
Glyndŵr University
Glyndŵr University Research Online

Computing Computer Science

1-1-2007

An argument for simple embedded ACL
optimisation
Vic Grout
Glyndwr University, v.grout@glyndwr.ac.uk

John N. Davies
Glyndwr University, j.n.davies@glyndwr.ac.uk

John McGinn
Glyndwr University, j.mcginn@glyndwr.ac.uk

Follow this and additional works at: http://epubs.glyndwr.ac.uk/cair
Part of the Computer Engineering Commons

This Article is brought to you for free and open access by the Computer Science at Glyndŵr University Research Online. It has been accepted for
inclusion in Computing by an authorized administrator of Glyndŵr University Research Online. For more information, please contact
d.jepson@glyndwr.ac.uk.

Recommended Citation
Grout, V., Davies, J., & McGinn, J. (2007) ‘An argument for simple embedded ACL optimisation’. Computer Communications, 30(2),
280-287

http://epubs.glyndwr.ac.uk?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/comp?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:d.jepson@glyndwr.ac.uk

An argument for simple embedded ACL optimisation

Abstract
The difficulty of efficiently reordering the rules in an Access Control List is considered and the essential
optimisation problem formulated. The complexity of exact and sophisticated heuristics is noted along with
their unsuitability for real time implementation embedded in the hardware of the network device. A simple
alternative is proposed, in which a very limited rule reordering is considered following the processing of each
packet. Simulation results are given from a range of traffic types. The method is shown to achieve savings that
make its use worthwhile for lists longer than a given number of rules. This number is dependent on traffic
characteristics but generally around 25 for typical network conditions.

Keywords
Access Control Lists, ACLs, Packet latency, Optimisation

Disciplines
Computer Engineering

Comments
Original publication is available at www.sciencedirect.com Copyright © 2006 Elsevier B.V.

This article is available at Glyndŵr University Research Online: http://epubs.glyndwr.ac.uk/cair/1

http://dx.doi.org/10.1016/j.comcom.2006.08.024
http://epubs.glyndwr.ac.uk/cair/1?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages

Computer Communications, Vol. 30, No. 2, January 2007, pp280-287

1 of 14

AN ARGUMENT FOR SIMPLE EMBEDDED ACL

OPTIMISATION

Vic Grout
1
, John Davies and John McGinn

Centre for Applied Internet Research (CAIR)

University of Wales, NEWI, Wrexham, LL11 2AW, UK

Abstract

The difficulty of efficiently reordering the rules in an Access Control List is considered and the

essential optimisation problem formulated. The complexity of exact and sophisticated heuristics

is noted along with their unsuitability for real time implementation embedded in the hardware of

the network device. A simple alternative is proposed, in which a very limited rule reordering is

considered following the processing of each packet. Simulation results are given from a range of

traffic types. The method is shown to achieve savings that make its use worthwhile for lists

longer than a given number of rules. This number is dependent on traffic characteristics but

generally around 25 for typical network conditions.

Keywords Access Control Lists, ACLs, Packet latency, Optimisation

1. Introduction

Access Control Lists (ACLs) are ubiquitous in internetworking. As the name suggests,

they play a major role in the process of passing or blocking traffic through sensitive

regions of a network. They can permit or deny traffic from or to given sources or

destinations, or discriminate on the basis of content or other characteristics. As an

extension to these simple security aspects of ACLs, certain traffic may be chosen for

tunnelling in a Virtual Private Network (VPN) for example.

However, this ability to filter network traffic makes ACLs suitable for a wider purpose.

They may be applied in any situation in which there is a need to choose certain data

packets for a given traffic policy. Network Address Translation (NAT), traffic shaping,

various aspects of internet routing, and numerous other traffic policies, all require packets

to which the policy is to be applied to be separated from those to which it is not. ACLs

may vary considerably in size but it is not uncommon for a single packet to be tested

against several ACLs on its passage across a single internet router and many more across

a complete domain.

This paper considers the delay this process adds to the packet’s progress. It discusses

optimisation of ACL structure to make the process more efficient and thus reduce the

1
 Corresponding author - Tel. +44 (0)1978 293203 Fax. +44 (0)1978 293168

GROUT et al. SIMPLE EMBEDDED ACL OPTIMISATION

2 of 14

delay. Optimisation is often a complex process, however. There is no value in an

optimisation regime that takes longer to implement than the latency it saves, and this has

often blocked attempts to implement ACL optimisation in real time and embedded within

the interface (say) hardware of the router in all but the largest models. However, this

paper demonstrates that a simple optimisation algorithm can be applied in this

environment with reductions in packet latency that exceed the time taken for it to run.

The essence of the technique is to consider a very limited reordering of the list of rules

following the processing of every packet.

2. The Problem

An ACL is an ordered list of rules. Each rule accepts or rejects a packet based on one or

some of its characteristic(s) - its profile. Typically, a packet may be considered on the

basis of its source, destination or traffic type, although other features may be relevant

[1]. Figure 1 gives an example of a typical ACL in the syntax of the Cisco Internetwork

Operating System (IOS) [2]. The use of the terms permit and deny reflect the original

role of ACLs in passing or blocking traffic.

 access-list 100 permit icmp any any

 access-list 100 permit tcp any any established

 access-list 100 deny ip MYIPRANGE1 MYIPREVMASK1 any

 access-list 100 deny ip 10.0.0.0 0.255.255.255 any

 access-list 100 deny ip 172.16.0.0 0.15.255.255 any

 access-list 100 deny ip 192.168.0.0 0.0.255.255 any

 access-list 100 deny ip 169.254.0.0 0.0.255.255 any

 access-list 100 deny ip 192.0.2.0 0.0.0.255 any

 access-list 100 permit tcp any host MAILSERVER eq smtp

 access-list 100 permit tcp any host NAMESERVER eq domain

 access-list 100 permit udp any host NAMESERVER eq domain

 access-list 100 permit udp any eq 53 host NAMESERVER gt 1024

 access-list 100 permit tcp host MANAGER host SUN eq telnet

 access-list 100 permit tcp host MANAGER host SERIAL0 eq telnet

 access-list 100 permit tcp host MANAGER host ETHERNET0 eq telnet

 access-list 100 permit udp host MANAGER host SERIAL0 eq snmp

 access-list 100 permit tcp any host FTPSERVER eq ftp

 access-list 100 permit tcp any eq ftp-data host FTPSERVER

 access-list 100 permit tcp any eq ftp-data any gt 1024

 access-list 100 permit tcp any host WWWSERVER eq www

 access-list 100 permit tcp any host SWWWSERVER eq 443

 access-list 100 permit udp EXT-NTPSERVER any eq 123

 access-list 100 permit udp any range 6970 7170 any

 access-list 100 deny ip any any

Figure 1. An Example of an Access Control List (ACL).

Each packet to be tested against an ACL is compared with the first rule, then the second,

and so on, until a rule matches its profile. The rule is then permitted or denied

accordingly and no more rules are considered. There is usually an implicit ‘deny all’ rule

GROUT et al. SIMPLE EMBEDDED ACL OPTIMISATION

3 of 14

terminating each list to deal with packets not matched by any other rule. A precise

treatment of rule and packet formats and profiles is given in [3]. This level of analysis is

not required here except in its final formulation of the problem. However it is necessary

to note that rule order is critical in an ACL …

Consider two rules as follows: rule 1 permits packets with characteristic A (source

address, for example) and rule 2 denies packets with characteristic B (destination address,

say). A packet with a profile matching both characteristics (from A to B in this case) will

match both rules. Consequently, the order of rule 1 … rule 2 will permit the packet

whereas the order rule 2 … rule 1 will deny it. Not all rules will be dependent in this way

but those that are must have their relative order in the list preserved if the ACL is to

retain its intended purpose. Of course, this only applies for rules of opposite types.

Several ‘permit’ rules in a contiguous block, for example, can be freely reordered among

themselves.

Some rules will take longer to process than others and some are more likely to match

packets than others. The difference in processing time comes from the level or extent to

which a rule has to examine a packet, and the likelihood of a match, its hit-rate, will vary

with changing traffic flows. For any given ACL, there may be a better version, with rules

in a different order, which performs the same task more efficiently – always remembering

that any reordering must preserve the order of dependent rules.

For straightforwardness in what follows, we denote the rule at position i in an ACL

simply as rule i. Then for a given rule i, in an ACL A, define its latency, li, to be the time

taken to match it against a single packet and its hit-rate, hi, to be the probability that the

next packet will match the rule, at its present location in A (and not any rule j < i that

precedes it). Then the cumulative latency of rule i, λi, is given by

 ∑
=

=
i

j

ii l
1

λ , (1)

the sum of the latencies of all rules up to and including i. The expected latency of A, EA,

the average time taken to process the list, is then

 ∑
=

=
n

i

iiA hE
1

λ , (2)

where there are n rules in A. Define the dependency matrix, D = (dij) as dij = 1 if rules i

and j are dependent in A and dij = 0 otherwise. Starting from an initial (probably

administratively defined) ACL, A0, the optimisation problem then is then to find the list,

A
*
, with minimum expected latency, obeying the dependency constraints, that is,

 EA* = min A EA (3)

GROUT et al. SIMPLE EMBEDDED ACL OPTIMISATION

4 of 14

subject to the constraint that, for any rules i and j with dij = 1 in A0, their relative order

(but not necessarily exact position) must be preserved in A
*

.

We consider changing traffic profiles as the paper progresses. However, even in its static

form, the problem is complex – NP-complete in fact [3]. No exact solutions are to be

found in reasonable time on any platform.

The efficiency of ACL structure is first considered theoretically in [4] and [5]. Cisco [6]

provide the first real attempt at optimisation. Their “Hits Optimizer” records which rules

match packets in real time on the router, then their “ACL Optimizer” works offline to

reorder the rules in line with dependency constraints. Apart from the obvious limitation

of working offline, this system does not discriminate between rules of different latencies.

Bukhatwa and Patel [7] demonstrate the savings available from ACL optimisation but

ignore both rule dependencies and differing rule latencies. An improved approach [8]

gives a simplified method for reordering rules based on latency but still ignores

dependencies. Both methods are implemented offline. Cisco [9] introduce “Turbo

Access Lists” with rules searched as look-up tables but only on high-end routers and

specialist firewalls.

Al Shaer and Hamed [10] give an improved formulation of the problem for the purposes

of detecting rule anomalies. An alternative for the full problem is given by Grout and

McGinn [3] along with a simple, but not particularly efficient, method of solution that

makes real-time online optimisation possible for moderate numbers of rules. The

complexity of the algorithm is around O(n
3
) – impractical for large lists. Finally, Grout et

al. [11] offer an efficient heuristic. However, at the time of going to print, the paper left

some questions unanswered. It is the purpose of this paper to finish the story by

completing the analysis, modifying the algorithm slightly and testing and establishing the

value of key parameters.

3. An Efficient Solution

Grout et al. [11] note the following:

• In comparing rule order for a list A, the significance of rule hit-rates is only relative.

It is not necessary for them to be normalised (i.e. summing to 1) probabilities. This

implies that the hit-rate of a newly hit rule, i, can increase without changing the hit-

rates of the other rules.

• Following an increase in a rule i’s hit-rate, the only possible change in rule order (to

reduce EA) is to promote i up the list. The most likely candidate with which to

exchange it is rule i-1, immediately above it.

• The potential saving in expected latency in swapping rules i-1 and i is given by hili-1 –

hi-1li (see the original paper for the full expansion), a simple, local calculation.

• Considering rule promotions continuously in this manner is entirely responsive to

dynamically changing traffic patterns.

GROUT et al. SIMPLE EMBEDDED ACL OPTIMISATION

5 of 14

These observations allow the search process to be simplified considerably. A simple

three-part heuristic algorithm for ACL optimisation is then proposed as follows:

Step 1: Initialisation

 for i := 1 to n do

 hi := 1/n

Step 2: On processing a packet matching rule i

 hi := θhi;
 if (di-1 i =0) and hili-1 - hi-1li > 0 then

 Swap(i-1, i)

Step 3: Renormalisation to prevent overflow

 for i := 1 to n do

 hi := hi / H

Step 1 sets all rule hit-rates to be equal, normalised probabilites when the ACL is initially

configured (or reconfigured). Step 2 is executed after the processing of every packet.

The hit-rate of the matched rule is increased by a factor θ, the promotion coefficient, and

the rule is swapped with its predecessor if the two are independent and the hit-

rate/latency trade off is favourable. (Note, for the analysis to follow, that swapping two

rules also entails swapping their respective hit-rates.) At certain intervals, Step 3 stops

the hit-rates increasing without bound and thus prevents overflow. In the original paper,

H is the sum of the individual hit-rates for all rules, ∑
=

=
n

i

ihH
1

, thus renormalising

values. Steps 1 and 3, of order O(n) are executed infrequently whilst the continuously

used Step 2 is a single simple calculation. The algorithm places an exponentially

decreasing importance on older rule matches, parameterised by θ.

Grout et al. [11] leave the following questions largely unanswered with respect to this

algorithm. What should the value of θ be? How frequently is Step 3 necessary?

Before continuing, this paper revises (streamlines) the above algorithm as follows:

Step 1: Initialisation (on configuration/reconfiguration)

 for i := 1 to n do

 hi := 1

Step 2: Promotion (on a match of rule i)

 hi := θhi;
if (di-1 i =0) and hili-1 > hi-1li then

 Swap(i-1, i)

Step 3: Reduction (every p packets)

 for i := 1 to n do

 hi := hi / H

The simplified initialisation (Step 1) reflects the fact that the hit-rates need not be

normalised. Step 2 remains trivial.

GROUT et al. SIMPLE EMBEDDED ACL OPTIMISATION

6 of 14

p and H are easily determined. The fastest route to overflow is through a stream of

packets all matching the same rule. The hit-rate of this rule will increase by a factor θ on

each packet and, after a packets, will have a hit rate of θ a
. If M is the largest value

permitted in the data range being used, then p can be calculated as p = log θ M, a router

constant. (x is the integer part of x.) Taking H = max i hi will reduce the maximum

value back to 1 each time Step 3 is executed. It remains to determine the value for θ .

4. Simulation and Results

The intention of this paper is to establish, in principle, the viability of a simple,

embedded heuristic optimisation technique acting upon rule order in ACLs. This is

fortunate because the process of obtaining results from live ACLs is hindered by a

number of factors:

• Our initial aim is to be able to characterise both ACLs and traffic flows, and the

relationship between them. ACLs are characterised by their size, the level of

interdependence between rules and the distribution of rule hit-rates. (For some ACLs,

hit-rates may be close to uniform and/or largely independent of rule order; in others,

some rules – typically those close to the start – may have hit-rates considerably larger

than the rest.) Traffic is characterised, in particular, by its stability: a stream of

similar packets may match the same rule whereas unstable flows will find different

matches throughout an ACL. Our ultimate aim is to investigate how appropriate our

proposed method will be for a spectrum of ACL types and traffic flows. This level of

parameterisation will be difficult to obtain from production lists and flows. Although

there are some sources of ‘real’ traffic for simulation purposes, ACLs are harder to

find: their data is simply not available in sufficient, measurable quantity (at least in

their thousands) to enable us to produce consistent results.

• The low-level implementation of packet-matching techniques varies considerably

from platform to platform [12]. Although primarily hardware-based, the precise

relationship with the (eg, router) operating system is vendor-, and sometimes model-,

dependent. Even in hardware alone, the number of steps to perform any operation

will depend on the unique architecture and organisation of the platform. Using real

ACLs for simulation serves little purpose if their performance varies between models.

Using an abstract simulation with parameterisation that can be tailored to any given

environment is actually a stronger proposition.

• Experimenting with the proposed algorithm, and testing variations of key parameters

(eg, θ) in a working environment is difficult on some platforms, particularly in

hardware implementations. Without access to the embedded hardware itself,

experimentation is impossible on most production routers. Limited control is possible

on some platforms ([13] for example) but can only test a small proportion of cases.

The final alternative is a general network simulator. ns-2, for example [14], offers

some generic packet-processing functionality. However, such simulations are

generally small and, abstracted as they themselves are, no more accurate or ‘real’ than

the processes described below.

GROUT et al. SIMPLE EMBEDDED ACL OPTIMISATION

7 of 14

Table I. Simulated Results: Rank and Cumulative Latencies (example).

ACL length (n): 1 000 rules. Stream length: 4 000 000 packets. θ = 1.5

3 changes in packet flow characteristics.

Dependency index (DI - probability of a dependency between any two rules): 0.25

Self-similarity index (SSI - probability of each packet belonging to the same stream as

the previous one): 0.75

Table shows mean position of matched rule and mean (cumulative) latency since last

checkpoint (*), since last traffic variation (") and since start of packet stream (^)

Packet Number of Average Average Average Average Average Average

 flow Packets Rank* Rank" Rank^ Latency* Latency" Latency^

 R* R" R^ L* L" L^

(initial) 100000 485.26 485.26 485.26 366.69 366.69 366.69

 200000 448.66 466.96 466.96 338.82 352.76 352.76

 300000 417.56 450.49 450.49 315.14 340.22 340.22

 400000 391.89 435.84 435.84 295.61 329.06 329.06

 500000 372.26 423.12 423.12 280.83 319.42 319.42

 600000 356.86 412.08 412.08 269.20 311.05 311.05

 700000 349.02 403.07 403.07 263.29 304.23 304.23

 800000 340.53 395.25 395.25 256.89 298.31 298.31

 900000 338.29 388.92 388.92 255.16 293.51 293.51

 1000000 333.14 383.35 383.35 251.33 289.30 289.30

(variation) 1100000 487.61 487.61 392.82 364.08 364.08 296.09

 1200000 455.80 471.71 398.07 340.46 352.27 299.79

 1300000 424.65 456.02 400.12 317.41 340.65 301.15

 1400000 396.19 441.06 399.84 296.09 329.51 300.79

 1500000 374.08 427.67 398.12 279.42 319.49 299.36

 1600000 360.43 416.46 395.76 269.12 311.10 297.47

 1700000 348.11 406.70 392.96 260.16 303.82 295.28

 1800000 345.88 399.09 390.35 258.65 298.17 293.24

 1900000 336.54 392.14 387.51 251.78 293.02 291.06

 2000000 334.00 386.33 384.84 249.91 288.71 289.00

(variation) 2100000 480.18 480.18 389.38 358.17 358.17 292.30

 2200000 447.21 463.69 392.01 333.58 345.88 294.17

 2300000 419.02 448.80 393.18 312.50 334.75 294.97

 2400000 391.50 434.48 393.11 292.04 324.07 294.85

 2500000 372.56 422.09 392.29 278.02 314.86 294.17

 2600000 358.98 411.57 391.01 268.09 307.07 293.17

 2700000 348.82 402.61 389.45 260.85 300.46 291.97

 2800000 344.28 395.32 387.83 257.67 295.12 290.75

 2900000 340.32 389.21 386.19 254.85 290.64 289.51

 3000000 339.55 384.24 384.64 254.42 287.02 288.34

(variation) 3100000 476.78 476.78 387.61 355.68 355.68 290.51

 3200000 442.44 459.61 389.33 330.09 342.88 291.75

 3300000 414.21 444.48 390.08 309.26 331.68 292.28

 3400000 393.23 431.67 390.17 293.73 322.19 292.32

 3500000 376.00 420.53 389.77 281.09 313.97 292.00

 3600000 358.76 410.24 388.91 268.47 306.39 291.35

 3700000 350.40 401.69 387.86 262.32 300.09 290.56

 3800000 343.42 394.41 386.70 256.97 294.70 289.68

 3900000 344.01 388.81 385.60 257.34 290.55 288.85

 4000000 339.55 383.88 384.45 254.02 286.90 287.98

Our simulation is based on an in-house numerical model, capable of generating ACLs

and traffic flows according to a given parameter set, described as follows. For tested

ACLs, the number of rules (n) ranged from 10 to 10 000. Dependencies between rules

were determined using a dependency index, DI, the probability that any two rules are

dependent. Values of DI in the range 0 (no dependencies) to 1 (complete dependency)

were used. For each rule pair, (i,j), dependencies are randomised as dij = 1 with

probability DI and 0 otherwise. Rule latencies were uniformly randomised from 0.5µs to

1.0µs. Actual values depend on the router hardware of course [14] but it is only relative

GROUT et al. SIMPLE EMBEDDED ACL OPTIMISATION

8 of 14

values that are significant. (Routers that process packets faster will also optimise faster –

see the conclusions section that follows.)

For traffic, the simulation is more sophisticated. The traffic simulator generates packets

with given probabilities of matching each rule in the list. At intervals, these probabilities

may change to reflect shifting traffic patterns. Within a single traffic pattern, however,

there is a certain probability that a packet is identical to the previous one – or part of a

similar stream - and matches the same rule.

So, at the start of the simulation, a value of the self-similarity index, SSI, is set. Then a

match probability, ρi is randomised for each rule i and normalised so that 1
1

=∑
=

n

i

iρ . The

first packet is generated, matching rule i with probability ρi. Subsequent packets match

the same rule with probability SSI, and otherwise match any rule according to the match

probabilities, ρi. Every q packets, the match probabilities, ρi, are re-randomised.

n and DI can be set to produce different types of ACL while q and SSI vary to reflect

different types of traffic. As an example, Table I records simulated output from a test

with θ = 1.5, n = 1 000, DI = 0.25, q = 1 000 000 and SSI = 0.75. 4 000 000 packets

are generated in total, in four stages with varying profiles. Results are reported every

100 000 packets.

0

50

100

150

200

250

300

350

400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

L*

L"

L^

Instantaneous Average

Variation Average

Continuous Average

Cumulative Latency (µµµµs)

Packets
Change of traffic profile

n = 1,000

θ= 1.5

DI = 0.25

SSI = 0.5

0 1 000 000 2 000 000 3 000 000 4 000 000

Figure 2. Simulated Results: Cumulative Latencies.

Tabled results are the mean position of the matched rule (rank) in the ACL and the mean

cumulative latency of this rule. In both cases, three values are given: the mean since the

last set of figures (R* & L*) – the instantaneous average, the mean since the last traffic

variation (R” & L”) – the variation average, and the mean of the entire simulation (R^ &

GROUT et al. SIMPLE EMBEDDED ACL OPTIMISATION

9 of 14

L^) – the continuous average. The three latency averages, L*, L” and L^, are plotted in

Figure 2.

The mean rank, R, for a 1 000 rule list with no optimisation will be 500 and the mean

cumulative latency, L, for a latency range of 0.5 to 1.0, 500 x (1.0 + 0.5) / 2 = 375. In

simulation, optimised averages start at these values and are then progressively lowered as

rules with high hit rates are promoted. When traffic profiles change, instantaneous and

variation averages become poor again but are gradually improved once more as the ACL

adapts to the new characteristics. The continuous average becomes steadier. In this

example, L^ approaches a figure of approximately 287, an improvement of 23% on the

non-optimised figure.

Table II. Simulated Results: Traffic Parameters and Promotion Coefficient.

ACL length (n): 1 000 rules. Stream length: 4 000 000 packets.

DI – Dependency Index. SSI – Self-Similarity Index.

Traffic (packet) characteristics change every q packets.

Table shows values of percentage improvement in expected latency (100(L–L^)/L) for

different values of DI, SSI, q and θ.

 DI = 0 0.25 0.5 0.75 1

 SSI = 0 θ = 1.1 15 14 13 10 0

 q = 10 1.5 15 14 13 10 0

 2.0 15 14 13 10 0

 2.5 14 13 12 9 0

 1.5 14 13 12 9 0

 SSI = 0.25 θ = 1.1 17 15 13 10 0

 q = 1 000 1.5 17 15 13 11 0

 2.0 17 15 14 11 0

 2.5 17 15 14 11 0

 1.5 17 15 13 10 0

 SSI = 0.5 θ = 1.1 19 17 15 10 0

 q = 50 000 1.5 21 18 15 11 0

 2.0 21 18 15 12 0

 2.5 21 18 15 12 0

 1.5 21 18 15 12 0

 SSI = 0.75 θ = 1.1 19 17 15 12 0

 q = 1 000 000 1.5 26 23 20 13 0

 2.0 28 27 20 14 0

 2.5 28 27 20 14 0

 1.5 28 27 20 14 0

 SSI = 1 θ = 1.1 20 19 16 13 0

 no variation 1.5 27 25 20 13 0

 2.0 30 29 22 16 0

 2.5 30 29 22 16 0

 1.5 30 29 22 16 0

Different parameters affect these values as shown in Table II. Results are proportionally

similar for different n. High values of DI work against the optimisation process,

prohibiting desirable swaps. In the extreme cases, DI = 1 prevents any optimisation

whereas DI = 0 allows rules to move freely. High values of q and SSI imply greater

traffic stability, which improves the optimised values. The effect of θ is more subtle.

GROUT et al. SIMPLE EMBEDDED ACL OPTIMISATION

10 of 14

High values make rule promotion faster, which works well for self-similar, stable traffic

but can lead to repetitive, unnecessary swaps for continuously changing, or oscillating,

traffic patterns. A balance is necessary: a value around θ = 2 maximises the

improvement in expected latency in most cases.

5. Analysis

Routers vary considerably in their operation, particularly in terms of implementation in

hardware. The following is, by necessity, generic and, to some extent, imprecise.

However, it gives an appropriate indication of the relative worth of dynamic

optimisation. We discuss an operation simply as a unit of calculation or assignment,

probably performed in hardware on the appropriate interface. (However, the same

argument would apply in relative terms if these operations were to be a part of the

operating system software.)

With a B-bit data type/range (e.g. register size) and θ = 2, we have p= log 2 2
B = B.

For any given ACL manual configuration (or reconfiguration), Step 1 of the algorithm is

executed once and can be taken as part of the configuration, Step 2, every processed

packet and Step 3 every B packets. Step 2 consists of an assignment, two calculations,

two comparisons and a conjunction (possibly) followed by a swap of six assignments –

three for the rules and three for their hit-rates - twelve operations in all. Step 3 has two

loops of size n, one to establish the maximum value and the other to reduce each value.

The mean complexity (of Step 3) each packet is then 2n / B and, in total, 12 + 2n / B for

Steps 2 & 3 combined.

Table III. Optimisation Trade-Off – Saving against Cost

DI = SSI = 0.5. θ = 2.

Table shows value of trade-off function, T = φn/25 – 12 – 2n/B, for different values of n
and B.

 B = 8 16 32 64

 n = 10 -8.50 -7.25 -6.63 -6.31

 30 -1.50 2.25 4.13 5.06

 100 23.00 35.50 41.75 44.88

 300 93.00 130.50 149.25 158.63

 1 000 338.00 463.00 525.50 556.75

 3 000 1038.00 1413.00 1600.50 1694.25

 n* = 34.28 25.26 22.32 21.10

n* is the minimum length of list for T to be positive (i.e. for optimisation to be

worthwhile).

Matching a packet against a rule consists of at least one operation (permit or deny)

followed by between 1 and 5 comparisons (Figure 1). Taking a mean of 1 + 3 = 4

operations per rule and a percentage saving for an optimised list of φ gives an

optimisation trade-off of

GROUT et al. SIMPLE EMBEDDED ACL OPTIMISATION

11 of 14

B

nn
T

2
12

100

4
−−=

ϕ
, (4)

which will be positive (i.e. worthwhile) when

Bn

50300
+>ϕ . (5)

For example, taking n = 1 000 and B = 16, this gives 300 / 1 000 + 50 / 16 = 3.425.

Table II shows that the improvement, φ, exceeds this for all values other than DI = 1 and

is therefore worthwhile. Alternatively, taking θ = 2 and DI = SSI = 0.5 gives an

improvement of φ = 15 and a trade-off of T = (15 x 1 000) / 25 – 12 – 2 000 / 16 = 463, a

positive benefit. Table III extends this calculation across a range of values of n and B

and, for each B, shows the key value of n*, the size of ACL for which optimisation is

profitable. Table IV fixes B at 16 and calculates n* for various values of DI and SSI.

Table IV. Optimisation Trade-Off – Minimum ACL Length

θ = 2.

Table shows the value of n*, the minimum length of list for T = φn/25 – 12 – n/8, to be
positive (i.e. for optimisation to be worthwhile) for different values of DI and SSI.

 DI = 0.0 0.25 0.5 0.75 1.0

 SSI = 0 25.26 27.59 30.37 43.64 ∞
 0.25 21.62 25.26 27.59 38.09 ∞
 0.5 16.78 20.17 25.26 33.80 ∞
 0.75 12.06 12.57 17.78 27.59 ∞
 1 11.16 11.59 15.89 23.30 ∞

6. Conclusions

No amount of traffic modelling can substitute entirely for testing on production routers.

However, our simulations are extensive and, within themselves, give consistent results.

The major obstacle to successful (worthwhile) optimisation is highly interdependent rules

in an ACL. If no or few rules are permitted to be reordered then it is impossible or

difficult to find equivalent lists with lower expected latencies. However, this is rarely the

case in practical ACLs. The typical ACL in Figure 1, for example, has large blocks of

separate ‘permit’ and ‘deny’ blocks with no dependencies within them. A worst-case

figure for a practical ACL is likely to be DI ≈ 0.5, giving good results (Tables II & IV).

Table II suggests θ = 2 as an appropriate (and, in fact, convenient) value for the

promotion coefficient. The number of packets between hit-rate reductions (Step 3) is

then B, the size (number of bits) of the register being used to store them. The final

version of the three part algorithm then becomes:

GROUT et al. SIMPLE EMBEDDED ACL OPTIMISATION

12 of 14

Step 1: Initialisation (on configuration/reconfiguration)

 for i := 1 to n do

 hi := 1

Step 2: Promotion (on a match of rule i)

 hi := 2hi;

if (di-1 i =0) and hili-1 > hi-1li then

 Swap(i-1, i)

Step 3: Reduction (every B packets)

 for i := 1 to n do

 hi := hi / maxjhj

Depending on the stability and self-similarity of the traffic (q and SSI) and the frequency

of hit-rate reduction (B), optimisation becomes worthwhile for ACLs above a certain

length (n*) (Tables III & IV). For realistic dependencies, this figure ranges between

about 10 and 30. It will be trivial to separate those lists to which optimisation is to be

applied from those to which it is not. Of course, it is precisely for longer ACLs that

optimisation will yield the best results.

Real-time, online, embedded ACL optimisation on operational routers, as proposed, is

possible and worthwhile. It is now recommended that it be put into practice as an integral

part of the router hardware for practical testing.

7. References

[1] Access Control Lists, Cisco Systems, USA,

(http://www.cisco.com/univercd/cc/td/doc/product/software/ios113ed/113ed_cr/secu

r_c/scprt3/scacls.htm)

[2] JANET-CERT Example Router Configuration, (http://www.ja.net/CERT/JANET-

CERT/prevention/template.html)

[3] Grout, V. and McGinn, J., Optimisation of Policy-Based Routing Using Access Control Lists,

IFIP/IEEE Symposium on Integrated Network Management, Nice, France, 16
th
-19

th
 May 2005

(full version available at http://www.newi.ac.uk/groutv/papers/acls.pdf)

[4] Hari, B., Suri, S. and Parulkar, G., Detecting and Resolving Packet Filter Conflicts,

Proceedings of the 19
th
 Joint Conference of the IEEE Computer and Communications Societies

(INFOCOM00), pp1203-1212, 2000.

[5] Stoica, I., Route Lookup and Packet Classification, Technical Report No. CS 268,

Department of Electrical Engineering and Computer Science, University of California, Berkeley,

USA, 2001.

[6] ACL Optimizer and Hits Optimizer, Cisco Systems, USA,

(http://www.cisco.com/univercd/cc/td/doc/product/rtrmgmt/cw2000/fam_prod/acl_mgr

/aclm_1_x/1_6/u_guide/ac1js.htm)

GROUT et al. SIMPLE EMBEDDED ACL OPTIMISATION

13 of 14

[7] Bukhatwa, F. and Patel, A., Effects of Ordered Access Lists in Firewalls, Proceedings of

IADIS WWW/Internet International Conference (W3I 2004), Algarve, Portugal, 5
th
-8

th

November 2003, pp257-264.

[8] Bukhatwa, F., High Cost Elimination Method for Best Class Permutation in Access Lists,

Proceedings of IADIS WWW/Internet International Conference (W3I 2003), Madrid, Spain, 6
th
-

9
th
 October 2004, pp287-294.

[9] Turbo Access Control Lists, Cisco Systems, USA,

(http://www.cisco.com/univercd/cc/td/doc/product/software/ios121/121newft/121t/1

21t5/dttacl.htm)

[10] Al-Shaer, E. and Hamed, H., Modeling and Management of Firewall Policies, IEEE

Transactions on Network and Service Management, Vol. 1-1, April 2004.

[11] Grout, V., McGinn, J. and Davies, J., Reducing Processing Latency in Network Packet

Filters, Proceedings of the Fifth International Network Conference (INC 2005), Samos, Greece,

July 2005, pp3-10.

[12] Varghese, G., Networking Algorithmics: An interdisciplinary approach to designing fast

networking devices, Morgan Kaufmann, 2005.

[14] The Network Simulator – ns-2,

(http://www.isi.edu/nsnam/ns/)

[15] Suehring, S. and Ziegler, R., Linux Firewalls (3
rd

 edition), Novell Press, 2005.

Biographies

Vic Grout was awarded the BSc(Hons) degree in Mathematics and Computing from the

University of Exeter (UK) in 1984 and the PhD degree in Communication Engineering

from Plymouth Polytechnic (UK) in 1988.

He has worked in senior positions in both academia and industry for twenty years and

has published and presented over 100 research papers. He is currently a Reader in

Computer Science at the University of Wales NEWI, Wrexham in the UK, where he

leads the Centre for Applied Internet Research (CAIR). His research interests and those

of his research students span several areas of computational mathematics, particularly the application of

heuristic principles to large-scale problems in network design and management.

Dr. Grout is a Chartered Engineer, Scientist and Mathematician and a Fellow of the British Computer

Society (BCS). He chairs the biennial international conference series on Internet Technologies and

Applications (ITA).

John Davies has a BSc(Hons) in Control Engineering from the University of Salford, UK

(1973). He has worked for British Nuclear Fuels, Sension, the University of London

Computer Centre and Daresbury Laboratories (UK) as a Project Manager, Chief Engineer,

Senior Lecturer and Higher Scientific Officer respectively. He is currently a Senior

Lecturer in Computing at the University of Wales, NEWI (UK) completing a PhD in

network traffic prediction.

 John has research interests in various aspects of network measurement, simulation and

management and has published a number of technical papers on network routing, traffic congestion and

optimisation. He is a member of the Institution of Engineering and Technology (IET)

GROUT et al. SIMPLE EMBEDDED ACL OPTIMISATION

14 of 14

John McGinn was awarded the BSc(Hons) degree in Multimedia Computing by the

University of Wales in 2000 and is currently working towards the PhD degree as a

Research Fellow in the Centre for Applied Internet Research (CAIR) at the University of

Wales, NEWI (UK).

 John’s research interests include network protocols and standards and distributed

collaboration and visualisation. He has published and presented a number of technical

papers on topics from information visualisation to ACL optimisation. He is a member of

the British Computer Society (BCS) and the Institution of Engineering and Technology (IET).

	Glyndŵr University
	Glyndŵr University Research Online
	1-1-2007

	An argument for simple embedded ACL optimisation
	Vic Grout
	John N. Davies
	John McGinn
	Recommended Citation

	An argument for simple embedded ACL optimisation
	Abstract
	Keywords
	Disciplines
	Comments

