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Abstract

Given some of the recent advances in Distributed
Hash Table (DHT) based Peer-To-Peer (P2P) systems
we ask the following questions: Are there applications
where unstructured queries are still necessary (i.e., the
underlying queries do not efficiently map onto any
structured framework), and are there unstructured P2P
systems that can deliver the high bandwidth and com-
puting performance necessary to support such applica-
tions. Toward this end, we consider an image search
application which supports queries based on image sim-
ilarity metrics, such as color histogram intersection,
and discuss why in this setting, standard DHT ap-
proaches are not directly applicable. We then study the
feasibility of implementing such an image search sys-
tem on two different unstructured P2P systems: power-
law topology with percolation search, and an optimized
super-node topology using structured broadcasts. We
examine the average and maximum values for node
bandwidth, storage and processing requirements in the
percolation and super-node models, and show that cur-
rent high-end computers and high-speed links have suf-
ficient resources to enable deployments of large-scale
complex image search systems.

1 Introduction

The first widely known pure P2P system that tried
to bring Napster-like functionality was the unstruc-
tured P2P system Gnutella. The overlay network cre-

ated by Gnutella’s peers forms a random graph, where
search was mostly done via complete flooding of the
network. Its imperfections have spawned extensive re-
search. Much of this research is directed towards DHTs
(e.g. [5, 12]), and distributed indexing structures de-
rived from DHTs (e.g. [13]), super peer architectures
(e.g. [15]) and approaches improving the link structure
of P2P networks (e.g. [7]).

DHTs excel at key-value lookup because that is the
basic primitive of the hash table data structure. How-
ever, hash tables are not the most efficient data struc-
ture for all algorithms. In this work we are interested
in storing images, which may be thought of as vec-
tors of large dimension, and searching to find images
which are close to a query image by some given met-
ric. This work compares content based image retrieval
(CBIR) in structured against unstructured P2P sys-
tems. Unstructured systems can answer completely
general queries, since there is no structure imposed on
the data. We ask if sacrificing the flexibility of unstruc-
tured systems for structured P2P systems results in a
reduction of query bandwidth for the case of CBIR.

Within this article, we treat content-based image re-
trieval as an application scenario. We think that this
scenario is interesting for P2P in several respects. (1)
We believe that there is a need for such applications.
The recent success of image blogs and image sharing
servers like flickr.com has shown that people have the
wish to share and to publish their images. (2) Current
widespread methods of indexing such images are unsat-
isfactory. In flickr.com, the images are searchable
by annotation. Unfortunately the annotation quality is
low (as will be described more in-depth below). Orga-
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nizing images by time [2] is useful when indexing one’s
own collection where images can usually be grouped
into images pertaining to events that are interesting to
the user, but it becomes barely useful when considering
collections that grow each second by at least one image.
(3) Alternative methods are expensive. Sophisticated
content-based image indexing methods that extract vi-
sual features from the items to be queried need a large
amount of processing power, and processing queries is
expensive1 compared to processing text queries.

While CBIR is deemed unsatisfactory as a complete
indexing solution for images, the conviction underlying
this paper is that CBIR methods are going to be useful
for improving flickr.com like systems. Bad image an-
notation is not going to go away. So, we seek systems
that help the user in the case that good annotation is
not present. We are also convinced that people will
be interested in combined rankings, which combine vi-
sual aspects, surrounding text, etc. into one common
measure. Unless one wants to restrict oneself to sys-
tems that first evaluate similarity with respect to text
and simple meta-data before refining the search using
CBIR and other complex methods, one will need to
come up with good methods that are able to process
CBIR queries.

This paper presents two findings. First, we find that
unstructured systems are efficient enough in terms of
communication and computational costs for the CBIR
application we consider to scale to millions of users.
Second, in the case of image similarity search, cur-
rent structured systems offer no advantage over un-
structured systems. This paper is organized as follows.
Section 2 discusses prior work on the nearest-neighbor
search problem in high dimensional spaces, a general
version of the problem we consider in this work. Sec-
tion 3 describes the particular case we are focusing on:
image similarity search at the scale of approximately
one million users. Section 4.1 studies the cost of im-
plementing an image search system using a supernode
architecture and Section 4.2 studies the cost for a per-
colation search based architecture. Finally, in Section 5
we compare the unstructured image search systems to
a structured image search system and find that struc-
tured search offers no benefit for this case.

2 Nearest neighbor search in high di-

mension

The nearest-neighbor search problem is the follow-
ing: given a set of points in a metric space P , for a

1That means, they typically require many disk accesses, much

processing power and as a consequence much time to be pro-

cessed.

given query point Q, find an element x of P such that
d(x,Q) ≤ d(y,Q) for all y ∈ P .

The classic way of performing CBIR is to extract
real-valued feature vectors from images and then map
the search problem to the problem of finding the k near-
est neighbors (k-NN) to the query vector. For d <≈ 10
there exist centralized data structures that find the k-
NN inO(logN) time for collections of sizeN . However,
literature on non-distributed indexing has observed [14]
that exact search in high-dimensional data is very hard,
due to the so-called curse of dimensionality. Due to the
curse of dimensionality tree-based indexing structures
break down in the sense that in realistic scenariosO(N)
nodes need to be visited before finding the exact k-NN.
For non-distributed —disk based— indexing structures
one interesting and well-known solution [14] consists in
rendering full scan queries more efficient using a full
table scan approach. This algorithm exhibits O(N)
complexity just as a tree-based indexing structure in
high dimensions, however, the absolute query duration
is reduced with respect to the tree-based solution.

Though not the subject of this work, one may
also consider the approximate version of the nearest-
neighbor search problem. The approximate nearest-
neighbor search problem is the following: given a set
of points in a metric space P , for a given query point
Q, and a slackness parameter ǫ find an element x of P
such that d(x,Q) ≤ (1+ ǫ)d(y,Q) for all y ∈ P . An ef-
ficient algorithm for the approximate nearest-neighbor
search problem is known for several common metric
spaces [4]. It is an interesting open problem to see if it
can be efficiently adapted to a distributed system.

Other proposals include using geometric dimension-
ality reduction techniques. Kleis and Zhou provide a
review of relevant results in the context of P2P net-
works in [3].

2.1 P2P approaches to nearest-neighbor
search

Clearly, finding the set {x|d(x,Q) ≤ δ} for a given
Q, δ is an embarrassingly parallel problem. If one
spreads the database over a P2P network, one gets the
full benefit of parallelization. In the absence of an effi-
cient exact algorithm for the nearest-neighbor problem
in high dimension, this may be the best one can do.
Indeed we consider this approach in Sections 4.1 and
4.2.

In addition to the above, one can also attempt to use
some structured P2P network to reduce the number
of nodes that must be contacted to execute a query.
We describe one such approach, PRISM below. The
literature on P2P indexing using structured networks
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is very broad. As one starting point for reading we
suggest [13].

2.1.1 PRISM

PRISM indexes each vector x by placing x on a small
number of nodes in a Chord DHT. The placement of
the vector is calculated using distances to a fixed set of
reference vectors. When processing a query, the node
issuing the query q calculates the set of nodes where q
would be placed and searches for similar nodes there,
sending them q as the query. The main innovation of
PRISM is the algorithm for finding the nodes on which
to place the data vectors.

In order to index a vector x, the distance of x to a
number nr of reference vectors ri is calculated, yielding
δ := (δ1δ1, . . . , δnr

) := (δ(x, r1), . . . , δ(x, rnr
)). Then

the ri are ranked by their similarity. The result of this
ranking is a list of indices ι = (ι1, . . . , ιnr

) such that
rι1 is the reference vector closest to x, rι2 the second
closest and so on.

Then, pairs of indices are formed. The pair forma-
tion is a fitting parameter, the original PRISM paper
suggests {ι1, ι1}, {ι1, ι2}, {ι2, ι3}, {ι1, ι3}, {ι1, ι4},
{ι2, ι5}, {ι2, ι4}, {ι3, ι4}, {ι1, ι5}, {ι4, ι5}, {ι3, ι5} for
their dataset. From each of the pairs a Chord key is
calculated, and this key is used for inserting the vector
x into the Chord ring.

As was hinted above, query processing works by
finding out which peers would receive the query vec-
tor if it was a new data item and forwarding the query
vector to these peers. This involves, again, the calcu-
lation of index pairs, which we will call query pairs in
the following. In order to reduce query processing cost,
the query processor can choose to contact only nodes
pertaining to only a subset of the query pairs. Doing
this also reduces recall, so there is a tradeoff.

3 An image search system

Within this section, we describe Flickr, a popular
web-based photo sharing application. This application
is currently immensely popular. At the same time,
one could easily imagine extending its functionality to-
wards content-based search. By examining Flickr we
estimate the load for a P2P photo sharing system which
we call Plickr.

3.1 About Flickr

flickr.com gives members the opportunity to share
photos among the public, friends and family. Flickr
members are allowed to comment on photos they can

Figure 1. Example images tagged with the
annotation tag phone, taken from flickr.com

with permission from Katy Wortman.

see and to annotate them in a collaborative fash-
ion. Recently, flickr.com has experienced explo-
sive growth of popularity. As of the time of writing,
flickr.com contains about 40 million images, most of
them publicly accessible. We estimate that about 2
million users share images via flickr.com.

One of the reasons for our interest into flickr.com

is that it has a SOAP-like API that allows easy access.
This simplifies enormously building third party tools,
as well as crawlers. As the user structure is quite simi-
lar to what many people would like to have in P2P file
sharing systems (people peacefully sharing data they
actually own) we simply extrapolate from user behav-
ior on flickr.com to the behavior they would have in
a P2P network.

Using flickr.com, we do not obtain data about the
online times of the users. However, information about
who shares how much is already useful.

One of the most interesting features of Flickr’s is
that members can annotate other people’s images.
This leads to the surprising fact that most of Flickr’s
images are annotated. However, as it is made simple to
add annotation to images by default (on a user-by-user
basis), the quality of the annotation is varying. For ex-
ample, many Flickr members have a large fraction of
their photos annotated with the tag phone. This tag
describes how the image came to Flickr, by a camera
built into a cellular phone. However, it is only rarely an
accurate description of the images’ content, as the ex-
amples in Fig. 1 show. While the tag phone is clearly
the most extreme case of annotation that carries lit-
tle valuable information, it shows that just citing the
number of images that are annotated does not permit
assessing the usefulness of this annotation.

3.2 Plickr: content-based Flickr over P2P
as a scenario for P2P-CBIR evaluation

The above ad-hoc assessment of annotation qual-
ity motivates the view that it would be interesting to
combine the search by annotation tag (as offered by
Flickr) by search based on image similarity as provided
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by Content Based Image Retrieval systems (CBIRS).
While CBIRS are unable to do true object recognition,
they capture visual similarity by translating each image
into a data representation that captures mainly image
statistics and in some cases the spatial relation of “in-
teresting” regions. While using such features as the
sole image retrieval method is currently deemed unsat-
isfactory, CBIRS are still the method of choice when
no annotation is present.

Content Based Image Retrieval is computationally
costly. Features need to be extracted, and similarity
search is much harder than similarity search on text
because the number of features taken into account for
obtaining a retrieval result is usually much higher than
the number of keywords in a keyword query. For more
information about CBIR we point to an often-cited
overview paper [10].

P2P becomes particularly interesting through the
fact that P2P-CBIR potentially will make use of both
the huge storage capacity and the huge computing ca-
pacity distributed in the network.

Let us consider a P2P network, in which each peer
owner shares his or her own photos with other users
of the same P2P network. The network would of-
fer Flickr’s functionality plus CBIR query by example
functionality. However, in contrast to Flickr, its inner
workings would be based entirely on P2P principles.
We will call this hypothetical network the plickr net-
workwithin this paper.

3.3 Deriving a load scenario for plickr

We assume the images contained in one Flickr user
account to be a good model for the images shared by
one plickr peer. Let us assume 1,000,000 users and
thus 1,000,000 peers in our plickr network. Our Flickr
crawls (≈2,000,000 images)indicate that the average
user who shares at least one image publicly shares on
average 20 images.

The same as Flickr, plickr members query the data
collection for interesting images from time to time.
Furthermore, we assume each user performs 10 queries
on average per day. We feel that is reasonable as query-
ing image is an exploratory process, so each querier is
likely to perform a query process consisting of multiple
queries. So, even if such a query process is performed
less than once per day by each user, we are likely to
reach the said average load.

In this paper we will concentrate on a very simple
way of performing CBIR: retrieval by color histograms.
They are known to provide a good retrieval perfor-
mance (i.e. result quality) for comparatively little com-
puting power and are the pet feature extraction method

for indexing structure evaluations.

Color histograms are obtained by cutting the color
space in regions. The color histogram then is a vec-
tor that contains one value corresponding to each color
space region. Each value of the histogram expresses
for the corresponding color region the probability that
a pixel drawn from the image falls into the color region.
This probability is estimated by simply counting pix-
els falling in each color region. The usefulness of color
histograms for CBIR depends on the color space cho-
sen and the way it is split into regions. For our load
assumption, we assume John R. Smith’s 166-D HSV
histograms described in [11]. A wasteful but simple
representation would be of type float[166].

The classic way of evaluating the similarity of two
histograms is the histogram intersection, however, the
testing ground for most CBIR indexing algorithm is the
Euclidean distance which is why we focus that distance
measure.

4 Search with unstructured P2P

Unstructured P2P systems have one major advan-
tage over structured systems: once designed, imple-
mented and deployed an unstructured system can gen-
erally be used for any kind of query just by plugging
in new query processing. There is no need to define
new routing algorithms, network topologies, or caching
strategies every time a new type of data or query is
introduced to the network. On the other hand, struc-
tured P2P systems may reduce search complexity only
if the search algorithm can be efficiently mapped onto
the topology of the structured network.

In this section, we compute the costs in bandwidth,
computational resources, and storage to use unstruc-
tured P2P for two models: a super-node system, and
a percolation search system. After computing the
costs of the system, in order to estimate feasibility,
we make some assumptions about the usage of the
image search system described in Section 3. We as-
sumed that each content item is a float[166] array,
which uses 166 × 4 = 664 bytes of space. As we men-
tioned in Section 3.3, every Flickr user inserts on av-
erage C = 20 items into the network. Calculating the
distance takes f = 332 floating point operations. Fi-
nally, we will assume that there are N = 219 ≈ 500, 000
users, and that each user will make 10 queries per day
or R = 10

24×60×60 = 1.2× 10−4 queries per second. We
assume each query and content requires z = 800 bytes
(enough to hold the float vector and some routing in-
formation or image meta-data).
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Table 1. Nomenclature used throughout the
paper

Symbol Meaning

N Total number of peers

〈k〉 Expected degree of nodes within network

pm relative frequency of nodes with degree m

s Fraction of super peers

R Query rate issued per peer (1.2×10−4 s−1)

C Number of content items contributed per
peer (20)

f Number of operations to compare two vec-
tors (332 FlOp)

z Size of each vector (800 B)

Bmax,ave max/avg bandwidth required per peer

Pmax,ave max/avg processing required per peer

Dmax,ave max/avg disk space required per peer

4.1 Super-node P2P networks

In the super-node model there are two types of
nodes: leaf nodes and super-nodes. Each leaf node
connects to a super-node and caches all its content on
that super-node (the super-node does not need to cache
its own content). The leaf nodes require very little re-
sources, but super-nodes incur the maximum penalty.
The only parameter in the system is s, the fraction of
nodes which are super-nodes.

4.1.1 Resource requirements

To compute average bandwidth, we count total copies
of the queries and divide by the total number of nodes.
We should note that this metric is not very meaningful
since no nodes see the average. Leaf nodes see almost
no traffic, while super-nodes see the maximum traffic.

Since each query is copied to sN super-nodes plus
the leaf node that initiated the query, the average band-

width is clearly, Bave = RN(sN+1)z
N

= RNz(s+ 1
N
) ≈

RzsN . All the super-nodes see the same bandwidth
since all queries pass through them. If we assume that
the query crosses each edge in the multicast tree (us-
ing an approach similar to [6]) then it is necessary
and sufficient for the maximum degree to be 3, thus
Bmax = 3RzN , which is independent of s.

Since there are CN total content items, the average
disk space is Dave = CNz/N = Cz. Since all content
is stored on the supernodes, the maximum disk space
is Dmax = CNz/Ns = Cz/s

In the super-node system, each content is only
copied (at most) one time. The average processing
requirement is not very meaningful since like average

bandwidth, no node experiences this load. Nodes ei-
ther see almost no load, or maximum load. We assume
a linear complexity for search, so that P = RD(f/z)N :
Pave = RDave(f/z)N = RCfN .

Since, all the queries are processed by the super-
nodes, we only need to compute the number of con-
tent items on each super-node, and then multiply by
the query rate: Pmax = RDmax(f/z)N = CN

sN
fRN =

RCfN
s

.

4.1.2 Trade-offs and numerical values

One interesting feature of this model is that
PmaxBave = fzCR2N2, which is independent of s.
So, there is a trade-off between average bandwidth and
maximum CPU utilization. In the interest of consid-
ering some numerical values, we will set s = 1/

√
N ,

which means each super-node has as many leaf nodes
as there are super-nodes. In practice, one will probably
prefer to minimize bandwidth to the extent that it is
possible for the super-nodes to handle the load.

In the following table, we present performance met-
rics for the super-node algorithm with s = 1/

√
N ,

N = 219 and the values of R,C, f, z from Table 1.

Bave = Rz
√
N = 70B/s = 560bps

Bmax = 3RzN = 150, 000B/s= 1.2Mbps
Dave = Cz = 16KB

Dmax = Cz
√
N = 11MB

Pave = RCfN = 420kF lOp/s

Pmax = RCfN
√
N = 300MFlOp/s

The values look reasonable. Since modern CPUs
have processing power on the order of 4 GFLOPS, the
above processing requirements are not more than one
CPU. The figure we might be most concerned about
is Bmax, however that value is independent of s. Now
we compare the above with the percolation search al-
gorithm for unstructured networks.

4.2 Percolation search in power-law net-
works

In [9] and subsequent work, the authors show
that using a combined random walk data replica-
tion/random walk query distribution scheme (to be de-
tailed below) one can achieve sub-linear (in N) query
complexity in power-law networks. Below we summa-
rize this algorithm.

The degree distribution pk of the network describes
the probability to draw a node with degree k from the
network pk = Ak−τ where A is a normalization con-
stant such that

∑kmax

i=2 pk = 1. The main result of [9]
is the following three-step algorithm: Step 1, Content
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List Implantation: To insert cached replicas of the con-
tent, a random walk is performed and each peer visited
during this random walk receives a copy of the index
data. For τ = 2, the length of the random walk should
be O(logN). Step 2, Query Implantation: The above
process is performed for each query. Step 3, Bond per-
colation: After the query implantation, each node that
has received a query so far will forward the query to
each of its neighbors with a probability q = γqc, where
qc is the percolation threshold : 〈k〉/(〈k2〉 − 〈k〉), and γ
is a small number greater than unity.

For random power-law networks, there are two pa-
rameters one may control: τ the exponent of the power-
law, and kmax the maximum number of neighbors any
node has. In this work we will only consider τ = 2.
For τ = 2, 1

A
=

∑kmax

k=1
1
k2 ≈ π2/6 ≈ 1.6 . Next we

consider the scaling of the average and maximum of
bandwidth, disk and processing requirements for the
percolation search.

4.2.1 Resource requirements

Given that a node receives a query, with probability q,
each neighbor sees that query. So, the total number of
edges to see a query will be qE, where E is the total
number of edges. Since E = 〈k〉N/2, and q ∝ qc =
〈k〉/(〈k2〉 − 〈k〉) ≈ 〈k〉/〈k2〉. we have that the average

bandwidth cost is Bave = RNEqz
N

= Rz 〈k〉2N
2〈k2〉 . When

pk = A/k2, 〈k〉 ≈ A ln kmax, 〈k2〉 = Akmax, then we

have Bave ≈ RzN A ln2 kmax

2kmax

.

To compute the maximum bandwidth, we need to
look at the highest degree node and see how many of
its neighbors will see the query. The highest degree
node has kmax neighbors, and on average qkmax will see
the query, thus: Bmax = RzNkmaxq ≈ RzNkmaxqc ≈
RzN ln kmax.

For a power-law random network with exponent τ =
2, the content is cached on log2 N nodes. Thus, the

average storage requirements are Dave =
CzN log

2
N

N
=

Cz log2 N = Cz lnN
ln 2 .

To compute the storage required for the maximum
node is more involved. We model a random walk on
a random network as each step selecting a random
node of degree m with probability mpm/〈k〉. The
probability of selecting a node of the highest degree is
Ps = kmaxA

〈k〉k2
max

= (kmax ln kmax)
−1. We assume that we

select each of the nodes of degree kmax with equal prob-
ability, so the probability we select each one of them is:
Qs = Ps (Np(kmax))

−1
. There are log2 N steps, so the

number of content caches that make it to highest de-
gree nodes is Fmax = Qs log2 N = kmax lnN

ln 2AN ln kmax

. Now

we can compute the maximum storage requirements:

Dmax = CzNFmax =
Czkmax lnN

A ln 2 lnkmax

As before, we assume that the search time is linear
in the number of items stored at each node. Since we
have already computed the number of items stored at
each node, we have:

Pave = RNDave(f/z) = RCfN lnN
1

ln 2

Pmax = RNDmax(f/z) = RCfN
kmax lnN

A ln 2 lnkmax

To reduce Pmax we need to reduce kmax, but that
will increase Bave.

4.2.2 Trade-offs and numerical values

In the percolation search, like the super-node system,
we can decrease the average bandwidth required at
the expense of increasing the maximum processor uti-
lization. Using the percolation search BavePmax =
fzCR2N2 ln kmax lnN

2 , which is similar to the super-
node architecture except with some logarithmic factors.
In order to minimize average bandwidth, we should
choose kmax to be as large as possible. In general,
the percolation search algorithm behaves like the ideal
super-node algorithm with s ≈ 1/kmax.

To compare to the super-node case, we choose
kmax =

√
N , N = 219 and the values of R,C, f, z from

Table 1 and using the same constants we assumed in
4.1.2, which means our highest degrees are comparable
to super-nodes. The results for this case are summa-
rized in the following table:

Bave =
A
8 Rz

√
N lnN ≈ 70B/s = 560bps

Bmax = 1
2RzN lnN ≈ 330KB/s = 2.7Mbps

Dave = Cz lnN
ln 2 ≈ 300KB

Dmax = Cz
√
N 2

A ln 2 ≈ 52MB
Pave = RCfN lnN

ln 2 ≈ 7.9MFlOp/s

Pmax = RCfN
√
N 2

A ln 2 ≈ 1.4GFlOp/s
For Dmax and hence, Pmax there is a constant fac-

tor overhead of 2/(A ln 2) ≈ 4.6 when compared to the
ideal super-node case. For all other metrics, there is
an O(lnN) overhead for using the percolation search,
however, for networks of size N = 219, due to the divi-
sion by a constant, the difference is not very great.

4.2.3 Simulation results

Our simulations use the Netmodeler package[1]. We
insert 1000 content objects at uniformly selected nodes
on a power-law network with τ = 2, and then make
1000 queries from uniformly selected nodes. We are
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particularly concerned with the maximum demands
made on any node. Some results are in the follow-
ing table. BW is the total number of times each query
is copied to search the entire network, and Max C/O
is the average of the maximum CPU where 1 is the
cost to evaluate the query, per content object in the
network.

Nodes q ttl Hit-rate BW Max C/O
219 0.01 20 0.961 10,428 0.0075
220 0.01 21 0.966 21,045 0.0042

We see that for the case on 1000 content objects,
the maximum node had to search 7.5 and 4.2 ob-
jects for each query on average, for the cases of 219

and 220 nodes respectively. To scale these results up
to our assumptions of 20 content objects per node.
Additionally, the total query byte rate rate will be
zNR = 800 × 219 × 1.2 × 10−4 ≈ 48, 500Bps = Q.
For N = 219 we have:

Bave =
10, 428

219
Q = 7.7Kbps

Dmax = 13, 280× 219 × 7.5

1000
= 52.21MB

Pmax = 20× 219Q
332

800

7.5

1000
= 1.6GFlOp/s

The above parameters are a relatively close match to
the predictions of the previous section. For N = 220

we have Q′ = 2Q:

Bave =
21, 045

220
Q′ = 15.6Kbps

Dmax = 13, 280× 220 × 4.2

1000
= 58.5MB

Pmax = 20× 220Q′ 332

800

4.2

1000
= 3.6GFlOp/s

The other parameters such as Dave, Pave and Bmax are
not dependent on the nonlinearities of percolation, and
as such match predictions of the previous section.

Our simulations verify that the average bandwidth
required is much less than analog modems can provide
and the maximum processing requirements are met by
one modern desktop CPU.

5 Comparison of unstructured to struc-

tured image search

In order to compare unstructured search with cur-
rent DHT-based approaches, we took PRISM [8] as a
base for comparison. PRISM is a recent system with a
clear focus on similarity queries over high-dimensional
vectors.

The PRISM paper also describes load balancing be-
tween PRISM peers. However, within the following, we
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Figure 2. The fraction of 20-NN found plotted
against the fraction of the total collection vis-
ited in “Vanilla” PRISM.
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Figure 3. The fraction of 20-NN found plotted
against the load on the most solicited peer in
“Vanilla” PRISM without load balancing.

will consider PRISM without load balancing, as perfect
load balancing would amount to all peers carrying the
average load.

The performance metrics for the vanilla PRISM
algorithm without load balancing. Are given in
the table below. We chose visiting all 11 ref-
erence pairs for our calculation. Again N =
219 and the values of R,C, f, z from Table 1.
Bave = 21 · RNz

N
= 2.02B/s = 16.1bps

Bmax = 1
4RNz = 12, 600B/s = 100kbps

Dave = 11Cz = 176KB
Dmax ≈ 0.1CzN ≈ 840MB
Pave ≈ 1.8RCfN = 670kF lOp/s
Pmax ≈ 0.25RCfN2 = 55GFlOp/s
As Figs. 2 and 3, as well as Tab. 5 present our ex-

periments with a simulation of PRISM. Without load
balancing, PRISM behaves to quite an extent like a
client/server system: most load hits few servers. Little
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load is distributed, so there is low communication cost.
For Euclidean distance, PRISM presents —if any—
only small advantages over the super-peer network. In
our current setup, in order to find 75% of the top 20
documents, we have to visit each vector more than one
time on average, i.e. PRISM performs worse than ran-
dom search. If one wants to push the recall to 100%
(as good as the super peer method), each item is con-
sidered even more times on average, incurring a clear
efficiency penalty with respect to a full scan.

The second finding is that the distribution of data
items over peers is heavily skewed, emphasizing the
need for load balancing as proposed in [8]. Our experi-
ment used 32× 32 = 1024 pairs. In these experiments,
the first 5 most used pairs account for more than 10% of
the traffic, the first 15 pairs account for more than 25%
of the traffic, and the first 60 pairs account for more
than 50% of the traffic. To highlight this fact, Tab. 5
shows PRISM without load balancing. Here, PRISM
functions almost in a client/server-alike fashion. Please
note that with the proper use of load balancing, PRISM
would thus much behave like a super-peer network dis-
cussed in Section 4.1, but with slightly higher load for
the super-peers.

The third finding, finally, should spawn a series of
new experiments: The performance of systems like
PRISM depends also on data set and distance mea-
sure. However, most of the distributed indexing lit-
erature is fixated on the Euclidean metric and similar
distance measures. Our experiments show that it is
clearly worthwhile to investigate deeper into the per-
formance of such systems when using more diverse dis-
tance measures.

6 Conclusion

Summarizing, the performance of structured and
unstructured systems seem to be pretty close in our
application domain, while unstructured systems have
the advantage of being more flexible with respect to
the queries they allow. We should mention that this
conclusion is similar to the recent paper of [16].
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