
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

A peer-to-peer file search and download protocol for wireless ad-hoc networks q

Hasan Sözer a,*, Metin Tekkalmaz b, Ibrahim Korpeoglu b

a Faculty of Electrical Engineering, Mathematics and Informatics, University of Twente, Enschede, The Netherlands
b Department of Computer Engineering, Bilkent University, Ankara, Turkey

a r t i c l e i n f o

Article history:
Received 15 March 2007
Received in revised form 26 August 2008
Accepted 4 September 2008
Available online 11 September 2008

Keywords:
Wireless ad-hoc networks
Peer-to-peer networks
File sharing

a b s t r a c t

Deployment of traditional peer-to-peer file sharing systems on a wireless ad-hoc network introduces sev-
eral challenges. Information and workload distribution as well as routing are major problems for mem-
bers of a wireless ad-hoc network, which are only aware of their immediate neighborhood. In this paper,
we propose a file sharing system that is able to answer location queries, and also discover and maintain
the routing information that is used to transfer files from a source peer to another peer. We present a
cross-layer design, where the lookup and routing functionality are unified. The system works according
to peer-to-peer principles, distributes the location information of the shared files among the members of
the network. The paper includes a sample scenario to make the operations of the system clearer. The per-
formance of the system is evaluated using simulation results and analysis is provided for comparing our
approach with a flooding-based, unstructured approach.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Peer-to-peer networks have been very popular since their first
emergence. Several peer-to-peer file sharing systems have been
deployed and are functional on the Internet, such as Napster [1],
Gnutella [2] and FastTrack [3]. Similar systems currently serve
many users who are able to share files located on their personal
computers. Together with the new users of the Internet and the
emergence of different types of files to be shared (documents,
audio/video files, etc.), the number of users of peer-to-peer file
sharing systems increases every day.

In the meantime, mobile devices and wireless communication
technologies have evolved and become very popular. Both areas
have experienced rapid improvements during the last few years,
which have led to the development of high-performance products.
Today, personal digital assistants (PDAs) have almost the same abil-
ities of ordinary desktop computers despite their small size and
weight. On the other hand, new wireless technologies enable hand-
held devices to communicate and form ad-hoc networks easily and
automatically. Bluetooth [4], for instance, is one such technology
that uses short-range radio communication and interconnects
handheld electronic devices ranging from cellular phones to PDAs.

Today, high-performance handheld devices can communicate
with each other in a wireless ad-hoc network (WANET). Such an

environment provides the possibility to share files. Moreover,
peer-to-peer systems that are often employed for file sharing are
also suitable for WANETs, since they do not require any infrastrac-
ture. However, the deployment of traditional peer-to-peer file
sharing systems on a WANET introduces several challenges. Such
networks can be formed anytime/anywhere without requiring
any infrastructure, and the nodes of the network may change their
locations. In addition, a peer-to-peer file sharing system that is
running on the Internet relies on the network layer (IP) for commu-
nication between nodes and for downloading files. A WANET needs
to run an ad-hoc routing algorithm to provide these services. Sev-
eral protocols [5,6] have been proposed to route packets in a WA-
NET, and some have been standardized [7]. However, we still lack a
widely accepted common routing protocol that is implemented
and deployed. Moreover, the standardization efforts tend to keep
the WANET routing protocols simple (due to the heterogeneity of
mobile systems), which can be inadequate to provide the services
needed for specific applications [8].

The work presented in this paper takes a cross-layer design ap-
proach where the lookup functionality and the routing functional-
ity are unified. We propose a file sharing system, which determines
both from where and how to obtain a file in a WANET. The system
works in a peer-to-peer manner and it distributes the location
information of the shared files among the members of the network.
To store and maintain the location information together with the
routing information, the system uses a distributed hash table and
a tree-structure based on the topology of the network. The system
also employs and adapts dynamic source routing [5] and peer-to-
peer location lookup techniques [9,10].

We present a sample scenario to describe how the set of system
operations work together to accomplish file sharing among the

0140-3664/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.comcom.2008.09.004

q This work is partially supported by TUBITAK The Scientific and Technological
Research Council of Turkey (Project n. EEEAG 104E028), and by the European
Commission in the framework of the FP7 Network of Excellence in Wireless
COMmunications NEWCOM++ (contract n. 216715).

* Corresponding author. Tel.: +31 53 489 5682; fax: +31 53 489 3247.
E-mail addresses: sozerh@ewi.utwente.nl (H. Sözer), metint@cs.bilkent.edu.tr

(M. Tekkalmaz), korpe@cs.bilkent.edu.tr (I. Korpeoglu).

Computer Communications 32 (2009) 41–50

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/locate /comcom



Author's personal copy

members of a WANET. We also provide the simulation results of
the system and we elaborate on the messaging requirements to
maintain the distributed index, to perform file queries, and to ac-
cess files. Simulation results showed that the high mobility of the
nodes leads to poor performance due to frequent updates of the
distributed index. For this reason, we also make a trade-off analysis
and we compare the bandwidth efficiency of our system with that
of a flooding-based, unstructured approach. Results showed that
our system performs much better as the network size increases.
In a WANET with 100 nodes, less than one file query per node is
enough to amortize the cost of an index update.

The remainder of this paper is organized as follows. In the next
section, related previous studies are summarized. In Section 3, an
overview of the system is given, which is followed in Section 4
by a detailed description of each operation supported by the sys-
tem. In Section 5, a working scenario of the system is described
to show how each operation updates and maintains the distributed
location and routing information stored in the system. Next, in Sec-
tion 6, simulation results and discussions on them are presented.
Finally, in Section 7 conclusions are given and some future work is-
sues are discussed.

2. Related work

As far as peer-to-peer (P2P) file sharing is considered, Napster
[1] appears to be one of the earliest and most popular applications.
Napster, in its initial form, enabled file sharing among computers
on the Internet, which is by nature unpredictable, since it is hard
to predict when the computers connect and disconnect. The main
idea behind Napster is a central server that stores index informa-
tion (i.e. filename and address pairs), which is used to answer que-
ries about where the files are stored on the Internet. Once the
location of a file is determined, file transfers are carried out in a
P2P manner. Although the actual file transfers are P2P, index infor-
mation is accessed using a client–server paradigm. Napster enables
easy location lookup by using a central server, but it is affected by
the typical weaknesses of centralized systems. Several studies have
been carried out in recent years to cope with problems posed for
P2P file sharing by the dense, highly dynamic and lowly aware nat-
ure of the Internet. More recent works aim for fully distributed P2P
systems; therefore, they store index information in a distributed
manner. One such distributed system, Content-Addressable Net-
work (CAN) [9], is based on a fully distributed hash table. In CAN,
filenames are hashed and mapped to points in a d-dimensional
space. The d-dimensional space is divided into chunks and distrib-
uted among the members of the network where each member is
responsible for one portion of the space (i.e. a chunk). Along with
a chunk, each node stores some information about the neighboring
nodes, which makes searching of files possible by providing the
location information for files and an overlay network-level routing.
Chord [11] is another well-known fully distributed P2P system in
which a ring shaped overlay network is applied. Each node on this
ring maintains pointers to other nodes at various distances. To
gather the location information of a file, these pointers are fol-
lowed in a manner that shortens the access path as much as possi-
ble. Ref. [10] surveys P2P content distribution technologies and it
can be referenced for other significant P2P file sharing methods.

The P2P file sharing approaches mentioned so far are mainly de-
signed for the Internet. The wireless ad-hoc networks (WANETs)
counterpart of the same problem comes with several difficulties
due to the dynamic nature of the WANETs as stated previously.
The first work on P2P file sharing on WANETs is 7DS [12]. 7DS al-
lows nodes with an intermittent Internet connection to browse the
web, in which, whenever a node fails to connect to the Internet, it
can search for the required data among its peers. Ref. [13] is based
on partial flooding where the searches are carried by queries

broadcasted several hops ahead, and where flooding the entire net-
work is prevented by mechanisms like caching and selective rout-
ing. ORION, described in [14] and being another P2P file sharing
approach for WANETs, also employs flooding for the file queries.
The query results are returned selectively, hence duplicate results
are avoided for the same file. During the file transfer phase, the ca-
ches constructed while querying the files are used for routing. A
more recent work on ad-hoc P2P file sharing, which is described
in [15], is also based on flooding. Various heuristics and techniques
like replication, query filtering and limiting the number of hops for
message forwarding are applied in order to reduce the overhead of
the flooding. [16] employs context-awareness toward the same
aim. Approaches based on flooding work fine for small WANETs
but as the network gets larger they cause traffic overhead and
the probability of finding a file in the network reduces. In our work,
rather than utilizing a flooding-based protocol and introducing
techniques to reduce its overhead, we propose a novel, cross-layer
system, which combines a location information service (see [17]
for more information on location information services) and routing
functionality. Our system is designed and specialized to provide a
deterministic way to locate and access files (i.e. if a file is shared in
the WANET, its location can be determined and it can be accessed).

Virtual ring routing (VRR), proposed in [18], is one of the most re-
cent studies on routing which can successfully work on WANETs.
Like many overlay routing protocols, VRR employs distributed hash
tables (DHT), but it is directly implemented over the link layer and
thus does not require an underlying network routing protocol. VRR
performs better than many existing routing protocols working on
WANETs since it requires neither network flooding nor translation
between fixed identifiers and location-dependent addresses.
Although VRR is proposed as a routing protocol, it can also provide
DHT functionality in which keys can identify application objects
(e.g. file locations) instead of routes to the nodes. But in order to pro-
vide this functionality, VRR requires additional messaging, whereas
our algorithm employs a cross-layer approach, hence distributing
the key-value pairs is enough both for DHT and routing functionality.

Both our algorithm and VRR make use of overlay networks,
although they have different designs. The overlay network used
by our algorithm is actually a spanning tree of the graph represent-
ing the connectivity of the nodes in the network, hence if two nodes
are adjacent in the overlay network, they are in the communication
range of each other. On the other hand, adjacent nodes in the virtual
ring of VRR are not necessarily so in the physical topology of the
network. Since the messages are routed through the overlay tree
in our algorithm, the paths between the nodes are not always the
shortest ones on the actual topology. However our design provides
significant advantages over VRR as far as the space and time
requirements as well as the maintenance costs of the routing tables
are considered. As described in [18], VRR requires rpþ k routing ta-
ble entries per node on the average, where r is the number of virtual
neighbors, p is the average path length, and k is the number of phys-
ical neighbors. On the other hand, the number of routing table en-
tries of the proposed algorithm is at most k. If p is assumed to grow
with

ffiffiffi

n
p

as in [18], where n is the number of nodes in the network,
and k is assumed to be constant for a given node density, the routing
table size is Oðr

ffiffiffi

n
p
Þ for VRR, whereas it is constant, that is Oð1Þ, for

the proposed algorithm. Hence, VRR requires much more space to
store the routing tables and processing power to search on the ta-
bles for each packet routed. Furthermore, the proposed algorithm
requires much less communication overhead to construct the rout-
ing tables since the newly connected node only communicates with
its parent in the overlay tree, which is in its communication range.
On the other hand, in VRR, whenever a new node connects, multi-
hop communication is required between the new node and all of
its virtual neighbors in order to update the routing tables and
DHT to reflect the new topology.

42 H. Sözer et al. / Computer Communications 32 (2009) 41–50



Author's personal copy

3. System overview

The system expects three basic functionalities from the under-
lying network layers:

� Device discovery
� Communication with nodes in the range
� Notification of link failure

Together with these functions the system makes use of a fully
distributed hash table where keys are the names of the files to
be shared and the values are the globally unique locations of these
files (using MAC address of the device and the full path of the file
on the device is one way to provide this uniqueness) together with
necessary routing information which will be described soon. The
basic dynamics of the system are as follows. A one-dimensional
space (i.e. a line) is used to store (key, value) pairs by mapping each
key to a point P on the ‘‘hashline” using a uniform hash function. In
fact, any hash function that can map a file name to a real number
between 0 and 1 may be used for this purpose. However, a function
that guarantees uniformity would lead to a more balanced infor-
mation distribution among the nodes. Each node in the WANET
is responsible for storing a segment of the hashline (i.e. the hash ta-
ble entries which correspond to points that are included in this
hashline segment).

We call the node which is responsible for the segment of the
hashline containing the point P the P-Node, and the node which
stores a file with name F the F-Node. Hence a P-Node stores index
information along with location information and an F-Node stores
the actual file. A file is accessed following the main steps listed
below:

(1) The name of the file to be searched is hashed to determine
the point P on the hashline.

(2) The P-Node is accessed.
(3) The location of the searched file (i.e. F-node) and the route to

that location is determined from the P-Node.
(4) The F-Node is accessed, and the file is downloaded.

Determining the routes between required nodes is the core and
distinguishing part of the system. The system is designed to cope
with this problem using a logical tree-structure that is imposed
on the nodes of a WANET. The tree-structure helps in accessing
to P-Node, and the information obtained from the P-Node helps in
determining the route to the F-Node from where the file will be
downloaded. Hence, although the network may include loops at
the link layer, loops are not allowed in the layer at which the
P2P system is implemented, which is usually the application layer.
While the network grows with the addition of new members, a
new member node is not permitted to join the same file sharing
enabled WANET via more than one link (i.e. via more than one
neighboring node). A loop-free network can be achieved by provid-
ing a unique network ID (e.g. MAC address of the root node) for
each file sharing enabled WANET and not allowing a node to have
more than one parent with the same network ID.

Fig. 1 depicts an example WANET with six nodes. In this net-
work, let’s say Z searches for a file F. This file is stored by X. So,
X is the F-Node. The file F is mapped to a point P on the hashline
and this point falls into the hashline segment that is under the
responsibility of C. So, C is the P-Node and it stores the route from
itself to the F-Node, X.

To be able to reach to the file F, Z first reaches to C. Then it ob-
tains the route information to X and downloads the file. The tree-
structure network is used for reaching to the P-Node since every
parent knows the hashline segments of itself and its children. For

example, Z knows that the point P does not fall into its segment
and it has no children. So, the query is forwarded to its parent, A.
When A gets this query, it forwards the query to C because the
responsibility of the corresponding hashline segment was previ-
ously delegated to this node. Finally, C provides the necessary
route information to X.

The next section describes the details of the design along with
the operations of the system.

4. Operations of the system

There are several basic operations supported by the system to
locate files and determine the download route to enable file shar-
ing. A Node-Join operation is carried out when a node is connected
to a file sharing enabled WANET and a Network-Join is carried out
when two file sharing enabled WANETs are merged. An Access-P-
Node operation is used to find and access the node which stores
the segment of the hashline including a desired point P. An Ac-
cess-F-Node operation is used to find and access the node which
stores a desired file with name F. Insert and Delete operations are
used to add a file to the network (i.e. enable sharing) or remove
a file from the network. A Recover operation is carried out to pre-
serve the consistency between the actual location of shared files
and the hash table storing the routing information when a discon-
nection with an adjacent node is detected. Finally, a Leave opera-
tion is carried out when a node decides to leave the file sharing
enabled WANET.

Some of the operations mentioned above involve other opera-
tions (e.g. Join involves Access-P-Node and Insert). Detailed informa-
tion about each operation is given in the following subsections.

4.1. Node-join

Whenever a node N decides to join a file sharing enabled WA-
NET, the following steps are executed:

(1) N connects to an already existing node K of the network,
which is accomplished by the underlying protocols specific
to the WANET.

(2) K assigns a portion of its segment of the hashline to N and
passes related hash table entries to it.

(3) N adds K to the routing path information maintained at each
hash table entry for files indexed at N before saving the hash
table entries.

(4) N assigns K as its parent and K adds N to its list of children in
the logical tree-structure.

(5) N calls the Insert operation for each file it wants to share and
whose hashed value is out of its responsibility.

As can be noticed, the hashline segment assigned to the new
node is not randomly determined. Instead, the node to which the
new node directly connects shares some portion of its responsibil-
ity on the hashline (e.g. half of it). This simple design is crucial for

A

B
C

Z

X

Y P-Node
F: C-A-B-X

F-Node

hashline

H(F)

P

hashline
segment
of node C

Fig. 1. An example WANET with six nodes.

H. Sözer et al. / Computer Communications 32 (2009) 41–50 43



Author's personal copy

easy and efficient routing of location queries to the nodes that can
answer them. The corresponding operation is described in detail in
Section 4.3.

4.2. Network-join

Let the nodes N and K be the members of two distinct file shar-
ing enabled WANETs, N-Net and K-Net respectively, which are
going to merge through an N–K connection. To obtain a larger file
sharing enabled WANET from two smaller ones, the following
steps are executed:

(1) N and K decide on which node is going to share its responsi-
bility on the hashline or equivalently, which one is going to
be the parent of the other. (In what follows, we will assume
that N is chosen as the one to share its area of responsibility
using some decision criteria).

(2) Every node of K-Net on the path from node K to the root
of K-Net (the node with no parent), exchanges the parent–
child role with its parent, including node K and the root of
K-Net. That is every node on the specified path adds its
former parent to its children list and it becomes the par-
ent of its former parent. In this way, K becomes the new
root of K-Net.

(3) K is connected to N, hence N becomes the parent of K.
(4) Based on the new parent–child relationships among K-Net

nodes and N, starting from node N each parent shares some
portion of its responsibility on the hashline with its children,
in an iterative manner.

(5) Each node in K-Net calls the Insert operation for each file it
wants to share.

4.3. Access-p-node

Whenever a node N wants to access P-Node (i.e. the node which
is responsible for the segment of the hashline containing point P), it
invokes the Access-P-Node operation. A node K receiving an Access-
P-Node request follows these rules:

(1) If point P is included by the segment of the hashline that K is
responsible for, P-Node is found and is K.

(2) If point P is included by the segment of the hashline that one
of the children of K is responsible for, K adds itself to the
route list and forwards the Access-P-Node request to the rel-
evant child node.

(3) Otherwise: K adds itself to the route list and forwards Access-
P-Node request to its parent.

Note that initially N ¼ K , i.e. N applies the Access-P-Node opera-
tion to itself. Also note that the P-Node finally has the routing infor-
mation between the node issuing Access-P-Node request (i.e. node
N) and itself, since each node on the path from N to P-Node adds
itself to the routing information carried inside the Access-P-Node
request.

4.4. Access-f-node

Whenever a node N wants to access F-Node (i.e. the node which
contains the file with name F), it invokes the Access-F-Node opera-
tion, which consists of the following steps:

(1) N hashes F and determines P, that is P = hash(F).
(2) Having point P, N invokes the Access-P-Node operation with

F-Node location request, that is N asks P-Node the routing
information from P-Node to F-Node.

(3) Having the route information back to N, due to the feature
of Access-P-Node, the P-Node sends to N the route from
itself to F-Node (remember that the route from P-Node to
F-Node is stored as part of the hash table entry correspond-
ing to point P).

(4) N combines the route information from itself to P-Node and
from P-Node to F-Node and constructs the route necessary to
access the F-Node.

4.5. Insert

Whenever a node N wants to share a file with name F, it invokes
the Insert operation, which consists of the following steps:

(1) N hashes F and determines P, that is P = hash(F).
(2) Having point P, N invokes the Access-P-Node request

with insertion as the request type and F as the
filename.

(3) Upon receiving the request, the P-Node stores the filename F
and the route information back to N, which is obtained dur-
ing Access-P-Node operation, as part of the hash table entry
created.

4.6. Delete

Whenever a node N wants to stop sharing a file with name F, it
invokes the Delete operation, which consists of the following steps:

(1) N hashes F and determines P, that is P = hash(F).
(2) Having point P, N invokes the Access-P-Node operation with

deletion as the request type and F as the filename.
(3) Upon receiving the request, the P-Node removes the entry

for the file with name F from the hash table.

4.7. Recover

Whenever a node N determines a disconnection with one of its
child nodes K:

(1) N regains the responsibility of the hashline segment that K
was responsible for.

(2) N broadcasts to the WANET a message that includes infor-
mation about the regained segment to force all the nodes
to invoke Insert operation again for the files whose hashed
names are included by the segment that K used to be respon-
sible for. In this way, node N will have the hash table entries
created for these files.

Whenever a node K determines a disconnection with its parent
node N:

(1) K takes the full hashline as its area of responsibility.
(2) Starting from K each parent shares some portion of its

responsibility on the hashline with its children.
(3) Each node calls the Insert operation for each file it wants to

share.

4.8. Leave

When a node N wants to leave the file sharing enabled WANET,
it invokes the Leave operation, which consists of the following
steps:

44 H. Sözer et al. / Computer Communications 32 (2009) 41–50



Author's personal copy

(1) N invokes the Delete operation for each file it shares after
which all index information about the files stored in N is
removed from the WANET.

(2) N gives its responsibility for its segment of the hashline to its
parent.

(3) N informs its parent PN and children C1, C2, . . ., Cn about its
departure to make sure PN adds C1, C2, . . ., Cn to its children
list and C1, C2, . . ., Cn assign PN as their parent.

Note that the third step is possible only if all the children of
node N are in the communication range of PN . For the children that
are not in the communication range of PN , the Recover operation is
executed.

Due to the nature of ad-hoc networks, nodes are not expected to
notify the network upon leaving it. However, there may still be
cases where the Leave operation is beneficial. Otherwise, the Re-
cover operation handles the situation, but with a higher communi-
cation cost.

5. A sample scenario

After specifying each operation supported by the system, this
part of the paper presents a sample scenario in which the system’s
operation can be observed. Suppose that initially two nodes called
A and B meet. A includes files A1, A2, while B has B1, B2, B3. B dis-
covers A, or in other words, B joins the network which is only com-
posed of A. Previously, A was responsible of all the hashline and
files A1 and A2 were mapped on to this line as depicted in
Fig. 2(a). As explained in Section 4.1, when B is connected to A, A
divides the entire hashline into two and gives one segment to B.
Since A2 falls within the segment that B is now responsible for, A
sends the location information (index information) for file A2 to
B. The previous location information for A2 was null, meaning that
the file was stored at the same node as where the location informa-
tion is kept. But, from now on, B stores an index entry for A2 with
location information like [A2, A]. Then B executes an Insert opera-
tion for files B1 and B2, since these are the files owned by B but not
mapped to the part of the hashline that B is responsible for. Now, A
stores location information [B1, B] and [B2, B] for these files as de-
picted in Fig. 3(b).

Suppose that a new node C discovers B and connects to it. Again
a Node-Join operation will be invoked and the hashline segment
that B is responsible for will be divided into two parts, as depicted
in Fig. 2(c). C stores and shares files C1 and C2, which map to the
points on the hashline as shown in the figure. First of all, B sends

information about A2 to C, since A2 now falls in C’s segment of
responsibility. C should not only keep information about the node
where file A2 can be found, but also keep path information about
how can be reached from C. C also adds B to the path information
and stores an index entry like [A2, BA]. This indicates that file A2 is
stored at node A (right-most node in the path) and the path from C
to that node is ‘‘AB”. Next, C invokes the Insert operation both for
C1 and C2. C1 maps to the segment controlled by A and C2 maps
to the segment controlled by B. Therefore, an Access-P-Node re-
quest reaches B for file C2, and A for file C1. So, corresponding
nodes store file names together with their route information to
the node where files are actually stored. The route information is
obtained during the path traversals of the Access-P-Node requests.
The current state of location and routing information that is main-
tained in the network can be observed in Fig. 3(c). As the last mem-
ber of the network, D, discovers B and connects to it. B, again
divides the hashline segment it is responsible for into two parts
and sends information about B3 to D. After that, D sends informa-
tion about a single file it owns, D1 to A using an Insert operation.
The final view of the hashline and the network topology together
with distributed index information can be observed in Figs. 2(d)
and 3(d), respectively.

Now, assume that D needs file A2. D does not know where the
file A2 resides or even whether such a file exists or not. However,
according to the hash value of the filename, it is known that this
information is held by another node. D has only one neighbor, B
(as its parent) to which the query is forwarded. So, B receives the
query, expressed as [A2, D], meaning that file A2 is requested by
D. B has two neighbors, A and C. According to the hash value of
the filename and the current state of the hashline, B decides to for-
ward the query to C. This is because B knows that one of its chil-
dren, C in this case, is responsible for the segment of the hashline
that includes the point that represents the hash value of the name
of the requested file. Otherwise, B would forward the query to its
parent, A. When the query is forwarded to C, it is not guaranteed
that it will be answered by C. C may have had other nodes connect
to it since connecting to B, so it may forward the query to one of its
children again by determining within which segment the point
lies. However, it does not matter to B whether C or one of its
descendants answers the query. B only knows that query should
be forwarded towards C in order to be resolved. For this particular
case, C does not have any children and C holds the location infor-
mation for A2. The path to source at which the query is initiated
is also attached to the query. In this way, C receives a query [A2,
BD], which means that node D requested file A2 and its request
reached through node B. This path is used in order to send the
query response (location information), [A2, BA], back to node D.
C generates a query response message, [A2, BA], targeted to D
and including the source route information ‘‘CBD” that gives the
path to be followed. C passes the response to the next node on
the path, which is B. Again by looking to the path information in
the response message, B passes the message to the next node on
the path, which is D, the originator of the query to locate file A2.
D receives the query response message and the message includes
the location information [A2, BA]. Now, D knows that the file A2
is located at node A and D also knows two paths: the path from
D to C (the node which holds the location information) and the
path from C to A (the node which stores the file). Node D concate-
nates those paths (D-B-C-B-A) and then eliminates the unneces-
sary loop B-C-B. The result is ‘‘D-B-A”, the path from D to A. This
is the path from query originator D to the node A that stores and
shares the file A2. By means of this path, file A2 can now be directly
reached and downloaded from A. These steps are depicted in
Fig. 4(a) through (c).

As more nodes join the file sharing enabled network as ex-
plained in Section 4.1, the tree-structure become more involved.Fig. 2. Hashline states during network formation.

H. Sözer et al. / Computer Communications 32 (2009) 41–50 45



Author's personal copy

In Fig. 5, a later phase of the WANET shown in Figs. 2 and 3 is given.
New nodes have joined to the WANET in alphabetical order. Con-
nections between nodes can be inferred from the tree-structure gi-
ven in Fig. 5(b). The state of the hashline is shown in Fig. 5(a).

Now, consider the case where the file sharing enabled WANET
in Fig. 5 (WANET-1) merges with another file sharing enabled WA-
NET shown in Fig. 6(a) (WANET-2) and assume that the connecting
nodes are E of WANET-1 and V5 of WANET-2. For such a merge
operation, the Network-Join operation, which is explained in Sec-
tion 4.2, is executed where nodes N and K in the operation corre-
spond to the nodes E and V5 in this sample scenario,
respectively. In accordance with Step 2 of the Network-Join opera-
tion, all nodes on the path from node V5 to the root node V0, (i.e.
V5, V2, V0) exchange their parent–child relationships. The resulting
parent–child relationships are depicted in the subtree, rooted at V5,
of the combined network shown in Fig. 6(b). Once the subtree
rooted at V5 is built, E shares a portion of its responsibility on
the hashline with V5. All descendants of V5 share their responsibil-
ity on the hashline in a similar manner, iteratively. One possible
distribution of responsibilities on the hashline among the nodes
of the new combined tree is depicted in Fig. 6(c). Note that the
resulting distribution may differ due to the order of children that
a parent shares its responsibility with.

6. Simulation results

In order to measure the traffic overhead of the operations of our
system on the network, a custom simulation environment [19],

implemented in JavaTM, has been developed. 1 We define the traffic
overhead for an operation to be the number of messages ex-
changed among the nodes of the network from initiation to the
completion of the operation.

The simulation environment comprises an Engine that embodies
the underlying network layers for the nodes of the WANET. It han-
dles the intercommunication of nodes, informs about node discov-
ery and notifies of link failures. On top of the Engine, multiple
instances of a Node component operate according to the protocols
of the system. Every Node instance runs in a separate thread, and
they communicate with each other by message passing. All mes-
sages go through the Engine, which controls the ranges of the nodes
and counts the number of messages exchanged.

Packet collisions and any possible effect of the underlying air
protocol are not simulated and reflected in the simulation environ-
ment. Hence we assume no packet collisions and no interference in

Fig. 5. Before network-join.

Fig. 3. Network topology and information distribution.

Fig. 4. File search and retrieval.

1 Java 2 SDK, Standard Edition (version 1.4.1) is used as the development
environment.

46 H. Sözer et al. / Computer Communications 32 (2009) 41–50



Author's personal copy

our experiments. The dimensions of the rectangular network area
and the communication range of nodes can be adjusted. In addi-
tion, the number of nodes, their locations (randomly assigned) in
the network area, and the number and type of operations to be
executed can be varied in each simulation execution.

6.1. Traffic overhead of system operations

For the measurement of traffic overhead, our simulation envi-
ronment generated 100 random topologies. An operation was exe-
cuted on each of these topologies 100 times. In each execution,
related nodes and/or values were selected randomly. In order to
measure the traffic overhead of an Insert operation, for instance,
a randomly selected node was made to initiate the Insert operation
regarding a randomly selected P value, which in reality would be
the hash value of a file name. In total, 10,000 experiments were
performed for each operation and the number of messages ex-
changed was counted during each experiment. Their arithmetic
mean was computed as the average traffic overhead. This compu-
tation was performed for different number of nodes ranging from
10 up to 100 nodes in increments of 10. The results for each oper-
ation are depicted in Fig. 7. Note that the average traffic overhead
of an Access-P-Node operation is equal to that of an Insert operation.

Since our system makes use of a tree shaped overlay network,
the average traffic overhead of the Insert operation is proportional
to logmn, where n is the total number of nodes and m is the node
degree. However, m differs for each generated topology and even
for each node of a topology. Formation of the network does not
guarantee a balanced tree-structure. That is why, we observe a lin-
ear increase in Fig. 7(a) but a less steep curve compared to the
worst case (i.e. traffic overhead is equal to the number of nodes).

When the Access-P-Node request is initiated with Access-F-Node
as the request type, the P-Node is reached first. From the P-Node,
location information is returned to the source of the query. Having
location information, the source of the query accesses the F-Node

(Recall Fig. 4). On the other hand, when the Access-P-Node request
is initiated with Insert as the request type, the P-Node is reached
and location information recorded in the request is stored at the
destination. No extra messages are exchanged. This can be verified
with the simulation results in which the number of messages ex-
changed for the completion of the Access-F-Node operation is
approximately 3 times the number of messages exchanged for
the completion of the Insert operation (see Fig. 8).

As shown in Fig. 7(c), we also observe a linear increase in the
overhead of the Recover operation. However, it is much higher
compared to the results regarding the Insert and Access-F-Node
operations. This is expected since, during the execution of the Re-
cover operation, the hashline is redistributed in the whole sub-net-
work, where the disconnected child node becomes the root.

Apparently, the Network-Join operation has the most traffic
overhead among all operations, which is even much higher than
the overhead of the Recover operation, as depicted in Fig. 7(d).
Moreover, the average traffic overhead appears to follow asymp-
totically Oðn2Þ with increasing number of nodes. The excessive
number of Insert operations executed would cause this high cost.
Recall that each node in the joining network must send Insert re-
quests concerning the whole network for each file it shares (Each
node shares x files, where x is a random integer between 1 and
10). Other than this, there is an overhead for the redistribution of
the hashline as well but that was also an issue for the Recover oper-
ation and it did not lead to as much increase in the average traffic
overhead.

6.2. Comparison with the flooding approach

The results obtained regarding the traffic overhead measure-
ments are also used for comparing the performance of the pro-
posed system with a WANET in which peer-to-peer file sharing
is possible and the queries are simply flooded. Since the solution
proposed in the paper virtually guarantees to find and access a

Fig. 6. Network-join.

H. Sözer et al. / Computer Communications 32 (2009) 41–50 47



Author's personal copy

file in the network if it is shared, the flooding model is assumed
to have no facilities such as selective forwarding, which may pre-
vent finding some of the shared files. Hence, it is assumed that
whenever a query is initiated in the flooding-based network, all
the nodes receive the query. The cost of such a system, f, is for-
mulated with (1), where x is the number queries and n is the
number of nodes:

f ¼ x� ðn� 1Þ ð1Þ

Once the network is established, it is obvious that a single query is
very cost effective in the proposed system compared to the flood-
ing-based one. But, the Recover and the Network-Join operations
cause an overhead each time a disconnection–reconnection cycle
occurs, whereas a flooding-based system does not have such an
overhead. Hence, the main objective of the comparison is to find
out the number of queries that must be initiated to amortize the
cost due to a single disconnection–reconnection cycle of the pro-
posed system. It is expected that the proposed system would be
more cost effective, as far as the number of messages exchanged
is considered, after a certain number of queries initiated without
Recover or Network-Join operations are executed. The cost model
of the proposed system is given in (2). In the formula, x denotes
the number of queries and d denotes the number of disconnec-
tion–reconnection cycles. The average costs of Access-P-Node, Re-
cover and Network-Join operations are obtained from the
simulation results:

c ¼ x� costðAccess� P � NodeÞ
þ d� ðcostðRecoverÞ þ costðNetwork� JoinÞÞ ð2Þ

In order to find the number of queries (i.e. x) required to amortize
the cost of a disconnection-reconnection cycle in the proposed sys-
tem, the d value is taken to be 1, f and c values are equated and x
values are calculated for different network sizes. The results show
that the total number of queries increase linearly from around 30
to around 90, as the number of nodes change from 10 to 100, which
is also depicted in Fig. 9. Whenever the per-node query counts are

Fig. 7. Average traffic overhead measures for each operation.

Fig. 8. The average traffic overhead comparison of the Insert and Access-F-Node
operations.

48 H. Sözer et al. / Computer Communications 32 (2009) 41–50



Author's personal copy

considered, as 3 queries in a 10-node network or less than 1 queries
in a 100-node network are executed on the average, before a dis-
connection occurs, the proposed system becomes more band-
width-efficient than a flooding-based network of the same size.

As the simulation results indicate, our system efficiently carries
out file searches and it is also scalable. However, in the case of fre-
quent disconnections, the system would introduce too much traffic
overhead on the network. Consequently, we can state that our sys-
tem works better on a WANET with a low rate of mobility and fre-
quent file searches. If members of the file sharing enabled WANET
continuously move around and search for files infrequently, then
flooding would be a better approach to apply. In our system, we
try to preserve consistent and distributed location information, in
order to prevent flooding and access files through unicast queries.
The cost we pay for keeping the location information consistent
would be amortized by the exceedingly reduced cost of subsequent
file searches. When such information does not exist, each file
search performed by each node of the network would flood the
whole network and lead to a congestion. Members of the file shar-
ing enabled WANET can be mobile, but we presume that they per-
form file searches more than they move around. We investigate the
effect of mobility in more detail in the following section.

6.3. The effect of mobility

To be able to measure the impact of mobility, we have imple-
mented the commonly used Random Waypoint Model (RWM)
[20]. We have tested the number of disconnections and the num-
ber of messages exchanged for different node velocities (Vmax

parameter in the RWM). We have set the Tpause parameter to 0,
which means that the mobile nodes are constantly moving. We
have generated 100 random topologies, each composed of 100
nodes, in an area of 1000 m� 1000 m. We have set the node range
to be 100 m. We have set all the nodes of the network to be mobile
and run the simulation for 1000 s. We have repeated the simula-
tion for each random topology and calculated the average number
of disconnections and the traffic overhead of recovery operations
accordingly. The results can be seen in Fig. 10.

In Fig. 10, the x-axis shows the varying node velocities (i.e. Vmax)
and the y-axis shows the amount of messages that are exchanged
to recover from the disconnections due to mobility. From the re-
sults, we can see that the number of messages exchanged for
recovery operations asymptotically follows Oðn2Þ with respect to
the node velocities.

We have also calculated the number of file searches that is nec-
essary to amortize the cost of mobility. For this, we have used the
cost model in (2). We have performed measurements for varying

node velocities and for different percentages of nodes that are set
to be mobile in the network. The results can be seen in Fig. 11.

In Fig. 11, the x-axis shows the varying node velocities (i.e. Vmax)
and the y-axis shows the amount of queries per node that are nec-
essary to amortize the recovery cost imposed by mobility. The
three plots stand for networks where (a) all the nodes in the net-
work are mobile, (b) 50% of the nodes in the network are mobile
and (c) 10% of the nodes in the network are mobile. We can see
from the results that the number of file searches that is necessary
to amortize the cost of mobility increases linearly. This means that
rehashing and keeping the network structure intact pays off as
long as the nodes increase the number of their file queries as their
mobility increases. Otherwise, in the case of high mobility and very
infrequent file searches, flooding would be a better approach.

7. Conclusion and future work

In this paper, we proposed a peer-to-peer system that enables
file sharing in wireless ad-hoc networks. The novel approach intro-
duced in this work is the unification of lookup and routing func-
tionality, which results in a cross-layer scheme. The system
keeps track of the routing information together with the location
information, which is fully distributed. In achieving this, we adapt
techniques from peer-to-peer systems developed for wire-line net-
works as well as source routing techniques.

Simulation results showed that our system enables efficient ac-
cess to shared files. However, it may not work efficiently when fre-
quent disconnections occur. Nonetheless, we believe that the
environment in which a file sharing system would be used is a WA-
NET where mobility should be supported, but where the rate of
mobility is not high. A conference room may be given as an exam-
ple to such an environment, in which attendees need to share files.

Fig. 9. Comparison of the proposed and flooding-based systems.

Fig. 10. The traffic overhead caused by recovery operations as a result of mobility.

Fig. 11. The number of queries per node that is necessary to amortize the cost of
mobility.

H. Sözer et al. / Computer Communications 32 (2009) 41–50 49



Author's personal copy

Although the mobility rate is not high, WANET should support the
mobility and ad-hoc features, where there is no infrastructure sup-
port and the network is build up upon demand for a relatively
short duration of time.

As a future work, the Recover and Network-Join operations can
be modified, so that they have less traffic overhead. In any case,
nodes can wait for some time when disconnections occur, hoping
that the connection will be retained. In this way, intermittent dis-
connections for short time periods would not lead to frequent exe-
cution of Recover and Network-Join operations, one after the other.

A supplementary modification is possible in the hash function
that is used to map file names to certain keys. In our system, we
propose the usage of any uniform hash function for that purpose.
This approach has a disadvantage in that only search of exact file
names is possible. Instead of a uniform hash function, other map-
ping techniques can be used like Soundex [21], which maps similar
names to same keys. In that case, a set of results will be returned as
an answer to queries.

The responsibility sharing policy can also be reconsidered. Cur-
rently, in our specifications, the hashline segment is divided into
two halves when it is shared. As an alternative, the dissection point
can be determined according to the distribution of files, although
this may change in time. Such an approach can especially be useful
when a uniform hash function is not used.

Acknowledgement

We would like to express our thanks to Burcu Kaplanlıoğlu, Bur-
cu Ays�en Ürgen and Selen Pehlivan for the implementation of the
simulation environment.

References

[1] Napster protocol specification, 2007, [Online], Available: http://
opennap.sourceforge.net/.

[2] Gnutella A Protocol for a Revolution, 2007, [Online], Available: http://rfc-
gnutella.sourceforge.net.

[3] The FastTrack project, 2007, [Online], Available: http://developer.berlios.de/
projects/gift-fasttrack.

[4] Bluetooth, Bluetooth Special Interest Group, [Online], Available: http://
www.bluetooth.com.

[5] D. Johnson, D. Maltz, Dynamic source routing in ad-hoc wireless networks, in:
Proceedings of SIGCOMM96, ACM, California, USA, 1996.

[6] E. Royer, C.-K. Toh, A review of current routing protocols for ad hoc mobile
wireless networks, IEEE Personal Communications (1999).

[7] C. Perkins, E. Belding-Royer, S. Das, Ad hoc On-demand Distance Vector (AODV)
routing, July 2003, RFC 3561.

[8] M. Gerla, C. Lindemann, and A. Rowstron, P2P manets - new research issues, in:
Perspectives Workshop: Peer-to-Peer Mobile Ad Hoc Networks – New
Research Issues, Dagstuhl, Germany, 2005.

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A scalable content-
addressable network, in: Proceedings of SIGCOMM01, ACM, California, USA:
ACM, 2001.

[10] S. Androutsellis-Theotokis, D. Spinellis, A survey of peer-to-peer content
distribution technologies, ACM Computing Surveys (CSUR) 36 (4) (2004) 335–
371.

[11] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan, Chord: A
scalable peer-to-peer lookup service for internet applications, in:
Proceedings of the ACM SIGCOMM 01 Conference, San Diego, California,
USA, August 2001.

[12] M. Papadopouli, H. Schulzrinne, Effects of power conservation wireless
coverage and cooperation on data dissemination among mobile devices,
in: Proceedings of the ACM Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc 2001), ACM, Long Beach, California, USA,
2001.

[13] C. Lindemann, O. Waldhorst, A distributed search service for peer-to-peer file
sharing in mobile applications, in: Proceedings of the Second IEEE Conference
on Peer-to-Peer Computing, Linkping, Sweden, September 2002, 7381 pp.

[14] A. Klemm, C. Lindemann, O.P. Waldhorst, A special-purpose peer-to-peer file
sharing system for mobile ad hoc networks, in: Proceedings of the Vehicular
Technology Conference, 2003, vol. 4, October 2003, 27582763 pp.

[15] A. Duran, C. Shen, Mobile ad hoc P2P file sharing, in: Proceedings of the IEEE
Wireless Communications and Networking Conference (WCNC 2004), Orlando,
FL, 2004.

[16] R. Gold, C. Mascolo, Use of context-awareness in mobile peer-to-peer
networks, in: Proceedings of the Eighth IEEE Workshop on Future Trends of
Distributed Computing Systems (FTDCS01), Bologna, Italy, 2001.

[17] T. Camp, J. Boleng, L. Wilcox, Location information services in mobile ad hoc
networks, in: Proceedings of the IEEE International Conference on
Communications (ICC 2001), 2001.

[18] M. Caesar, M. Castro, E.B. Nightingale, G. OShea, A. Rowstron, Virtual ring
routing: network routing inspired by DHTs, SIGCOMM Computer
Communications Review 36 (4) (2006) 351362.

[19] H. Sozer, A peer-to-peer file sharing system for wireless ad-hoc networks,
Masters thesis, Department of Computer Engineering, Bilkent University,
2004, [Online], Available: http://www.thesis.bilkent.edu.tr/0002646.pdf.

[20] J. Broch, D.A. Maltz, D.B. Johnson, Y.-C. Hu, J. Jetcheva, A performance
comparison of multi-hop wireless ad hoc network routing protocols, in:
Proceedings of the Fourth Annual ACM/IEEE International Conference on
Mobile Computing and Networking (Mobicom98), ACM, 1998.

[21] D. Knuth, The Art of Computer Programming, Second ed., vol. 3, Addison-
Wesley, 1998. Sorting and Searching.

50 H. Sözer et al. / Computer Communications 32 (2009) 41–50


