rate 
based on the InTraN service feedback. We designed the 
following simple scheme: when the network is 

congested (e.g., ‘RexmtTimeout’ event has occurred) 
InTraN triggers a TM to reduce the generation bit rate of 
the video transcoder. When the network recovers from 
congestion, another TM orders the transcoder to resume 
transmission at the normal bit rate. We have realized the 
scheme by writing two TMs: TM-rexmt and TM-ack. 
The algorithms of these TMs are shown in figure 8. We 
let the Subscriber Program—in this case the video 
transcoder—subscribe by running: Bind 

Figure 9. Quality/delay tradeoff offered by iTCP. 
Frame delivery delay was dramatically reduced by 
controlled trade-off of the SNR quality. 
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(1) TM-rexmt (Type: Signal-Only) 
bitRate := bitRate * RRF; 
Finish(TM-rexmt); 

(2) TM-ack (Type: Read-Only) 
ReadVar(dACK); 
If (dACK = 3)  

bitRate := bitRate * RRF; 
Else{ 

ReadVar(Swnd); 
ReadVar(RAW); 
If (Swnd >= RAW)  

bitRate := Normal Rate; 
} 
Finish(TM-ack); 

Were: 
bitRate: is a parameter used by the transcoder to decide 

the generation bit rate of the next video frame. 
RRF: is the Rate Reduction Factor (less than 1). 
dACK: the number of duplicate ACKs received at TCP 

sender. 
Swnd: TCP sender window size. 
RAW: Receiver Advertised Window. The window size 

advertised by the TCP receiver in the last ACK. 

Figure 8. Video Transcoder TMs
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(RexmtTimeout, TCP, TM-rexmt); Bind (RecvACK, 
TCP, TM-ack). 

3.4 Performance 
The scheme proved to be effective and had shown 
substantial gain in video performance metrics like 
frame-wise end-to-end delay and referential jitter. 
Figure 9 shows a sample of performance results which 
highlights the tradeoff offered by iTCP. Here, each 
video frame is plotted as a point in the video 
quality/frame delay plane. As can be seen from the 
region of the two QoS distributions, in classical TCP, 
although frames have been generated with SNR quality 
ranging between 22-29 dB, but many of these frames 
were lost in transport, and were never delivered. In 
contrast, the proposed iTCP (with a bit Rate Reduction 
Factor RRF=0.55) delivered all the frames with 15-17 
delay guaranteed at 15-26 dB quality. Fundamentally, 
what InTraN solution has offered is a qualitatively (as 
opposed to the quantitative improvements offered by 
unaware solutions) new empowering mechanism, where 
the catastrophic frame delay can be traded off for 
acceptable reduction in SNR quality. We have published 

detailed performance analysis on iTCP and related 
experiments in [18, 19].  

4. Protocol Modeling Example 
In this section we briefly describe the well-known 
'Snoop' protocol [4] which has been proposed—among 
many other schemes in the literature—to improve TCP 
performance over wireless links. Then, we show how it 
can be re-modeled via the InTraN paradigm.  

Wireless networks have certain characteristics that are 
not handled properly by regular TCP such as high bit 
error rate (BER) and long disconnections due to 
handoffs or bad reception. When a packet is lost, regular 
TCP assumes that it is due to congestion and will 
always trigger congestion control procedures at the 
fixed host. However, in a wireless environment, radio 
transmission errors or handoffs can also cause packet 
loss. This will result in significant reductions in 
throughput that can severely degrade overall 
performance. A good survey on proposed protocols for 
improving TCP performance over wireless networks can 
be found in [2, 3, and 11]. 

4.1 “Snoop” 
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First we explain the basic idea of [4] which is the core 
Snoop. In a later section we discuss some of its 
modifications [13, 20, 21, 31, and 35]. The 'Snoop' 
protocol introduced a module, called 'Snoop', at the base 
station that monitors the wireless link for every packet 
that passes through in both directions.  

The 'Snoop' module maintains a cache of TCP packets 
sent from the fixed host (FH) that have not yet been 
acknowledged by the mobile host (MH). A packet loss 
is detected either by the arrival of duplicate 
acknowledgment or by a local timeout. To implement 
the local timeout, the module employs its own 
retransmission timer. The 'Snoop' module locally 
retransmits the lost packet if it has it in the cache. Thus, 
the base station can hide the packet loss from the fixed 
host, therefore avoiding its invocation of an unnecessary 
congestion control mechanism. Figure 10 describes the 
architecture of the classic 'Snoop' protocol. For brevity, 
it shows the part of 'Snoop' that handles one direction of 
the traffic only (Data segments from FH to MH and 
ACK segments from MH to FH). As it can be seen, it 
requires substantial extension inside network software 
layers. However, with InTraN the same functionality 

can be achieved at application layer with an InTraN-
enabled IP protocol (or iIP). Figure 11 shows this 
InTraN implementation of 'Snoop'—which we call 
'iSnoop'. In this scheme, the ‘Snoop Agent’ (shown in 
figure 11) subscribes two iIP events: an ACK received 
from MH event (Recv_ACK), and data segment 
received from FH event (Recv_DAT). Whenever any 
one of these two events occurs, iIP sends a signal to the 
SM which invokes the appropriate TM: TM-Data or 
TM-ACK.  

The Snoop Agent is a process that runs in the application 
layer. Its main role is to initialize and maintain the 
Snoop State and subscribe with the InTraN service. The 
rest of the work is now done by the TMs. The Snoop 
State is similar to that of conventional 'Snoop'. The TM-
Data handles the (Recv_DAT) event and implements 
the Data processing algorithm of 'Snoop'. The TM-ACK 
handles the (Recv_ACK) event and implements the 
ACK processing algorithm of 'Snoop'.  

As can be seen this implementation also keeps the 
cached data segments in the TCP buffer just like the 
classical 'Snoop' and thus retains the same performance 

Table 6. Cost parameters for Snoop/iSnoop 

Name Meaning 
CACK Overhead cost per ACK segment 
CDAT Overhead cost per Data segment 
NACK Number of ACK segments 
NDAT Number of Data segments  
Un Update State/Cache cost in normal mode 
Ui Update State/Cache cost in interactive 

mode. 
We assume that Ui > Un since Un might 
involve making a system call.  

Sub Subscription cost 
S Software Interrupt ‘Signal’ cost 
H Signal Handler cost 
R Retransmit cost 
T Total transfer size (Mbytes) 
Choff Handoff cost 

Table 7. Algebraic overhead cost of Snoop and iSnoop 
for three scenarios of wireless link properties 

Scenario Classic 'Snoop' Interactive 'Snoop' 
(iSnoop) 

Error-free, 
handoff-free 
wireless link  

SNOOPfree  =  
NDAT  (CDAT  + Un)  
+ NACK (CACK + Un) 

iSNOOPfree =   
Sub + NDAT (S + H + 
CDAT + Ui) +  NACK (S 
+ H + CACK + Ui) 

Error-prone 
link with 
BERx = 1 
error / x MB 

SNOOPfree+(T / BERx) iSNOOPfree+(T / BERx) 

Handoff 
every n 
seconds 

SNOOPfree+Choff (8T / nR) iSNOOPfree+Choff (8T / nR)

 

Table 8. Running modes for the getrusage() experiment 
Mode name Description 
Classic TCP No interactivity overhead. This is the reference case. 

Invoke only Subscribe with a Signal-only type TM. The TM does not perform any Read/Write 
operations. 

File access Subscribe with a Signal-only type TM. We let the TM open a disk file and 
perform one read operation and one write operation.  

Protocol access Subscribe with a Read-only type TM. We let the TM perform one ReadVar() 
operation from TCP. 

iTCP 
modes 

Protocol & File Subscribe with a Read-only type TM. We let the TM perform both a disk 
read/write and a ReadVar() operation from TCP. 
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advantage. The Snoop algorithms are described in detail 

Figure 15. Context switching: iTCP overhead vs. application 
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Table 10. iTCP's context switching overhead 
 Voluntarily CSW  Forced CSW Total CSW 

Invoke only 24.10% 0.19% 4.16% 
File access 25.10% 0.22% 4.39% 
Protocol access 24.30% 0.20% 4.22% 
Protocol & File 24.20% 0.20% 4.19% 

 

Table 9. iTCP's CPU time overhead 
 User CPU Time System CPU Time Total CPU Time 
 iTCP% SD iTCP% SD iTCP% SD 

Invoke only 1.10% 55.68 3.80% 67.62 2.53% 200.08 
File access 2.70% 116.47 3.70% 106.94 3.23% 272.28 
Protocol access 0.90% 44.65 3.10% 59.37 2.07% 167.89 
Protocol & File 1.30% 81.09 4.10% 77.95 2.82% 224.89 

 

Figure 14. CPU time: iTCP overhead vs. application 
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in [4].  

Both TM-Data and TM-ACK need to interact with iIP; 
they use the Access API of the InTraN service to (i) 
probe the IP layer and Read relevant header parameters 
from the TCP segment that has just arrived and (ii) to 
update the cache of TCP segments. The TM-Data adds 
segments to the cache and the TM-ACK clears the cache 
or part of it as decided by their respective algorithms. 
We assume that both TMs have full access to the 'Snoop' 
State; they can read and update state variables as 
necessary. As can be seen the entire 'Snoop' logic has 
been implemented in application layer. The 'Snoop' 
protocol uses a different mechanism to handle traffic on 
the opposite direction. This too can be easily modeled 
with the InTraN paradigm in a similar fashion. The 
advantages of the InTraN engineering does not stop at 
the classical 'Snoop', indeed, more advanced versions of 
the basic 'Snoop' strategy can also be implemented with 
equal ease. For example, more advanced error 
correction mechanism—such as forward error 
correction (FEC) [24] can be implemented as well with 
the same effort without requiring a new round of 
standardization/modification in network layers. 

4.2 ‘Snoop’ Variants & InTraN 
It is interesting to note, that many improvements and 
modifications on the original Snoop have been proposed 
since its first publication in 1995 [13, 20, 21, 31, and 
35]. The evolutionary history of Snoop is a good 
example that highlights the importance of meta-
engineering provisioning. Some of these newer 
techniques are variations of Snoop and few are 
expansions to Snoop. The later keeps all the basic 
features of Snoop and adds new ones, while the former 
substitutes. For example, [35] introduces a TCP-SACK 
aware Snoop. Their work was motivated by observing 
several versions of TCP with and without Snoop. They 
found that the Snoop protocol improved the 
performance of TCP Vegas considerably but in the case 
of TCP SACK, the effect of using the Snoop protocol 
was actually negative. The algorithm proposed in [35] 
helps Snoop differentiate between an ordinary ACK and 
a SACK block. In the case of an ordinary ACK the 
SACK-Aware Snoop retransmits only the packet as 
suggested by the sequence number of the duplicate 
ACK. However, in the case of a SACK block the 
protocol retransmits all the packets indicated by the 
SACK block. [13] has extended this idea by employing 
a SNACK mechanism on the BS and the MH to provide 
explicit information on multiple packet losses over the 
wireless link. Two protocol components are used: a 
SNACK-Snoop deployed at the BS and a SNACK-TCP 

deployed at the MH. Another enhancement is found in 
[20], an ARQ Snoop Agent is inserted between TCP and 
MAC layers at both the sender and the receiver to 
exploit the ARQ link layer information for a more 
efficient acknowledgement of TCP packet delivery 
(e.g., When a TCP packet is successfully delivered at 
the link level, the TCP ACK for the transport layer will 
not be sent through the channel, but it will be 
automatically generated locally at the sender side). It is 
worth noting that all of these variants can be easily 
modeled with the InTraN EFSM-based paradigm 
especially that most of them are natively event-based.  

The implementation of these Snoop enhancements 
would require permanent changes in the network layers. 
Unfortunately, these are yet to see any real deployment 
despite the benefits they offered. In sharp contrast to the 
conventional approach to protocol reengineering, the 
base Snoop including these recent enhancements can be 
easily deployed using InTraN. For enhancements it will 
require modifications only at application layer. [20] 
Will require TMs to subscribe a new event. Only TMs 
have to be substituted under InTraN paradigm of meta-
engineering.  

This further illustrates the crucial advantage of the idea 
behind the InTraN paradigm—to provide an alternative 
way to model and implement protocols’ extensions or 
modifications. Not only it reduces deployment cost, but 
also it provides the new capability to easily switch 
between implementations. Often, there is no decidedly 
winner alternate, different versions wins in different 
cases. 

5. Performance Issues 
5.1. Overhead cost 
The transparency model implementation of both 
protocols adds some extra cost to the original scheme as 
a result of the added signaling and system calls 
overhead. Here, we show an abstract comparison of 
both interactive and conventional schemes of the 
'Snoop' protocol. In table 6 we show several quantities 
that define cost variables and wireless link 
characteristics. The first column in table 7 shows the 
estimated cost incurred by deploying the 'Snoop' 
protocol for three wireless link scenarios: (1) error-free, 
handoff-free wireless link, (2) error-prone link with 
BER = 1 error for each x Mbytes, and (3) a moving 
mobile node that triggers a handoff every n seconds. 
The second column represents the InTraN version of 
'Snoop'. In the first scenario (a reference case) 'iSnoop' 
added overhead came from Sub, S, H, and Ui - Un.  
Actually, in real practice these added costs should be 
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very small (almost negligible). Besides the reference 
case, the other two scenarios are identical in both 
protocols. 

To get a real measurement of interactivity service 
overhead we performed a simple experiment on iTCP. 
We ran the video session (server, transcoder, and 
player) on classical TCP (the reference case) and on 
iTCP with four different modes by varying the access 
complexity of the TM. These five modes are explained 
in table 8. 

We used the FreeBSD utility getrusage() to collect 
statistics about system resources used by the video 
transcoder (our subscriber program) in the five running 
modes. In the four iTCP modes, we measured the 
overhead cost of invoking the InTraN service which can 
be summarized by (1) subscription cost, (2) SM cost, 
and (3) TM cost. The most significant part of these is the 
TM cost since it implements the real protocol extension 
and its complexity can vary significantly. Therefore, we 
used TM complexity as a criterion to classify iTCP runs 
into four modes. Also, in each mode, we ran the video 
session ten times by varying the number of TMs that 
were invoked during the session from 1 to 10—we will 
call this number N. 
 
We collected the following resource usage information 
from the getrusage() function: 
1) utime: The total amount of time spent executing in 
user mode. 
2) stime: The total amount of time spent in the system 
executing on behalf of the process. 
3) vcsw: The number of times a context switch resulted 
due to a process voluntarily giving up the CPU before 
its time slice was completed (usually to await 
availability of a resource). 
4) fcsw: The number of times a context switch was 
forced by the OS due to a higher priority process 
gaining the CPU or because the current process 
exceeded its time slice. 
 
The performance results of the first two parameters are 
plotted in figure 14 and the latter two are plotted in 
figure 15. 
 
A) CPU time Analysis 
In figure 14 iTCP overhead time is shown on the left Y-
axis at the lower part of the figure, and the total 
application running time is plotted on the right Y-axis. 
We can see that (utime) overhead—figure 14(A)—
varied between 0 and 220 msec, while (stime) 
overhead—figure 14(B)—varied between 0 and 360 

msec. This is a small percentage of the total running 
time in both cases as we show in table 9. In the table we 
also show the standard deviation (SD) of the iTCP 
overhead over the 10 runs. We could not determine a 
consistent pattern of CPU time overhead as N increases. 
This means that once the InTraN service has been 
activated, N will not have a significant impact on CPU 
time. But it can be seen that iTCP modes which involve 
a file access took more CPU time and showed a higher 
(SD).  
 
B) Context Switching Analysis 
In figure 15 we show context switching overhead and in 
table 10 we show the overhead as a percentage of the 
total context switching. It can be seen that 
approximately 20% of the total number context 
switching was voluntarily (vcsw) and the rest was 
forced (fcsw). But, iTCP added more to (vcsw)—
between 1000 to 4400 context switches—than that it 
added to (fcsw)—between 70 to 170 context switches. 
Percentage wise, as shown in table 10, iTCP overhead is 
25% of (vcsw) versus 0.22% of (fcsw). Overall, iTCP 
added less than 4.5% to the total context switching. 
Another observation is the increase pattern of (vcsw) as 
a linear function of N which can be described by f = 252 
N + 1500. This means that iTCP service deployment 
will add at least 1500 to (vcsw), and then (vcsw) grows 
linearly with a slope = 252 as N increases. 

 5.2. Security and practice 
As we saw in the previous section, any InTraN based 
solution will incur a small overhead cost on the 
application and the OS levels. But this can be justified 
for the practical gains allowed by employing the InTraN 
paradigm. Since TMs run in the application space, they 
will enjoy a well developed environment that has been 
fine-tuned to run custom codes, share resources, and 
manage security issues. Actually, the security issue is of 
great importance in such engagement. For example, 
running “Active Modules” inside the network (e.g. 
Active and Programmable Networks [10]), raises many 
security concerns that usually require complex 
techniques to maintain acceptable security level and 
stability within the network domain. Moving these 
modules up to the application layer, makes security 
management a much easier task. Conversely, within the 
InTraN paradigm, the Subscriber Programs and TMs 
can only access internal network services through the 
API extension, and by imposing the appropriate access 
restrictions on these entities, we can guarantee a certain 
security level. Furthermore, since these API extensions 
can be implemented as system calls, we can simply 
extend the OS security model and reuse available OS 
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facilities like memory management and resource sharing 
to achieve even better performance. These 
characteristics make the InTraN model an attractive and 
a practical choice to implement and deploy many useful 
protocols which thus far had been only simulated or 
tested on a small-scale controlled testbed. 

6. Concluding Remarks 
The Interactive Transparent Networking (InTraN) 
paradigm can offer two fundamental benefits, (i) it 
becomes much easier and practical to implement and 
deploy the modeled protocol on a real network, and (ii) 
new extensions or alternative algorithms—invoked as 
application level Transientware Modules (TMs)—can be 
experimented with the new protocols without changing 
the underlying infrastructure. For example, a protocol 
like 'Snoop' which was intended to improve TCP 
performance over wireless links can also be augmented 
with extra TMs to add TCP friendly features.   

We have particularly chosen two ‘original source’ 
examples for demonstrating an implementation path via 
transparent networking—but this is not to endorse them. 
Please note because of their basic usefulness researchers 
have subsequently performed extensive performance 
evaluations [17, 26] and have also proposed many other 
creative schemes [27, 33]. The proposed transparency 
via interaction and the triggered TM deployment will 
provide them implementation paths as well. In fact, 
since TMs operate at the application layer it will be 
much easier to upgrade a particular TM to another 
improved one. 

The work has been supported by the DARPA Research 
Grant F30602-99-1-0515.  
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Figure appx1. SDL description of a simple TCP 

Process TCP Transmitter 
 

/* This process has four states: (1) initial 
state is slow start, (2) data transfer, (3) 
fast recovery, and (4) window closed. The 
EFSM diagram of this process is given in 
figure 7 */ 

seqno : Header field (sequence number) 
ackno : Header field (ACK number) 
RAW : Hearder field (Receiver 
Advertised Window) 
dACK : duplicate ACK 
pACK : previous ACK 
FRFlag : Fast Recovery Flag (Boolean) 
RTO : Retransmission Timer Out value 
Cwnd : Congestion window 
Swnd : Send Window 
LU : Least Unacked byte 
LS : Last Sent byte 
ExpBoff : Exponential Backoff 
SBuff : Sender Buffer. 
rexmt: Retransmission timer. 

 
Slow Start 

RecvACK 
(H, data) 

AppWrite 
(data) 

rexmt 
(seqno) 

Add data to SBuff 

LS - LU < Swnd 

SendData 
(H, Data) 

CalcRTO (RTO) 

set (RTO, rexmt) 

LS := LS + 1 

 
 

 
 

Window 
Closed 

Cwnd ≤ ssthresh 

Cwnd := Cwnd × 2 Cwnd := Cwnd + 1

(true)

(false)

Swnd := min 
(Cwnd, RAW)  

 
 

ExpBoff < 64  

ExpBoff :=  
ExpBoff × 2 

(true) 

(false)

CalcRTO (RTO) 

set (ExpBoff × RTO, 
rexmt) 

LU := seqno+1 
ExpBoff := 1 

 
 

Cwnd ≤ RAW 

(true) 

(false) 

 
 Data Transfer

 seqno ≥ LU 

(true) 

(false)

 
 

Initialize  
variables 

 

(1)

T0 

T1 

T2 

T3 

T4 

T5 

Remove ACKed 
bytes from SBuff 

ReleaseTimers 
(seqno) 

Retransmit 
(seqno) 

(true) (seqno) 
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Figure appx1. (continued) 

 
Data Transfer 

RecvACK 
(H, data) 

AppWrite 
(data) 

rexmt 
(seqno) 

Add data to SBuff 

LS - LU < Swnd 

SendData 
(H, Data) 

CalcRTO (RTO) 

set (RTO, rexmt) 

LS := LS + 1 

 
 

 
 

Window 
Closed 

seqno = pACK 

dACK := dACK+1 pACK := seqno

(true) 

(false) 

dACK = 3 

 
Fast Recovery

 

(true) 

(false) 

LU := seqno+1 

 
 

ssthresh := 
max (Swnd/2, 2) 

Cwnd := 1 

 
Slow Start 

 

temp := min (Cwnd, 
Swnd/2) 

ssthresh := max(2, temp)
Cwnd := ssthresh + 3 

seqno ≥ LU 

(true) 

(false) 

 
 

(false) (true) 

Process TCP Transmitter 
 

(2)

T6 

T7 

T8 

T9 

T10 

T11 

Remove ACKed 
bytes from SBuff

ReleaseTimers 
(dACK-1)

Retransmit 
(dACK-1)

ReleaseTimers 
(seqno)

ReleaseTimers 

archeticture
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Figure appx1. (continued) 

Process TCP Transmitter 
 

(3) 

 
Fast Recovery

 

RecvACK 
(H, data) 

AppWrite 
(data) 

rexmt 
(seqno) 

Add data to SBuff 

seqno = pACK  

FRFlag := True

(true) 

(false) 

 
 

ssthresh := 
max (Swnd/2, 2) 

Cwnd := 1 

 
Slow Start 

 

LU := seqno+1 

 
Data Transfer

 

FRFlag  

(true) 

(false) 

 
 

SendData 
(H, Data) 

CalcRTO (RTO) 

set (RTO, rexmt) 

 
 

seqno ≥ LU 

(true) 

(false) 

 
 

FRFlag := False 
LS := LS + 1 

T12 

T13 

T14 

T15 

T16 

T17 

ReleaseTimers 
(seqno) 

Retransmit 
(seqno) 

Remove ACKed 
bytes from SBuff

InTraN
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Figure appx1. (continued) 

Process TCP Transmitter 
 

 
Window Closed

RecvACK 
(H, data) 

rexmt 
(seqno) 

seqno ≥ LU  

(true) 

(false) 

 
 

LU := seqno+1 

 
Data Transfer

AppWrite 

 
 

(4)

T18 

T19 

T20 

Remove ACKed 
bytes from SBuff 

ReleaseTimers 
(seqno) 

ReleaseTimers 
(seqno) 

Figure 1. The 
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