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Abstract

In this paper, we propose a generalized framework for modeling the behavior of promi-
nent congestion-control protocols. Specifically, we definea general class of loss-based
congestion-control (LB-CC) mechanisms and demonstrate that many variants of TCP,
including those being proposed for high-speed networks, belong to this class. Second,
we develop a stochastic model to predict the transfer time for bulk transmissions by
any protocol belonging to the LB-CC class—our model predicts both the mean as well
as the variability in the transfer time. Our model is applicable to a wide set of transfer
types and network capacities. We validate our model throughextensive simulations
under controlled settings, as well as with comprehensive HTTP workloads.

We use our empirical analysis to also provide insights into several important issues,
including: (i) identifying the settings under which previously-proposed TCP models
are accurate, and (ii) identifying the conditions under which only steady-state anal-
ysis can be sufficient in modeling transfer performance. Ourgeneralized framework
provides a powerful tool that can be used in the design, analysis, and comparison of
next-generation transport protocols. We demonstrate thisbenefit by comparing promi-
nent TCP proposals for high-speed networks.
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1. Introduction

TCP is the most widely-used transport protocol in the Internet [1]. Analytical mod-
els that accurately predict the performance of a TCP transfer on a given Internet path
are needed for several reasons. First, such models can be used to understand how well
Internet’s dominant transport protocol works under different network and end-host set-
tings. Second, such models are useful in distributed routing frameworks that, for a
given TCP transfer, select the best path from a candidate set[2]. Third, these models are
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an essential ingredient in distributed computing frameworks—such as the GRID [3]—
that need to incorporate the cost of network transfers and server computations in de-
ciding how to distribute heavy-duty scientific computations. Finally, TCP models lie at
the basis of the design of TCP-friendly congestion control mechanisms [4, 5].

The TCP protocol itself is subject to change over time as newer versions are de-
veloped and deployed [6, 7, 8, 9, 10, 11, 12]. A TCP performance model is most
useful when it incorporates this diversity and can be used tocompare the different ver-
sions. Many TCP performance models have been proposed in theliterature over the last
decade [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. Unfortunately, many of
these models can be applied to very few (and often no more thanone) variants of TCP.
Furthermore,all these models predict either an expected steady-state throughput or an
expected transfer time for a given TCP transfer—none of these estimate thevariability
in the transfer times. In this paper, we propose a class of TCPperformance models that
address these limitations.

Specifically, we make the following contributions. First, we formulate a simple
framework that characterizes several TCP protocol variants. In particular, we define a
general class of loss-based congestion-control (LB-CC) mechanisms and demonstrate
that many variants of TCP, including those being proposed for high-speed networks,
belong to this class. Second, we develop a stochastic model to predict the transfer
time for bulk transmissions by any protocol belonging to theLB-CC class—our model
predicts both the mean and the variability in the transfer time. Our model is appli-
cable to short as well as long transfers and is applicable in more diverse settings of
transmission capacity than previous models. We validate our model through extensive
simulations under controlled settings, as well as with comprehensive HTTP workloads.
Third, through computations and simulations, we identify the settings under which
previously-proposed TCP models are accurate. In particular, we draw insights into the
question:when is steady-state-only analysis sufficient for modelingthe performance
of TCP connections?Our generalized framework provides a powerful tool that canbe
used in the design, analysis, and comparison of next-generation transport protocols.
We demonstrate this benefit by comparing prominent TCP proposals for high-speed
networks.

The rest of this paper is organized as follows. In Section 2, we outline our model-
ing objectives and approach. The LB-CC class is defined in Section 3. In Section 4,
we present our transient analysis model for the LB-CC class.The model is validated
using extensive simulations and real traces in Section 5. InSection 6, we discuss the
computation efficiency of our model, and in Section 7, the applicability of steady-state
analysis. We summarize our conclusions in Section 8.

2. Objectives and Approach

TCP performance models help predict the time it would take totransfer a given
number of bytes between two Internet hosts. In this section,we derive the requirements
that such models should satisfy and discuss the state of the art in existing models. To
inform this discussion, we begin by briefly reviewing the basic mechanisms used in
TCP and the factors that impact TCP performance.
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2.1. The Transmission Control Protocol

TCP provides a reliable, in-order byte-stream service to applications. TCP senders
transmit application bytes in chunks, calledsegments, and receivers send cumulative
acknowledgments(ACKs) to indicate the successful receipt of each segment. Lost
segments are detected and retransmitted on the receipt of multiple (typically three)
duplicate ACKs (referred to as Fast Retransmit) for earliersegments. Additionally,
a timeout is used to trigger retransmission of segments that are not acknowledged.
TCP receivers guarantee in-order delivery to the application by buffering segments that
arrive out-of-order.

TCP also provides flow control and congestion control semantics. For this, it em-
ploys a window-based sending mechanism in which senders limit the maximum num-
ber of unacknowledged segments they transmit to a value, namely theSend Window
(W). In order to provide flow-control,W is not allowed to grow more than the flow
control limit, K, which is the minimum of the sender and receiver-advertisedwindow
sizes. TCP implements congestion control using three kindsof mechanisms to main-
tainW: (i) increasingW on receiving indications (ACKs) of successful segment trans-
missions;(ii) detecting the occurrence of congestion on the path between the sender
and receiver; and(iii) responding to congestion indications by reducingW. Different
versions of TCP differ in the mechanisms and policies that are used for each of these
three tasks. Most TCP variants—including Tahoe, Reno [27],SACK, Scalable [10],
High-speed [28], and BIC [11]—rely on packet losses to detect congestion. Some
versions—such as Vegas [6] and Fast-TCP [9]—additionally rely on increase in seg-
ment round-trip times to detect the onset of congestion. Explicit Congestion Notifica-
tion (ECN) can also be used to signal congestion in the network. An ECN-enabled TCP
Reno sender will reduceW upon receiving a congestion signal in the same manner as
it would on detecting a segment loss.

TCP versions differ more significantly in how they updateW (see Section 3). The
general principle, though, is that TCP senders are more aggressive in reducing their
send window on detecting congestion than they are in increasing it in the absence
of congestion. In addition, most TCP versions define aSlow Startphase in order to
achieve fast start-up behavior. In Slow Start,W is incremented aggressively until it
reaches the slow-start threshold,S. When the window is aboveS, a TCP sender is said
to be in theCongestion Avoidancephase.

2.2. Factors that Impact TCP Performance

The throughput of a TCP session at any given time is governed by the value ofW as
well as the time it takes for all segments in the window to get acknowledged. A number
of factors impact the growth ofW. First, differentTCP versionsreact differently to
indications of successful transmission or to indications of congestion. As a result,
they differ in the send window they maintain and, consequently, the throughput they
achieve. Second, sinceW is incremented only when ACKs are received, the latency and
rate at which ACKs arrive directly impacts throughput—the longer it takes for ACKs
to arrive, the slower is the TCP transfer. This implies that TCP throughput depends
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directly on the pathround-trip timesand bottleneck transmission capacity.1 Third,
packet lossesare used as congestion indicators and result in an aggressive reduction
in W, and consequently, TCP throughput. Fourth, thesend and receive buffer limits,
and the rate at which the receiving end of an application consumes data, impose a limit
on theW and, hence, throughput. Finally, the sender’s setting ofS impacts the rate
at which the send window gets incremented initially, especially for transfers that are
short.

It follows that the performance of any TCP session will depend on the exact nature
in which it encounters the factors mentioned above. Below, we outline several obser-
vations related to the diversity with which the above factors occur in the Internet and
use these to derive our modeling objectives.

2.3. Modeling Objectives

• Incorporating TCP Variants: TCP congestion control has undergone several
enhancements, since it was originally proposed in [29]. While newer versions
are getting widely deployed, several different TCP versions may co-exist in the
Internet simultaneously [6, 7, 27]. Furthermore, with the advent of high-speed
networks, several researchers are proposing new variants of TCP to enable it to
efficiently use network bandwidth [8, 9, 10, 11, 30]. A TCP model is most useful
when it can incorporate several of these variants and, possibly, help in comparing
these. This leads to the following modeling objective.

Objective 1. A TCP model should be applicable to different and newer ver-
sions of the protocol.

• Incorporating Variability: TCP connections can experience significant statis-
tical variability around average network properties such as round-trip times and
packet losses [31, 32]. A performance model that estimates only the expected
transfer time may, therefore, be far off from theactualperformance experienced
by a given TCP connection. It is, therefore, important to also estimate the amount
by which the two quantities may differ. The estimation analysis itself, however,
should be computationally simple for it to be usable in practice.

Objective 2. A TCP model should efficiently estimate not just the expected
performance of a transfer, but also the amount by which the actual performance
may deviate from the expected behavior.

• Incorporating Network Speeds: The Internet is extremely diverse in the
types of edge networking technology used and the end-to-endbottleneck link
capacities present. Internet users may sit behind 56Kbpsphone modem lines
and engage mostly in text-based email and browsing applications. Other home
users sitting behind broadband technology, such as ADSL or cable modems,

1The bottleneck transmission capacity of a path is defined as the minimum of the transmission capacities
of all links on the path.
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have a bottleneck capacity of a few megabits per second available to them and
may engage in the download of large audio and video files. Large organizations
and commercial enterprises may have local area networks made of 10/100 Mbps
or even Gigabit Ethernet technology. Finally, new networksbeing deployed for
scientific computing with extremely large data sets, have anend-to-end capacity
of more than a few gigabits per second [33]. A TCP performancemodel should
not only incorporate the diversity in link technologies present in today’s Internet,
but also be applicable to future ultra-high-speed networks. This leads to the
following modeling objective.

Objective 3. A TCP model should incorporate end-to-end bottleneck capac-
ity and be applicable to paths with different types of edge networking technology—
ranging from phone modem lines to high-speed gigabit optical fibers.

• Incorporating Transfer Settings: TCP transfers can be extremely diverse in
the size of the transfer [34] as well as the end-host settingsfor various protocol
parameters. For instance, the total number of bytes transmitted in a bulk TCP
transfer can vary from as few as 40B to as much as several megabytes. While
short transfers account for a majority of Internet connections, long transfers ac-
count for a majority of bytes transferred [35]; hence, it is important to model
both types. Furthermore, different operating systems differ in the default initial
settings ofS, the slow-start threshold, andK, the maximum limit on congestion
window size. This leads to our next modeling objective.

Objective 4. A performance model should be applicable to all types of TCP
transfers—independent of the size of transfer and end-hostprotocol parameter
settings.

A TCP performance model is most useful when it meets all of theabove objectives
and, thus, caters to the diversity inherent in the Internet.

2.4. State of the Art

Many analytical models for TCP have been proposed over the last decade [13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 36]. One way to categorize these is based
on whether they conductsteady-stateor transientanalysis of TCP connections. We
discuss only a few of these below.

A simple formulation for the steady-state throughput of a bulk TCP transfer, as a
function of round-trip time and loss rate, was initially presented in [18]. More com-
prehensive steady-state models were subsequently developed in [13, 15, 19, 20, 21,
22, 23, 24]. One distinguishing feature for some of these is the way in which packet
losses are modeled—in [21], the authors conduct fluid analysis of TCP window size
behavior by modeling the arrival of packet loss signals as a Poisson process. The
model proposed in [13] allows for the incorporation of general and correlated distribu-
tions for losses. Perhaps the most prominent steady-state throughput model for TCP
was presented in [23], in which the authors modeled the TCP Congestion Avoidance
phase using a Markovian model and correlated losses. This work incorporated the
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impact of retransmission timeouts, fast retransmit, and delayed acknowledgments on
TCP throughput. The model was validated by comparing with the actual throughput
achieved by several TCP connections instantiated across the Internet. There have also
been recent attempts at developing generalized steady-state models that incorporate
two or more variants of TCP [14, 24, 25].

The category of transient TCP analysis has seen less work [16, 26, 36]. The model
in [16] has received much attention, in which the authors extended TCP modeling to
transient analysis of the initial Slow Start phase in order to accurately derive the transfer
time for short-lived connections. For long transfers, the model incorporated the steady-
state throughput formulation from [23] for estimating the remaining transfer time for
connections that entered Congestion Avoidance. The authors demonstrated that their
formulation was more accurate than past work for not only short transfers, but also
when the packet loss rates were very low. It may, therefore, be fair to say that the
model in [16] is among the most comprehensive TCP models thatexist today.

While many recent models have been well-validated in several realistic scenarios,
none of them satisfy simultaneouslyall of the objectives derived in Section 2.3. In
particular, several past models mostly incorporate the congestion-control mechanisms
in TCP-Reno and are not directly applicable to other TCP versions (Objective 1). Sec-
ond, to the best of our knowledge,all past models predict only the average-case per-
formance for a given TCP transfer—they do not estimate the variability in transfer
times (Objective 2). Thus, past models fail to cater to the random dynamics in In-
ternet traffic conditions. Third,noneof the past models incorporate the impact of
bottleneck transmission capacities on TCP performance andhence, are accurate for
only limited types of edge-networking technologies (Objective 3). Finally, the anal-
yses in [13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25] model only the steady-state
behavior of long-lived TCP connections and hence, are not applicable to the major-
ity of Internet connections (Objective 4). Furthermore, transient models that switch
to steady-state formulations for long transfers, do not adequately deal with the issue
of when to switch. We substantiate several of the above observations about past work
with analysis and simulations in Sections 5 and 6.

2.5. Our Approach
In order to simultaneously achieve all of our modeling objectives, we use the fol-

lowing key ideas:

• We incorporate protocol diversity by first defining an abstract class ofLoss-based
Congestion Control(LB-CC) mechanisms. Our definition is fairly general and
we show that several TCP variants, including those being proposed for high-
speed networks, belong to the LB-CC class. We then develop a parameterized
stochastic model that predicts, for any member of the LB-CC class, the time it
would take to transfer (TTT) a given number of bytes on a givenInternet path.

• We conduct transient analysis of TCP—that does not assume stationarity in TCP
window size dynamics—and that predicts the transfer time for a TCP connection
accurately, irrespective of the transfer size. Our transient analysis is compute-
intensive for long transfers—we enhance it with a simple mechanism for detect-
ing steady-state and switching to a steady-state estimation of transfer time. Our
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resulting model is both computationally efficient as well asaccurate for long and
short transfers.

• We estimate the deviation of actual performance from the predicted performance
by modeling both the expected value as well as the standard deviation in TTT.
Our formulation of TCP window dynamics as a semi-Markov process is funda-
mental to our ability to compute these performance metrics.

• We explicitly model the impact of the bottleneck transmission capacity on the
minimum spacing between ACKs. This allows us to pace TCP “ack-clocking”
and, consequently, its throughput.

In what follows, we define the LB-CC class in Section 3 and present our models in
Sections 4.

3. The LB-CC Class

Two requirements guide our definition of an abstract framework for different TCP
variants. First, the definition should capture as many details of mechanismscommonto
different versions as possible. This will allow analysis conducted using the framework
to be accurate. Second, the definition should be generic enough so that it allows the
incorporation of the differences between current TCP versions, as well as many new
protocol variants.

Recall from the discussion in Section 2.1 that many TCP variants share mechanisms
such as use of Fast Retransmit, a flow-control limit, and the Slow Start phase. They
may, however, differ in techniques used to detect congestion (segment loss or increase
in delays), as well as the window updating functions. In thispaper, we focus on TCP
versions that use only segment losses to detect congestion.We generalize the window-
updating functions of all such protocols by defining the LB-CC class below. In the rest
of this paper, we denote the slow-start threshold byS, the flow-control limit on window
size byK, and the send window byW.

Definition 1. A transport protocol is said to belong to the class of Loss-based Con-
gestion Control (LB-CC) protocols, if the sender employs the following policies for
updating its send window and slow-start threshold:

• On receiving the acknowledgment for the successful transmission of a segment,
the sender updates its send window as follows:

W =

{

min{W+ f1(W),K}, if W < S
min{W+ f2(W),K}, if W ≥ S

(1)

where(W + fi(W)), for i = 1,2, are non-decreasing functions of W. S does not
get updated on the receipt of an ACK for a successful transmission.
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• On receiving the indication of a packet loss through multiple duplicate acknowl-
edgments, the sender reduces W and S as follows:

W =

{

max{W−g1(W),1}, if W < S
max{W−g2(W),1}, if W ≥ S

(2)

S=

{

max{W−g3(W),1}, if W < S
max{W−g4(W),1}, if W ≥ S

(3)

where gi(W) are positive functions such that for all W, g3(W) ≥ g1(W) and
g4(W) ≥ g2(W), and (W−gi(W)) are non-increasing functions of W, for i=
1,2,3,4.

• On receiving the indication of a packet loss through retransmission timeouts, the
sender reduces W and S as follows:

W =

{

max{W−h1(W),1}, if W < S
max{W−h2(W),1}, if W ≥ S

(4)

S=

{

max{W−h3(W),1}, if W < S
max{W−h4(W),1}, if W ≥ S

(5)

where hi(W) are positive functions such that for all W, h3(W) ≥ h1(W) and
h4(W) ≥ h2(W), and (W−hi(W)) are non-increasing functions of W, for i=
1,2,3,4.

Observe that our definition of the LB-CC class is quite generic and can incorporate
many new protocol designs in addition to those existing today. Below, we illustrate
how several TCP variants map to the LB-CC class.

TCP-Reno.Reno senders alternate between the two stages—Slow Start and Conges-
tion Avoidance—of congestion control [27]. Reno senders employ a multiplicative-
increase multiplicative-decrease(MIMD) window updating policy during Slow Start,
and anadditive-increase multiplicative-decreasepolicy during Congestion Avoidance [37].
Specifically, when segment losses are detected using tripleduplicate ACKs, Reno
senders use Fast Recovery to effectively reduce their window size by half. Reno maps
to the LB-CC class with the following parameters:

f1(W) = 1; f2(W) = 1
W

g1(W) = g2(W) = W
2

h1(W) = h2(W) = W−1

g3(W) = g4(W) = h3(W) = h4(W) = W
2

TCP-Tahoe.The design of TCP-Tahoe [29] predates that of Reno. Reno employs an
additive-increasepolicy during Slow Start and amultiplicative-increasepolicy during
Congestion Avoidance. In response to packet losses detected by duplicate ACKs as
well as retransmission timeouts, Tahoe senders reduce their window size to 1 segment.
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Tahoe uses Fast Retransmit, but not Fast Recovery. Tahoe, therefore, maps to the LB-
CC class with the following parameters:

f1(W) = 1; f2(W) = 1
W

g1(W) = g2(W) = h1(W) = h2(W) = W−1

g3(W) = g4(W) = h3(W) = h4(W) = W
2

Scalable TCP (S-TCP).Scalable TCP proposes to achieve high utilization in high-
speed networks by adding an MIMD window update region (when the congestion win-
dow is above a threshold,L) to the Reno SS and CA phases [10]. It maps to the LB-CC
class with the following parameters:

f1(W) = 1

g1(W) = W
2

h1(W) = h2(W) = W−1

g3(W) = h3(W) = W
2

g4(W) = h4(W) = min{W
2 ,L}

f2(W) =

{

1
W , if S≤W < L
0.01, if W ≥ L

g2(W) =

{

W
2 , if S≤W < L
0.875W, if W ≥ L

High-speed TCP (HSTCP).High-speed TCP is a generalized form of Scalable TCP,
in which the MIMD increment and decrement functions are parameterized as fol-
lows [28]:

f2(W) =

{

1
W , if S≤W < L
γ(W), if W ≥ L

g2(W) =

{

W
2 , if S≤W < L

λ(W)W, if W ≥ L

where,γ andλ, are functions of the current window size, the loss probability, as well
as several parameters. In real implementations, it is proposed that these functions be
looked up from a pre-computed table. A recommended set of parameters is specified
in [28], which yields the following forms for these functions:

λ(W) = 0.5+0.4
log(W)− log(L)

log(Whigh)− log(L)

γ(W) = 2W p(W)
1−λ(W)

1+ λ(W)

wherep(W) = 0.078/W1.2 andWhigh = 83,000. We use the above forms in our evalu-
ations in Section 7.
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Square Root Fair TCP (SRF).SRF TCP is also designed for achieving high-utilization
in high-speed networks, and additionally aims to achieve good TCP-friednliness and
minimize RTT-unfairness [12]. Specifically, it advocates asquare-root function for
window-dynamics in the high-speed region and maps to the LB-CC class with the
following parameters:

f1(W) = 1

g1(W) = W
2

h1(W) = h2(W) = W−1

g3(W) = h3(W) = W
2

g4(W) = h4(W) = min{W
2 ,L}

f2(W) =

{

1
W , if S≤W < L
aWα, if W ≥ L

g2(W) =

{ W
2 , if S≤W < L
bWβ, if W ≥ L

whereα = − 1
2, β = 1

2, anda, b are positive constants. The recommended values for
these area = 1.25 andb = 15 [12].

4. A Transient Model for the LB-CC Class

In this section, we first formulate the behavior of an LB-CC sender as a semi-
Markov process, and then compute performance metrics—specifically, the mean and
variance in time to transfern bytes in a bulk transfer. Below, we describe each of these
steps in detail.

4.1. Formulating a Semi-Markov Process

We assume that in a bulk transfer, the TCP sender always transmits packets of the
same sizeB, which is equal to themaximum segment size.

State Variables.Recall that one of our modeling objectives is to develop a model that
is simple to use for deriving TCP properties. One of the first hurdles in achieving this
objective is that the state of an LB-CC TCP sender at any timet is represented using two
quantities: the send windowW(t) and the Slow Start thresholdS(t) (see Definition 1).
Keeping track of two variables is significantly more complexthan keeping track of only
one variable. The challenge then is:how can we reduce the complexity of tracking two
variables?

We meet this challenge by exploiting the fact that the state variableS(t) is used
only whenW(t) < S(t). Furthermore,S(t) is updated to a function of onlyW(t),
and one which does not depend on past values ofS(t). These two facts collectively
imply that we need not keep track ofS(t) for any time instantst at whichW(t) ≥ S(t).
This results in a significant gain in efficiency, since the only situations in whichS(t)
needs to be modeled is either at the beginning of a session, orafter the occurrence of
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a timeout.2 We rely on standard TCP terminology below, in which the TCP session is
said to be inslow-startphase whenW(t) < S(t), and incongestion avoidancephase
whenW(t) ≥ S(t).

Modeling Discrete State Updates.Since TCP is an event-driven protocol, state updates
can be modeled using discrete time steps. Most past models doso by using the approx-
imation that state variables get updated once everyflight, where a flight is typically
defined as the time interval between the transmission of the first packet of the current
window and the receipt of its acknowledgment. The flight duration is approximated
by themeanRTT of the path between the TCP sender and receiver. In practice, how-
ever, TCP senders do not use the notion of flights, but update their state on the receipt
of everyACK or on detecting packet losses or time-outs. We accurately model such
behavior as described below.

Let Un be the time when thenth acknowledgment is received. LetWn = W(Un−)
be the window-size of the session just before thenth acknowledgment is received.
Similarly, defineSn = S(Un−). We assume window-size dependent packet losses: we
denotepL(Wn) as the probability for a sender to receive a third duplicate ACK in the
nth ACK event, andpT(Wn) as the probability for a timeout to follow immediately
after thenth ACK is received. Thus, ifpL and pT do not depend on the window-
size, the model reduces to independent and identically distributed packet losses. Note
that these probabilities do not depend on the value ofS. To summarize, we assume
that thenth acknowledgment indicates a packet loss via multiple duplicate ACKs with
probabilitypL(Wn), a packet loss via timeout with probabilitypT(Wn) and a successful
transmission with probability 1− p(Wn), wherep(Wn) = pL(Wn)+ pT(Wn).

With the above assumptions and notation, we can model the{(Wn,Sn),n≥ 0} pro-
cess as aDiscrete-time Markov chain. Recall that we do not need to keep track ofSn

during the congestion avoidance phase. We exploit this factby settingSn = Wn as long
as the process stays in the congestion avoidance phase.

For brevity, we use the following notation:

f̄i(w) = min{w+ fi(w),K}, i = 1,2,

g
i
(w) = max{w−gi(w),1}, i = 1, ...,4,

hi(w) = max{w−hi(w),1}, i = 1, ...,4.

Clearly f̄i , g
i
, andhi , are bounded below by 1 and above byK. We further assume that

g
i
andhi are bounded above byL ≤ K.3 Thus the state space of the{(Wn,Sn),n≥ 0}

process is{(w,s) : 1≤ w < s≤ L}∪{(w,s) : 1≤ w = s≤ K}. This state space grows
as the square ofL , but only linearly inK. This allows computing efficiencies in the
analysis of connections with largeK, especially in high-speed networks.

2It is important to note that although in practice,S(t) gets updated on detecting losses through multiple
duplicate ACKs, we need not model it. This is becauseW(t) andS(t) are set to thesamevalue in response
to such events. SinceW(t) is not less thanS(t), therefore, we need not track the latter quantity.

3This formulation fits in nicely both with current protocols,for which L = K, as well as for high-speed
protocols, for whichL is the low threshold [28, 10].
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Using the above framework, the transition equations for the{(Wn,Sn),n≥ 0} pro-
cess are given below.
Congestion Avoidance (CA) Phase: For 1≤ w≤ K

(Wn = w,Sn = w)

→ (Wn+1,Sn+1)

=











( f̄2(w), f̄2(w)), w. p. 1− p(w)

(g
2
(w),g

2
(w)), w. p. pL(w)

(h2(w),h4(w)), w. p. pT(w)

(6)

Slow-start (SS) Phase: For 1≤ w < s≤ L

(Wn = w,Sn = s)

→ (Wn+1,Sn+1)

=















( f̄1(w),s), w. p. 1− p(w), if f̄1(w) < s
( f̄1(w), f̄1(w)), w. p. 1− p(w), if f̄1(w) ≥ s

(g
1
(w),g

1
(w)), w. p. pL(w)

(h1(w),h3(w)), w. p. pT(w)

(7)

Note that the functionsg3 andg4 do not play any role in these transition equations.
This implies that we can restrict our attention to LB-CC protocols withg3 = g1 and
g4 = g2.

Modeling the Time Between Updates.In order to compute time-related performance
metrics such as the transfer time of a session, we also need tomodelUn, or more
specifically, the time between the receipt of acknowledgments: Un+1−Un. If we as-
sume that acknowledgments are uniformly distributed within a flight, then the time
between acknowledgments at timet can be approximated as:RTT/W(t), whereRTT
is the mean RTT. Indeed, this is precisely what is done in pastwork, where the in-
stantaneous throughput is modeled as the inverse of this quantity, namelyW(t)/RTT.
Unfortunately, this formulation ignores the impact of bottleneck transmission capacity
on the spacing between ACKs. In particular, if the minimum transmission capacity
among all links on the paths between the sender and receiver isC, then the segments
will be spaced on an average at leastB/C time units apart when delivered to the re-
ceiver, whereB is the segment size. Consequently, ACKs received at the sender will
also have the same minimum spacing. Another way to describe this behavior is that
when the window size grows beyond thedelay-bandwidth product(RTT∗C/B) of the
path, the bottleneck transmission capacity of the path willlimit TCP throughput. The
time between two acknowledgments is, therefore, estimatedby:

α(Wn) = max{RTT/Wn, B/C}

Let tTO be the average timeout duration for the TCP session. We incorporate the im-
pact of timeouts by assuming that if thenth acknowledgment indicates a timeout, the
next acknowledgment is delayed by an additional timetTO. This is a crude but satisfac-
tory method of accounting for the fact that no new segments are transmitted during a
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timeout. Also, during Fast Retransmit, the sender retransmits the lost segment, before
sending out new packets at its reduced window. Thus, we see that:

Un+1−Un =







α(Wn) w. p. 1− p(Wn)
α(Wn)+RTT w. p. pL(Wn)
α(Wn)+ tTO w. p. pT(Wn)

(8)

With this formulation we see that{(W(t),S(t)),t ≥ 0} is a semi-Markov process. This
probabilistic structure allows us to compute many desired performance measures in an
easy fashion. In particular, we are interested inTn, the time to transfern segments
successfully. Below, we compute the mean and variance ofTn for an LB-CC TCP
session.

4.2. Computing Mean Transfer Time
Define, for the CA and SS phases, respectively:

τn(w) = E(Tn|W(0) = w,S(0) = w), 1≤ w≤ K

τn(w,s) = E(Tn|W(0) = w,S(0) = s), 1≤ w < s≤ L

Note that the expected transfer time while in CA mode,τn(w), does not depend upon
the value of theS. This greatly simplifies the computation. Also note that since the TCP
session starts in state(W(0) = 1,S(0) = L), the time to sendn packets successfully is
given byτn(1,L).

Now let u(w) be the expected time until the next acknowledgment, given that cur-
rent window isw. From Equation (8), we get

u(w) = α(w)+ tTO pT(w)+RTT pL(w), 1≤ w≤ K.

Now condition on the time to receive this acknowledgment. Ittakes an expected
amount given byu(w). When it arrives, the state of the session changes according
to Equations (6) and (7). If the acknowledgment indicates a success, we need to trans-
mit n− 1 more packets; else we need to transmitn more packets. Putting all these
events together, we get the following equations:

τn(w) = u(w)+ (1− p(w))τn−1( f̄2(w))

+pT(w)τn(h2(w),h4(w))

+pL(w)τn(g2
(w)), 1≤ w≤ K (9)

τn(w,s) = u(w)+ (1− p(w))τn−1( f̄1(w),s)

+pT(w)τn(h1(w),h3(w))

+pL(w)τn(g1
(w)), 1≤ f̄1(w) < s≤ L (10)

τn(w,s) = u(w)+ (1− p(w))τn−1(s)

+pT(w)τn(h1(w),h3(w))

+pL(w)τn(g1
(w)), 1≤ f̄1(w) = s≤ L (11)

We have the following initial conditions:

τ0(w) = 0, τ0(w,s) = 0.
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Sinceτn appears on both sides of the Equations (9), (10), and (11), weneed an efficient
method of computing the above quantities. One such method isto use iterations, which
we explain for Equation (9). Assume thatτn−1(w) is known for all 1≤ w ≤ K. Let
τn,0(w) = 0 for all 1≤ w≤ K and compute

τn,k+1(w) = u(w)+ (1− p(w))τn−1( f̄2(w))

+pT(w)τn,k(h2(w),h4(w))

+pL(w)τn,k(g2
(w)), 1≤ w≤ K (12)

It is easy to see that the above iteration is a contraction mapping and ask→ ∞, τn,k(w)
approachesτn(w) geometrically at the rate max(p(w)). This is a very rapid conver-
gence, especially when the loss probabilities are small. Finally we can recursively
obtainτn starting with the initial conditionτ0 = 0.

4.3. Computing Variance in Transfer Time

Next we derive the second moment ofTn. Define

σn(w) = E(T2
n |W(0) = w,S(0) = w), 1≤ w≤ K

σn(w,s) = E(T2
n |W(0) = w,S(0) = s), 1≤ s< w≤ L

The variance of the time to sendn packets is then given by

V(n) = σn(1,L)− (τn(1,L))2

By doing the same type of first step analysis as for the first moment, we get

σn(w) = E[T2
n |W(0) = w,S(0) = w]

= (1− p(w))E[(α(w)+Tn−1)
2

|W(0) = f̄2(w),S(0) = f̄2(w)]

+pL(w)E[(α(w)+RTT+Tn)
2

|W(0) = g
2
(w),S(0) = g

2
(w)]

+pT(w)E[(α(w)+ tTO+Tn)
2

|W(0) = h2(w),S(0) = h4(w)]

1≤ w≤ K (13)

σn(w,s)= E[T2
n |W(0) = w,S(0) = s]

= (1− p(w))E[(α(w)+Tn−1)
2

|W(0) = f̄1(w),S(0) = s]

+pL(w)E[(α(w)+RTT+Tn)
2

|W(0) = g
1
(w),S(0) = g

1
(w)]

+pT(w)E[(α(w)+ tTO+Tn)
2

|W(0) = h1(w),S(0) = h3(w)],

1≤ f̄1(w) < s≤ L (14)
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σn(w,s)= E[T2
n |W(0) = w,S(0) = s]

= (1− p(w))E[(α(w)+Tn−1)
2

|W(0) = s,S(0) = s]

+pL(w)E[(α(w)+RTT+Tn)
2

|W(0) = g
1
(w),S(0) = g

1
(w)]

+pT(w)E[(α(w)+ tTO+Tn)
2

|W(0) = h1(w),S(0) = h3(w)]

1≤ f̄1(w) = s≤ L (15)

After tedious algebra and using Equations (9), (10), and (11), and using the notation

v(w) = RTT2pL(w)+ t2
TOpT(w)−α(w)2, 1≤ w≤ K,

the above equations reduce to

σn(w)

= v(w)+2α(w)τn(w)+2tTOpT(w)τn(h2(w),h4(w))

+2RTT pL(w)τn(g2
(w))+ (1− p(w))σn−1( f̄2(w))

+pL(w)σn(g2
(w))+ pT(w)σn(h2(w),h4(w)),

1≤ w≤ K (16)

σn(w,s)

= v(w)+2α(w)τn(w,s)+2tTOpT(w)τn(h1(w),h3(w))

+2RTT pL(w)τn(g1
(w))+ (1− p(w))σn−1( f̄1(w),s)

+pL(w)σn(g1
(w))+ pT(w)σn(h1(w),h3(w)),

1≤ f̄1(w) < s≤ L (17)

σn(w,s)

= v(w)+2α(w)τn(w,s)+2tTOpT(w)τn(h1(w),h3(w))

+2RTT pL(w)τn(g1
(w))+ (1− p(w))σn−1(s)

+pL(w)σn(g1
(w))+ pT(w)σn(h1(w),h3(w)),

1≤ f̄1(w) = s≤ L (18)

These equations have the same structure as the equations forthe mean transfer time,
and hence can be solved by the same iterative, recursive fashion.

4.4. Modeling pT and tTO

Retransmission timeouts are a TCP-specific mechanism, the design of which im-
pactspT , the probability of a timeout event, andtTO, the average duration of a timeout.
In [23], the following formulation is suggested for estimating pT and tTO from the
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Figure Observedp ComputedpT ObservedpT

1 0.994 % 0.059 % 0.983 %
2 0.994 % 0.059 % 0.077 %
3 0.989 % 0.058 % 0.063 %
4 0.991% 0.058 % 0.186 %
5 0.093 % 0.001 % 0.002 %
6 2.938 % 0.479 % 0.370 %
7 4.961 % 1.306 % 0.960 %

Table 1: Comparison of Computed and Observed Values ofpT

packet loss probability,p:4

pT(w) = min

{

1,
(1− p3

i )
(

1+ p3
i (1− pw−3

i )
)

1− pw
i

}

(19)

tTO = TO
1+ p+2p2+4p3+8p4+16p5+32p6

1− p
(20)

wherepi = 1− p andTO is the value of the average single timeout. The probability
of receiving loss indication via multiple duplicate ACKs isthen computed as:pL(w) =
p− pT(w).

The above formulation has been used in other TCP modeling efforts (see for ex-
ample, [16]). Our experimental evaluations in Section 5 indicate, however, that this
formulation is inaccurate when packet loss rates are very high (p is greater than 1-
3%). In the absence of a more accurate formulation in the literature, we too adopt
the above for our experimental validations in Section 5—however, we emphasize that
any improved formulation can be directly applied to our model since it does not make
any restrictive assumptions aboutpT . For example, to model TCP SACK (selective
acknowledgements), we could replacepT andpL with those from [38].

4.5. Modeling ECN
It is important to mention that TCP behavior in an ECN-enabled network is not

explicitly addressed in this paper. However, extending theLB-CC framework to in-
corporate ECN would be a fairly straightforward exercise. In the extended frame-
work, (i) on receiving an ECN congestion-signal, the TCP sender wouldreduceW
exactly as in Equations (2) and (3) ;(ii) pE(Wn) would be the probability of receiv-
ing an ECN congestion-signal; and(iii) the analysis would reformulate to include:
p(Wn) = pL + pE + pT , andUN+1−UN = α(Wn) w.p. 1− p(Wn)+ pE(Wn).

5. Model Validation

We have implemented the model presented in Section 4 using the Matlab program-
ming environment [39]. We use the Matlab implementation to validate our model,

4It is assumed in [23] thatp(w) is independent ofw; hence, we denote it simply asp in the formulation.
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Figure 1: 56Kbps, 100msRTT, 0.01 loss.

henceforth referred to as the LB-CC model, in two different settings: (i) validation
against simulation of a single TCP connection with carefully-controlled network set-
tings; and(ii) validation against TCP connections simulated using a comprehensive
HTTP workload. We use NS-2 for our simulations [40]. We compare the accuracy of
our model to the one proposed in [16], henceforth referred toas the “Cardwell” model.

5.1. Single-connection Simulations

Validation Methodology.We validate the ability of our model to accurately capture
the impact of five factors—namely,C (bottleneck),p (loss), RTT,K (window size
limit), and the protocol version—on the transfer time of a bulk TCP transfer. For each
combination of these factors, we runNsim, whereNsim ≥ 100, simulations of a TCP
connection that transfers 1000 segments, each of size 1460B, over a linear 2-hop path
between the sender and receiver. We set all link capacities equal to the desiredC and
the sum of link propagation latencies to the desired minimumRTT. Note that the actual
RTTs will be variable due to buffering at the router. We subject the TCP connection,
referred to asA1, to independent random packet losses with the desired probability
p. Router buffers are well-provisioned to avoid additional packet drops due to buffer
overflow. The maximum window size limit is set to the desiredK.

At the end of theNsim simulations, we compute the average value of the per-
connectionp (see Table 1). We then feed this quantity into the LB-CC and Cardwell
models and computeτn for both. We also compute the varianceV(n) in transfer time
using our model LB-CC. We then compare these quantities to quantitiesE[Tn] and
Var[Tn] estimated from the simulations. Unless explicitly mentioned, all validations
are conducted using TCP Reno (f , g, andh functions defined in Section 3).

Impact of Bottleneck Capacities.We simulate five kinds of networking technologies:
56Kbps(phone modems), 1.54Mbps(broadband ADSL), 10Mbps(Ethernet), 54Mbps
(VDSL, 802.11), and 100Mbps(fast Ethernet). For each kind of network, we subject
the single TCP connectionA1 to a round-trip propagation latency of 100msand a packet
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Figure 2: 1.54Mbps, 100msRTT, 0.01 loss
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Figure 3: 10Mbps, 100msRTT, 0.01 loss

loss probability of 0.01 (these choices will be justified later in this section).K is set
equal to the delay-bandwidth product.

Figures 1–3 plot the transfer time metrics as a function of the number of segments
transmitted in topologies with capacities of 56Kbps, 1.54Mbps, and 10Mbps. (In all of
the figures, the LB-CC model is labeled M1, and the Cardwell model is labeled M2.)
The results with 54Mbpsand 100Mbpswere similar to the 10Mbpsexperiment and
have been omitted due to space constraints. We find that both LB-CC and Cardwell
track the average transfer time of connections quite well athigh link capacities. At low
link capacities, however, Cardwell is unable to track the impact of bottleneck capacity
on ACK spacing, and hence under-predicts the expected transfer time.

Recall from the discussion in Section 4 that the impact of small bottleneck ca-
pacities on TCP throughput increases when the window grows larger than the delay-
bandwidth product. To better illustrate this effect, we re-use the 56Kbps topology,

19



0

50

100

150

200

250

0 100 200 300 400 500 600 700 800 900 1000

T
im

e 
to

 T
ra

ns
fe

r 
(s

ec
)

Number of segments

SIM: 0.01 loss
M1: 0.01 loss
M2: 0.01 loss
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Figure 7: 0.05 loss, 10Mbps, 100msRTT

but simulate a TCP connection withK = 44 segments5. This window size far exceeds
the delay-bandwidth product of the topology, but represents a likely scenario, in which
TCP connections use default operating system settings. Figure 4 plots the results of this
experiment. We find that the ability of Cardwell to estimate the transfer time accurately
worsens even further in this case. The LB-CC model is, however, able to estimate the
transfer time fairly accurately for all settings ofC andK.

The LB-CC model also tracks the standard deviation inTn reasonably well. In some
cases, though, the deviation in the simulation transfer times are higher—we expect
these to reduce if we increaseNsim. It is interesting to note that the deviation with
K = 44 (Figure 4) is much lower for both simulations and the LB-CCmodel, than in
Figure 1. We believe that this is because withK = 44, A1 has a greater likelihood of
receiving three duplicate ACKs and, hence, suffers a lower number of timeouts (see
Table 1). Timeout events are likely to add significant variability to transfer times.

In our validation experiments below with different loss rates and RTTs, we restrict
our attention to a 10Mbps topology and setK to the delay-bandwidth product. This
helps ensure a fair comparison of LB-CC and Cardwell—using asmallerC or largerK
is likely to bias the results against Cardwell.

Impact of Loss Rates and RTTs.Internet loss probabilities can range from less than
10−6 (medium errors) to more than 0.05 (congestion and wireless links). End-to-end
RTTs can also vary from a few to hundreds of milliseconds. In order to validate our
model under a diverse set of loss rates and RTTs, we simulate aset of 10Mbpstopology
with three kinds of end-to-end propagation latencies—10ms(metropolitan networks),
100ms(cross-country transfers), and 200ms(inter-continental transfers). (Note that the
actual RTTs will vary due to buffering at the router.) We thenrun different experiments,
in which we subjectA1 to different loss probabilities—specifically, 0.0001, 0.001, 0.01,

5The maximum window that can be advertised without using extra options is 64KB. With 1460-byte
segments and no extra options, the window size can be at most 44 segments.
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0.03, and 0.05.
Figures 3, 5, and 6 plot the transfer metrics for a 100mstopology with loss prob-

abilities of 0.01, 0.001, and 0.03, respectively. We find that both LB-CC and Cardwell
are equally good at modeling loss probabilities of 0.01 or lower in a 10Mbpstopology.
At higher loss probabilities, however, both models under-predict TCP transfer time.
Table 1, which lists the values ofpT observed in the simulations against those com-
puted using Equation (19), shows that at high loss rates, thecomputed values ofpT

can be fairly inaccurate. We believe that this inaccuracy isresponsible for the under-
estimation by both models. In order to validate our conjecture, we use as input to our
model the observed values ofpT from Table 1—Figure 6 also plots the resultant pre-
dictions of transfer time (labelled asM1 − p)—we find that an accurate value ofpT

ensures that the model is fairly accurate even at high loss rates. We emphasize again
that this indicates only a need for more accurate modeling ofpT at high loss rates and
does not say anything about the relative accuracy of LB-CC and Cardwell at different
loss rates.

We find that the LB-CC model tracks the deviation in simulation transfer times well
for loss probabilities lower than 0.01. We also find that the end-to-end RTTs do not
influence the accuracy of our model, except at the high loss rates noted above. In the
remaining validation experiments, we restrict our attention to a loss probability of no
more than 0.01.

Validation with Different Protocols.All validations presented so far have been con-
ducted with TCP Reno. We also validate our model for four other LB-CC protocols,
namely, Tahoe, Scalable TCP, High-speed TCP, and Square Root Fair TCP. We sim-
ulate a Tahoe TCP connection on a 10Mbps topology—the latter three protocols are
also simulated at 100Mbpsand 1Gbpstopologies (since these protocols are designed
for high-speed networks). We subject each topology to different loss rates ranging from
0.00001 to 0.01, and RTTs ranging from 10msto 200ms.

We find that the LB-CC model tracks the simulation results quite well in all of these
experiments (we omit the plots due to space constraints).

5.2. HTTP Workload Simulations

The validations conducted in Section 5.1 do not incorporatethe impact of com-
peting cross-traffic on the performance of a given TCP connection. In this section,
we present validation results from several simulations conducted with an empirically-
derived HTTP workload model [41].

Experimental Methodology.We simulate extensive two-way HTTP traffic workload
generated on the topology depicted in Figure 8. Each circle and hexagon in the figure
representsfive “clouds” of HTTP clients or servers (i.e., end systems sharing an ag-
gregation link). The dashed lines represent the direction of the flow of data traffic in
the network. Regular traffic is generated by circles 0 and 5 and traverses all routers.
Cross-traffic is generated by circles 1-4 and shares only onelink with regular traffic.
This topology, first proposed in [42], allows us to simulate end-to-end paths with mul-
tiple congested links and different offered loads. In addition to the link propagation
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Figure 8: HTTP Workload Simulations
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Figure 9: Relative Error with HTTP Simulations

delays, the routers have been modified to delay segments by a fixed amount on a per-
connection basis—this allows us to simulate TCP connections with different minimum
RTTs and, thus, represent large networks.

We use the PackMime model [41] to generate synthetic web traffic. We also use
PackMime to generate an empirical minimum RTT distribution. We run several ex-
periments in which we simulate 1–3 bottleneck links and generate HTTP workloads
ranging from 50% to 90% of the bottleneck capacity. These experiments help us sam-
ple a very diverse set of TCP connections, with loss probabilities ranging from 0.0008
to more than 0.04 and round-trip times ranging from 60msto 400ms.

Validation. We consider all TCP connections simulated as regular trafficabove and
for each, recordn (total number of segments transferred) andTn (transfer time) and
compute the values ofp, pT , and meantTO. We then feed these quantities to the LB-CC
model and compute the predicted transfer time,TLB−CC

n , for each connection. Figure 9

plots the cumulative distribution of the relative errors—computed as (Tn−TLB−CC
n
Tn

). We
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find that our model tracksTn reasonably well. For instance, the prediction accuracy is
within 0.1 of the simulations for 80% of the connections.

1

10

100

1000

10000

0.01 0.1 1 10 100

N
um

be
r 

of
 S

eg
m

en
ts

Bottleneck Capacity

delta = 1 %
delta = 3 %
delta = 5 %
delta = 10 %

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

0 20 40 60 80 100 120 140 160 180 200

N
um

be
r 

of
 S

eg
m

en
ts

Round-trip Time (ms)

delta = 1 %
delta = 3 %
delta = 5 %
delta = 10 %

1

10

100

1000

10000

0.0001 0.001 0.01 0.1

N
um

be
r 

of
 S

eg
m

en
ts

Loss Probability

delta = 1 %
delta = 3 %
delta = 5 %
delta = 10 %

(a)Nδ vs.C (0.01 p, 100msRTT) (b)Nδ vs. RTT (0.01 p, 10Mbps C) (c)Nδ vs. p (100msRTT, 10Mbps C)

Figure 10:Nδ as a function ofC, RTT, andp

6. Achieving Computational Efficiency

One limitation of our iterative model is that the complexityof computingτn is linear
in n, the number of segments to be transferred. This is not the case with most past TCP
models, since they rely onsteady-stateanalysis for computing the (constant) mean
TCP throughput for long transfers. However, a TCP transfer may transmit quite a few
segments before it attains steady-state throughput—this is especially true in high-speed
networks. For accurately modeling short transfers, therefore, it is important to conduct
transientanalysis of the kind presented in Section 4. In order to achieve simultaneously
modeling accuracy as well as computational efficiency, we use the approach of:(i)
detecting when a TCP transfer has attained steady-state, and (ii) using steady-state
throughput to predict its remaining transfer time. The basic idea here has been used
even in past work—indeed, the model in [16] switches to a steady-state prediction
model as soon as the sender leaves the initial Slow Start phase. The key difference,
however, is in deciding when to switch.

Our approach is based on the following key insight. The slopeof the τn curve
converges asn increases; Figure 11, which plots the instantaneous throughput (B/τn−
τn−1) for theM1 curve in Figure 3, illustrates this. This implies that aftersome value of
n, τn can be approximated by a linear function ofn. We use this insight in improving
the efficiency of our model as follows. For each value ofn, we compute the slope of
the transfer time curve as:ψn = τn− τn−1. The above observation on convergence of
the slope implies thatψn−ψn−1 converges to 0. LetNε denote the smallest value of
n such thatψn−ψn−1 < ε. Then, for any specifiableε, we approximate the curve for
all values ofn > Nε by a straight line of slopeψNε , such that the line passes through
the point(Nε,τNε ). Using this idea, we have reduced the complexity of computing τn

to a tunable value:O(min(n,Nε)). In fact, the graphs plotted in Section 5 have been
computed usingε = 10−12.
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Figure 11: Throughput

When is Steady-state-only Analysis Usable?
Observe that models that rely only on steady-state analysisof TCP work fairly

well for bulk transfers that are long. A natural question to ask is: how long does a
TCP transfer have to be before a steady-state-only analysiscan accurately predict its
transfer time?

Figure 11 also plots the average throughput,Θn = nB/τn, as a function ofn for the
experiment depicted in Figure 3 (10Mbps C, 100msRTT, 0.01 p). Θn converges to the
steady-state throughput,Θ∞, asn increases. It follows that steady-state analysis can be
used for all connections large enough, such thatΘn is reasonable close toΘ∞. With
this understanding, and usingΘ10000as a reasonable approximation ofΘ∞, we answer
the question raised above as follows.

For any givenδ, we find the smallest value ofn—denoted byNδ—such thatΘi −
Θ∞ < δ, for all i ≥Nδ. In Figures 10(a), 10(b), and 10(c), we plotNδ as a function ofC,
RTT, andp, respectively. In each figure, we plot curves forδ = 0.01,0.03,0.05,0.1. We
find thatNδ increases withC and RTT. To put this observation in the proper perspective,
recall that we setK equal to the bandwidth-delay product for all of these experiments.
Thus, K is higher for topologies with largerC and RTT, and it is expected that a
connection will take longer to grow up to a window size ofK. Nδ decreases asp
increases. We expect this to be the case because the steady-state average window size
is likely to be lower at high loss rates, and hence, is attained faster.

Perhaps the most surprising observation is thatNδ can be as large as several 1000s
of segments, even forδ = 0.1. This implies that models that rely only on steady-
state analysis are likely to be accurate only for transfers larger than several megabytes.
Internet traffic analysis in [35] shows that such transfers may account for less than 1%
of HTTP transfers in the Internet. Our results, thus, highlight the importance of using
transient analysis to model short connections.
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Figure 12: Time-to-transfer and Throughput Achieved afterTransmitting 100000 Segments
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7. Example Model Application: Comparison of High-speed Protocols

In this section, we illustrate the usefulness of the LB-CC framework by using it
to evaluate the relative performance of several recently-proposed “high-speed” vari-
ants of TCP congestion-control. Our aim is not to provide a comprehensive evaluation
of these protocols, but simply to illustrate in some examplesettings how the LB-CC
framework can help draw fundamental observations about thebehavior of the protocol.
We consider a set of diverse network topologies in which: (i)the bottleneck transmis-
sion capacity is set to either 100 Mbps, 1 Gbps, or 2.5 Gbps, (ii) the RTT is set to either
10 ms or 100 ms, and (iii) the packet loss rate can take on values ranging from 10−7

to 10−3. We model three prominent high-speed protocols—namely, HighSpeed TCP
(HSTCP), Scalable TCP (S-TCP), and Square Root Fair TCP (SRF)—and compute
the time to transfer 100,000 segments (100 MB worth of data).Figures 12(a), 12(c),
and 12(e) plot the computed values for bottleneck capacities of 100 Mbps, 1 Gbps, and
2.5 Gbps, respectively. Each figure is a 3-dimensional plot of the transfer time as a
function of the packet loss probability and the path RTT.

We also compute the value of the instantaneous throughput, as defined in Section 6,
attained by each of the protocols after transmitting 100,000 segments. Figures 12(b),
12(d), and 12(f) plot this quantity using the 3-dimensionalview. Note that the direction
of both the x- and y-axes is reversed from the three corresponding plots for transfer
time.

We find that:

• As expected, a higher packet loss rate as well as a larger pathRTT increase
the transfer-time and decrease the instantaneous throughput level attained after
transmitting the 100,000 segments.

• With large RTTs, high link capacity does not have a significant impact on the
transfer-time or the instantaneous throughput level achieved. This is because the
link capacity impacts the performance of a transfer only after the congestion-
window has reached a value equal to the bandwidth-delay product. This product
is quite large on large-RTT networks (larger than the congestion-window value
that is attained after sending only 100,000 segments). For instance, we find that
the throughput level achieved in quite similar in a 100 ms RTTnetwork across
the three values of bottleneck capacity studied.

• Under all network conditions, SRF always outperforms HSTCPand S-TCP (in
both the transfer-time as well as instantaneous throughputmetrics).

• S-TCP and HSTCP provide similar performance in several cases. However,
HSTCP provides lower transfer times in high-speed networks, especially when
the RTTs are high.

In contrast, the instantaneous throughput achieved by S-TCP is higher than that
of HSTCP in topologies with neither too large nor too low bandwidth-delay prod-
ucts (100 Mbps capacity and 100 ms RTT, or Gbps capacity and 10ms RTT).

• In a 100 Mbps network, all protocols are able to attain a 100 Mbps worth of
throughput when loss rates are low and RTTs are small—however, when both of
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these quantities have large values, none of the protocols attain that throughput
after transmitting only 100,000 segments.

In higher-speed networks, even with low loss rates and smallRTTs, only SRF is
successful in attaining a throughput equal to the bottleneck capacity after trans-
mitting 100,000 segments.

We reiterate again that our purpose is not to provide a comprehensive evaluations of
these three protocols, but merely to illustrate the power ofthe LB-CC framework in
drawing several fundamental insights (such as those listedabove) about protocol per-
formance.

8. Concluding Remarks

In this paper we present the design of a class of performance models that predict
the transfer time for bulk TCP transfers under diverse settings of loss rates, round-
trip times, end-to-end bottleneck capacities, protocol parameter settings, and protocol
versions. We do so in two steps. First, we define the general class of Loss-based Con-
gestion Control (LB-CC) protocols and demonstrate that many TCP variants, including
those being proposed for high-speed networks, belong to this class. We then develop
a stochastic framework to compute the mean and variance in transfer time for any LB-
CC protocol. We validate our model against extensive simulations and show that it is
accurate under more diverse settings than past models.

Our work leads to a number of useful modeling guidelines. First, our evaluations
indicate that the bottleneck transmission capacity can have a significant impact on TCP
performance in low-speed networks. It should, therefore, be incorporated in TCP anal-
ysis. Second, unlike what was previously assumed, the probability and impact of re-
transmission timeouts can take a range of values for a given packet loss rate. Since
timeouts impact TCP performance significantly, this implies that either accurate tech-
niques should be developed to relate timeout probability topacket loss probability, or
the two should be treated independently in TCP analysis. We use the latter approach
in this paper. Finally, our computations indicate that models that rely only on steady-
state analysis may be applicable only to connections that transfer more than several
megabytes. This underscores the importance of analyzing TCP’s transient behavior.

We believe that the generalized LB-CC framework is a powerful tool that can be
used in the design and analysis of next-generation transport protocols. In particular,
our model provides the opportunity of evaluating the impactof different combinations
of fi , gi , hi on TCP performance in high-speed networks. Furthermore, the stochastic
framework developed in Section 4 facilitates the derivation of additional metrics, such
as the distribution ofWn. As part of future work, we plan to systematically evaluate the
impact of each model parameter on such quantities. Finally,we plan to derive empirical
models of per-connection losses and round-trip times and use our framework to study
their impact on real-world TCP performance.
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