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Abstract

Code allocation has a significant impact on the performance of Code Division Multiple

Access (CDMA) systems. For the uplink direction, in 3G Wideband CDMA (WCDMA)

cellular systems, orthogonal codes are employed to differentiate the physical channels of one

transmitter and Pseudo Noise (PN) sequences are used to provide mutual randomness between

the users. Since the received data spread by different codes are not perfectly orthogonal, the

emerged Multiple Access Interference (MAI) is a major limitation of the system capacity. In

this paper, we propose a new code allocation scheme with the aim of reducing the interference

by decreasing the number of non orthogonal spreading codes used in a cell. Consequently,

the new proposed scheme improves the system capacity for the uplink direction in term

of accepted calls in one cell. The idea behind is to assign one scrambling code for each

class of service in a cell instead of assigning one scrambling code per mobile station as in

3G WCDMA-based systems. Note that the traffic belonging to one class of service may be

originated from different mobile stations. We also develop a new power control algorithm

associated with the new code allocation scheme. In order to evaluate the performance, we

develop analytical models for the code allocation scheme currently used in UMTS (Universal

Mobile Telecommunication Systems) WCDMA-based system considered as a benchmark and

for our proposed scheme. Numerical and simulation results are showing that our proposed

scheme offers significant gain for the uplink capacity compared with the current scheme used

in UMTS.

Index Terms

UMTS, CDMA, radio resources allocation, spreading codes, power control.
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I. INTRODUCTION

CDMA is adopted as a radio access technique to be used in the third generation

of mobile systems [1]–[3]. Since all mobile stations use simultaneously the entire

bandwidth in CDMA technique, each mobile station (MS) multiplies its data by a higher

rate code and at the receiver, the data is extracted by multiplying the received signal

with the same code.

The code modulation in WCDMA system consists of two stages: channelization,

then scrambling [3]. In the first stage, OVSF (Orthogonal Variable Spreading Factor)

channelization codes are used to spread the data [3]–[6]. These codes separate the MSs

in the downlink direction and the physical channels of one MS in the uplink direction.

Each information bit is replaced with a sequence of binary elements (chip code) if it is

”1” and with the 1-complement of the chip code when it is equal to ”0”. OVSF codes

are mutually orthogonal and they have a constant Euclidean distance (the number of 1’s

is equal to the number of 0’s). Furthermore, they can provide different bit rates thanks

to their variable length.

In the scrambling stage, Gold and Kasami sequences are used [3]–[6]. These codes

are Pseudo Noise (PN) sequences and it is possible to generate an infinite number

of them. Each scrambling code is assigned to one MS. Therefore, the resources in

WCDMA systems are theoretically not limited. However, as scrambling codes are not

orthogonal, the system capacity is limited by the Multiple Access Interference (MAI).

This interference is related to the number of allocated scrambling codes, i.e., each mobile

station enters a cell will add interference seen by the ongoing communications in that

cell. Therefore, WCDMA systems have to use an algorithm of power control to regulate

the transmission power for each MS in function of the interference in order to meet

the bit rate (R) and the Quality of Service (QoS) requirements. Typically, the QoS is

defined as the Signal to Interference Ratio (SIR) [1].

In this work, we propose a new scheme of spreading code allocation that reduces the

interference in the uplink direction. Since the scrambling codes are not orthogonal, most

of the interference seen by the base station (BS) is due to those codes. Our proposition

aims to minimize the number of used scrambling codes in a cell. The traffic is seen by

the BS as different classes of service in our scheme and not as different mobile stations

as in UMTS code allocation scheme. We propose that the mobile stations using the same

https://www.researchgate.net/publication/3196170_The_3gpp_proposal_for_IMT-2000?el=1_x_8&enrichId=rgreq-3651272d-481f-47e4-b025-1539b0204f4e&enrichSource=Y292ZXJQYWdlOzIyMjQyODAzMTtBUzoxNjc2MjA1ODYyNTQzNDBAMTQxNjk3NTI3MDk2Mw==
https://www.researchgate.net/publication/3196170_The_3gpp_proposal_for_IMT-2000?el=1_x_8&enrichId=rgreq-3651272d-481f-47e4-b025-1539b0204f4e&enrichSource=Y292ZXJQYWdlOzIyMjQyODAzMTtBUzoxNjc2MjA1ODYyNTQzNDBAMTQxNjk3NTI3MDk2Mw==
https://www.researchgate.net/publication/3196170_The_3gpp_proposal_for_IMT-2000?el=1_x_8&enrichId=rgreq-3651272d-481f-47e4-b025-1539b0204f4e&enrichSource=Y292ZXJQYWdlOzIyMjQyODAzMTtBUzoxNjc2MjA1ODYyNTQzNDBAMTQxNjk3NTI3MDk2Mw==
https://www.researchgate.net/publication/3196170_The_3gpp_proposal_for_IMT-2000?el=1_x_8&enrichId=rgreq-3651272d-481f-47e4-b025-1539b0204f4e&enrichSource=Y292ZXJQYWdlOzIyMjQyODAzMTtBUzoxNjc2MjA1ODYyNTQzNDBAMTQxNjk3NTI3MDk2Mw==
https://www.researchgate.net/publication/230801085_CDMA_Principles_of_Spread_Spectrum_Communications?el=1_x_8&enrichId=rgreq-3651272d-481f-47e4-b025-1539b0204f4e&enrichSource=Y292ZXJQYWdlOzIyMjQyODAzMTtBUzoxNjc2MjA1ODYyNTQzNDBAMTQxNjk3NTI3MDk2Mw==
https://www.researchgate.net/publication/230801085_CDMA_Principles_of_Spread_Spectrum_Communications?el=1_x_8&enrichId=rgreq-3651272d-481f-47e4-b025-1539b0204f4e&enrichSource=Y292ZXJQYWdlOzIyMjQyODAzMTtBUzoxNjc2MjA1ODYyNTQzNDBAMTQxNjk3NTI3MDk2Mw==
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service are multiplexed by using different channelization codes. Hence, the number of

scrambling codes allocated in a cell is reduced to the number of active services in that

cell and is not equal to the number of mobile stations.

This paper is organized as follows. Section II presents the related works. In Section III,

the scheme of code allocation used in UMTS system is detailed. We also develop a

model of UMTS code allocation scheme and the associated power control algorithm.

Afterwards, we present the proposed scheme of code allocation in Section IV. Analytical

and simulation results are shown in section V. Finally, conclusions are presented in

section VI.

II. RELATED WORKS

In WCDMA systems, the physical radio channel can be defined as a union of a

spreading code, frequency bandwidth, a time slot and transmission power. The allocated

bandwidth and the duration of one time slot are typically assumed invariable whereas

the spreading code and the level of transmission power are variable and they depend

on different parameters such as the required bit rate, the QoS requirements and the

instantaneous interference.

The development of efficient power control algorithm in WCDMA system based on

the bit rate and QoS requirements have been extensively investigated [7]–[12]. Most of

the power control algorithms proposed for a WCMDA system are based on optimizing

the transmission power in function of the instantaneous interference due to the near-far

effect and the lack of orthogonality between the used spreading codes. The near-far

effect can be mitigated by adjusting the transmission power of mobile stations such

that the BS receives theirs signals with the same strength. On the other hand, the

scrambling codes bring about most of the interference since they are not orthogonal.

The channelization codes can also cause interference because their orthogonality can be

lost due to propagation environment. Anyhow, the impact of this interference is minor

compared to the one caused by the scrambling codes. Several power control algorithms

have been proposed to reduce or cancel the interference and hence improve the system

capacity [13]–[15].

In [16], the authors have discussed MAI versus the dynamic spreading gain and

proposed a dynamic approach to radio resource allocation and access control. In this

https://www.researchgate.net/publication/3432689_Optimum_Power_Control_for_Successive_Interference_Cancellation_With_Imperfect_Channel_Estimation?el=1_x_8&enrichId=rgreq-3651272d-481f-47e4-b025-1539b0204f4e&enrichSource=Y292ZXJQYWdlOzIyMjQyODAzMTtBUzoxNjc2MjA1ODYyNTQzNDBAMTQxNjk3NTI3MDk2Mw==
https://www.researchgate.net/publication/3696345_Erlang_capacity_of_a_power_controlled_integrated_voice_and_data_CDMA_system?el=1_x_8&enrichId=rgreq-3651272d-481f-47e4-b025-1539b0204f4e&enrichSource=Y292ZXJQYWdlOzIyMjQyODAzMTtBUzoxNjc2MjA1ODYyNTQzNDBAMTQxNjk3NTI3MDk2Mw==
https://www.researchgate.net/publication/3911722_Performance_analysis_of_MAI_canceller_combined_with_adaptive_array_antenna_for_DS-CDMA?el=1_x_8&enrichId=rgreq-3651272d-481f-47e4-b025-1539b0204f4e&enrichSource=Y292ZXJQYWdlOzIyMjQyODAzMTtBUzoxNjc2MjA1ODYyNTQzNDBAMTQxNjk3NTI3MDk2Mw==
https://www.researchgate.net/publication/3234160_Dynamic_spreading_gain_control_in_multi-service_CDMA_Networks?el=1_x_8&enrichId=rgreq-3651272d-481f-47e4-b025-1539b0204f4e&enrichSource=Y292ZXJQYWdlOzIyMjQyODAzMTtBUzoxNjc2MjA1ODYyNTQzNDBAMTQxNjk3NTI3MDk2Mw==
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approach, the spreading gain of non real-time traffic decreases when the MAI increases.

The OVSF codes allocation in the downlink direction have been also studied [17]–[19].

However, to the best of our knowledge the relation between MAI interference and the

scrambling codes allocation in the uplink direction have not been yet investigated.

In this paper, we study the impact of MAI on the system capacity using a different

approach. We propose a new scheme of code allocation that decreases the number of

used scrambling codes by allocating one code per service. Consequently, the new scheme

reduces MAI. The UMTS scheme of code allocation is used as a benchmark. In the

next section, we investigate the UMTS scheme and we analyze its performance.

III. THE CODE ALLOCATION IN UMTS

Considering the code allocation scheme in the uplink direction of UMTS system,

the data streams originated from one MS and belonging to different classes of service

are multiplexed into one stream that is transported on the Coded Composite Transport

CHannel (CCTrCH). The latter is mapped into 1 to M Dedicated Physical Data CHan-

nels (DPDCHs) [20]. The traffic transmitted over each one of DPDCHs is multiplied

by one OVSF code. Afterward, the traffic transmitted over these channels is summed

to form one data flow that will be multiplied by a unique scrambling code assigned to

the corresponding MS [20], [21]. Thereby, we refer to this scheme of code allocation

used in UMTS system by “All Services - one Scrambling Code” (ASSC).

Figure 1 depicts the code allocation scheme of UMTS system. Figure 1(a) shows

three mobile stations where the first (denoted by MS1) transmits only voice and the

second (MS2) transmits only data whereas the third (MS3) transmits simultaneously

voice and data. The size of arrows represents the amount of traffic generating by each

MS. Figure 1(b) shows how different services from each MS are coded and multiplexed.

The output data stream is mapped into several channels using different channelization

codes. Finally, the traffic in these channels are summed and multiplied by the assigned

scrambling code for that MS.

In order to analyze the UMTS code allocation scheme, we develop a model of

power control algorithm associated to this scheme. The model calculates the level of

transmission power to be used by a particular MS in function of three parameters:

the required bit rate (R), the required energy bit to interference ratio Eb/I0 and the

https://www.researchgate.net/publication/3945053_Efficient_algorithms_for_the_assignment_of_OVSF_codes_in_wideband_CDMA?el=1_x_8&enrichId=rgreq-3651272d-481f-47e4-b025-1539b0204f4e&enrichSource=Y292ZXJQYWdlOzIyMjQyODAzMTtBUzoxNjc2MjA1ODYyNTQzNDBAMTQxNjk3NTI3MDk2Mw==
https://www.researchgate.net/publication/3919079_A_novel_code_assignment_scheme_for_W-CDMA_systems?el=1_x_8&enrichId=rgreq-3651272d-481f-47e4-b025-1539b0204f4e&enrichSource=Y292ZXJQYWdlOzIyMjQyODAzMTtBUzoxNjc2MjA1ODYyNTQzNDBAMTQxNjk3NTI3MDk2Mw==
https://www.researchgate.net/publication/236157528_Spreading_and_modulation_FDD?el=1_x_8&enrichId=rgreq-3651272d-481f-47e4-b025-1539b0204f4e&enrichSource=Y292ZXJQYWdlOzIyMjQyODAzMTtBUzoxNjc2MjA1ODYyNTQzNDBAMTQxNjk3NTI3MDk2Mw==
https://www.researchgate.net/publication/236157528_Spreading_and_modulation_FDD?el=1_x_8&enrichId=rgreq-3651272d-481f-47e4-b025-1539b0204f4e&enrichSource=Y292ZXJQYWdlOzIyMjQyODAzMTtBUzoxNjc2MjA1ODYyNTQzNDBAMTQxNjk3NTI3MDk2Mw==


ACCEPTED MANUSCRIPT

AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

interference seen by that MS. We consider N mobile stations distributed randomly

within a cell. Each MS employs M DPDCHs which carry data with different bit rates.

For CDMA systems, the Eb/I0 ratio required for one user is usually expressed in

function of the bit rate, R, and the signal to interference ratio SIR as in [6]:

Eb

I0
=

W

R

S

I
= G

S

I
, (1)

where W is the chip rate, S is the transmission power and I is the interference power

seen by the MS. G represents the spreading factor and it is defined as the ratio of chip

rate to bit rate. Applying the relation (1) on UMTS model, the minimum Eb/I0 required

for the mobile station MSi, (Eb/I0)i, can be written as follow:(
Eb

I0

)
i

=
W

Ri

pihi

α
N∑

l=1,l �=i

plhl + ηW

, i = 1, . . . , N, (2)

where pi is the transmission power of MSi, hi is the channel gain between MSi and its

serving BS, Ri is the bit rate of MSi, α is a constant that represents the orthogonality

factor between the spreading codes and η is the Additive White Gaussian Noise (AWGN)

power.

From (2), we get:

pihi =
Ri

W

(
Eb

I0

)
i

⎛
⎝α

N∑
l=1,l �=i

plhl + ηW

⎞
⎠ . (3)

Since each MS can transmit in multiple channels with different bit rates and different

(Eb/I0) ratios, we can rewrite (3) as follows:

pihi =
1

W

(
M∑

k=1

Rik

(
Eb

I0

)
ik

)⎛
⎝α

N∑
l=1,l �=i

plhl + ηW

⎞
⎠ , (4)

where Rik and (Eb/I0)ik are the bit rate and the energy bit to interference ratio for

channel k of MSi. Using a vectorial representation, (4) can be written as:

pihi =
1

W

(
rT

i qi

)⎛⎝α
N∑

l=1,l �=i

plhl + ηW

⎞
⎠ , (5)

where rT
i = ( Ri1 Ri2 . . . RiM ) and qT

i =
( (

Eb

I0

)
i1

(
Eb

I0

)
i2

. . .
(

Eb

I0

)
iM

)
. The

subscript T denotes transpose of the vector.

To simplify the representation, we denote the scalar product rT
i qi by γi. Consequently,

the equation (5) becomes:

https://www.researchgate.net/publication/230801085_CDMA_Principles_of_Spread_Spectrum_Communications?el=1_x_8&enrichId=rgreq-3651272d-481f-47e4-b025-1539b0204f4e&enrichSource=Y292ZXJQYWdlOzIyMjQyODAzMTtBUzoxNjc2MjA1ODYyNTQzNDBAMTQxNjk3NTI3MDk2Mw==
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pihi − αγi

W

N∑
l=1,l �=i

plhl = ηγi. (6)

Note that γi = rT
i qi (i = 1, . . . , N) depends only on the mobile station MSi.

Finally, we obtain the following linear system:

Πp = Γη, (7)

where

Π =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1 −αh2

W
γ1 . . . −αhN

W
γ1

−αh1

W
γ2 h2 . . . . . .

...
...

. . .
...

−αh1

W
γN . . . . . . hN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

ΓT = ( γ1 γ2 . . . γN ) and pT = ( p1 p2 . . . pN ).

Each element of p presents the transmission power level for one of N active mobile

stations.

Based on the previous developments, the code allocation scheme used in UMTS can

be discussed considering three aspects: complexity, delay performance and interference.

In order to analyze the complexity, we note from equation (4) that different classes of

service (delay-sensitive and delay-insensitive) are coded, interleaved and mixed together.

Therefore, any change in the traffic of one stream corresponding to one class of service

results in changing the spreading factor and/or the number of channelization codes.

This increases the complexity of achieving dynamic multiplexing of delay-sensitive and

delay-insensitive applications. Besides, heterogenous data streams belonging to different

services from the same MS are multiplexed into one data stream. The multiplexing of

heterogenous traffic may degrade the performance of delay-sensitive services in term of

respecting the delay constraint. Finally, the users’ behavior show that the majority of

users use often two classes of service at most. Subsequently, this code allocation scheme

uses many scrambling codes (one scrambling code for each MS) and few channelization

codes. Accordingly, the hamming distance between the code sequences is decreased, and

this increases the interference and consequently reduces the uplink capacity.

Considering these drawbacks, a new code allocation scheme is needed to improve the

uplink capacity of WCDMA systems by allocating adequately the scrambling and chan-
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nelization codes and then reducing the interference. Hence, the next section proposes a

new code allocation scheme for WCDMA systems.

IV. NEW CODE ALLOCATION FOR WCDMA SYSTEMS

To cope with the aforementioned limitations, we propose a new scheme of code

allocation denoted by OSSC (One Service - one Scrambling Code). According to this

scheme, the traffic is seen by the BS as different services and not as different mobile

stations, contrarily to ASSC scheme described in the last section. We propose that the

traffic belonging to one service and originated from different mobile stations will use one

scrambling code. Consequently, the scrambling codes will identify the service, instead

of identifying the MS as in ASSC scheme, whereas the channelization codes will be

used to identify the MS.

The BS may indicate on the broadcast channel the assignment of scrambling codes to

different classes of service. Moreover, when one MS wants to transmit data correspond-

ing to a particular service, this MS requests a channelization code (OVSF code) from

the BS. The BS responds by assigning one OVSF code for this MS using that particular

service. Afterward, the MS modulates its data by using the assigned channelization

code and thereafter by the scrambling code assigned to the corresponding service.

Subsequently, the traffic originated from different mobile stations transmitting the same

service will be multiplexed on the same scrambling code by using different OVSF

channelization codes.

Our proposed scheme is presented in figure 2. The arrows in figure 2(a) represents

the service type. Since there are two services only, two scrambling codes are needed

in OSSC scheme. Figure 2(b) shows the scheme of code allocation. The traffic origi-

nated from different mobile stations using the same service is modulated by the same

scrambling code allocated to that service. Each mobile station is identified by its unique

channelization code.

The proposed scheme uses the same principle of WCDMA systems that consists of

two stages: channelization and scrambling, and it tackles the limitations mentioned in

section III. Since the channelization codes are assigned relying on the bit rate, QoS and

other conditions, mobile stations do not need to change this code during the transmission.

Consequently, the system will be less complex and the uplink traffic more homogenous.
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Furthermore, the number of scrambling codes will be reduced to the number of active

services in the cell.

In UMTS, different mobile stations can use the same channelization code. This does

not have significant impact on the interference because firstly the channelization codes

are assumed to be orthogonal and secondly they are used to differentiate the physical

channels in each MS and are not used to differentiate the mobile stations. Therefore,

using same or different channelization codes does not have impact on the performance

comparison of our proposition with UMTS. For example, we assume 50 mobile stations

transmitting simultaneously two different services where each service undergoes the

same bit rate and QoS requirements for all the mobile stations. According to ASSC

scheme, we need to 50 scrambling codes and 100 channelization codes if we considered,

without loss of generality, that one channelization code is assigned to one service in

UMTS model whereas only two scrambling codes and 100 different channelization

codes have to be assigned according to OSSC scheme.

A. System model

To model the power control associated with OSSC scheme, we consider L classes of

service in a cell and a unique scrambling code is assigned to each class. The capacity

of a class is related to its bit rate and QoS requirements. The number of channelization

codes in a class of service with R kbps is the spreading factor G = W/R where the

chip rate is constant. It is to be reminded that W = 3, 84 Mcps in UMTS.

Unlike the ASSC scheme used in UMTS, the OSSC scheme could separate the MAI

interference into two types of interference:

• Intra-code interference (Iintra−code): it is proportional to the cross correlation be-

tween the channelization codes under one class. Although, the assigned channeliza-

tion codes are orthogonal, there could be a loss of orthogonality due the multipath

delay and time offsets. Hence, the cross correlation is relatively small and the

interference is weak. This interference has a minor impact on the system capacity.

• Inter-code interference (Iinter−code): it is proportional to the cross correlation be-

tween the scrambling codes. Since the scrambling codes are not orthogonal, the

cross correlation is relatively high. Hence, the interference is not negligible and

has a significant impact on the uplink capacity.
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Thus, our model can be written as follow:(
Eb

I0

)
ji

=
W

Rji

pjihji

αov
∑Mj

k=1,k �=i pjkhjk + αsc
∑L

l=1,l �=j

∑Ml
f=1 plfhlf + ηW

,

j = 1, . . . , L and i = 1, . . . , Mj (8)

where

• pji is the transmission power of MSi under class j;

• hji is the path loss between MSi using class j and BS;

•
(

Eb

I0

)
ji

, Rji are respectively the energy bit to interference ratio and the bit rate for

mobile station i under class j;

• Mj is the number of mobile stations using class j;

• αov , αsc are constants representing respectively the orthogonality factor between

the OVSF channelization codes and between the scrambling codes;

• Iintra−code = αov
∑Mj

k=1,k �=i pjkhjk represents the Intra-code interference; and

• Iinter−code = αsc
∑L

l=1,l �=j

∑Ml
f=1 plfhlf represents the Inter-code interference.

Since all mobile stations in one class transmit with the same bit rate and require

the same ratio (Eb/I0), we call
(

Eb

I0

)
ji

and Rji henceforth by
(

Eb

I0

)
j

and Rj where j

represents the class. We re-write (8) to get:

hji

θj

pji − (Iintra code + Iinter code) = ηW, (9)

where θj =
(Eb/I0)jRj

W
(j = 1, . . . , L) depends only on the class j.

Finally, the matrix form is

Πp = ηW1, (10)

where

Π =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 b2 . . . bj . . . bL

b1 a2 . . . bj . . . bL

...
...

. . .
... . . .

...
...

...
... aj . . .

...
...

...
...

...
. . .

...

b1 . . . . . . bj . . . aL

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 1 =

⎛
⎜⎜⎜⎜⎝

1
...

1

⎞
⎟⎟⎟⎟⎠
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

hj1

θj
−αovhj2 . . . −αovhjMj

−αovhj1
. . .

...
...

...
...

. . . −αovhjMj

−αovhj1 . . . −αovhj(Mj−1)
hjMj

θjMj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

bj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−αschj1 −αschj2 . . . −αschjMj

−αschj1
. . .

...
...

...
...

. . . −αschjMj

−αschj1 . . . −αschj(Mj−1) −αschjMj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where pt = ( p11 . . . p1M1 p21 . . . p2M2 . . . pji . . . pL1 . . . pLML
) is the

vector of transmission power where each element pji for j = 1, . . . , L and i = 1, . . . , Mj

represents the transmission power required for service j of MSi.

Accordingly, OSSC allows classifying the traffic originated from different mobile

stations into homogenous traffic with the same bit rate and QoS requirements; the mobile

stations MSi (i = 1 . . . , Mj) using the service j are multiplexed on the same scrambling

code. Also, mobile stations can be simply classified into many classes according to their

priorities, bit rates, QoSs or their distances from the BS.

Code asynchronization may occur due to the transmission from several independent

terminals in a cell. The potential of OSSC scheme in asynchronous environments have

been investigated in [22]. It has been shown that OSSC scheme outperforms ASSC code

allocation scheme whatever the ratio of asynchronization. However, the percentage of

gain is reduced when the ratio of asynchronization becomes more important.

V. NUMERICAL AND SIMULATION RESULTS

A. Numerical results

By using MATLAB, the performance of ASSC and OSSC code allocation schemes

are evaluated considering two classes (L = 2) of traffic and three types of mobile

stations: MSv that transmits only voice (delay-sensitive service), MSd that transmits

data (delay-insensitive service) and MSm that transmits simultaneously voice and data.

The MSm are considered implicitly as two users: voice and data, and hence they can
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not seen in the results. The parameters used for the propagation and traffic models are

shown in table I.

We study the system capacity in function of the orthogonality factor α because the

capacity is limited by the interference that itself is proportional to the orthogonality

between spreading codes. In ASSC scheme used in UMTS model, there is only one

α that represents a global orthogonality factor of spreading codes. In OSSC, there are

two orthogonality factors, αov for channelization codes and αsc for scrambling codes. In

the first implementation, we set α = 0.4 for UMTS model (using ASSC code allocated

scheme) while αov= 0.1 and αsc= 0.4 for OSSC. In the second implementation, we

consider relatively bad orthogonality between the codes (α=0.7 for ASSC and αsc=0.7,

αov= 0.1 for OSSC).

The serving BS performs closed loop power control procedure as in [6], [23], [24]

in order to adjust the transmission power of each mobile station in the cell whereas

the algorithm of power control is based on the models (7) and (10); BS must receive

all signals with the same strength. Thus, the arrival of a new mobile station into a cell

increases the interference seen by the ongoing communications. Subsequently, the BS

asks the active mobile stations in the cell to adjust their transmission powers. When the

transmission power of one MS reaches its maximum power and the interference seen

by that MS is still unacceptable, the BS rejects the new incoming MS.

The obtained results in figures 3(a) and 3(b) show that OSSC outperforms the UMTS

code allocation scheme. The performance gain varies between 31% and 77% from

applying OSSC scheme. Also, we observe from figures 4(a) and 4(b) that the obtained

gain is more significant (higher than 60%) when the orthogonality is bad (α = 0.6 vs αsc

= 0.7). Thus, since OSSC uses efficiently the spreading codes (few scrambling codes

and a lot of OVSF codes), the gain increases. When MAI decreases, the mobile stations

in turn reduce their transmission powers and the BS can admit additional mobile stations

in the cell.

B. Simulation results

The mobile stations in the previous implementations are assumed stationary. There-

fore, to obtain more realistic results, we simulate the two models considering this time

the mobility and the traffic variations. The simulation model, executed by OPNET,
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consists of a cluster of 64 hexagonal shaped cells as shown in figure 5. Handovers at

the cluster boundary are handed by wrapping them around. Thereby for one cluster, the

handover arrival rate and the handover departure rate are equivalent. We consider that

the call duration follows an exponential distribution with a mean of 120sec. The cell

dwell time (time that a mobile spends/remains in a cell) is also considered exponential

with a mean of 50sec. Two services are considered: voice and data. Voice service

represents 70% of the total traffic and data service represents 30% of the traffic. The

arrival of mobile stations are modeled by a Poisson distribution with mean λ. Finally,

the parameters in table I are also considered in this simulation.

In this simulation, a cell admits mobile stations as while as the conditions of power

control are respected. When a mobile station enters into a cell, the ongoing mobile

stations are invited to adjust their transmission powers to overcome the interference

occurred from this new MS. The new MS will be rejected when the transmission power

of at least one ongoing MS reaches its maximum power and the interference is still

unacceptable. Figure 6(a) presents the performance of the uplink capacity in term of

the handover failure ratio (the number of failure handover to the number of occurred

handover) while figure 6(b) shows the call blocking ratio (the number of blocked calls

to the total number of new calls) for both models (ASSC and OSSC). The results show

that the obtained gain from using OSSC scheme is considerable. The call blocking ratio

and the handover failure ratio in OSSC are less than that in ASSC by 20% and 50%

respectively.

VI. CONCLUSION

In this paper, we have studied MAI effects on the uplink capacity of WCDMA systems

defined as the number of simultaneous calls that can be admitted in a cell. The presented

work has shown that the interference is tightly related to the number of used scrambling

codes. In order to reduce the interference in the system and deal with the limitations in

UMTS code allocation scheme, we have proposed a new scheme of code allocation in

the uplink direction denoted by “one service-one scrambling code” (OSSC). The main

idea is to multiplex traffic originated from different mobile stations using the same

service under one scrambling code by using different OVSF codes (one OVSF code per

mobile station).
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The proposed code allocation scheme simplifies the mobile stations classification

according to their priorities, bit rates, QoS or even distances from the base station. It sep-

arates MAI effects into two types of interference: interference due to the channelizations

codes, and another due to the scrambling codes. Thus, the interference decreases when

the number of allocated scrambling codes is small and the mutual hamming distance

between the codes is high. The numerical and simulation results have shown that OSSC

outperforms the UMTS system in term of the number of simultaneous admissible calls.
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Item Value

Chip rate W 3.84Mcps

Voice bit rate Rv 15kbps

Data bit rate Rd 30kbps

(Eb/I0)voice 5dB

(Eb/I0)data 7dB

Max transmission power Pmax 0.05W

Path loss d−4

Noise, η 3.98 ∗ 10−21

TABLE I

THE PARAMETERS USED IN UMTS AND OSSC IMPLEMENTATIONS.
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(b) The service multiplexing in UMTS. CSCk is the scrambling code and

CCHk,j is the channelization code where k is the scrambling code index

and j is the channelization code index.

Fig. 1. Code allocation scheme ASSC in UMTS.
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(b) The user multiplexing in OSSC scheme. CSCk is the scrambling code

and CCHk,j is the channelization code where k is the scrambling code index

and j is the channelization code index.

Fig. 2. The OSSC scheme of code allocation.
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Fig. 3. The uplink capacity according to ASSC in UMTS model and OSSC. αsc = 0.4
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Fig. 4. The uplink capacity according to ASSC in UMTS model and OSSC. αsc = 0.7
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Fig. 5. Layout for a 64 cells system.
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Fig. 6. The performance of ASSC in UMTS model and OSSC in term of handover failure and call blocking.
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