
Glyndŵr University
Glyndŵr University Research Online

Computing Computer Science

1-1-2007

An argument for simple embedded ACL
optimisation
Vic Grout
Glyndwr University, v.grout@glyndwr.ac.uk

John N. Davies
Glyndwr University, j.n.davies@glyndwr.ac.uk

John McGinn
Glyndwr University, j.mcginn@glyndwr.ac.uk

Follow this and additional works at: http://epubs.glyndwr.ac.uk/cair
Part of the Computer Engineering Commons

This Article is brought to you for free and open access by the Computer Science at Glyndŵr University Research Online. It has been accepted for
inclusion in Computing by an authorized administrator of Glyndŵr University Research Online. For more information, please contact
d.jepson@glyndwr.ac.uk.

Recommended Citation
Grout, V., Davies, J., & McGinn, J. (2007) ‘An argument for simple embedded ACL optimisation’. Computer Communications, 30(2),
280-287

http://epubs.glyndwr.ac.uk?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/comp?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:d.jepson@glyndwr.ac.uk


An argument for simple embedded ACL optimisation

Abstract
The difficulty of efficiently reordering the rules in an Access Control List is considered and the essential
optimisation problem formulated. The complexity of exact and sophisticated heuristics is noted along with
their unsuitability for real time implementation embedded in the hardware of the network device. A simple
alternative is proposed, in which a very limited rule reordering is considered following the processing of each
packet. Simulation results are given from a range of traffic types. The method is shown to achieve savings that
make its use worthwhile for lists longer than a given number of rules. This number is dependent on traffic
characteristics but generally around 25 for typical network conditions.

Keywords
Access Control Lists, ACLs, Packet latency, Optimisation

Disciplines
Computer Engineering

Comments
Original publication is available at www.sciencedirect.com Copyright © 2006 Elsevier B.V.

This article is available at Glyndŵr University Research Online: http://epubs.glyndwr.ac.uk/cair/1

http://dx.doi.org/10.1016/j.comcom.2006.08.024
http://epubs.glyndwr.ac.uk/cair/1?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages


Computer Communications,  Vol. 30, No. 2, January 2007, pp280-287 

1 of 14 

AN ARGUMENT FOR SIMPLE EMBEDDED ACL 

OPTIMISATION 
 

Vic Grout
1
, John Davies and John McGinn 

Centre for Applied Internet Research (CAIR) 

University of Wales, NEWI, Wrexham, LL11 2AW, UK 

 

 

Abstract 
 
The difficulty of efficiently reordering the rules in an Access Control List is considered and the 

essential optimisation problem formulated.  The complexity of exact and sophisticated heuristics 

is noted along with their unsuitability for real time implementation embedded in the hardware of 

the network device.  A simple alternative is proposed, in which a very limited rule reordering is 

considered following the processing of each packet.  Simulation results are given from a range of 

traffic types.  The method is shown to achieve savings that make its use worthwhile for lists 

longer than a given number of rules.  This number is dependent on traffic characteristics but 

generally around 25 for typical network conditions. 

 

 

Keywords Access Control Lists,  ACLs,  Packet latency,  Optimisation 

 

 

1. Introduction 
 

Access Control Lists (ACLs) are ubiquitous in internetworking.  As the name suggests, 

they play a major role in the process of passing or blocking traffic through sensitive 

regions of a network.  They can permit or deny traffic from or to given sources or 

destinations, or discriminate on the basis of content or other characteristics.  As an 

extension to these simple security aspects of ACLs, certain traffic may be chosen for 

tunnelling in a Virtual Private Network (VPN) for example. 

 

However, this ability to filter network traffic makes ACLs suitable for a wider purpose. 

They may be applied in any situation in which there is a need to choose certain data 

packets for a given traffic policy.  Network Address Translation (NAT), traffic shaping, 

various aspects of internet routing, and numerous other traffic policies, all require packets 

to which the policy is to be applied to be separated from those to which it is not.  ACLs 

may vary considerably in size but it is not uncommon for a single packet to be tested 

against several ACLs on its passage across a single internet router and many more across 

a complete domain. 

 

This paper considers the delay this process adds to the packet’s progress.  It discusses 

optimisation of ACL structure to make the process more efficient and thus reduce the 
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delay.  Optimisation is often a complex process, however.  There is no value in an 

optimisation regime that takes longer to implement than the latency it saves, and this has 

often blocked attempts to implement ACL optimisation in real time and embedded within 

the interface (say) hardware of the router in all but the largest models.  However, this 

paper demonstrates that a simple optimisation algorithm can be applied in this 

environment with reductions in packet latency that exceed the time taken for it to run.  

The essence of the technique is to consider a very limited reordering of the list of rules 

following the processing of every packet. 

 

 

2. The Problem 
 

An ACL is an ordered list of rules.  Each rule accepts or rejects a packet based on one or 

some of its characteristic(s) - its profile.  Typically, a packet may be considered on the 

basis of its source, destination or traffic type, although other features may be relevant  

[1].  Figure 1 gives an example of a typical ACL in the syntax of the Cisco Internetwork 

Operating System (IOS) [2].  The use of the terms permit and deny reflect the original 

role of ACLs in passing or blocking traffic. 

 
 

    access-list 100 permit icmp any any 

    access-list 100 permit tcp any any established 

    access-list 100 deny ip MYIPRANGE1 MYIPREVMASK1 any 

    access-list 100 deny ip 10.0.0.0 0.255.255.255 any  

    access-list 100 deny ip 172.16.0.0 0.15.255.255 any 

    access-list 100 deny ip 192.168.0.0 0.0.255.255 any 

    access-list 100 deny ip 169.254.0.0 0.0.255.255 any 

    access-list 100 deny ip 192.0.2.0 0.0.0.255 any 

    access-list 100 permit tcp any host MAILSERVER eq smtp 

    access-list 100 permit tcp any host NAMESERVER eq domain 

    access-list 100 permit udp any host NAMESERVER eq domain 

    access-list 100 permit udp any eq 53 host NAMESERVER gt 1024 

    access-list 100 permit tcp host MANAGER host SUN eq telnet 

    access-list 100 permit tcp host MANAGER host SERIAL0 eq telnet 

    access-list 100 permit tcp host MANAGER host ETHERNET0 eq telnet 

    access-list 100 permit udp host MANAGER host SERIAL0 eq snmp 

    access-list 100 permit tcp any host FTPSERVER eq ftp 

    access-list 100 permit tcp any eq ftp-data host FTPSERVER 

    access-list 100 permit tcp any eq ftp-data any gt 1024 

    access-list 100 permit tcp any host WWWSERVER eq www 

    access-list 100 permit tcp any host SWWWSERVER eq 443 

    access-list 100 permit udp EXT-NTPSERVER any eq 123 

    access-list 100 permit udp any range 6970 7170 any  

    access-list 100 deny ip any any 

 

 

Figure 1.  An Example of an Access Control List (ACL). 

 

Each packet to be tested against an ACL is compared with the first rule, then the second, 

and so on, until a rule matches its profile.  The rule is then permitted or denied 

accordingly and no more rules are considered.  There is usually an implicit ‘deny all’ rule 
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terminating each list to deal with packets not matched by any other rule.  A precise 

treatment of rule and packet formats and profiles is given in [3].  This level of analysis is 

not required here except in its final formulation of the problem.  However it is necessary 

to note that rule order is critical in an ACL … 

 

Consider two rules as follows:  rule 1 permits packets with characteristic A (source 

address, for example) and rule 2 denies packets with characteristic B (destination address, 

say).  A packet with a profile matching both characteristics (from A to B in this case) will 

match both rules.  Consequently, the order of rule 1 … rule 2 will permit the packet 

whereas the order rule 2 … rule 1 will deny it.  Not all rules will be dependent in this way 

but those that are must have their relative order in the list preserved if the ACL is to 

retain its intended purpose.  Of course, this only applies for rules of opposite types.  

Several ‘permit’ rules in a contiguous block, for example, can be freely reordered among 

themselves. 

 

Some rules will take longer to process than others and some are more likely to match 

packets than others.  The difference in processing time comes from the level or extent to 

which a rule has to examine a packet, and the likelihood of a match, its hit-rate, will vary 

with changing traffic flows.  For any given ACL, there may be a better version, with rules 

in a different order, which performs the same task more efficiently – always remembering 

that any reordering must preserve the order of dependent rules. 

 

For straightforwardness in what follows, we denote the rule at position i in an ACL 

simply as rule i.  Then for a given rule i, in an ACL A, define its latency, li, to be the time 

taken to match it against a single packet and its hit-rate, hi, to be the probability that the 

next packet will match the rule, at its present location in A (and not any rule j < i that 

precedes it).  Then the cumulative latency of rule i, λi, is given by 

 

  ∑
=

=
i

j

ii l
1

λ ,               (1) 

 

the sum of the latencies of all rules up to and including i.  The expected latency of A, EA, 

the average time taken to process the list, is then 

 

  ∑
=

=
n

i

iiA hE
1

λ ,               (2) 

 

where there are n rules in A.  Define the dependency matrix, D = (dij) as dij = 1 if rules i 

and j are dependent in A and dij = 0 otherwise.  Starting from an initial (probably 

administratively defined) ACL, A0, the optimisation problem then is then to find the list, 

A
*
, with minimum expected latency, obeying the dependency constraints, that is, 

 

  EA*  =  min A EA              (3) 
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subject to the constraint that, for any rules i and j with dij = 1 in A0, their relative order 

(but not necessarily exact position) must be preserved in A
* 

. 

 

We consider changing traffic profiles as the paper progresses.  However, even in its static 

form, the problem is complex – NP-complete in fact [3].  No exact solutions are to be 

found in reasonable time on any platform. 

 

The efficiency of ACL structure is first considered theoretically in [4] and [5].  Cisco [6] 

provide the first real attempt at optimisation.  Their “Hits Optimizer” records which rules 

match packets in real time on the router, then their “ACL Optimizer” works offline to 

reorder the rules in line with dependency constraints.  Apart from the obvious limitation 

of working offline, this system does not discriminate between rules of different latencies.  

Bukhatwa and Patel [7] demonstrate the savings available from ACL optimisation but 

ignore both rule dependencies and differing rule latencies.  An improved approach [8] 

gives a simplified method for reordering rules based on latency but still ignores 

dependencies.  Both methods are implemented offline.  Cisco [9] introduce “Turbo 

Access Lists” with rules searched as look-up tables but only on high-end routers and 

specialist firewalls. 

 

Al Shaer and Hamed [10] give an improved formulation of the problem for the purposes 

of detecting rule anomalies.  An alternative for the full problem is given by Grout and 

McGinn [3] along with a simple, but not particularly efficient, method of solution that 

makes real-time online optimisation possible for moderate numbers of rules.  The 

complexity of the algorithm is around O(n
3
) – impractical for large lists.  Finally, Grout et 

al. [11] offer an efficient heuristic.  However, at the time of going to print, the paper left 

some questions unanswered.  It is the purpose of this paper to finish the story by 

completing the analysis, modifying the algorithm slightly and testing and establishing the 

value of key parameters. 

 

3. An Efficient Solution 
 

Grout et al. [11] note the following: 

 

• In comparing rule order for a list A, the significance of rule hit-rates is only relative.  

It is not necessary for them to be normalised (i.e. summing to 1) probabilities.  This 

implies that the hit-rate of a newly hit rule, i, can increase without changing the hit-

rates of the other rules. 

• Following an increase in a rule i’s hit-rate, the only possible change in rule order (to 

reduce EA) is to promote i up the list.  The most likely candidate with which to 

exchange it is rule  i-1, immediately above it. 

• The potential saving in expected latency in swapping rules i-1 and i is given by hili-1 – 

hi-1li (see the original paper for the full expansion), a simple, local calculation. 

• Considering rule promotions continuously in this manner is entirely responsive to 

dynamically changing traffic patterns. 
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These observations allow the search process to be simplified considerably.  A simple 

three-part heuristic algorithm for ACL optimisation is then proposed as follows: 

 
Step 1: Initialisation 

  for i := 1 to n do 

     hi := 1/n 

 

Step 2: On processing a packet matching rule i 

  hi := θhi; 
  if (di-1 i =0) and hili-1 - hi-1li > 0 then 

     Swap(i-1, i) 

 

Step 3: Renormalisation to prevent overflow 

  for i := 1 to n do 

     hi := hi / H 

 

Step 1 sets all rule hit-rates to be equal, normalised probabilites when the ACL is initially 

configured (or reconfigured).  Step 2 is executed after the processing of every packet.  

The hit-rate of the matched rule is increased by a factor θ, the promotion coefficient,  and 

the rule is swapped with its predecessor if the two are independent and the hit-

rate/latency trade off is favourable.  (Note, for the analysis to follow, that swapping two 

rules also entails swapping their respective hit-rates.)  At certain intervals, Step 3 stops 

the hit-rates increasing without bound and thus prevents overflow.  In the original paper, 

H is the sum of the individual hit-rates for all rules, ∑
=

=
n

i

ihH
1

, thus renormalising 

values.  Steps 1 and 3, of order O(n) are executed infrequently whilst the continuously 

used Step 2 is a single simple calculation.  The algorithm places an exponentially 

decreasing importance on older rule matches, parameterised by θ. 

 

Grout et al. [11] leave the following questions largely unanswered with respect to this 

algorithm.  What should the value of θ  be?  How frequently is Step 3 necessary? 

 

Before continuing, this paper revises (streamlines) the above algorithm as follows: 

 
Step 1: Initialisation (on configuration/reconfiguration) 

  for i := 1 to n do 

     hi := 1 

 

Step 2: Promotion (on a match of rule i) 

  hi := θhi; 
if (di-1 i =0) and hili-1 > hi-1li then 

     Swap(i-1, i) 

 

Step 3: Reduction (every p packets) 

  for i := 1 to n do 

     hi := hi / H 

 

The simplified initialisation (Step 1) reflects the fact that the hit-rates need not be 

normalised.  Step 2 remains trivial. 
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p and H are easily determined.  The fastest route to overflow is through a stream of 

packets all matching the same rule.  The hit-rate of this rule will increase by a factor θ  on 

each packet and, after a packets, will have a hit rate of θ a
.  If M is the largest value 

permitted in the data range being used, then p can be calculated as  p = log θ M, a router 

constant.  ( x is the integer part of x.)  Taking H = max i hi  will reduce the maximum 

value back to 1 each time Step 3 is executed.  It remains to determine the value for θ . 

 

4. Simulation and Results 
 

The intention of this paper is to establish, in principle, the viability of a simple, 

embedded heuristic optimisation technique acting upon rule order in ACLs.  This is 

fortunate because the process of obtaining results from live ACLs is hindered by a 

number of factors: 

 

• Our initial aim is to be able to characterise both ACLs and traffic flows, and the 

relationship between them.  ACLs are characterised by their size, the level of 

interdependence between rules and the distribution of rule hit-rates.  (For some ACLs, 

hit-rates may be close to uniform and/or largely independent of rule order; in others, 

some rules – typically those close to the start – may have hit-rates considerably larger 

than the rest.)  Traffic is characterised, in particular, by its stability: a stream of 

similar packets may match the same rule whereas unstable flows will find different 

matches throughout an ACL.  Our ultimate aim is to investigate how appropriate our 

proposed method will be for a spectrum of ACL types and traffic flows.  This level of 

parameterisation will be difficult to obtain from production lists and flows.  Although 

there are some sources of ‘real’ traffic for simulation purposes, ACLs are harder to 

find: their data is simply not available in sufficient, measurable quantity (at least in 

their thousands) to enable us to produce consistent results. 

• The low-level implementation of packet-matching techniques varies considerably 

from platform to platform [12].  Although primarily hardware-based, the precise 

relationship with the (eg, router) operating system is vendor-, and sometimes model-, 

dependent.  Even in hardware alone, the number of steps to perform any operation 

will depend on the unique architecture and organisation of the platform.  Using real 

ACLs for simulation serves little purpose if their performance varies between models.  

Using an abstract simulation with parameterisation that can be tailored to any given 

environment is actually a stronger proposition. 

• Experimenting with the proposed algorithm, and testing variations of key parameters 

(eg, θ) in a working environment is difficult on some platforms, particularly in 

hardware implementations.  Without access to the embedded hardware itself, 

experimentation is impossible on most production routers.  Limited control is possible 

on some platforms ([13] for example) but can only test a small proportion of cases.  

The final alternative is a general network simulator.  ns-2, for example [14], offers 

some generic packet-processing functionality.  However, such simulations are 

generally small and, abstracted as they themselves are, no more accurate or ‘real’ than 

the processes described below. 
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Table I.  Simulated Results: Rank and Cumulative Latencies (example). 
 

ACL length (n): 1 000 rules.  Stream length: 4 000 000 packets.  θ = 1.5 
 

3 changes in packet flow characteristics. 
 

Dependency index (DI - probability of a dependency between any two rules): 0.25 

Self-similarity index (SSI - probability of each packet belonging to the same stream as 

the previous one): 0.75 
 

Table shows mean position of matched rule and mean (cumulative) latency since last 

checkpoint (*), since last traffic variation (") and since start of packet stream (^) 

 

Packet         Number of    Average  Average  Average  Average  Average  Average 

 flow          Packets      Rank*    Rank"    Rank^    Latency* Latency" Latency^ 

    R*   R"       R^       L*       L"       L^ 
 

(initial)      100000       485.26   485.26   485.26   366.69   366.69   366.69 

               200000       448.66   466.96   466.96   338.82   352.76   352.76 

               300000       417.56   450.49   450.49   315.14   340.22   340.22 

               400000       391.89   435.84   435.84   295.61   329.06   329.06 

               500000       372.26   423.12   423.12   280.83   319.42   319.42 

               600000       356.86   412.08   412.08   269.20   311.05   311.05 

               700000       349.02   403.07   403.07   263.29   304.23   304.23 

               800000       340.53   395.25   395.25   256.89   298.31   298.31 

               900000       338.29   388.92   388.92   255.16   293.51   293.51 

              1000000       333.14   383.35   383.35   251.33   289.30   289.30 
 

(variation)   1100000       487.61   487.61   392.82   364.08   364.08   296.09 

              1200000       455.80   471.71   398.07   340.46   352.27   299.79 

              1300000       424.65   456.02   400.12   317.41   340.65   301.15 

              1400000       396.19   441.06   399.84   296.09   329.51   300.79 

              1500000       374.08   427.67   398.12   279.42   319.49   299.36 

              1600000       360.43   416.46   395.76   269.12   311.10   297.47 

              1700000       348.11   406.70   392.96   260.16   303.82   295.28 

              1800000       345.88   399.09   390.35   258.65   298.17   293.24 

              1900000       336.54   392.14   387.51   251.78   293.02   291.06 

              2000000       334.00   386.33   384.84   249.91   288.71   289.00 
 

(variation)   2100000       480.18   480.18   389.38   358.17   358.17   292.30 

              2200000       447.21   463.69   392.01   333.58   345.88   294.17 

              2300000       419.02   448.80   393.18   312.50   334.75   294.97 

              2400000       391.50   434.48   393.11   292.04   324.07   294.85 

              2500000       372.56   422.09   392.29   278.02   314.86   294.17 

              2600000       358.98   411.57   391.01   268.09   307.07   293.17 

              2700000       348.82   402.61   389.45   260.85   300.46   291.97 

              2800000       344.28   395.32   387.83   257.67   295.12   290.75 

              2900000       340.32   389.21   386.19   254.85   290.64   289.51 

              3000000       339.55   384.24   384.64   254.42   287.02   288.34 
 

(variation)   3100000       476.78   476.78   387.61   355.68   355.68   290.51 

              3200000       442.44   459.61   389.33   330.09   342.88   291.75 

              3300000       414.21   444.48   390.08   309.26   331.68   292.28 

              3400000       393.23   431.67   390.17   293.73   322.19   292.32 

              3500000       376.00   420.53   389.77   281.09   313.97   292.00 

              3600000       358.76   410.24   388.91   268.47   306.39   291.35 

              3700000       350.40   401.69   387.86   262.32   300.09   290.56 

              3800000       343.42   394.41   386.70   256.97   294.70   289.68 

              3900000       344.01   388.81   385.60   257.34   290.55   288.85 

              4000000       339.55   383.88   384.45   254.02   286.90   287.98 

 

Our simulation is based on an in-house numerical model, capable of generating ACLs 

and traffic flows according to a given parameter set, described as follows.  For tested 

ACLs, the number of rules (n) ranged from 10 to 10 000.  Dependencies between rules 

were determined using a dependency index, DI, the probability that any two rules are 

dependent.  Values of DI in the range 0 (no dependencies) to 1 (complete dependency) 

were used.  For each rule pair, (i,j), dependencies are randomised as dij = 1 with 

probability DI and 0 otherwise.  Rule latencies were uniformly randomised from 0.5µs to 

1.0µs.  Actual values depend on the router hardware of course [14] but it is only relative 
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values that are significant.  (Routers that process packets faster will also optimise faster – 

see the conclusions section that follows.) 

 

For traffic, the simulation is more sophisticated.  The traffic simulator generates packets 

with given probabilities of matching each rule in the list.  At intervals, these probabilities 

may change to reflect shifting traffic patterns.  Within a single traffic pattern, however, 

there is a certain probability that a packet is identical to the previous one – or part of a 

similar stream - and matches the same rule. 

 

So, at the start of the simulation, a value of the self-similarity index, SSI, is set.  Then a 

match probability, ρi is randomised for each rule i and normalised so that 1
1

=∑
=

n

i

iρ .  The 

first packet is generated, matching rule i with probability ρi.  Subsequent packets match 

the same rule with probability SSI, and otherwise match any rule according to the match 

probabilities, ρi.  Every q packets, the match probabilities, ρi, are re-randomised. 

 

n and DI can be set to produce different types of ACL while q and SSI vary to reflect 

different types of traffic.  As an example, Table I records simulated output from a test 

with θ = 1.5,  n = 1 000,  DI = 0.25,  q = 1 000 000  and  SSI = 0.75.  4 000 000 packets 

are generated in total, in four stages with varying profiles.  Results are reported every  

100 000 packets. 

 

0

50

100

150

200

250

300

350

400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

L*

L"

L^

Instantaneous Average

Variation Average

Continuous Average

Cumulative Latency (µµµµs)

Packets
Change of traffic profile

n = 1,000

θ=  1.5

DI = 0.25

SSI = 0.5

0                  1 000 000 2 000 000 3 000 000 4 000 000

 
Figure 2.  Simulated Results: Cumulative Latencies. 

 

Tabled results are the mean position of the matched rule (rank) in the ACL and the mean 

cumulative latency of this rule.  In both cases, three values are given: the mean since the 

last set of figures (R* & L*) – the instantaneous average, the mean since the last traffic 

variation (R” & L”) – the variation average, and the mean of the entire simulation (R^ & 
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L^) – the continuous average.  The three latency averages, L*, L” and L^, are plotted in 

Figure 2. 

 

The mean rank, R, for a 1 000 rule list with no optimisation will be 500 and the mean 

cumulative latency, L, for a latency range of 0.5 to 1.0, 500 x (1.0 + 0.5) / 2 = 375.  In 

simulation, optimised averages start at these values and are then progressively lowered as 

rules with high hit rates are promoted.  When traffic profiles change, instantaneous and 

variation averages become poor again but are gradually improved once more as the ACL 

adapts to the new characteristics.  The continuous average becomes steadier.  In this 

example, L^ approaches a figure of approximately 287, an improvement of 23% on the 

non-optimised figure. 

 

Table II.  Simulated Results: Traffic Parameters and Promotion Coefficient. 
 

ACL length (n): 1 000 rules.  Stream length: 4 000 000 packets. 

DI – Dependency Index.  SSI – Self-Similarity Index. 

Traffic (packet) characteristics change every q packets. 

 

Table shows values of percentage improvement in expected latency (100(L–L^)/L) for 

different values of DI, SSI, q and θ. 
 

                       DI =  0     0.25    0.5    0.75     1 

 

       SSI = 0           θ = 1.1  15 14 13 10 0 

       q = 10               1.5 15 14 13 10 0 

                    2.0 15 14 13 10 0 

                2.5 14 13 12  9 0 

                1.5 14 13 12  9 0 

 

       SSI = 0.25   θ =  1.1  17 15 13 10 0 

       q = 1 000        1.5 17 15 13 11 0 

                2.0 17 15 14 11 0 

                2.5 17 15 14 11 0 

                1.5 17 15 13 10 0 

 

       SSI = 0.5   θ =  1.1  19 17 15 10 0 

       q = 50 000       1.5 21 18 15 11 0 

                2.0 21 18 15 12 0 

                2.5 21 18 15 12 0 

                1.5 21 18 15 12 0 

 

       SSI = 0.75   θ =  1.1  19 17 15 12 0 

       q = 1 000 000    1.5 26 23 20 13 0 

                2.0 28 27 20 14 0 

                2.5 28 27 20 14 0 

                1.5 28 27 20 14 0 

 

       SSI = 1           θ =  1.1  20 19 16 13 0 

       no variation     1.5 27 25 20 13 0 

                2.0 30 29 22 16 0 

                2.5 30 29 22 16 0 

                1.5 30 29 22 16 0 

 

 

Different parameters affect these values as shown in Table II.  Results are proportionally 

similar for different n.  High values of DI work against the optimisation process, 

prohibiting desirable swaps.  In the extreme cases, DI = 1 prevents any optimisation 

whereas DI = 0 allows rules to move freely.  High values of q and SSI imply greater 

traffic stability, which improves the optimised values.  The effect of θ is more subtle.  
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High values make rule promotion faster, which works well for self-similar, stable traffic 

but can lead to repetitive, unnecessary swaps for continuously changing, or oscillating, 

traffic patterns.  A balance is necessary: a value around θ = 2 maximises the 

improvement in expected latency in most cases. 

 

5. Analysis 
 

Routers vary considerably in their operation, particularly in terms of implementation in 

hardware.  The following is, by necessity, generic and, to some extent, imprecise.  

However, it gives an appropriate indication of the relative worth of dynamic 

optimisation.  We discuss an operation simply as a unit of calculation or assignment, 

probably performed in hardware on the appropriate interface.  (However, the same 

argument would apply in relative terms if these operations were to be a part of the 

operating system software.) 

 

With a B-bit data type/range (e.g. register size) and θ = 2, we have  p=  log 2 2
B = B.  

For any given ACL manual configuration (or reconfiguration), Step 1 of the algorithm is 

executed once and can be taken as part of the configuration, Step 2, every processed 

packet and Step 3 every B packets.  Step 2 consists of an assignment, two calculations, 

two comparisons and a conjunction (possibly) followed by a swap of six assignments – 

three for the rules and three for their hit-rates - twelve operations in all.  Step 3 has two 

loops of size n, one to establish the maximum value and the other to reduce each value.  

The mean complexity (of Step 3) each packet is then 2n / B and, in total, 12 + 2n / B for 

Steps 2 & 3 combined. 

 

Table III. Optimisation Trade-Off – Saving against Cost 
 

DI = SSI = 0.5.  θ = 2. 
 

Table shows value of trade-off function, T = φn/25 – 12 – 2n/B, for different values of n 
and B. 

 

      B   =     8      16         32   64 

 

          n   =   10     -8.50    -7.25    -6.63    -6.31 

                             30     -1.50     2.25     4.13     5.06 

                            100     23.00    35.50    41.75    44.88 

                            300     93.00   130.50   149.25   158.63 

                          1 000    338.00   463.00   525.50   556.75 

                          3 000   1038.00  1413.00  1600.50  1694.25 

 

         n*  =  34.28    25.26    22.32    21.10 

          

n* is the minimum length of list for T to be positive (i.e. for optimisation to be 

worthwhile). 

 

 

Matching a packet against a rule consists of at least one operation (permit or deny) 

followed by between 1 and 5 comparisons (Figure 1).  Taking a mean of 1 + 3 = 4 

operations per rule and a percentage saving for an optimised list of φ gives an 

optimisation trade-off of 
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For example, taking n = 1 000 and B = 16, this gives 300 / 1 000 + 50 / 16 = 3.425.  

Table II shows that the improvement, φ, exceeds this for all values other than DI = 1 and 

is therefore worthwhile.  Alternatively, taking θ = 2 and DI = SSI = 0.5 gives an 

improvement of φ = 15 and a trade-off of T = (15 x 1 000) / 25 – 12 – 2 000 / 16 = 463, a 

positive benefit.  Table III extends this calculation across a range of values of n and B 

and, for each B, shows the key value of n*, the size of ACL for which optimisation is 

profitable.  Table IV fixes B at 16 and calculates n* for various values of DI and SSI. 

 

Table IV. Optimisation Trade-Off – Minimum ACL Length 
 

θ = 2. 
 

Table shows the value of n*, the minimum length of list for T = φn/25 – 12 – n/8, to be 
positive (i.e. for optimisation to be worthwhile) for different values of DI and SSI. 

 

   DI  =   0.0     0.25    0.5     0.75     1.0 

 

             SSI  =    0      25.26   27.59   30.37   43.64     ∞ 
                       0.25   21.62   25.26   27.59   38.09     ∞ 
                       0.5    16.78   20.17   25.26   33.80     ∞ 
                       0.75   12.06   12.57   17.78   27.59     ∞ 
                       1      11.16   11.59   15.89   23.30     ∞ 
 

 

6. Conclusions 
 

No amount of traffic modelling can substitute entirely for testing on production routers.  

However, our simulations are extensive and, within themselves, give consistent results. 

 

The major obstacle to successful (worthwhile) optimisation is highly interdependent rules 

in an ACL.  If no or few rules are permitted to be reordered then it is impossible or 

difficult to find equivalent lists with lower expected latencies.  However, this is rarely the 

case in practical ACLs.  The typical ACL in Figure 1, for example, has large blocks of 

separate ‘permit’ and ‘deny’ blocks with no dependencies within them.  A worst-case 

figure for a practical ACL is likely to be DI ≈ 0.5, giving good results (Tables II & IV). 

 

Table II suggests θ = 2 as an appropriate (and, in fact, convenient) value for the 

promotion coefficient.  The number of packets between hit-rate reductions (Step 3) is 

then B, the size (number of bits) of the register being used to store them.  The final 

version of the three part algorithm then becomes: 
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Step 1: Initialisation (on configuration/reconfiguration) 

  for i := 1 to n do 

     hi := 1 

 

Step 2: Promotion (on a match of rule i) 

  hi := 2hi; 

if (di-1 i =0) and hili-1 > hi-1li then 

     Swap(i-1, i) 

 

Step 3: Reduction (every B packets) 

  for i := 1 to n do 

     hi := hi / maxjhj 

 

Depending on the stability and self-similarity of the traffic (q and SSI) and the frequency 

of hit-rate reduction (B), optimisation becomes worthwhile for ACLs above a certain 

length (n*) (Tables III & IV).  For realistic dependencies, this figure ranges between 

about 10 and 30.  It will be trivial to separate those lists to which optimisation is to be 

applied from those to which it is not.  Of course, it is precisely for longer ACLs that 

optimisation will yield the best results. 

 

Real-time, online, embedded ACL optimisation on operational routers, as proposed, is 

possible and worthwhile.  It is now recommended that it be put into practice as an integral 

part of the router hardware for practical testing. 
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