
To Appear in the Journal of of Computer Communications,
Elsevier Science Direct (Accepted May 2006)

COMCOM: KHAN/ZAGHAL , April 2006

Interactive Transparent Networking: Protocol
Meta-modeling based on EFSM

Javed I. Khan and Raid Y. Zaghal

Networking and Media Communications Research Laboratories
Department of Computer Science, Kent State University

233 MSB, Kent, OH 44242
javed|rzaghal@cs.kent.edu

Abstract—the extensibility and evolution of network services and protocols had become a major research issue in recent years.
The 'programmable' and 'active' network paradigms have been trying to solve the problems emanating from the immutable
organization of network software layers by allowing arbitrary custom codes to be embedded inside network layers. In this work,
we propose a new approach for building extensible network systems to support cross-layer optimization. The fundamental idea is
to perform a simple, light-weight meta-engineering on the classical OSI protocols' organization to make it interactive and
transparent. The protocols become (interactive) since they can provide event notification to service subscribers, and they become
(transparent) since they also allow controlled access to their state information. Actual protocol extensions (or modifications) can
then be performed at the application space by what we call Transientware Modules. This organization provides the infrastructure
needed for easy and practical extensions of the current network services and it becomes much easier to address other difficult
issues like security and flexibility. We call this mechanism Interactive Transparent Networking (InTraN) and we call the
extended kernel InTraN-enabled. We have realized a FreeBSD implementation of the extensible InTraN-enabled kernel. In this
paper, we present a formal EFSM-based model for the proposed meta-engineering and illustrate the principles through a real
example of TCP extension. Then, we demonstrate how it can be used to realize equivalents of other protocol modifications by
showing the InTraN model of 'Snoop' [4].

Keywords: interactive transparent networking, active networks, interactive TCP, protocol meta-engineering.

1. Introduction
Traditional network software stack has been designed
with a pseudo-layered organization. Each layer is
intended to offer a specific sub-service in the overall
task of high level communication between application
end-points. This organization used to be a blessing but
no longer. These network layers, the organization of the
services and their specific implementations now turn out
to be quite rigid and frustratingly immutable. The
increased sophistication and complex communication
needs of the applications as well as the increased
diversification of the underlying network infrastructure
now require more dynamic and informed adaptive
extension (or modification) of the existing protocols.
Some situations even call for new functionalities and
services as well [6]. The end-to-end paradigm has tried
to address this demand by proposing application layer
extensions (such as RTP [29]). Almost by definition any
‘network’ adaptation requires awareness about the
dynamics of events and the status within the ‘network’.
Fundamentally, network adaptation requires triggers
that originate from the network infrastructure. However,
the end-to-end approach faces difficulty due to the

classical 'black box' design. Network software layers
have been designed as a closed box from the
application's point of view [28]. Therefore, to
circumvent this problem, end-to-end solutions try to
estimate an approximation of network states by external
measurements such as probe-packets [1, 8, and 25]. A
key advantage is that end-to-end modules can run as
application level components. Thus, they are
dramatically easy to realize without requiring any
modification in the network software layers. Early end-
to-end solutions were therefore quite successful and
inspiring. However, as more complicated solutions were
attempted, it became evident that there is often a
substantial handicap in the timeliness and the type of
information that can be estimated from application layer
functions only. The network remains completely non-
communicative and silent from all its end-points. Some
states and statistics are indeed readily available in the
end-point lower layer modules (such as RTT, loss
information, power level, etc). But, because of the black
box design, this information remains out of reach from
the end-to-end modules. These upper modules have to
play a frustrating game of guessing these network states

KHAN/ZAGHAL EFSM Meta Modeling/ Revised Draft, April 2006

2

by indirect and often redundant means. In contrast to
end-to-end approach, researchers however have
proposed various direct and custom modifications (or
enhancements) to network protocols. However, these
enhancements were viewed as requiring serious changes
within networking software layers. Thus a majority of
otherwise bright ideas have faced a serious acceptance
problem. Most of these solutions achieved very limited
success towards real implementation and deployment.
The paradigm of active and programmable networking
attempted to find a holistic framework for custom
modifications within network software layers [5, 9]. In a
way, such customized networking approach can be
considered as diametrically opposite to the end-to-end
approach. To make protocols more adaptive, it allows
installing modifications/extensions right into the
network layer where all the events (triggers) and state
information are readily available. Unfortunately, this
approach introduces another set of even more serious
problems. Typically the network system space has not
been designed for multi-user execution environment.
Thus, issues like resource sharing and security has
remained unresolved in active and programmable
network systems. Apparently both of these two
approaches have the noble goal towards building
evolvable, flexible, and extensible network services and
have very attractive properties. But, as of today, both
are still facing their unique set of formidable
difficulties.

Is it possible to combine the best of both? It seems an
innovative solution may be formulated if a distinction
can be made between the information trigger needed to
initiate adaptation, and the actual action code. The
programmable network took the approach of keeping
both within network layers, while the end-to-end
networking approach took the approach of keeping both
at the application layer. It seems there might be a third
approach which may be able to keep the best of both.

In this research we present an experimental system
which takes advantage of this distinction. It seems the
need for changing and embedding custom components
inside network software stems from two realities: first,
we are seeing that the data in every communication
pathway has to be processed in custom and adaptive
ways. No finite set of pre-agreed, fixed protocols may
ever foresee and satisfy all cases. Secondly, these
customizations are very dynamic and communication-
case specific. Many of the triggers for the
accompanying custom actions originate right inside the
network software. However, instead of embedding
codes to create customized actions within network

layers, the new approach suggests creating a mechanism
to pull-up the required state information (of the service
or protocol) into the application layer. Then, the actual
actions can be formulated by programmable
components running at the application layer. We call the
new paradigm Interactive Transparent Networking
(InTraN). The scheme creates handles to be able to
push-down the generated actions into the target network
layer if needed. This relieves lower network layers from
housing costly custom components and from dealing
with complex issues regarding security and resource
sharing. The attraction is that the application space
already has a well developed provision to run custom
codes, share resources, and handle security issues for
managing multiple trust domains, etc, much of that can
be reused.

What are the potential costs? Yes, InTraN still requires
some reorganization in the network software. However,
in contrast to creating a network software organization
which can house custom codes, as proposed in active
networking, it requires creating a network software
organization which can facilitate service state
information exchange. Some meta-engineering of the
protocol is still required, though it is much lighter.
Compared to the active networking approach there is
also a potential concern about performance degradation
since actions are performed in relatively upper layer,
though it is expected to be much faster than the end-to-
end approach since much of the state information can
now be derived from the local network protocol end-
point. However, the potential advantage of easy
extensibility seems to be very lucrative.

We have recently implemented a transparent FreeBSD
based on the InTraN paradigm. As an instance of
interactive protocols, we have also implemented an
interactive version of an otherwise legacy TCP, which
we call interactive-TCP (iTCP). There are already some
excellent proposals for network protocol enhancements
and extensions. However, despite their functional
advantages, many of these creative solutions faced a
crippling deployment problem because they required
highly individualized changes within the network
software. To test the extension power of our approach,
we have selected one such instance based on TCP
derivatives—the 'Snoop' protocol proposed by
Balakrishnan et al. [4]. We demonstrate how it can be
easily implemented at the application level and operate
on demand within the InTraN paradigm. Through this
real implementation we explore the reorganization
requirement in network software layers, the formal
meta-engineering process of the involved protocols, and

KHAN/ZAGHAL EFSM Meta Modeling/ Revised Draft, April 2006

3

the transientware based extension mechanisms. Along
that, we expose the performance and security issues
associated with this new approach and provide a
comparative picture.

The paper is organized as follows: in section 2 we
formally explain the InTraN paradigm using SDL
language. In section 3 we present iTCP—a simplified
version of TCP with InTraN meta-engineering. In
section 4 we show how the InTraN paradigm can be

Table 1. Main components of the InTraN framework

Component Definition
Protocol Entity (PE) A communication protocol instance that provides specific communication service in the

protocol stack (e.g., TCP). It is described as an EFSM and has been meta-engineered
according to the InTraN paradigm—we use PE and EFSM interchangeably in the paper.

Subscriber Program (SP) A user program that uses network services (e.g., video server). It is regarded as a potential
subscriber of the InTraN service.

Transientware Module (TM) A piece of code that is specifically designed to handle one or more events in a certain PE.
One or more TMs can implement a protocol modification/extension at the application layer
instead of embedding the code in the network layer itself.

Subscription Manager (SM) An interface between application layer components (i.e., SPs, TMs) and network
components (i.e., PEs). One SM manages the subscription preferences of a single SP. It
handles subscription requests, maintains updated information about active TMs, and
handles their read/write requests.

ReleaseTimers

U
ser space

Subscriber Program
(SP)

Access API Subscription API

TM
 (2)

S
ystem

N

etw
ork

Subscription Manager
(SM)

TM
(1)

TM
 (n)

InTraN Enabled Protocol Entity
(PE)

Network
Service

Connection

Figure 2. InTraN channel extension.

Transientware
Module (TM)

Subscription Manager
(SM)

Protocol Entity (PE3)

Protocol Entity (PE2)

Protocol Entity (PE1)

P
ro

to
co

l S
ta

ck

Subscriber
Program (SP)

CP1

CP2

CP3

TP1

TP2

TP3

Table 2. Types of Transientware Modules

TM Type Definition
Signal-Only

A TM Ti is bound to an event ei in protocol P. When event ei occurs, Ti is only activated. It is not allowed to
access protocol's internal variables. No TM-instance record is created for Ti in the SM.

Read-Only

A TM Ti is bound to an event ei in protocol P. When event ei occurs, Ti is activated and a TM-instance record is
created for Ti in the SM. Ti is granted read-only access to readable variables in P (i.e., all variables v PV ′∈).

Read-Write

Same as Signal-Only mode, but in addition to that, Ti is granted write access to modifiable variables in P (i.e., all
variables v PV ′′∈).

KHAN/ZAGHAL EFSM Meta Modeling/ Revised Draft, April 2006

4

used to model 'Snoop'. In section 5 we discuss
performance and security issues and we conclude in
section 6.

2. Interactive Transparent Networking
(InTraN)
2.1 Background
The proposed interactivity and transparency is achieved
via formal meta-engineering of the network protocols so
that a selected subset of their states can be engineered to
be accessible by upper-layer service subscribers in a
controlled manner. We use SDL (Specification and
Description Language)1 [12, 30] to formally describe (a)
the protocol meta-engineering process and (b) the
network software organization needed to support the
interactivity and transparency. First let us briefly review
SDL. The programming model used by SDL is based on
extended finite state machines (EFSM) [7, 12]. SDL
augments the finite state machine model by providing
variables and timers and by supporting object-oriented
programming. We describe the protocol meta-
engineering mechanism of InTraN by assuming an
abstract communication protocol whose behavior is
described by an EFSM. We demonstrate how this
EFSM exposes protocol’s internal state to achieve
controlled yet secure transparency. Informally, the
EFSM is composed of states and transitions among
them. For a transition to occur, the system must receive
an event from the environment which triggers
corresponding actions. After performing the actions, the
EFSM produces output signals to the environment. An
SDL system is composed of several protocol entities;
each entity is designed as a single EFSM. Formally, an
EFSM is a 6-tuple (S, 0s , E, f, O, V), where S is a set of
states, 0s is an initial state, E is a set of events, f is a
state transition function, O is a set of output signals, and
V is a set of variables. The function f returns a next
state, a set of output signals, and an action list for each
combination of a current state and an input event. An
EFSM also uses predicates to control the behavior of the
protocol. These predicates usually allow similar states to
be grouped therefore reducing the total number of states
[12]. Upon receiving an event, the machine checks a
predicate that is composed of variables, logical
operators (e.g., AND, OR), and relational operators
(e.g., <, =, >). If a predicate is true, the EFSM performs
the actions and produces output signals (if applicable).

1 SDL is an ITU-standardized language for the formal description of
communication protocols. It is also suited for any application based on
the finite state machine concept, such as circuit design.

2.2 A framework for the InTraN paradigm
2.2.1 Components and architecture
The main components of the InTraN framework are
shown in table 1 and its basic architecture is shown in
figure 1. A Subscriber Program (SP) starts by binding
an event in a specific PE with a TM via a special
Subscription API. The SM maintains updated
information about all active subscriptions. When a
subscribed event occurs in a PE, it signals the SM which
responds by activating the TM bound to the event. A
special Access API allows active TMs to access PE's
internal data through the SM.

According to the SDL language, EFSMs can
communicate only through specific channels. Protocol
Entities (PEs) can perform input and output operations
to exchange user data and control messages through
these channels. In order to integrate InTraN in this
setup, we need to create a communication channel
between every PE and the Subscription Manager (SM).
These channels will serve as interaction mediums
between PEs and TMs through the SM. Figure 2 shows
the basic architecture of an abstract system with a stack
of three protocols. Normal information flow from/to
user application goes through channels (CP3, CP2, and
CP1), to augment with InTraN, we added channels (TP3,
TP2, and TP1). These new channels—which we call T-
type channels—are used by PEs to pass event signals
and exchange data between PEs and the SM.

TMs are also classified into three types based on their
access privileges to protocol's internal variables. These
are shown in table 2. A TM is granted read-only access
to a subset of PE's local data (variables). In certain
circumstances the TM is allowed even to modify a
subset of these accessible variables as long as this
modification serves the intentions of the protocol
designer. Let PV be the set of all variables in the PE, the
designer can designate a subset of PV called PV ′ as
read-only, and a subset of PV ′ called PV ′′ as read-write
(i.e., PPP VVV ⊆′⊆′′). In table 3 we define three types of
variables: A, B, and C, based on their access level. In
addition, the protocol designer should designate a subset
of protocol's events as subscribable. Let PE be the set
of all events in protocol entity P, and PE′ be the set of
subscribable events in P, then PP EE ⊆′ .

2.2.2 SP-SM Interfacing: Subscription Mechanism
The IntTraN framework offers a Subscription API for
SPs to manipulate their subscription preferences at the
SM. The three primitives of the Subscription API are

KHAN/ZAGHAL EFSM Meta Modeling/ Revised Draft, April 2006

5

shown in table 4. A Subscriber Program (SP) which opts
to subscribe with protocol entity P must associate an
event in PE′ with a TM via the Bind() operation. The
binding between events and TMs is one-to-many
relationship. i.e., a SP can bind one or more events to a

specific TM, but a specific event can be bound to one
TM only by a specific SP. This restriction is needed to
avoid ambiguity when event signals are sent to the SM.
The SP can use the Unbind() operation to cancel an
existing subscription, or the Update() operation to

Table 3. Types of variables and their access privileges
Type Set TM access privilege

A PP VV ′− No access

B PP VV ⊆′ Read only

C PP VV ′⊆′′ Read and write

Table 4. Subscription API

Primitive Meaning
Bind(e, P, TM) Associates a TM with an event e in

protocol P. The TM is invoked
whenever the specified event occurs.

Unbind(e, P, TM) Remove the association between TM
and the event e.

Update(e, P, TM) Remove the current association of
event e and replace it with a new
association with TM.

Table 5. InTraN Access API and Signals

Access API (TM-SM interface)
ReadVar(T, V) The TM (T) issues a read request to the SM to retrieve the value of variable (V) from its correspondent PE.
WriteVar(T, V, val) The TM issues a write request to the SM to write the value (val) to variable (V) in its correspondent PE.

Return(val, F) The SM returns the value (val) of a variable (V) to a TM which is blocking on a ReadVar(V) request. If the
flag (F) is (true), then (val) is valid, otherwise, the TM just ignores (val).

Invoke(TM) The SM invokes a registered TM after receiving an Event() signal

Finish(TM) The TM signals the SM that it is going to terminate. The SM responds by removing the TM-instance of the
terminating TM.

T-type Channel Signals (SM-PE interface)
GetVal(V) The SM signals the PE to read the value of the local variable (V)
SetVal(V, val) The SM signals the PE to write the value (val) to the local variable (V)

SetFlag(SF, val) The SM signals the PE to set the subscription flag (SF) by sending (val=true) or to reset the flag (SF) by
sending (val=false). This signal will activate/deactivate the event in PE which is associated with (SF).

Event(evt, PE) The PE Notifies the SM that event (evt) has just occurred in protocol (PE)
ExpVal(V, val) The PE exports the value (val) of local variable (V) to the SM

Figure 3. TM interfacing between the PE and the TM for three scenarios.

Transientware Module
(TM)

Subscription Manager
(SM)

(1) WriteVar(bi,val)

Protocol Entity
(PE)

(2) SetVal(bi,val)

(1) ReadVar(bi)

(2) GetVal(bi)

Transientware Module
(TM)

Subscription Manager
(SM)

Protocol Entity
(PE)

(4) Return(val)

(3) ExpVal(bi,val)

Transientware Module
(TM)

Subscription Manager
(SM)

(2) Invoke(TM)

Protocol Entity
(PE)

(1) Event(ei,PE)

(b) Read (c) Write (a) Signal

KHAN/ZAGHAL EFSM Meta Modeling/ Revised Draft, April 2006

6

replace the current association of an event with a new
one. The three subscription primitives can be used
dynamically during run-time for maximum flexibility.
For example, a SP can start by binding e1 to TM1 by
calling Bind(e1,P,TM1). Later (e.g., after certain time
has elapsed), it may call Update(e1,P,TM2) to change
the association of e1 from TM1 to TM2.

2.2.3 TM-SM-PE Interfacing: Access Mechanism
All communication between the TM and the PE must go
through the SM. The SM provides the interfacing
between all TMs and the PEs through a special Access
API and signals. These are shown in table 5. We impose
this mode of communication to preserve the integrity of
the system and to let the SM enforce access privileges as
specified by the designer.

Figure 3 explains the interfacing provided by the SM.
The figure shows the sequence of operations that gets
executed when (a) a PE issues an Event() signal, (b) a
TM issues a ReadVar() request, and (c) a TM issues a
WriteVar() request. We explain the three scenarios
below:

(a) TM Invocation and Termination
When a subscribed event (signal) is consumed in
the EFSM of a PE, the signal Event(ei, P) is sent to
the SM indicating the event type and the protocol.
The SM looks into its subscription lists to find
which TMs are currently bound to such (event,
protocol) pair, and then it activates them by the
Invoke(TM) operation. Whenever the SM activates
a TM, it also creates a record in its data store that
we call (TM-Instance) to be able to handle any
future requests that might be made by the TM.
When the TM finishes, and before it is terminated,
it sends a Finish(TM) request to the SM. The SM
then removes the TM-Instance record of the
terminating TM.

(b) Read Access
When a TM wants to read the value of a certain
variable vi from the underlying PE, it sends a
ReadVar(vi) request to the SM, then it blocks
waiting for the value of vi. The SM checks if the
requested value is accessible (i.e., Pi Vv ′∈) and if
the TM that issued the read request is eligible (i.e.,
it is Read-Only or Read-Write type). If this is true,
the SM issues a GetVal(vi) signal to the PE
specifying the name of the requested variable,
otherwise it replies with a Return(-1, false) to the
TM. When the PE receives a GetVal(vi) signal it
returns the value of vi to the SM via a signal

ExpVal(val). The SM then forwards the value val to
the TM via a Return(val, true) operation.

(c) Write Access
As we mentioned earlier, some TMs can modify
certain variables in the EFSM of the PE. If a
variable v is modifiable (i.e., PVv ′′∈), then, its value
can be overwritten by a Read-Write-type TM.
However, the protocol designer should be careful
when choosing the members of PV ′′ in each PE.
Technically, since a TM in the InTraN framework
represents a soft alternative for hardcode protocol
modifications, this relaxation should make TMs
even more dynamic and powerful. On the EFSM
level of the PE, modifying a variable can trigger a
state transition; this, of course, should reflect the
intention of the designer. Therefore, protocol
modifications can be realized through a group of
carefully designed TMs which can manipulate
certain properties of the EFSM through interaction;
(reading from) and (writing to) protocol's local
variables. As with the reading case, writing to PE's
local variables must go through the SM. The TM
makes a write request and passes the variable name
and its new value to the SM via a WriteVar(vi,val)
operation. If vi is modifiable and the TM is Read-
Write type, the SM generates a signal
SetVal(vi,val) to the PE. Otherwise, it simply
ignores this WriteVar() request. When the EFSM
of the PE consumes the SetVal() signal, it simply
runs the assignment vi := val.

2.2.4 Protocol Meta-Engineering
The meta-engineering of a PE involves adding new
events and transitions to its EFSM. The SM should be
able to tell the PE which events in its PE′ set are
currently subscribed by SPs. These events will be
marked in the EFSM, so that, whenever any one of them
occurs, the EFSM sends a signal to the SM over its T-
type channel.

Figure 4 depicts the necessary meta-engineering of the
EFSM of any classical protocol entity P in order to
make it InTran enabled—new components are shown in
shaded SDL symbols. Let Si be any state in P, Ei be any
subscribable event, and Ui be any un-subscribable event,
then the following components are added to the EFSM:

1) A new transition triggered by the signal SetVal(di,
val).

2) A new transition triggered by the signal GetVal(di).
3) A new transition triggered by the signal SetFlag(Ei,

val)

KHAN/ZAGHAL EFSM Meta Modeling/ Revised Draft, April 2006

7

4) For every Ei a Boolean flag (SEi,) is created in P to
remember the current subscription status of Ei. SEi is
set to true if Ei is currently subscribed. We augment
the transition of Ei right after the SDL input symbol

as shown in figure 4. After consuming Ei, the EFSM
checks the associated subscription flag (SEi) of the
consumed event. If SEi = true (i.e., an SE is currently
subscribed to Ei), the EFSM outputs the signal

Figure 4. Protocol meta-engineering extension.

Process P

Ei Ui

di := val ExpVal
(di)

GetVal
(di)

InTraN Transitions Subscribable Events
Si

SetVal
(di, val)

(true)

(false)

Original
Transition

Event
(Ei, P)

SEi

Un-subscribable Events

Original
Transition

SEi := val

SetFlag
(SEi, val)

definitions
v A variable in protocol entity P
Val A new value to be written into v
Twrite The TM that issued the write

operation
P The target protocol entity

Get P from the TM-instance of

Twrite

Twrite is RW type
&&

v is C-type

WriteVar
(Twrite, v, value)

received

 Call guarding prog
(v, P)

Output to P
SetVal (v, value)

End thread

GREEN

Terminate Twrite

End thread

RED

Return (-1) to Tware

End thread

False

True

Figure 5. The SM thread that handles WriteVar() operation.

KHAN/ZAGHAL EFSM Meta Modeling/ Revised Draft, April 2006

8

Event(Ei, P) to the SM. Otherwise, no action is
taken.

The SM uses the SetFlag() signal to manage
subscription flags (i.e., SEi flags) as follows: Assume an
SP made the subscription: Bind(Ei, Pj, TMk), the SM
registers this subscription instance in its internal data
store, and then checks if there are other SPs currently
subscribed to Ei. If no active subscription instance is
found, the SM sends the signal SetFlag(Ei, true) to the
EFSM of protocol Pj. When the EFSM consumes this
signal, it enables Ei signaling by setting the subscription
flag SEi associated with Ei to true. However, if the SM
does find at least one active subscription instance to Ei
in its data store, this indicates that Ei signaling is already
enabled, and therefore the SM takes no further action.
Conversely, if an SP made Unbind(Ei, Pj, TMk), the SM
updates its internal data store, and also checks if any SP
is still subscribed to Ei after executing the Unbind(). If
at least one such instance is found, the SM takes no
further action, but if the Unbind() has caused the last
subscription instance of Ei to be deleted from the data
store, the SM sends the signal SetFlag(Ei, false) to the
EFSM of protocol Pj to disable Ei signaling service. The
SetVal() and GetVal() signals correspond to the write-
access and read-access operations which were described
in the previous sub-section.

2.2.5 Security Model
Since InTraN exposes the internal state of the protocol
to entities running in the user space (i.e., TMs), it must
address the correctness and safety issues of the
underlying protocol appropriately. We can claim that
access modes that only involve signaling or reading are
safe (i.e., Signal-Only and Read-Only TMs). We have to
be concerned only when a TM is allowed to write to
protocol's internal variables (i.e., Read-Write mode).

Here, we propose a security model which allows
controlled access to protocol's variables while
maintaining system stability. We define two role types
who can be involved in any InTraN-based solution: (1)
protocol designer, and (2) TM designer. The
components given by the protocol designer must run
with super-user access. He basically performs the one
time meta-engineering of protocol entities. This
includes, deciding the three classes of protocol's
variables (A, B, and C), identifying subscribable events
(i.e., PE′), and extending the EFSM by adding InTraN
components. The TM designer can be any user; s/he
implements a particular protocol solution/extension by
coding one or more TMs. S/he uses the facilities offered

by the underlying InTraN-enabled system to implement
the intended solution.

It can be seen that only when a TM of type Read-Write
tries to update a C type variable, then system security
(or protocol stability) can be compromised—we define
this combination as the dangerous combination. The
danger may come from two sources: (1) a flaw in the
protocol design (e.g., wrong type declaration), and (2) a
malicious TM of type Read-Write. When a system is
running with a dangerous combination, the operating
system can optionally activate a guarding program that
verifies any attempts made by TMs to update C type
variables. If the update is safe, it is allowed to proceed.
But, if the update may cause instability in the system
(i.e., it is attempting to change a timer or an index
variable) then the write operation is blocked
immediately and the offending TM is shut down. The
guarding program itself is simple and can be
implemented as an operating system utility. Basically, it
needs to know which updates on any PE's internal
variables are safe and which are not regardless of
protocol designer classifications in table 3. This is
determinable by static impact analysis of the protocols
EFSM. This way, the integrity of the InTraN-enabled
system can be preserved even in the presence of
potential design flaws.

What are the performance implications of this added
security? We can show that by careful implementation
the overhead should be very small. Here, we propose an
implementation path using event-driven run-time
screening, but other choices can be taken as well, such
as static analysis of the TM source code (similar to that
of [14]). The SM can be programmed to initiate a
special thread program to handle the WriteVar()
operation and the dangerous combination. Figure 5
describes the basic algorithm: Assuming a TM called
(Twrite) has issued the following write operation:
WriteVal(Twrite, v, value). First, the SM consults the
TM-instance of Twire to retrieve the protocol entity P
associated with it. Next, this operation must pass the
initial screening at the SM (i.e., the SM checks if Twrite
is Read-Write type TM and v is C type). If the write
operation passes this test successfully, then the SM
invokes the guarding program to perform a second-level
independent screening and waits for its decision. The
SM passes two parameters to the guarding program:
target variable v and target protocol entity P. If the
guarding program finds that this write operation is safe,
it sends a GREEN signal to the SM to approve it, the SM
then continues normally by issuing a SetVal(v, value)
signal to P. Otherwise (i.e., the write operation is not

KHAN/ZAGHAL EFSM Meta Modeling/ Revised Draft, April 2006

9

safe), it sends a RED signal to the SM which responds
by canceling the write operation and shutting down
Twrite. Let N be the number of PEs in the system and
let K be the maximum number of unsafe variable
updates in any PE. Then, the guarding program will
make O (N+K) comparisons in the worst case.

Besides this operation, the application and the TMs run
in the user space of the native operating system with all
the usual security protections. Thus, the rest of the
InTraN-enabled system remains as secure as the original
non-extended system. If we compare this to the active
networking model for example, we cannot find a peer
security strategy.

3. Interactive-TCP (iTCP)
We demonstrate the InTraN principles outlined in the
previous section by means of a simplified TCP protocol.
First, we formally describe the abstract protocol using
SDL, and then we augment the protocol by adding
InTraN components. [32] Described a simple sliding
window protocol in SDL that featured positive
acknowledgments and retransmission mechanisms. We
transformed this protocol into simplified TCP by
adding congestion control support. The new version
features the slow start/congestion avoidance
mechanism [15], and the fast retransmit/fast recovery
mechanism [16].

3.1 The SDL model
The simplified TCP service can be modeled as a
composition of three blocks, Transmitter Entity (TE),
Receiver Entity (RE), and Medium. The Medium
represents the underlying unreliable service (e.g., IP
and lower layers) while TE and RE represent the two
endpoints of a TCP connection. Figure 6 describes the
composition. The sending and receiving applications
are located in the environment. They interact with the
system via two service access points modeled by two
unidirectional channels, ST (from the environment to
the TE) and SR (from RE to the environment). The
channel ST carries the AppWrite signal from the writer
application to the TE, and the channel SR carries the
AppRead signal from the RE to the reader application.

The TE uses a bidirectional channel MT to send data
(via a SendData signal) and to receive
acknowledgments (via a RecvACK signal) over the
Medium. One the opposite side, the RE also uses a
bidirectional channel MR to receive data (via a
RecvData signal) and to send acknowledgments (via a
SendACK signal) through the Medium.

In figure [appx1] (please see last 4 pages) we formally
present in SDL notation the fundamental part of TCP's
congestion control and flow control mechanisms at the
sender (Transmitter Entity). The system describes a
unidirectional data service. In this abstract description,
we only focus on the sliding window and congestion
control aspects of TCP, many of the details in
conventional TCP are hidden, such as: buffer size
issues, sequence number calculations (e.g., sequence
number wrap around), and checksum tests. Furthermore,
many of the details are hidden inside procedure calls,
e.g., CalcRTO().

The EFSM of this system is depicted in figure 7 and is
described as:

 S = {Slow Start, Data Transfer, Fast Recovery,
Closed Window},

 0s = Slow Start,
 E = {AppWrite, RecvACK, rexmt timeout},

Figure 6. Half-duplex TCP service composition.

Transmitter Entity
(TE)

[AppWrite]

Receiver Entity
(RE)

Unreliable Medium (UM)

Sending Application Receiving Application

[AppRead]ST

[RecvACK]

[SendData] [SendACK]

[RecvData]
MT

SR

MR

Figure 7. System's EFSM.

Data
Transfer

Fast
Recover

Slow
Start

Window
Closed

T7,9,10

T8

T11

T6

T0

T1,2,3,5

T4

T16

T12,13,14,15

T18,20

T19

T17

KHAN/ZAGHAL EFSM Meta Modeling/ Revised Draft, April 2006

10

 O = {SendData},
 V = {seqno, ackno, RAW, dACK, pACK, FRFlag,
RTO, rexmt, Cwnd, Swnd, LU, LS, ExpBoff}.

 f = {T0, T1, …, T20}. These transitions are labeled
in figure appx1.

3.2 EFSM of iTCP
Interactive-TCP is a real interactive transport protocol
based on the InTraN framework. We wanted to track
two events in TCP: ‘retransmission timer timeout’ and
'receiving third duplicate ACK’. Both events signify
packet loss and usually cause TCP to trigger congestion
control procedures.

The augmented EFSM of our Transmitter protocol
becomes: (InTraN additions are shown in bold)

 S = {Slow Start, Data Transfer, Fast Recovery,
Closed Window},

 0s = Slow Start,
 E = {AppWrite, RecvACK, RexmtTimeout, GetVal,
SetVal, SetFlag},

 O = {SendData, ExpVal, Event},
 V = {seqno, ackno, RAW, dACK, pACK, FRFlag,
RTO, rexmt, Cwnd, Swnd, LU, LS, ExpBoff, RA,
RT}.

 f is augmented as we described in figure 4 (i.e., by
adding three transitions for the GetVal, SetVal, and
SetFlag events, and modifying existing transitions
of subscribable events in every state).

Where RA and RT are the Boolean subscription flags
associated with events RecvACK,and RexmtTimeout
respectively. We chose the sets PE′ , B, and C as
follows:

 PE′ = {RecvACK, RexmtTimeout},
 B = {dACK, Swnd, RAW},
 C = {}.

The InTraN-added members of E (i.e., GetVal, SetVal,
and SetFlag) are for internal SM use only. Therefore,
they are not included in PE′ (i.e., they cannot be
subscribed by a SP). The same applies to the
subscription flags (RA and RT) which cannot be
included in the set B or C.

3.3 The TMs
We have experimented iTCP with elastic video traffic
by allowing an adaptive video transcoder [8] to intercept
the video stream and modify the generation bit rate
based on the InTraN service feedback. We designed the
following simple scheme: when the network is

congested (e.g., ‘RexmtTimeout’ event has occurred)
InTraN triggers a TM to reduce the generation bit rate of
the video transcoder. When the network recovers from
congestion, another TM orders the transcoder to resume
transmission at the normal bit rate. We have realized the
scheme by writing two TMs: TM-rexmt and TM-ack.
The algorithms of these TMs are shown in figure 8. We
let the Subscriber Program—in this case the video
transcoder—subscribe by running: Bind

Figure 9. Quality/delay tradeoff offered by iTCP.
Frame delivery delay was dramatically reduced by
controlled trade-off of the SNR quality.

FRAME DELAY vs. SNR (Y)
A=0.55

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

Frame delay

S
N

R
 (d

B
)

iTCP=on, A=0.75
iTCP=off TCP Classic
iTCP, A=0.55

Video Quality/Delay Tradeoff

(1) TM-rexmt (Type: Signal-Only)
bitRate := bitRate * RRF;
Finish(TM-rexmt);

(2) TM-ack (Type: Read-Only)
ReadVar(dACK);
If (dACK = 3)

bitRate := bitRate * RRF;
Else{

ReadVar(Swnd);
ReadVar(RAW);
If (Swnd >= RAW)

bitRate := Normal Rate;
}
Finish(TM-ack);

Were:
bitRate: is a parameter used by the transcoder to decide

the generation bit rate of the next video frame.
RRF: is the Rate Reduction Factor (less than 1).
dACK: the number of duplicate ACKs received at TCP

sender.
Swnd: TCP sender window size.
RAW: Receiver Advertised Window. The window size

advertised by the TCP receiver in the last ACK.

Figure 8. Video Transcoder TMs

KHAN/ZAGHAL EFSM Meta Modeling/ Revised Draft, April 2006

11

(RexmtTimeout, TCP, TM-rexmt); Bind (RecvACK,
TCP, TM-ack).

3.4 Performance
The scheme proved to be effective and had shown
substantial gain in video performance metrics like
frame-wise end-to-end delay and referential jitter.
Figure 9 shows a sample of performance results which
highlights the tradeoff offered by iTCP. Here, each
video frame is plotted as a point in the video
quality/frame delay plane. As can be seen from the
region of the two QoS distributions, in classical TCP,
although frames have been generated with SNR quality
ranging between 22-29 dB, but many of these frames
were lost in transport, and were never delivered. In
contrast, the proposed iTCP (with a bit Rate Reduction
Factor RRF=0.55) delivered all the frames with 15-17
delay guaranteed at 15-26 dB quality. Fundamentally,
what InTraN solution has offered is a qualitatively (as
opposed to the quantitative improvements offered by
unaware solutions) new empowering mechanism, where
the catastrophic frame delay can be traded off for
acceptable reduction in SNR quality. We have published

detailed performance analysis on iTCP and related
experiments in [18, 19].

4. Protocol Modeling Example
In this section we briefly describe the well-known
'Snoop' protocol [4] which has been proposed—among
many other schemes in the literature—to improve TCP
performance over wireless links. Then, we show how it
can be re-modeled via the InTraN paradigm.

Wireless networks have certain characteristics that are
not handled properly by regular TCP such as high bit
error rate (BER) and long disconnections due to
handoffs or bad reception. When a packet is lost, regular
TCP assumes that it is due to congestion and will
always trigger congestion control procedures at the
fixed host. However, in a wireless environment, radio
transmission errors or handoffs can also cause packet
loss. This will result in significant reductions in
throughput that can severely degrade overall
performance. A good survey on proposed protocols for
improving TCP performance over wireless networks can
be found in [2, 3, and 11].

4.1 “Snoop”

Sub. API

InTraN enabled IP

'Snoop' Agent

'Snoop'
State

Data
TM

ACK
TM

A
pplication L

ayer

Data segments
from FH

ACK segments to
FH

ACK segments
from MH

Subscribe

T-type channel

Read Data
header/
Update
cache.

Read/
Update
'Snoop'
State.

Data segments to
MH

Base Station

Figure 11. Interactive 'Snoop' (i'Snoop').

Access API

SM

Read ACK
header/
Update
cache. Link Layer

'Snoop' Agent

'Snoop'
State

Data
Processing

Base Station

N
etw

ork

Data segments
from FH

ACK segments to
FH

Data segments to
MH

ACK segments
from MH

ACK
Processing

IP

Figure 10. Conventional 'Snoop'.

KHAN/ZAGHAL EFSM Meta Modeling/ Revised Draft, April 2006

12

First we explain the basic idea of [4] which is the core
Snoop. In a later section we discuss some of its
modifications [13, 20, 21, 31, and 35]. The 'Snoop'
protocol introduced a module, called 'Snoop', at the base
station that monitors the wireless link for every packet
that passes through in both directions.

The 'Snoop' module maintains a cache of TCP packets
sent from the fixed host (FH) that have not yet been
acknowledged by the mobile host (MH). A packet loss
is detected either by the arrival of duplicate
acknowledgment or by a local timeout. To implement
the local timeout, the module employs its own
retransmission timer. The 'Snoop' module locally
retransmits the lost packet if it has it in the cache. Thus,
the base station can hide the packet loss from the fixed
host, therefore avoiding its invocation of an unnecessary
congestion control mechanism. Figure 10 describes the
architecture of the classic 'Snoop' protocol. For brevity,
it shows the part of 'Snoop' that handles one direction of
the traffic only (Data segments from FH to MH and
ACK segments from MH to FH). As it can be seen, it
requires substantial extension inside network software
layers. However, with InTraN the same functionality

can be achieved at application layer with an InTraN-
enabled IP protocol (or iIP). Figure 11 shows this
InTraN implementation of 'Snoop'—which we call
'iSnoop'. In this scheme, the ‘Snoop Agent’ (shown in
figure 11) subscribes two iIP events: an ACK received
from MH event (Recv_ACK), and data segment
received from FH event (Recv_DAT). Whenever any
one of these two events occurs, iIP sends a signal to the
SM which invokes the appropriate TM: TM-Data or
TM-ACK.

The Snoop Agent is a process that runs in the application
layer. Its main role is to initialize and maintain the
Snoop State and subscribe with the InTraN service. The
rest of the work is now done by the TMs. The Snoop
State is similar to that of conventional 'Snoop'. The TM-
Data handles the (Recv_DAT) event and implements
the Data processing algorithm of 'Snoop'. The TM-ACK
handles the (Recv_ACK) event and implements the
ACK processing algorithm of 'Snoop'.

As can be seen this implementation also keeps the
cached data segments in the TCP buffer just like the
classical 'Snoop' and thus retains the same performance

Table 6. Cost parameters for Snoop/iSnoop

Name Meaning
CACK Overhead cost per ACK segment
CDAT Overhead cost per Data segment
NACK Number of ACK segments
NDAT Number of Data segments
Un Update State/Cache cost in normal mode
Ui Update State/Cache cost in interactive

mode.
We assume that Ui > Un since Un might
involve making a system call.

Sub Subscription cost
S Software Interrupt ‘Signal’ cost
H Signal Handler cost
R Retransmit cost
T Total transfer size (Mbytes)
Choff Handoff cost

Table 7. Algebraic overhead cost of Snoop and iSnoop
for three scenarios of wireless link properties

Scenario Classic 'Snoop' Interactive 'Snoop'
(iSnoop)

Error-free,
handoff-free
wireless link

SNOOPfree =
NDAT (CDAT + Un)
+ NACK (CACK + Un)

iSNOOPfree =
Sub + NDAT (S + H +
CDAT + Ui) + NACK (S
+ H + CACK + Ui)

Error-prone
link with
BERx = 1
error / x MB

SNOOPfree+(T / BERx) iSNOOPfree+(T / BERx)

Handoff
every n
seconds

SNOOPfree+Choff (8T / nR) iSNOOPfree+Choff (8T / nR)

Table 8. Running modes for the getrusage() experiment
Mode name Description
Classic TCP No interactivity overhead. This is the reference case.

Invoke only Subscribe with a Signal-only type TM. The TM does not perform any Read/Write
operations.

File access Subscribe with a Signal-only type TM. We let the TM open a disk file and
perform one read operation and one write operation.

Protocol access Subscribe with a Read-only type TM. We let the TM perform one ReadVar()
operation from TCP.

iTCP
modes

Protocol & File Subscribe with a Read-only type TM. We let the TM perform both a disk
read/write and a ReadVar() operation from TCP.

KHAN/ZAGHAL EFSM Meta Modeling/ Revised Draft, April 2006

13

advantage. The Snoop algorithms are described in detail

Figure 15. Context switching: iTCP overhead vs. application

(B) Forced Context Switching (fcsw)

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10

No. of Transientware Modules (N)

iT
C

P
C

SW
 o

ve
rh

ea
d

53500

53700

53900

54100

54300

54500

54700

54900

55100

55300

55500

55700

55900

To
ta

l C
SW

iTCP.Invoke only iTCP.File access iTCP.Protocol access

iTCP.Protocol & File App.Classic App.Invoke only

App.File access App.Protocol access App.Protocol & File

(A) Voluntarily Context Switching (vcsw)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4 5 6 7 8 9 10

No. of Transientware Modules (N)

N
o.

 o
f c

on
te

xt
 s

w
itc

hi
ng

 ti
m

es

App.Classic App.Invoke only App.File access

App.Protocol access App.Protocol & File iTCP.Invoke only

iTCP.File access iTCP.Protocol access iTCP.Protocol & File

Table 10. iTCP's context switching overhead
 Voluntarily CSW Forced CSW Total CSW

Invoke only 24.10% 0.19% 4.16%
File access 25.10% 0.22% 4.39%
Protocol access 24.30% 0.20% 4.22%
Protocol & File 24.20% 0.20% 4.19%

Table 9. iTCP's CPU time overhead
 User CPU Time System CPU Time Total CPU Time
 iTCP% SD iTCP% SD iTCP% SD

Invoke only 1.10% 55.68 3.80% 67.62 2.53% 200.08
File access 2.70% 116.47 3.70% 106.94 3.23% 272.28
Protocol access 0.90% 44.65 3.10% 59.37 2.07% 167.89
Protocol & File 1.30% 81.09 4.10% 77.95 2.82% 224.89

Figure 14. CPU time: iTCP overhead vs. application

(A) User CPU Time (utime)

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10

No. of Transientware Modules (N)

iT
C

P
ov

er
he

ad
 ti

m
e

(m
se

c)

2800

2900

3000

3100

3200

3300

3400

3500

3600

3700

3800

A
pp

lic
at

io
n

tim
e

(m
se

c)

iTCP.Invoke only iTCP.File access iTCP.Protocol access

iTCP.Protocol & File App.Classic App.Invoke only

App.File access App.Protocol access App.Protocol & File

(B) System CPU time (stime)

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10

No. of Transientware Modules (N)

iT
C

P
ov

er
he

ad
 ti

m
e

(m
se

c)

3000

3200

3400

3600

3800

4000

4200

4400

A
pp

lic
at

io
n

tim
e

(m
se

c)

iTCP.Invoke only iTCP.File access iTCP.Protocol access

iTCP.Protocol & File App.Classic App.Invoke only

App.File access App.Protocol access App.Protocol & File

KHAN/ZAGHAL EFSM Meta Modeling/ Revised Draft, April 2006

14

in [4].

Both TM-Data and TM-ACK need to interact with iIP;
they use the Access API of the InTraN service to (i)
probe the IP layer and Read relevant header parameters
from the TCP segment that has just arrived and (ii) to
update the cache of TCP segments. The TM-Data adds
segments to the cache and the TM-ACK clears the cache
or part of it as decided by their respective algorithms.
We assume that both TMs have full access to the 'Snoop'
State; they can read and update state variables as
necessary. As can be seen the entire 'Snoop' logic has
been implemented in application layer. The 'Snoop'
protocol uses a different mechanism to handle traffic on
the opposite direction. This too can be easily modeled
with the InTraN paradigm in a similar fashion. The
advantages of the InTraN engineering does not stop at
the classical 'Snoop', indeed, more advanced versions of
the basic 'Snoop' strategy can also be implemented with
equal ease. For example, more advanced error
correction mechanism—such as forward error
correction (FEC) [24] can be implemented as well with
the same effort without requiring a new round of
standardization/modification in network layers.

4.2 ‘Snoop’ Variants & InTraN
It is interesting to note, that many improvements and
modifications on the original Snoop have been proposed
since its first publication in 1995 [13, 20, 21, 31, and
35]. The evolutionary history of Snoop is a good
example that highlights the importance of meta-
engineering provisioning. Some of these newer
techniques are variations of Snoop and few are
expansions to Snoop. The later keeps all the basic
features of Snoop and adds new ones, while the former
substitutes. For example, [35] introduces a TCP-SACK
aware Snoop. Their work was motivated by observing
several versions of TCP with and without Snoop. They
found that the Snoop protocol improved the
performance of TCP Vegas considerably but in the case
of TCP SACK, the effect of using the Snoop protocol
was actually negative. The algorithm proposed in [35]
helps Snoop differentiate between an ordinary ACK and
a SACK block. In the case of an ordinary ACK the
SACK-Aware Snoop retransmits only the packet as
suggested by the sequence number of the duplicate
ACK. However, in the case of a SACK block the
protocol retransmits all the packets indicated by the
SACK block. [13] has extended this idea by employing
a SNACK mechanism on the BS and the MH to provide
explicit information on multiple packet losses over the
wireless link. Two protocol components are used: a
SNACK-Snoop deployed at the BS and a SNACK-TCP

deployed at the MH. Another enhancement is found in
[20], an ARQ Snoop Agent is inserted between TCP and
MAC layers at both the sender and the receiver to
exploit the ARQ link layer information for a more
efficient acknowledgement of TCP packet delivery
(e.g., When a TCP packet is successfully delivered at
the link level, the TCP ACK for the transport layer will
not be sent through the channel, but it will be
automatically generated locally at the sender side). It is
worth noting that all of these variants can be easily
modeled with the InTraN EFSM-based paradigm
especially that most of them are natively event-based.

The implementation of these Snoop enhancements
would require permanent changes in the network layers.
Unfortunately, these are yet to see any real deployment
despite the benefits they offered. In sharp contrast to the
conventional approach to protocol reengineering, the
base Snoop including these recent enhancements can be
easily deployed using InTraN. For enhancements it will
require modifications only at application layer. [20]
Will require TMs to subscribe a new event. Only TMs
have to be substituted under InTraN paradigm of meta-
engineering.

This further illustrates the crucial advantage of the idea
behind the InTraN paradigm—to provide an alternative
way to model and implement protocols’ extensions or
modifications. Not only it reduces deployment cost, but
also it provides the new capability to easily switch
between implementations. Often, there is no decidedly
winner alternate, different versions wins in different
cases.

5. Performance Issues
5.1. Overhead cost
The transparency model implementation of both
protocols adds some extra cost to the original scheme as
a result of the added signaling and system calls
overhead. Here, we show an abstract comparison of
both interactive and conventional schemes of the
'Snoop' protocol. In table 6 we show several quantities
that define cost variables and wireless link
characteristics. The first column in table 7 shows the
estimated cost incurred by deploying the 'Snoop'
protocol for three wireless link scenarios: (1) error-free,
handoff-free wireless link, (2) error-prone link with
BER = 1 error for each x Mbytes, and (3) a moving
mobile node that triggers a handoff every n seconds.
The second column represents the InTraN version of
'Snoop'. In the first scenario (a reference case) 'iSnoop'
added overhead came from Sub, S, H, and Ui - Un.
Actually, in real practice these added costs should be

KHAN/ZAGHAL EFSM Meta Modeling/ Revised Draft, April 2006

15

very small (almost negligible). Besides the reference
case, the other two scenarios are identical in both
protocols.

To get a real measurement of interactivity service
overhead we performed a simple experiment on iTCP.
We ran the video session (server, transcoder, and
player) on classical TCP (the reference case) and on
iTCP with four different modes by varying the access
complexity of the TM. These five modes are explained
in table 8.

We used the FreeBSD utility getrusage() to collect
statistics about system resources used by the video
transcoder (our subscriber program) in the five running
modes. In the four iTCP modes, we measured the
overhead cost of invoking the InTraN service which can
be summarized by (1) subscription cost, (2) SM cost,
and (3) TM cost. The most significant part of these is the
TM cost since it implements the real protocol extension
and its complexity can vary significantly. Therefore, we
used TM complexity as a criterion to classify iTCP runs
into four modes. Also, in each mode, we ran the video
session ten times by varying the number of TMs that
were invoked during the session from 1 to 10—we will
call this number N.

We collected the following resource usage information
from the getrusage() function:
1) utime: The total amount of time spent executing in
user mode.
2) stime: The total amount of time spent in the system
executing on behalf of the process.
3) vcsw: The number of times a context switch resulted
due to a process voluntarily giving up the CPU before
its time slice was completed (usually to await
availability of a resource).
4) fcsw: The number of times a context switch was
forced by the OS due to a higher priority process
gaining the CPU or because the current process
exceeded its time slice.

The performance results of the first two parameters are
plotted in figure 14 and the latter two are plotted in
figure 15.

A) CPU time Analysis
In figure 14 iTCP overhead time is shown on the left Y-
axis at the lower part of the figure, and the total
application running time is plotted on the right Y-axis.
We can see that (utime) overhead—figure 14(A)—
varied between 0 and 220 msec, while (stime)
overhead—figure 14(B)—varied between 0 and 360

msec. This is a small percentage of the total running
time in both cases as we show in table 9. In the table we
also show the standard deviation (SD) of the iTCP
overhead over the 10 runs. We could not determine a
consistent pattern of CPU time overhead as N increases.
This means that once the InTraN service has been
activated, N will not have a significant impact on CPU
time. But it can be seen that iTCP modes which involve
a file access took more CPU time and showed a higher
(SD).

B) Context Switching Analysis
In figure 15 we show context switching overhead and in
table 10 we show the overhead as a percentage of the
total context switching. It can be seen that
approximately 20% of the total number context
switching was voluntarily (vcsw) and the rest was
forced (fcsw). But, iTCP added more to (vcsw)—
between 1000 to 4400 context switches—than that it
added to (fcsw)—between 70 to 170 context switches.
Percentage wise, as shown in table 10, iTCP overhead is
25% of (vcsw) versus 0.22% of (fcsw). Overall, iTCP
added less than 4.5% to the total context switching.
Another observation is the increase pattern of (vcsw) as
a linear function of N which can be described by f = 252
N + 1500. This means that iTCP service deployment
will add at least 1500 to (vcsw), and then (vcsw) grows
linearly with a slope = 252 as N increases.

 5.2. Security and practice
As we saw in the previous section, any InTraN based
solution will incur a small overhead cost on the
application and the OS levels. But this can be justified
for the practical gains allowed by employing the InTraN
paradigm. Since TMs run in the application space, they
will enjoy a well developed environment that has been
fine-tuned to run custom codes, share resources, and
manage security issues. Actually, the security issue is of
great importance in such engagement. For example,
running “Active Modules” inside the network (e.g.
Active and Programmable Networks [10]), raises many
security concerns that usually require complex
techniques to maintain acceptable security level and
stability within the network domain. Moving these
modules up to the application layer, makes security
management a much easier task. Conversely, within the
InTraN paradigm, the Subscriber Programs and TMs
can only access internal network services through the
API extension, and by imposing the appropriate access
restrictions on these entities, we can guarantee a certain
security level. Furthermore, since these API extensions
can be implemented as system calls, we can simply
extend the OS security model and reuse available OS

KHAN/ZAGHAL EFSM Meta Modeling/ Revised Draft, April 2006

16

facilities like memory management and resource sharing
to achieve even better performance. These
characteristics make the InTraN model an attractive and
a practical choice to implement and deploy many useful
protocols which thus far had been only simulated or
tested on a small-scale controlled testbed.

6. Concluding Remarks
The Interactive Transparent Networking (InTraN)
paradigm can offer two fundamental benefits, (i) it
becomes much easier and practical to implement and
deploy the modeled protocol on a real network, and (ii)
new extensions or alternative algorithms—invoked as
application level Transientware Modules (TMs)—can be
experimented with the new protocols without changing
the underlying infrastructure. For example, a protocol
like 'Snoop' which was intended to improve TCP
performance over wireless links can also be augmented
with extra TMs to add TCP friendly features.

We have particularly chosen two ‘original source’
examples for demonstrating an implementation path via
transparent networking—but this is not to endorse them.
Please note because of their basic usefulness researchers
have subsequently performed extensive performance
evaluations [17, 26] and have also proposed many other
creative schemes [27, 33]. The proposed transparency
via interaction and the triggered TM deployment will
provide them implementation paths as well. In fact,
since TMs operate at the application layer it will be
much easier to upgrade a particular TM to another
improved one.

The work has been supported by the DARPA Research
Grant F30602-99-1-0515.

7. References
[1] Almes G., Kalidindi S., and Zekauskas M., "A one-way

packet loss metric for IPPM," RFC2680, 1999.
[2] Anjum F., and Tassiulas L., “Comparative Study of

Various TCP Versions Over a Wireless Link With
Correlated Losses,” IEEE/ACM Transactions On
Networking, Vol. 11, No. 3, June 2003.

[3] Balakrishnan H., Padmanabhan V., Seshan S., and Katz
R.H., “A comparison of mechanisms for improving
TCP performance in wireless networks,” ACM
SIGCOMM Symposium on Communication,
Architectures and Protocols, Aug. 1996.

[4] Balakrishnan H., Seshan S., and Katz R., “Improving
Reliable Transport and Handoff Performance in
Cellular Wireless Networks,” ACM Wireless
Networks, Vol. 1, 1995.

[5] Berson S., Branden B., and Dawson S., “Evolution of

an Active Networks Testbed,” Proceedings of the
DARPA ActiveNetworks Conference and Exposition
2002, pp. 446-465, San Francisco, CA, 29-30 May
2002.

[6] Blumenthal M.S., and Clark D.D., "Rethinking the
design of the Internet: the end-to-end arguments vs. the
brave new world," ACM Transactions on Internet
Technology (TOIT), Vol. 1 ,no. 1, pp. 70 – 109, August
2001.

[7] Byun Y., Sanders B., and Keum C-S, "Design Patterns
of Communicating Extended Finite State Machines in
SDL," 8th Conference on Pattern Languages of
Programs (PLoP'01), 2001.

[8] Caceres R., Duffield N.G., Horowitz J., Towsley D.F.,
and Bu T., "Multicast-based inference of network-
internal characteristics: Accuracy of packet loss
estimation," Proc. of IEEE INFOCOM’99, pp. 371–
379, 1999.

[9] Campbell A., Meer H., Kounavis M., Miki K., Vicente
J., and Villela D., “A Survey of Programmable
Networks,” ACM Computer Communications Review,
April 1999

[10] Campbell A., Meer H., Kounavis M., Miki K., Vicente
J., and Villela D., “A Survey of Programmable
Networks,” ACM Computer Communications Review,
Vol. 29, No. 2, pp. 7-23, April 1999.

[11] Elaarag H., “Improving TCP Performance over Mobile
Networks,” ACM Computing Surveys, Vol. 34, No. 3,
Sep. 2002, pp. 357–374.

[12] Ellsberger J., Hogrefe D., and Sarma A., "SDL. Formal
Object-Oriented Language For Communicating
Systems," Prentrice Hall, Harlow, England, 1997.

[13] Fanglei Sun; Li, V. O. K. and Liew, S. C., “Design of
SNACK mechanism for wireless TCP with new
Snoop,” IEEE Wireless Communications and
Networking Conference, Atlanta, GA, USA, March
2004.

[14] Huang Y-W., Yu F., Hang C., Tsai C-H., Lee D-T., and
Kuo S-Y., "Securing Web Application Code by Static
Analysis and Runtime Protection," Proc. of the 13th int.
conference on WWW (WWW2004), pp. 40-52, 2004.

[15] Jacobson V., “Congestion Avoidance and Control,”
Computer Communication Review, vol. 18, no. 4, pp.
314-329, Aug. 1988.

[16] Jacobson V., “Modified TCP Congestion Avoidance
Algorithm,” end2end-interest mailing list, April 1990.

[17] Jianxuan X., Labrador M., Guizani M., "Performance
Evaluation of TCP over Optical Channels and
Heterogeneous Networks," Cluster Computing, Vol. 7,
Issue 3, pp. 225-238, July 2004.

[18] Khan J. and Zaghal R., “Jitter and Delay Reduction for
Time Sensitive Elastic Traffic for TCP-interactive
based World Wide Video Streaming over ABone,”
Proc. of the 12th IEEE-ICCCN 2003, Dallas, Texas,

KHAN/ZAGHAL EFSM Meta Modeling/ Revised Draft, April 2006

17

Oct. 2003, pp.311-318.
[19] Khan J., Zaghal R., and Gu Q., “Symbiotic Streaming

of Elastic Traffic on Interactive Transport,” IEEE
ISCC'03, Antalya, Turkey, July 2003.

[20] Kliazovich, D. and Graneill, F., “A cross-layer scheme
for TCP performance improvement in wireless LANs,”
GLOBECOM '04. IEEE Global Telecommunications
Conference, Dallas, TX, USA, Dec. 2004.

[21] Kui-Fai Leung and Yeung, K. L., “G-Snoop: enhancing
TCP performance over wireless networks,”
Proceedings. ISCC’04. 9th International Symposium on
Computers and Communications, Alexandria, Egypt,
July 2004.

[22] Lee S.B., Ahn G.S., Campbell A.T., “Improving UDP
and TCP performance in mobile ad hoc networks with
INSIGNIA,” IEEE Communications Magazine, Vol.
39, Issue 6, pp. 156-165, June 2001.

[23] Lin H.,Das S.K., “Performance study of link layer and
MAC layer protocols to support TCP in 3G CDMA
systems,” IEEE Transactions on Mobile Computing,
Vol. 4, Issue 5, pp. 489 – 501, Oct. 2005.

[24] Luby M., Vicisano L., Gemmell J., Rizzo L., Handley
M., and Crowcroft J., "Forward Error Correction
(FEC) Building Block," RFC 3452, Dec. 2002.

[25] Paxson V., Almes G., Mahdavi J., and Mathis M.,
"Framework for IP Performance Metric," RFC 2330,
1998.

[26] Racherla G., Radhakrishnan S., and Sekharan C.,
"Performance evaluation of wireless TCP with
rerouting in mobile networks," Computer
Communications, Vol. 26, No. 6, pp. 542-551, April
2003.

[27] Ratnam K., Matta I., "WTCP: an efficient mechanism
for improving wireless access to TCP services,"
International Journal of Communication Systems, Vol.
16, Issue 1, pp. 47 – 62, February 2003.

[28] Saltzer J., Reed D., and Clark D.D., “End-to-end
arguments in system design.” ACM Trans. Comput.
Syst., Vol. 2, No. 4, Nov., pp. 277-288, 1984.

[29] Schulzrinne H., Casner S., Frederick R., and Jacobson
V., "RTP: A Transport Protocol for Real-Time
Applications," RFC 3550, July 2003.

[30] SDL Forum Society. SDL specification (z.100 11/99).
http://www.sdl-forum.org.

[31] Seung-Chan Lim; Woo-Jae Kim and Young-Joo Suh,
“Rate-adaptive Snoop cache allocation to guarantee
TCP fairness in wireless networks,” IEEE 60th
Vehicular Technology Conference. VTC2004-Fall, Los
Angeles, CA, USA, Sept. 2004.

[32] Turner K. J., "Using Formal Description Techniques-
An Introduction to Estelle, LOTOS and SDL," John
Wiley and Sons Ltd., 1993, ISBN 0-471-93455-0.

[33] Vaidya N., Mehta M., Perkins C., and Montenegro G.,
"Delayed duplicate acknowledgements: a TCP-

[34] Van Der Schaar M., Sai Shankar N., “Cross-layer
wireless multimedia transmission: challenges,
principles, and new paradigms,” IEEE Wireless
Communications, Vol. 12, Issue 4, pp. 50 – 58, Aug.
2005.

[35] Vangala, S. and Labrador, M., “The TCP SACK-aware
Snoop protocol for TCP over wireless networks”, IEEE
58th Vehicular Technology Conference. VTC 2003-
Fall, Orlando, FL, USA, Oct. 2003.

[36] Xi Zhang, Jia Tang, Hsiao-Hwa Chen, Song Ci,
Guizani M., “Cross-layer-based modeling for quality of
service guarantees in mobile wireless networks,” IEEE
Communications Magazine, Vol. 44, Issue 1, pp. 100-
106, Jan. 2006.

KHAN/ZAGHAL EFSM Meta Modeling/ Revised Draft, April 2006

18

Figure appx1. SDL description of a simple TCP

Process TCP Transmitter

/* This process has four states: (1) initial
state is slow start, (2) data transfer, (3)
fast recovery, and (4) window closed. The
EFSM diagram of this process is given in
figure 7 */

seqno : Header field (sequence number)
ackno : Header field (ACK number)
RAW : Hearder field (Receiver
Advertised Window)
dACK : duplicate ACK
pACK : previous ACK
FRFlag : Fast Recovery Flag (Boolean)
RTO : Retransmission Timer Out value
Cwnd : Congestion window
Swnd : Send Window
LU : Least Unacked byte
LS : Last Sent byte
ExpBoff : Exponential Backoff
SBuff : Sender Buffer.
rexmt: Retransmission timer.

Slow Start

RecvACK
(H, data)

AppWrite
(data)

rexmt
(seqno)

Add data to SBuff

LS - LU < Swnd

SendData
(H, Data)

CalcRTO (RTO)

set (RTO, rexmt)

LS := LS + 1

Window
Closed

Cwnd ≤ ssthresh

Cwnd := Cwnd × 2 Cwnd := Cwnd + 1

(true)

(false)

Swnd := min
(Cwnd, RAW)

ExpBoff < 64

ExpBoff :=
ExpBoff × 2

(true)

(false)

CalcRTO (RTO)

set (ExpBoff × RTO,
rexmt)

LU := seqno+1
ExpBoff := 1

Cwnd ≤ RAW

(true)

(false)

 Data Transfer

 seqno ≥ LU

(true)

(false)

Initialize
variables

(1)

T0

T1

T2

T3

T4

T5

Remove ACKed
bytes from SBuff

ReleaseTimers
(seqno)

Retransmit
(seqno)

(true) (seqno)

KHAN/ZAGHAL EFSM Meta Modeling/ Revised Draft, April 2006

19

Figure appx1. (continued)

Data Transfer

RecvACK
(H, data)

AppWrite
(data)

rexmt
(seqno)

Add data to SBuff

LS - LU < Swnd

SendData
(H, Data)

CalcRTO (RTO)

set (RTO, rexmt)

LS := LS + 1

Window
Closed

seqno = pACK

dACK := dACK+1 pACK := seqno

(true)

(false)

dACK = 3

Fast Recovery

(true)

(false)

LU := seqno+1

ssthresh :=
max (Swnd/2, 2)

Cwnd := 1

Slow Start

temp := min (Cwnd,
Swnd/2)

ssthresh := max(2, temp)
Cwnd := ssthresh + 3

seqno ≥ LU

(true)

(false)

(false) (true)

Process TCP Transmitter

(2)

T6

T7

T8

T9

T10

T11

Remove ACKed
bytes from SBuff

ReleaseTimers
(dACK-1)

Retransmit
(dACK-1)

ReleaseTimers
(seqno)

ReleaseTimers

archeticture

KHAN/ZAGHAL EFSM Meta Modeling/ Revised Draft, April 2006

20

Figure appx1. (continued)

Process TCP Transmitter

(3)

Fast Recovery

RecvACK
(H, data)

AppWrite
(data)

rexmt
(seqno)

Add data to SBuff

seqno = pACK

FRFlag := True

(true)

(false)

ssthresh :=
max (Swnd/2, 2)

Cwnd := 1

Slow Start

LU := seqno+1

Data Transfer

FRFlag

(true)

(false)

SendData
(H, Data)

CalcRTO (RTO)

set (RTO, rexmt)

seqno ≥ LU

(true)

(false)

FRFlag := False
LS := LS + 1

T12

T13

T14

T15

T16

T17

ReleaseTimers
(seqno)

Retransmit
(seqno)

Remove ACKed
bytes from SBuff

InTraN

KHAN/ZAGHAL EFSM Meta Modeling/ Revised Draft, April 2006

21

Figure appx1. (continued)

Process TCP Transmitter

Window Closed

RecvACK
(H, data)

rexmt
(seqno)

seqno ≥ LU

(true)

(false)

LU := seqno+1

Data Transfer

AppWrite

(4)

T18

T19

T20

Remove ACKed
bytes from SBuff

ReleaseTimers
(seqno)

ReleaseTimers
(seqno)

Figure 1. The

KHAN/ZAGHAL EFSM Meta Modeling/ Revised Draft, April 2006

22

