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1 Introduction

There is much evidence [4] that the loss-based additive increase/multiplicative
decrease (AIMD) algorithm used in TCP [6] does not scale well to high ca-
pacity networks. Many new improved versions of TCP have been proposed to
solve this problem. These include CUBIC [14], H-TCP [15] and FAST TCP [8].
Recent simulation [8] and experimental [9] studies indicate that FAST TCP
is a viable alternative to the currently used loss-based TCP versions.

Many modern congestion control algorithms can be understood as algorithms
to solve an optimization problem, in which the network seeks to maximize the
sum of the users’ “utilities” subject to link capacity constraints. A user’s utility
is the benefit it derives from transmitting at a given rate. The equilibrium rates
are determined by the objective of the optimization, while the dynamics are
determined by the optimization procedure. In this framework, users pay a
“price” for transmitting data on a congested link; typically either in terms of
loss or queueing delay, and the equilibrium value of this price depends on the
users’ utility functions. As these two price mechanisms have adverse effects
on users, it is desirable to use a utility function, which achieves a fair rate
allocation and imposes low (and fair) prices on users. This paper adapts the
dynamics of FAST [8] to allow it to optimize a more general form of utility
function. This allows a tradeoff to be made between fairness and low queueing
delay.

Unlike AIMD-based TCP schemes, FAST TCP uses queueing delay as the con-
gestion indication, or price. Users’ utilities are logarithmic, making the solution
to the optimization problem satisfy the proportional fairness criterion [10]. If
all users use FAST, the unique equilibrium rate vector is the unique solu-
tion of the utility maximization problem. One drawback of this approach is
that the queueing delay (and hence buffer requirements) at a node increase in
proportion to the number of flows bottlenecked there.

To allow a tradeoff between fairness and network utilization, Mo and Wal-
rand [13] popularized the concept of (α, n)-proportional fairness, which gen-
eralizes max-min fairness [1], proportional fairness [10] and minimum potential
delay [12]. This corresponds to a simple family of power-law utility functions.
We propose an extended version of FAST TCP, termed Generalized FAST
TCP, whose equilibrium rates are (α, n)-proportional fair. This is achieved
by making a slight change to the window update equation, which implicitly
optimizes a suitable utility function. As well as allowing increased fairness,
corresponding to n > 1, Generalized FAST TCP allows the queueing delay to
be reduced at nodes carrying many flows by setting n < 1.

Our proposed scheme is a generalization of the existing FAST TCP [8]. Specif-
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ically, the behavior of FAST TCP is reproduced by the special case of Gener-
alized FAST with n = 1, while other modes of Generalized FAST cannot be
achieved simply by tuning FAST TCP parameters. We will show that the new
scheme inherits the merits of the current FAST TCP regarding stability and
throughput for any value of n and not just for n = 1. We also provide stability
analysis and prove that Generalized FAST TCP achieves (α, n)-proportional
fairness.

The remainder of this paper is organized as follows. In Section 2, we clarify
the relationship between the mechanism of FAST TCP and the proportional
fairness notion. In Section 3, we describe the new Generalized FAST TCP
scheme and discuss the effect of the parameters α1/n and n on buffer occupancy
and fairness. In Section 4, we analyze and prove the stability of the new
scheme. Section 5 investigates the tradeoff between fairness and the queueing
delay experienced by users. In Section 6, we verify by simulations that the
new scheme is stable and (α, n)-proportionally fair. Finally, the conclusions
are drawn in Section 7.

2 Proportional Fairness and FAST TCP

A general network can be described as a set L = {1, · · · ,M} of links, shared
by a set I = {1, · · · , N} of flows. Each link l ∈ L has capacity cl. Flow
i ∈ I traveled a router Li consisting of a subset of links, i.e., Li = {l ∈
L | i traverses l}. A link l is shared by a subset Il of flows where Il = {i ∈
I| i traverses l}. Let xi be the rate of flow i and let x = {xi, i ∈ I} be the rate
vector. Let A = (Ali, i ∈ I, l ∈ L) be the routing matrix, where Ali = 1 if flow
i traverses link l, and 0 otherwise. Throughout this paper, the terms “flow”,
“sources” and “users” are used synonymously.

A rate vector x ≥ 0 is called feasible if

∑

i∈Il

xi ≤ cl, ∀ l ∈ L. (1)

The notion of fairness characterizes how competing users should share the
bottleneck resources subject to the above constraint. A feasible flow rate vector
x is defined to be max-min fair if any rate xi can not be increased without
decreasing some xj which is smaller than or equal to xi [1]. Kelly et al. [10]
proposed the so-called proportional fairness. A rate vector x∗ is αi-weighted
proportional fair if it is feasible, and if for any other feasible vector xi, the
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aggregate of proportional change is non-positive,

∑

i∈I

αi
xi − x∗i

x∗i
≤ 0, (2)

where αi is positive numbers, i = 1, 2, · · · .

Consider the following optimization problem (P):

max
x≥0

∑

i∈I

Ui(xi), (3)

subject to the constraint given by (1), where Ui is the utility function of user
i. We follow the standard approach [10] of taking the Lagrangian

L(x; p) =
∑

i

(Ui(xi)− xiqi)−
∑

l

plcl, (4)

where pl, called the price of link l, is the Lagrange multiplier of the constraint
due to the capacity of link l. We assume that

qi(t) =
M∑

l=1

Alipl(t− τ b
li) (5)

is the aggregate price observed by source i in its path, and link l observes the
aggregate source rate

yl(t) =
N∑

i=1

Alixi(t− τ f
li), (6)

where τ f
li is the forward feedback delay from source i to link l, and τ b

li is the
backward feedback delay from link l to source i. For simplicity, we assume
that the feedback delays τ f

li and τ b
li are constants.

For given link prices, each source i determines its optimal rate as

xi(p) = arg max
xi

Ui(xi)− xiqi = (U ′
i)
−1(qi). (7)

The primal optimization (P) can then be replaced by its dual (D) given by

min
p≥0

∑

i

(Ui(xi(p))− qixi(p)) +
∑

l

clpl. (8)
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According to [10], αi-weighted proportional fairness is achieved within a sys-
tem of social welfare maximization, if all users have utility functions of the
following form:

fi(xi) = αi log xi. (9)

That is, a αi-weighted proportional fair vector solves the above optimization
problem (P) by maximizing the sum of all the logarithmic utility functions.
In this case, (7) becomes

xi =
αi

qi

. (10)

For the existing version of FAST TCP, it is known [8] that the source window
updating equation (10) has a unique equilibrium point (x∗i , q

∗
i ) satisfying (10).

wi(t + 1) = γ

(
diwi(t)

di + qi(t)
+ αi(wi(t), qi(t))

)
+ (1− γ)wi(t), (11)

where

αi(wi, qi) =





αiwi if qi = 0

αi otherwise.

Since this equilibrium point is known ( [8], Theorem 1) to be the unique
optimal solution of the above problem (P) with the specific utility functions
given by (9), FAST TCP maximizes the sum of logarithmic utility functions.
This implies in particular that the current FAST TCP achieves αi-weighted
proportional fairness. Note that, the fairness parameter αi is also the number
of flow i’s packets that are buffered in the routers in its path at equilibrium.
If there are N flows, the total number of packets buffered in the routers at
equilibrium is

∑N
i=1 αi (see [9]). From this, it is seen that the buffer occupancy

increases linearly with the number of flows.

3 The Generalized FAST TCP

As a generalization of proportional fairness and max-min fairness, the def-
inition of (α, n)-proportional fairness is given by Mo and Walrand in [13],
which is described as follows. Note that our notation differs slightly from that
of [13], so that it corresponds to its usual meaning in the FAST algorithm. A

5



rate vector x∗ is (α, n)-proportionally fair, if it is feasible, and if for any other
feasible vector x,

∑

i∈Il

αi
xi − x∗i
(x∗i )n

≤ 0, (12)

where αi are positive numbers, for i ∈ I. Note that (12) reduces to (2) when
n = 1. It is also seen that, when n becomes large, the (α, n)-proportional
fair rate vector approaches the max-min fair rate vector. Achieving (α, n)-
proportional fairness corresponds to maximizing the sum of users’ utilities of
the form [13]

Ui(xi) =





αi log xi; n = 1

αi(1− n)−1x1−n
i ; otherwise.

(13)

Thus, from (7), the optimal rates satisfy

x∗i =
α

1/n
i

(q∗i )1/n
. (14)

Generalized FAST TCP seeks to achieve (α, n)-proportional fairness. This is
achieved by modifying the window update equation to be

wi(t + 1) = wi(t) + γi

(
α

1/n
i − (qi(t))

1/n

di + qi(t)
wi(t)

)
, (15)

where γi ∈ (0, 1], in appropriate units. It is easily to see that the equilibrium
point (x∗i , q

∗
i ) of (15) exactly satisfies (14).

In fact, most of the parameters of Generalized FAST TCP have already existed
in the original FAST TCP; hence, we do not need to modify the original
implementation significantly. As α

1/n
i is a constant, and all we need to do is to

choose the power of the queueing delay qi(t). The FAST algorithm is usually
expressed in terms of an estimate, denoted baseRTT , of the pure propagation
delay of flow i, di, and of the measured round trip time di + qi, denoted by
RTT . The queuing delay qi(t) can then be calculated by RTT − baseRTT .
Using that notation, and the observation that

xi(t) = wi(t)/(di + qi(t)). (16)
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the window update rule for Generalized FAST can be written as the pseudo-
code

w ← w + γ
(
α1/n − w

RTT
(RTT-baseRTT)1/n

)
,

where again γ ∈ (0, 1] in suitable units. Note that the equilibrium window size,
w∗

i , queueing delay, q∗i and rate, x∗i of source i are related by x∗i = w∗
i /(di +q∗i ),

where di are the propagation delay that flow i experienced. Analogously to
the analysis of FAST [8], by using the notion of (α, n)-proportional fairness
it is straightforward to prove the following theorem.

Theorem 1. In the case that the routing matrix, A, has full row rank and
given the identities (5) and (16), the unique equilibrium point (x∗, q∗) of
the system of window updating equations (15) is such that the rate vector
x∗ = (x∗1, · · · , x∗N)T is the unique maximizer of the problem P with the utility
function given by (13) and the queueing delay vector q∗ = (q∗1, · · · , q∗N) is such
that p∗ = (p∗1, · · · , p∗M) is the unique minimizer of (8).

The above theorem implies in particular that the equilibrium rate vector
determined by the new Generalized FAST TCP proposal achieves (α, n)-
proportional fairness.

Now we study the queue size at equilibrium. According to (14),

q∗i =
αi

(x∗i )n
,

the backlog of each source kept in the links is

bi = x∗i × q∗i =
αi

(x∗i )n−1
. (17)

Under the new Generalized FAST TCP scheme, we consider a dumbbell net-
work with N flows sharing one bottleneck link with capacity C, the total buffer
occupancy at equilibrium denoted by B is

B =
N∑

i=1

bi =
N∑

i=1

αi

(x∗i )n−1
. (18)

By setting the same value of α1/n for each flow and noting x∗ = C/N , we can
rewrite (17) as

B =
Nn

Cn−1
·
(
α

1
n

)n
. (19)
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Fig. 1. The relationship between the buffer occupancy and number of flows with
α

1/n
i = 100

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

α
i
1/n

B
uf

fe
r 

oc
cu

pa
nc

y 
(p

ac
ke

ts
)

n=2 

n=1 

n=1/2 

n=1/3 

Fig. 2. The relationship between the buffer occupancy and parameter α
1/n
i with the

number of flows being 50.

When n = 1, the summation of (18) is the total number of packets buffered in
the router at equilibrium under the original FAST TCP scheme. However, this
can be reduced by altering n, which will be discussed further in Section V.

First, let us fix the value of α
1/n
i so as to study the relationship between the

buffer occupancy and the number of flows under Generalized FAST TCP. To
illustrate this relationship, by setting α

1/n
i = 100 and the router capacity

to be 2500 packet/s in a dumbbell network, Figure 1 plots four curves of
buffer occupancy changing with the number of flows, which is corresponding
to n = 1/3, 1/2, 1, 2, respectively.

Observing Figure 1, one finds that smaller n is, the slower the increase in
buffer occupancy as the number of connection increases.

Next, let us fix the number of flows, so as to study the relationship between
the buffer occupancy and parameter α

1/n
i . To illustrate this relationship, by
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Fig. 3. A linear network
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Fig. 4. Bandwidth allocation of linear network

setting the number of flows as 50 and the router capacity as 2500 packet/s
in a dumbbell network, we plot Figure 2. In Figure 2, we plot four curves of
buffer occupancy changing with the parameter α

1/n
i , which is corresponding

to n = 1/3, 1/2, 1, 2, respectively.

That is to say, buffer occupancy is related with the value of n and is affected
by the parameter α1/n. However, a certain threshold of α1/n value is necessary
for keeping the stability of network [9]. We cannot reduce the buffer occupancy
by setting α1/n to 1. Too large value will lead to large buffer occupancy and
too small value will result in network instability. So far there is no clear rule
for choosing a reasonable value for the parameter α1/n.

Although small n can alleviate the increase in buffer occupancy, it also results
in unfairness in a multi-bottleneck network. We study the relationship between
bandwidth allocation and the value of n using a network with the simplest
multi-bottleneck topology as shown in Figure 3. We assume that both multi-
bottleneck link capacities are 1. We plot the (α, n) fair bandwidth allocation
for this network into Figure 4.

As shown in Figure 4, as n increases, the bandwidth allocation converges to
max-min fairness, when n = 1, it satisfies the so-called proportional fairness,
and as n approaches zero, it becomes the maximum throughput allocation. We
will revisit this issue in Section V and provide a more detailed quantitative
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discussion on the relationship between the fairness and value of n.

4 Stability Analyses

We now analyze the stability of the Generalized FAST TCP under the dumb-
bell (single bottleneck) topology with N greedy sources, and with equal prop-
agation delays, d. Consider the continuous form of the equation (14),

ẇi(t) = γ
(
α

1/n
i − xi(t)(q(t))

1/n
)
, i = 1, · · · , N. (19a)

From wi(t) = xi(t)(d + q(t)), we have

ẇi(t) = dẋi(t) + xi(t)q̇(t) + ẋi(t)q(t). (19b)

Substituting (19a) into (19b) gives the implicit equation

ẋi(t) = f (xi(t), ẋi(t), q(t), q̇(t))

=
1

d

[
−xi(t)q̇(t)− ẋi(t)q(t) + γα

1/n
i − γxi(t)(q(t))

1/n
]
.

We now linearize the above equation around the equilibrium point (x∗i , q
∗), by

setting

xi(t) = x∗i + δxi(t)

q(t) = q∗ + δq(t).

Note that

δẋi(t) = ẋi(t) =
∂f

∂xi

∣∣∣∣∗
· δxi(t) +

∂f

∂ẋi

∣∣∣∣∗
· δẋi(t)

+
∂f

∂q

∣∣∣∣∗
· δq(t) +

∂f

∂q̇

∣∣∣∣∗
· δq̇(t).

Thus the linearized system becomes

δẋi(t) =
1

d

(
−γ(q∗)1/n · δxi(t)− q∗ · δẋi(t)

)

−1

d

(
x∗i · δq̇(t) +

γ

n
x∗i (q

∗)1/n−1 · δq(t)
)

.
(20)

In the absence of feedback delay, we have

q̇(t) =
1

C

N∑

i=1

xi(t)− 1,

giving

δq̇(t) =
1

C

N∑

i=1

δxi(t) +
1

C

N∑

i=1

x∗i − 1 =
1

C

N∑

i=1

δxi(t). (21)
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Taking the Laplace transform of (20) and (21) respectively, we have

(
(d + q∗)s + γ(q∗)1/n

)
δXi(s) = −x∗i sδQ(s)

−γ

n
x∗i (q

∗)
1−n

n δQ(s) + (d + q∗)δxi(0) + x∗i δq(0),
(22)

and

sδQ(s) =
1

C

N∑

i=1

δXi(s) + δq(0), (23)

where δXi(s) and δQ(s) denote the Laplace transform of xi(t) and q(t), re-
spectively.

Considering in (22) and (23),

(
(d + q∗)s + γ(q∗)1/n

)
δXi(s)

= −x∗i
C

(
1 +

γ

s · n(q∗)
1−n

n

) N∑

i=1

δXi(s)

+(d + q∗)δxi(0)− x∗i · γ
s · n (q∗)

1−n
n δq(0).

(24)

Denoting [δX(s)]T = [δX1(s), δX2(s), · · · , δXN(s)] and F T (s) = [f1(s), f2(s), · · · , fN(s)],
(24) is then rewritten as the following matrix equation:

(A + B)δX(s) = F (s), (25)

where both A and B are N -order square matrices, and

A =




(d + q∗)s + γ(q∗)1/n 0
. . .

0 (d + q∗)s + γ(q∗)1/n




,

B =




x∗1
C

(
1 + γ

s·n(q∗)
1−n

n

)
· · · x∗1

C

(
1 + γ

s·n(q∗)
1−n

n

)

...
. . .

...

x∗N
C

(
1 + γ

s·n(q∗)
1−n

n

)
· · · x∗N

C

(
1 + γ

s·n(q∗)
1−n

n

)




,

fi(s) = (d + q∗)δxi(0)− x∗i · γ
s · n (q∗)

1−n
n δq(0), i = 1, 2, · · · , N.

For simplicity, we denote

g(s) = (d + q∗)s + γ(q∗)1/n,

and

hi(s) =
x∗i
C

(
1 +

γ

s · n(q∗)
1−n

n

)
.
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By some manipulations, we have

|A + B|

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g(s) + h1(s) h1(s) · · · h1(s)

h2(s) g(s) + h2(s) · · · h2(s)
...

...
. . .

...

hN(s) hN(s) · · · g(s) + hN(s)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g(s) 0 · · · h1(s)

0 g(s) · · · h2(s)
...

...
. . .

...

−g(s) −g(s) · · · g(s) + hN(s)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g(s) 0 · · · h1(s)

0 g(s) · · · h2(s)
...

...
. . .

...

0 0 · · · g(s) +
N∑

i=1

hi(s)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (g(s))N−1 ·
(
g(s) +

N∑

i=1

hi(s)

)
= 0.

Therefore, we obtain the characteristic equation of the close-loop system (20)
and (21), given as follows:

∆(s) =
(
(d + q∗)s + γ(q∗)1/n

)N−1

·
(
(d + q∗)s + γ(q∗)1/n + 1 +

γ

s · n(q∗)
1−n

n

)
= 0.

(26)

Solving (26), we obtain its roots:

sj = −γ(q∗)1/n

d + q∗
, j = 1, 2, . . . , N − 1, (27)

and

sk =
−γ(q∗)1/n − 1

2(d + q∗)

±
√

(γ(q∗)1/n + 1)2 − 4(d + q∗)γ(q∗)
1−n

n /n

2(d + q∗)
,

k = N,N + 1.

(28)
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where sN takes the “+” and sN+1 takes the “−” of the “±”. It is thus seen
that all the roots of (26) are in the left-hand plane. Therefore, the system (20)
and (21) is stable. This can be summarized as the following theorem.

Theorem 2. The Generalized FAST TCP is locally stable for a single bottle-
neck link topology in the absence of feedback delay.

Interestly, the above stability is independent of the fairness parameter n. When
n = 1, it reduces to the case of the usual FAST TCP, the stability of which
was discussed in [18, 20]. The simulation results presented in Section VI also
demonstrate that there is almost no oscillation in the dynamics of the queue
size and rate allocations under Generalized FAST TCP.

5 Fairness-Scalability Tradeoff

The concept of (α, n)-proportional fairness has often been used to investigate
the tradeoff between fairness and total throughput (see for example [17]). In
the context of Generalized FAST it also provides a tradeoff between fairness
and scalability.

In a network with N flows and a single bottleneck running standard FAST, the
mean queue size scales linearly with N . Under Generalized FAST, if all flows
have the same α, the mean queue size scales as Nn. Specifically, (18) shows
that the mean queue size is (α/Cn−1)Nn for a capacity C, since x∗i = C/n.
Thus, setting n < 1 causes the queue size to scale better as the number of
flows increases.

However, intuition says that reducing n pushes the equilibrium further from
max-min fairness, since max-min fairness is the limiting case for large n. In
particular, the demand function, which maps the route price to the flow rate,
becomes D(qi) = (U ′)−1(qi) = q

−1/n
i . To see the impact of this, consider a

linear network with N = M + 1 flows, in which flow 1 traverses all M links,
and for i = 2, · · · , M + 1, flow i traverses only link i− 1. Thus q1 = Mqi for
all i 6= 1, giving x1 = M−1/nxi. Setting increases the disparity between flow 1
and the remaining flows.

Let us first consider a suitable way of measuring the fairness of a set of rates.
A common measure, advocated by Jain [7], is

J(x1, · · · , xN) =

(∑N
i=1 xi

)2

N
∑N

i=1 x2
i

=
(M1

M2

)2

,

where Mi = (xi
1 + · · · + xi

N)1/i denotes the ith power mean of the values xi.
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By the power mean inequality ( [5], Theorem 16), this maps vectors into the
interval (0,1], with a value of 1 denoting all values being equal, and lower values
corresponding to less fairness. Note that users do not observe rate directly;
rather, they observe the time required to transfer a given amount of data.
The least fair allocation is one in which a user receives zero rate, requiring an
infinite download time. The severity of this is significantly understated by J .
In particular, J(0, x, · · · , x) = (N − 1)/N , suggesting that starving one user
from a large group is quite fair. It could be argued that starving one user is
analogous to a form of admission control, and is hence not necessarily unfair.
However, the unfairness in the above scenario is based on the topology of the
path, with the longer flow consistently receiving a lower rate. Thus, the user
cannot simply give up and expect to be treated fairly on a new attempt. Such
consistent discrimination is unfair.

A more appropriate measure may be obtained by applying Jain’s measure
to the download times instead of the rates, giving J(1/x1, · · · , 1/xN). If one
rate tends to zero, this measure tends to 1/N , which is better indicates the
unfairness, but still does not reflect the complete starvation of one source.

An alternative quantitative measure of fairness of rates is the ratio of the
harmonic mean to the arithmetic mean,

F (x1, · · · , xN) =
N2

(∑N
i=1 1/xi

) (∑N
i=1 xi

) =
M−1

M1

.

By the harmonic-arithmetic mean inequality (see Theorem 16 in [5]), this is
again a number in the interval [0,1], and equal to 1 only if all rates are equal.
It is more suitable than J because it is 0 if and only if a flow is entirely starved
of bandwidth, xi = 0 for some i. Note that this measure is independent of the
network topology. For complex topologies, it may be desirable to consider a
more sophisticated measure, such as the ratio of the harmonic mean of the
rate vector to the harmonic mean of the max-min fair rate vector. However,
the function F is sufficient for this example.

In the linear network scenario, the fairness ratio F of the equilibrium rates
can be shown to be

M2 + 2M + 1

M2 + M1+1/n + M1−1/n + 1

This is 1−O ((log M)2/Mn2) for large M and large n but O(M1−1/n) for large
M and small n. This shows that the fairness goes to 0 for small n, indicating
that the long flow would be starved of bandwidth if too small a value of n
were used.
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Fig. 5. The simulation model of a dumbbell topology

Fig. 6. The active periods of the five flows

Generalized FAST allows the protocol designer to trade fairness (large n)
against queue scalability (small n). This may be particularly useful for private
networks where knowledge of the topology and expected load is available; if
the expected number of flows at any router is expected to be small, then
scalability can be traded for increased fairness, while if the diameter of the
network is small, then scalability can be improved.

6 Simulation Results

We perform three sets of ns2 [2,19] simulations. The main objective of the first
set of simulations is to verify that the buffer occupancy increases more slowly
as the number of flows increases for smaller values of n. It also demonstrates
that feedback delay does not effect bandwidth allocation. The second set of
simulations quantify the reduction in fairness between flows with different
numbers of bottleneck links as n decreases. The the third set demonstrate
that feedback delay does not effect the queue size.

The first set is for the dumbbell network topology shown in Figure 5 involving
the five sender-receiver pairs. In order to study the effect of different feedback
delay on sending rate, we set different propagation delay for each flow. The link
capacity is set to 1250 packets/s and the one-way propagation delays of the
flows are 35, 45, 55, 65 and 75ms, respectively. The size of every packet is set
at 1000 bytes in all the simulations. As shown in Figure 6, we add a new flow
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Fig. 7. Queue size for the Generalized FAST TCP with n = 1/3, α3 = 100

Fig. 8. Sending rate for the Generalized FAST TCP with n = 1/3, α3 = 100

Fig. 9. Queue size for the Generalized FAST TCP with n = 1/2, α2 = 100

into the network after each 20 seconds. To avoid the problem of unfairness due
to over-estimating baseRTT in the presence of persistent congestion [8, 11],
we use the priority queue (PQ) method [16] in this scheme. Each flow has the
same values of α1/n = 100 in the individual simulation. The parameter n for
each simulation is set to 1/3, 1/2, and 1, respectively.

From the simulation results (Figures 7, 8, 9, 10, 11, 12), we can see that
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there are various ways the buffer increases for different values of n. As shown
in Figures 7, 9 and 11, buffer requirements grow as the nth power of the
number of flows. For n = 1, buffer increases linearly with the number of flows
bottlenecked at a link, while buffer increases as the square root of the number
of flows when n = 1/2, and the cube root for n = 1/3. Therefore, we can
reduce the trend of buffer increment by setting small value of n. However, all
flows obtain equal rates, regardless of their RTTs.

The second set of simulations is performed by using a parking-lot topology,
which topology is depicted in Figure 13, where there are n long flows which
traverse all m links, and m single hop short flows. We assume that the band-
width of each link is 12500 packets/s. In order to study the variations of the
ratio between the rate of short flows and the rate of long flows, we change the
hop count under the different values of the parameter n. The simulation results
plotted in Figure 14 suggest that the bandwidth allocation in the parking-lot
topology is governed by two factors. One is the value of the fairness parameter
n and the other is the number of bottleneck hops traversed by the long flow.
Figure 14 shows that a smaller value of n will lead to larger difference of rate
allocation between the short flows and the long flows if we fix the hop count,
while as n increases and goes to infinity, the bandwidth allocation converges
to the max-min fair allocation. Figure 14 also shows that the degree of unfair-
ness between short flows and long flows increases with increasing hop count.
Specifically if we fix the fairness parameter n, Figure 14 demonstrates that
as the hop count becomes larger, the ratio of bandwidth allocation between
short flows and long flows also becomes larger.

The third set of results is for dumbbell network topology shown in Figure 15
involving two sender-receiver pairs. In order to study the effect of different
feedback delay on queue size in route, we fix one flow’s propagation delay at
10 ms, and set the propagation delay for the other flow to 10, 30, 100 and
300ms. The other settings are the same as for the first set of simulations.
From the simulation results in Figure 16, we can see that different feedback
delay does not effect the queue size.

7 Conclusion

This paper generalizes the current FAST TCP scheme in such a way that
the parameter n and α1/n in the new window update equation can be set to
achieve (α, n)-proportional fairness and control the rate of buffer increase.
We derived a stability condition for a single bottleneck link in the absence of
feedback delay, and we have discussed the tradeoff between fairness and buffer
increment.
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Fig. 10. Sending rate for the Generalized FAST TCP with n = 1/2, α2 = 100

Fig. 11. Queue size for the original FAST TCP (n = 1), α = 100

Fig. 12. Sending rate for the original FAST TCP (n = 1), α = 100

Future research will investigate the performance of networks with general
topology and a variety of traffic scenarios including other TCP versions and
UDP traffic under the Generalized FAST TCP with different fairness param-
eters from design to implementation, and the impact of feedback delay on
stability.
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Fig. 13. The simulation model of a parking-lot topology
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Fig. 14. Ratio of sending rate between short flows and long flows under the park-
ing-lot topology

Fig. 15. The simulation model of a dumbbell topology with two flows
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