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Abstract 
In this paper, we propose a distributed learning automata-based algorithm to solve the multicast 
routing problem in wireless mobile Ad-hoc networks. The proposed algorithm called MMR-LA 
estimates the expected relative mobility of each host, by sampling its movement parameters in 
various epochs, to realistically predict its motion behavior, and takes advantage of the Steiner 
connected dominating set to form the virtual multicast backbone. To do this, a stochastic version of 
the minimum Steiner connected dominating set problem in weighted network graphs, where the 
relative mobility of each host is considered as its weight is introduced. Then, a distributed learning 
automata-based algorithm is designed to solve this problem. The designed algorithm is proposed for 
multicast routing in wireless mobile Ad-hoc networks. The experiments show the superiority of the 
proposed multicast routing algorithm over the existing methods in terms of the packet delivery ratio, 
multicast route lifetime, and end-to-end delay. We present a strong convergence theorem in which 
the convergence of the proposed distributed learning automata-based algorithm to the optimal 
solution is proved. It is shown that the most stable multicast route is found with a probability as 
close as to unity by the proper choice of the parameters of the distributed learning automata. 

Keyword: Wireless mobile Ad-hoc networks, multicast routing, Steiner connected dominating set, 
distributed learning automata 

 
1. Introduction 

A mobile Ad-hoc network (MANET) is a self-organizing and self-configuring multi-hop wireless 
network, which can be instantly developed in situations where either a fixed infrastructure is unavailable 
(e.g., disaster recovery), or a fixed infrastructure is difficult to install (e.g., battlefields). In addition to the 
multi-hop nature of the wireless Ad-hoc networks and lack of a fixed infrastructure, these environments 
inherit the traditional problems of the wireless and mobile communications. Host mobility brings about a 
wide range of new challenges in the design of the MANET protocols. In MANETs, to predict the mobility 
of a given host, the mobility parameters of the relative hosts also need to be taken into account, and so the 
mobility of such networks is generally hard to predict. Frequent and hard to predict topology changes due 
to the host mobility is the most important issue must be taken into consideration in mobile Ad-hoc 
networking. The best-known solutions proposed to relieve the negative effects of the host mobility on the 
network performance focus on the estimation of the future state of the network by predicting the mobility 
characteristics of the hosts. A plethora of the mobility prediction schemes have been proposed for mobile 
Ad-hoc networks.  

Su et al. [1] proposed two mobility prediction mechanisms for mobile Ad-hoc networks. The former 
mobility prediction method utilizes the location and mobility information provided by the global 
positioning system (GPS) to estimate the link expiration time. In this method, the time interval during 
which two neighboring hosts remain within the transmission range of each other is determined based on 
their mobility information (speed and direction) and radio range transmission. Since GPS may not work 
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properly in certain situations, it is not always possible to predict the link expiration time for a particular 
link accurately. Therefore, Su et al. [1] proposed an alternative method to predict the link expiration time 
based on a more realistic propagation model. In this method, the transmission power samples are measured 
periodically from packets received from a neighboring host. Based on this information, the mobile can 
compute the rate of change for a particular neighbor’s transmission power level. Therefore, the time that 
the transmission power level drops below the acceptable value can be computed. They applied the 
proposed mobility prediction method to ODMRP and showed it superiorities over ODMRP. ODMRP [2] 
applies on-demand routing techniques to avoid channel overhead and improve scalability. It uses the 
concept of forwarding group [3], a set of nodes which is responsible for forwarding multicast data on the 
shortest paths between any member pairs to build a forwarding mesh for each multicast group. By 
maintaining and using a mesh, ODMRP avoids drawbacks of multicast trees in mobile wireless networks 
(for example, intermittent connectivity, traffic concentration, frequent tree reconfiguration, non-shortest 
path in a group-shared tree). ODMRP is a reactive protocol that delivers packets to destination(s) on a 
mesh topology using scoped flooding of data. ODMRP takes a soft-state approach to maintain multicast 
group members. No explicit control message transmission is required to leave the group. ODMRP 
establishes and maintains group membership and multicast routes by the source on demand. The major 
strengths of ODMRP are its simplicity and scalability. An and Papavassiliou [4] proposed a mobility-based 
hybrid multicast routing protocol for mobile Ad-hoc wireless networks. In mobile Ad-hoc networks, 
communications are often among teams that tend to coordinate their movements. Therefore, the relative 
mobility of each host with respect to its peers is the mobility metric upon which the multicast routing 
algorithm proposed in [4] is based. In this method, the network is dynamically and adaptively partitioned 
into several groups, each with its own mobility behaviors. Then, a group-based hierarchical multicast 
routing is supported within each group. Guo and Yang [5] proposed two distributed multicast routing 
algorithms for achieving the maximum-lifetime in mobile Ad-hoc networks. The former algorithm is a 
basic energy efficient multicast routing algorithm, which can construct and maintain a multicast tree in a 
distributed manner. It uses beaconing to allow periodical transmission power adjustment to the minimal 
level at each transmitting node such that it could significantly save energy compared to those multicast 
algorithms for mobile Ad-hoc networks which apply single level of transmission power only. They also 
proposed a distributed maximum lifetime multicast routing algorithm, in which an extra localized operation 
called lifetime enhancement operation is used to prolong the tree lifetime. In this method, each host makes 
decisions based solely on the mobility information of and distances to its neighbors. The major drawback 
of the above mentioned algorithms is that they predict the motion behaviors of a host based on the samples 
taken from the mobility characteristics during a single epoch. Indeed, these methods assume that the 
movement characteristics are constant, while these parameters are stochastic and vary with time. For this 
reason, they are not capable of predicting the long-term motion behavior of a mobile. In our proposed 
multicast routing algorithm, the movement parameters are considered as the random variables.  

Multicast routing is an effective way to establish the group communications in which the messages 
need to be sent from a transmitting node to multiple receivers. In a wireless network, due to the broadcast 
nature of the omnidirectional antennas, a single transmission can be received by all neighbors of the 
transmitting node [6]. Therefore, the multicast routing protocols designed for the traditional wired 
networks are not applicable to the wireless networks. In a wired network, the multicast packets are 
forwarded along the tree edges, and so the multicast routing problem can be defined as a Steiner tree 
problem where the multicast group members are the terminals (leaf nodes) in the Steiner tree. On the other 
side, in wireless Ad-hoc networks, owing to the broadcast nature of the wireless channels, the Steiner 
connected dominating set (SCDS) [7] is a promising approach for modeling the multicast routing problem, 
where the multicast group members must be dominated only. The Steiner connected dominating set 
constructs a virtual multicast backbone (VMB) which significantly reduces the routing overhead compared 
to the notorious flooding mechanism as the number of hosts responsible for rebroadcasting is reduced to 
the number of hosts in backbone.  

The minimum SCDS (MSCDS) problem was first introduced by Guha and Khuller [8], as the 
generalization of the well-known minimum connected dominating set problem. In this method, a subset of 
nodes is chosen as dominators to construct a route from the multicast source to each of the multicast 
receivers. They proposed a centralized algorithm for solving the presented problem and showed that the 
SCDS is an NP-hard problem in general graphs and even in unit disk graphs. Wu et al. [7] proposed two 
approximation algorithms based on maximal independent set (MIS) for solving the MSCDS problem. Their 
former algorithm is a one-hop method for approximating the MSCDS of a unit disk graph with a constant 
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approximation ratio at most 10. This algorithm exploits the properties of the MIS and minimum Steiner 
tree (ST) to form the MSCDS. The proposed algorithm first finds the MIS of the graph induced by only the 
multicast receivers. Then, the ST algorithm proposed in [8] is applied to connect the vertices of the 
constructed MIS. They also proposed a d -hop algorithm in which a d -hop graph whose vertex-set 
comprises the receivers is initially constructed. In this method, every two vertices of the graph are 
connected by an edge, if they are d -hop neighbors. Now, similar to one-hop algorithm, an MIS of the d -
hop graph is computed, and then an ST algorithm [8] is applied to connect the vertices of MIS. They 
showed the distributed implementation of d -hop algorithm can be effectively used for multicast routing in 
Ad-hoc networks by constructing a VMB with a small number of forwarding nodes. Muhammad [9] also 
proposed a distributed MIS-based SCDS algorithm for multicast routing in wireless Ad-hoc networks. The 
message complexity and size of VMB constructed by Muhammad's algorithm [9] are noticeably less than 
those of Wu et al.'s algorithm [7]. However, the running time of Wu et al.'s algorithm [7] is shorter as 
compared with Muhammad's algorithm [9]. SCDS-based VMB formation algorithms have been found to 
perform better compared with the flooding mechanism and even connected dominating set based 
algorithms [7]. Nevertheless, the flooding is still a common approach in many multicast routing protocols.  

In this paper, we propose a distributed learning automata-based algorithm to solve the multicast 
routing problem in wireless mobile Ad-hoc networks. The proposed multicast routing algorithm aims at 
alleviating both the above mentioned problems by introducing the concept of stochastic SCDS. This way, it 
uses the expected relative mobility of each host (with respect to all its neighbors) to predict its realistic 
motion behavior by sampling its movement parameters during different epochs, and also exploits the 
SCDS to form the VMB. This mobility prediction method is capable of estimating the long-term motion 
behavior of the host, and so finds the more stable routes that stay connected for a longer time. In this paper, 
the MSCDS problem is first defined in the stochastic graphs, where the relative mobility of each host is 
considered as its weight. Then, a distributed learning automata-based algorithm is proposed to solve the 
mentioned stochastic problem. The proposed algorithm is applied to the wireless MANETs for multicast 
routing. The simulation experiments show that the proposed multicast routing algorithm outperforms the 
well-known methods in terms of the packet delivery ratio, multicast route lifetime, and end-to-end delay. A 
strong convergence theorem is presented in which the convergence of the proposed distributed learning 
automata-based algorithm is proved. It is shown that the most stable multicast route is found with a 
probability as close as to unity by the proper choice of the parameters of the distributed learning automata.  

The rest of the paper is organized as follows. The next section provides an overview of multicast 
protocols and summarizes some preliminaries on the dominating set and learning automata. The problem 
statement is given in Section 3, and the proposed multicast routing algorithm is described in Section 4. 
Section 5 presents a convergence proof for the proposed algorithm. Section 6 shows the efficiency of the 
proposed algorithm through the simulation experiments, and Section 7 concludes the paper. 

 
2. Background and Preliminaries 

To provide a sufficient background for the remainder of the paper, in the following subsections we 
present a brief overview of the multicast routing protocols and some preliminaries on dominating set and 
learning automata. 

2.1. Overview of Multicast Protocols 
Multicast routing protocols come into play when a host needs to send the same message or the same 

stream of data to multiple destinations. Due to the unique characteristics of the mobile Ad-hoc networks 
such as host mobility, limited resources and very unreliable channel, traditional multicast protocols do not 
perform well in MANET scenarios. MANET multicast protocols should efficiently cope with dynamic 
topology changes such as fragile multicast routes. There are several methods to classify the existing 
multicast routing protocols for MANET. Multicast routing protocols are broadly classified as tree-based, 
mesh-based, hybrid and stateless protocols based on the underlying routing structure. This is the most 
comprehensive classification of the multicast protocols as reported in the literature. However, the multicast 
routing protocols can be also classified as proactive and reactive protocols based on the route acquisition 
time, and as sender-initiated and receiver-initiated protocols based on the multicast route initiation (based 
on the responsibility for route construction). The following provides an overview of the multicast routing 
protocols based on the underlying routing structure. 

In a tree-based multicast routing protocol, a tree-like data forwarding path is constructed which is 
rooted at the source of the multicast session. The multicast tree is composed of a unique path from the 
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multicast source to each of the multicast receivers. The main advantage of a tree as the underlying 
forwarding structure is that the number of forwarding nodes tends to be reduced. However, multicast trees 
form a virtual backbone which is fragile in Ad-hoc networks where the mobile hosts move freely 
anywhere. Tree-based multicast protocols can be further subdivided into group-shared and source-based 
protocols. A source-based tree maintains an individual route towards all the multicast receivers for each 
multicast source. In this approach, the multicast packets are forwarded along the most efficient (shortest) 
route originated from each multicast source. Representative source-based multicast protocols are Distance 
Vector Multicast Routing Protocol (DVMRP) [10], Adaptive Demand-driven Multicast Routing protocol 
(ADMR) [11], Associativity-based Ad-hoc multicast protocol (ABAM) [12], Bounded Shortest Multicast 
Algorithm (BSMA) [13], Protocol independent Multicast-Dense Mode (PIM-DM) [14], Multicast Open 
Shortest Path First (MOSPF) [15]. Since the construction of a separate minimum (cost) tree for each source 
is expensive, some tree-based multicast protocols use a (core-based) group-shared tree to distribute the 
multicast messages. In group-shared tree approach, a single tree is constructed to support the whole group. 
Since the group-shared multicast tree only permits the multicast traffic to be sent out from the root to the 
multicast receivers, each multicast source must forward its multicast traffic to the root initially. Multicast 
traffic of each source is then forwarded along the shared tree. Multicast Ad-hoc on-demand Distance 
Vector Routing protocol (MAODV) [16], Ad-hoc Multicast Routing protocol utilizing Increasing ID 
numbers (AMRIS) [17], Multicast Zone Routing Protocol (ZRP) [18], Shared-Tree Ad-hoc Multicast 
Protocol (STAMP) [19], Adaptive Core based Multicast routing Protocol (ACMP) [20], Protocol 
Independent Multicast-Sparse Mode (PIM-SM) [21], Core Based Tree (CBT) [22] are some popular group-
shared multicast routing protocols. Source-based or group-shared, the optimal multicast tree is defined as a 
Steiner tree, although in some multicast routing protocols [23, 24], the minimum spanning tree (MST) is 
used to model the multicast routing problem. 

In a mesh-based multicast routing protocol, multiple routes may exist between any pair of source and 
destination, which is intended to enrich the connectivity among group members for better resilience against 
the topology changes. In a mesh-based multicast routing protocol, packets are distributed along the mesh 
structures that are a set of interconnected nodes. Mesh-based approaches sacrifice multicast efficiency in 
comparison to tree-based ones. These protocols have a higher packet delivery ratio compared to tree-based 
protocols, but incur redundant transmission and more control overhead in route maintenance. The major 
difference between the tree-based and mesh-based protocols lies in the manner in which a multicast 
message is relayed. In tree-based protocols, each intermediate node on the tree has a well-defined list of the 
next-hop nodes for a specific multicast session. It will send a copy of the received multicast message to 
only the neighboring nodes on its next-hop list. In mesh-based protocols, each node on the mesh will 
broadcast the message upon its first reception of the message. Representative mesh-based multicast routing 
protocols include On-Demand Multicast Routing Protocol (ODMRP) [2] and its variations (PatchODMRP 
[25], PoolODMRP [26], PDAODMRP [27], and E-ODMRP [28]), Core-Assisted Mesh Protocol (CAMP) 
[29], Clustered Group Multicast (CGM) [30], Forwarding Group Multicast Protocol (FGMP) [3], and 
Multicast Core Extraction Distributed Ad-hoc Routing (MCEDAR) [31]. 

Hybrid multicast routing protocols combine the advantages of both tree-based and mesh-based 
multicast approaches, i.e., the robustness of the mesh-based multicast routing protocols and low overhead 
of tree-based protocols. Therefore, the hybrid multicast routing protocols are able to address both 
efficiency and robustness issues. Efficient Hybrid Multicast Routing Protocol (EHMRP) [32], Mobility-
based Hybrid Multicast Routing (MHMR) [4], and Ad-hoc Multicast Routing Protocol (AMRoute) [33] 
introduce three well-known hybrid multicast routing protocols. 

In the stateless multicast routing protocols, the forwarding states are included in packet header, and 
no protocol state is maintained at any nodes except for the multicast source node. From the information 
included in the packet headers, any intermediate node knows how to forward or duplicate the packet. 
Although packing routing information together with data traffic will enlarge data packet size, it reduces the 
total number of control packets generated by the protocol. Besides, when the group is idle, there is no 
control overhead. A recent shift toward the stateless multicasting is represented by Differential Destination 
Multicast (DDM) [34], Location Guided Tree (LGT) [35], and Route Driven Gossip (RDG) [36]. 

Since the constrained multicast routing problem is known to be NP-complete [37], many heuristic 
techniques, such as tabu search [38-40], ant colony optimization [41, 42], genetic algorithms [43-45], and 
fuzzy-based algorithms [46, 47], have been also devised for solving this problem. The heuristic methods 
have been found to perform well for solving the multicast routing problem in Ad-hoc environments with 
multiple constraints. 
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2.2. Dominating Set 

In a wireless network, due to the broadcast nature of the omnidirectional radio transmissions, a single 
transmission can be received by all neighbors of the transmitting node [6]. Therefore, multicasting in 
wireless Ad-hoc networks considerably differs from that in traditional wired networks. In a wired network, 
the multicast packets are forwarded along the tree edges, and so the multicast routing problem can be 
defined as a Steiner tree problem where the multicast group members are the terminals (leaf nodes) in the 
Steiner tree. As a result, the broadcast routing problem can be also considered as a Steiner tree problem in 
which all the nodes receive the messages. That is, the broadcast routing problem can be formulated as a 
spanning tree problem. On the other side, in wireless networks, owing to the broadcast nature of the 
wireless channels, the multicast routing problem is similar to the Steiner connected dominating set problem 
where the only multicast group members need to be dominated. In this method, a subset of nodes is chosen 
as dominators to construct a route from the sender to each of the multicast receivers. In such networks, the 
broadcast routing problem [7, 8] corresponds to a connected dominating set problem in which the 
dominators form a virtual backbone for transmission of the broadcast messages to the entire network. The 
dominating set problems are a class of the optimization problems which are widely used in wireless Ad-
hoc networks [48-52]. In what follows, the domination sets and their applications in wireless Ad-hoc 
networks are summarized.  
Definition 1. A dominating set (DS) S of graph ),( EVG = is a subset of V , such that every vertex 

Vv ∈ is either in S  or adjacent to a vertex of S . A vertex of S is said to dominate itself and all adjacent 
vertices. Finding the dominating set is a well-known approach, proposed for clustering the wireless Ad-hoc 
networks [52, 53]. A minimum DS (MDS) is a DS with the minimum cardinality. A dominating set is also 
an independent dominating set, if no two vertices in the set are adjacent. 
Definition 2. A connected dominating set (CDS) S  of a given graph G is a dominating set whose induced 
sub-graph, denoted >< S , is connected, and a minimum CDS (MCDS) is a CDS with the minimum 
cardinality. A MCDS forms a virtual backbone in the network graph by which the routing overhead can be 
significantly reduced, where the number of hosts responsible for the route discovery and data transmission 
can be reduced to the number of vertices in the MCDS of the network topology graph. Finding the MCDS 
is a promising approach to send the broadcast messages [48, 50]. The MDS and MCDS problems have 
been shown to be NP-Hard [54, 55], and even for a unit disk graph, the problem of finding a MCDS is still 
NP-Hard [55]. 
Definition 3. A weakly connected dominating set (WCDS) S  of a given graph G is a dominating set of 
G , where the graph ))][(],[( SSNESNS W ×∩=>< is a connected sub graph of G . The closed 

neighborhood of a given host v , ][vNG , consists of the hosts adjacent to v  and host v  itself, and closed 

neighborhood of set S , ][SNG , is the unionU Sv G vN
∈

][ . That is, the weakly induced sub 

graph WS >< contains the hosts of S , their neighbors, and all edges with at least one endpoint in S . 
Finding the WCDS is first suggested for clustering the wireless networks by Chen and Listman [53]. 
Definition 4. The Steiner connected dominating set S of a given graph G  is a connected dominating set 
by which only a given subset R of the vertex-set V must be dominated. Each member of this subset is 
referred to as a terminal. Indeed, in the Steiner connected dominating set problem, a specified subset, R , 
of the vertices has to be dominated by the a connected dominating set. Finding the SCDS of the network 
graph is a well-known approach proposed for solving the multicast routing problem in wireless Ad-hoc 
networks [7, 8], where subset R comprises the multicast source and the multicast group members. In this 
method, the SCDS includes the intermediate nodes by which the massage sent out by the multicast source 
is relayed. 

In most of the CDS-based multicast routing protocols, it is assumed that all the nodes (hosts) have the 
same weights (costs), and so the proposed protocols try to minimize the number of relay nodes for 
optimizing the multicast routes. In these methods, the multicast routing problem is defined as finding the 
minimum size SCDS. However, in many applications of the wireless Ad-hoc networks, the above 
assumption (i.e., all nodes have the same weights) can not hold true, and reducing the number of relay 
nodes is not sufficient. In such networks, due to the host's heterogeneity, host mobility, and strict resource 
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limitations, each wireless host may have a different cost in the multicast tree. Therefore, in the following 
we present the concept of the weighted CDSs. The weight of a set is assumed to be sum of the weights of 
the elements contained in it. 
Definition 5. The (node)-weighted connected dominating set problem is the generalization of the 
connected dominating set problem to the case where the vertices have weight, and the minimum node 
weighted connected dominating set is the CDS with the minimum weight.  
Definition 6. The (node)-weighted Steiner connected dominating set problem (WSCDS) is the 
generalization of the Steiner connected dominating set problem to the case where the vertices have weight, 
and the minimum (node)-weighted Steiner connected dominating set problem is aimed at finding the 
Steiner connected dominating set with a minimum possible weight. In this paper, the minimum WSCDS of 
a stochastic graph is introduced and then proposed to solve the multicast routing problem in wireless 
mobile Ad-hoc networks.  
 

2.3. Learning Automata 
A learning automaton [56, 57] is an adaptive decision-making unit that improves its performance by 

learning how to choose the optimal action from a finite set of allowed actions through repeated interactions 
with a random environment. The action is chosen at random based on a probability distribution kept over 
the action-set and at each instant the given action is served as the input to the random environment. The 
environment responds the taken action in turn with a reinforcement signal. The action probability vector is 
updated based on the reinforcement feedback from the environment. The objective of a learning automaton 
is to find the optimal action from the action-set so that the average penalty received from the environment 
is minimized. 

The environment can be described by a triple },,{ cE βα≡ , 
where },...,,{ 21 rαααα ≡ represents the finite set of the inputs, },...,,{ 21 mββββ ≡ denotes the set of 

the values can be taken by the reinforcement signal, and },...,,{ 21 rcccc ≡ denotes the set of the 

penalty probabilities, where the element ic is associated with the given action iα . If the penalty 
probabilities are constant, the random environment is said to be a stationary random environment, and if 
they vary with time, the environment is called a non stationary environment. The environments depending 
on the nature of the reinforcement signal β can be classified into P -model, Q -model and S -model. The 
environments in which the reinforcement signal can only take two binary values 0 and 1 are referred to 
as P -model environments. Another class of the environment allows a finite number of the values in the 
interval [0, 1] can be taken by the reinforcement signal. Such an environment is referred to as Q -model 
environment. In S -model environments, the reinforcement signal lies in the interval ],[ ba . The 
relationship between the learning automaton and its random environment has been shown in Figure 1. 

Random  Environm ent 

Learning Autom aton 

α(n) 

β(n)  
Figure 1. The relationship between the learning automaton and its random environment 

 
  Learning automata can be classified into two main families [56]: fixed structure learning automata 

and variable structure learning automata. Variable structure learning automata are represented by a 
triple >< L,,αβ , where β is the set of inputs, α is the set of actions, and L  is learning algorithm. The 
learning algorithm is a recurrence relation which is used to modify the action probability vector. Let 

)(kα and )(kp denote the action chosen at instant k and the action probability vector on which the chosen 
action is based, respectively. The recurrence equation shown by (1) and (2) is a linear learning algorithm 
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by which the action probability vector p is updated. Let )(kiα  be the action chosen by the automaton at 

instant k . 

⎪⎩
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When the taken action is penalized by the environment (i.e. 1)( =nβ ). r is the number of actions 
can be chosen by the automaton, )(ka and )(kb  denote the reward and penalty parameters and determine 
the amount of increases and decreases of the action probabilities, respectively. If )()( kbka = , the 

recurrence equations (1) and (2) are called linear reward-penalty ( PRL − ) algorithm, if )()( kbka >> the 

given equations are called linear reward-ε penalty ( PRL ε− ), and finally if 0)( =kb  they are called linear 

reward-inaction ( IRL − ). In the latter case, the action probability vectors remain unchanged when the taken 
action is penalized by the environment. In the multicast routing algorithm presented in this paper, each 
learning automaton uses a linear reward-inaction learning algorithm to update its action probability vector.  

 
2.4. Distributed Learning Automata 

A Distributed learning automata (DLA) [58] is a network of the learning automata which collectively 
cooperate to solve a particular problem. Formally, a DLA can be defined by a quadruple >< 0,,, ALEA , 

where },...,{ 1 nAAA = is the set of learning automata, AAE ×⊂  is the set of the edges in which edge 

),( jie corresponds to the action jα  of the automaton iA , L is the set of learning schemes with which the 

learning automata update their action probability vectors, and 0A is the root automaton of DLA from 
which the automaton activation is started . An example of a DLA has been shown in Figure 2. 

 

  
Figure 2. Distributed learning automata 

 
The operation of a DLA can be described as follows: At first, the root automaton randomly chooses 

one of its outgoing edges (actions) according to its action probabilities and activates the learning 
automaton at the other end of the selected edge. The activated automaton also randomly selects an action 
which results in activation of another automaton. The process of choosing the actions and activating the 
automata is continued until a leaf automaton (an automaton which interacts to the environment) is reached. 
The chosen actions, along the path induced by the activated automata between the root and leaf, are applied 
to the random environment. The environment evaluates the applied actions and emits a reinforcement 
signal to the DLA. The activated learning automata along the chosen path update their action probability 
vectors on the basis of the reinforcement signal by using the learning schemes. The paths from the unique 
root automaton to one of the leaf automata are selected until the probability with which one of the paths is 
chosen is close enough to unity. Each DLA has exactly one root automaton which is always activated, and 
at least one leaf automaton which is activated probabilistically. 
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2.5. Variable Action-set Learning Automata 
A variable action-set learning automaton is an automaton in which the number of actions available at 

each instant changes with time. It has been shown in [59] that a learning automaton with a changing 
number of actions is absolutely expedient and alsoε -optimal, when the reinforcement scheme is IRL − . 

Such an automaton has a finite set of n  actions, },...,,{ 21 nαααα = . },...,,{ 21 mAAAA = denotes the 

set of action subsets and α⊆)(kA  is the subset of all the actions can be chosen by the learning 
automaton, at each instant k . The selection of the particular action subsets is randomly made by an 
external agency according to the probability distribution )}(),...,(),({)( 21 kqkqkqkq m=  defined over 

the possible subsets of the actions, where ]121,|)([)( −≤≤∈== n
iii iAAAkAprobkq . 

[ ])(),(|)()(ˆ kAkAkprobkp iii ∈== ααα  is the probability of choosing action iα , conditioned on 

the event that the action subset )(kA  has already been selected and also )(kAi ∈α . The scaled 

probability )(ˆ kpi is defined as 

)(/)()(ˆ kKkpkp ii =  (3)  

where ∑
∈

=
)(

)()(
kA

i
i

kpkK
α

 is the sum of the probabilities of the actions in subset )(kA ,and 

[ ]ii kprobkp αα == )()( . 
The procedure of choosing an action and updating the action probabilities in a variable action-set 

learning automaton can be described as follows. Let )(kA be the action subset selected at instant k . 
Before choosing an action, the probabilities of all the actions in the selected subset are scaled as defined in 
equation (3). The automaton then randomly selects one of its possible actions according to the scaled 
action probability vector )(ˆ kp . Depending on the response received from the environment, the learning 
automaton updates its scaled action probability vector. Note that the probability of the available actions is 
only updated.  Finally, the probability vector of the actions of the chosen subset is rescaled 
as )()1(ˆ)1( kKkpkp ii ⋅+=+ , for all )(kAi ∈α . The absolute expediency and −ε optimality of the 
method described above have been proved in [59]. 

 
3. Problem Statement 

As described in Subsection 2.2, in wireless Ad-hoc networks, the Steiner connected dominating set 
problem corresponds to the multicast routing problem, where the multicast source and multicast group 
members form the subset of the terminal nodes. Due to the various severe constraints of the mobile Ad-hoc 
networks, each host may result in a different cost of being in the Steiner connected dominating set. 
Therefore, the node weighted Steiner connected dominating set problem seems to be a promising approach 
to model the multicast routing problem, where a cost is associated with each host. The host degree, average 
distance (the distance between the host and its neighbors), mobility characteristics (average speed or 
relative speed), residual energy level, and transmission power are some parameters can be applied as costs 
to a given host in a mobile wireless Ad-hoc network. Due to the fact that these parameters are stochastic in 
nature, we propose the stochastic Steiner connected dominating set problem to formulate the multicast 
routing problem in mobile wireless Ad-hoc networks, and define it as follows. 

A stochastic graph is a weighted graph in which the weight associated with each edge or vertex (or 
both) is a random variable. Since the characteristics of the mobile Ad-hoc networks are stochastic, 
unpredictable and time-varying [60], stochastic graphs are more appropriate data structures for modeling 
the Ad-hoc network topology graphs. Given a vertex-weighted stochastic graph 

),,( WEVG = corresponding to the network graph, where },,,{ 21 nvvvV K= denotes the vertex-set, 

},,,{ 21 meeeE K=  denotes the edge-set, and },,,{ 21 nwwwW L=  denotes the set of the weights 

associated with the vertex-set such that the weight of vertex iv (for all },...,1{ ni ∈ ) is a random variable 

with probability distribution function iw , a source node called multicast source, and a set of terminals 
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called multicast receivers (or multicast group members). Let },,{ 21 KmmM =  denotes the set of all (node 
weighted) Steiner connected dominating sets of stochastic graph G  (or multicast routes) by which the 
multicast source and all the multicast receivers are dominated. Let 

jvw and ∑ ∈∀
=

ij ji mv vm ww denote the 

expected weight of vertex iv and the expected weight of the Steiner connected dominating set im , 

respectively. Hence, the Steiner connected dominating set Mm ∈* is the optimal solution to the 
stochastic Steiner connected dominating set problem (or the multicast routing problem), if and only if we 
have 

ii mMmm ww ∈∀= min*   

That is, the minimum Steiner connected dominating set of a given stochastic graph G is defined as 
the Steiner connected dominating set with the minimum expected weight. Since the aim of this paper is to 
find the more stable routes to send the multicast packets, in this problem statement, the weight associated 
with each host is assumed to be the relative mobility (i.e., the mobility of the host with respect to all its 
neighbors) of the host as described in Subsection 4.2.  

 
4. Mobility-Based Multicast Routing Algorithm 

It is assumed that, the Ad-hoc network comprises a group of wireless hosts communicating through a 
common broadcast channel using omnidirectional antennas and all hosts have the same transmission range. 
That is, the corresponding topology graph is a unit disk graph in which each host ih corresponds to a given 

vertex iv , and every two hosts are connected and said to be neighbors, if there exists a direct bidirectional 
communication channel connecting them. Therefore, the network graph is assumed to be undirected. 
Scheduling of transmissions is the responsibility of the MAC layer, and like many existing approaches, we 
are not concerned with the issues of using a shared wireless channel to send the messages avoiding the 
collisions and contentions. Each host has a unique ID (e.g., IP address) and also needs to know its 
neighbors' ID. 

In this section, a distributed learning automata-based multicast routing algorithm called MMR-LA is 
proposed for wireless mobile Ad-hoc networks, which focuses on finding a near optimal solution to the 
problem stated in Section 3 in the network graph. In this approach, each host (e.g., ih )  is equipped by a 

learning automaton (e.g., iA ) whose learning algorithm is a linear reward-inaction. The resulting network 
of learning automata is isomorphic to the network graph and can be described by a triple >< WA ,,α , 

where },...,,{ 21 nAAAA =  denotes the set of the learning automata corresponding to the vertex-set (or 

the set of hosts), },...,,{ 21 nαααα = denotes the set of actions such that jjii h|{ ,αα = is a neighbor of 

}ih is the action-set of learning automata iA , and },...,{ 1 nwwW = denotes the set of weights such that 

iw  (for all },...,1{ ni ∈ ) is the random weight associated with automaton iA (or the relative mobility of 

host ih ). Since the proposed algorithm associates a learning automaton with each host, hereafter a host may 
be referred to as its corresponding learning automaton and vice versa. 

 
4.1. Action-set Formation Method 

In the proposed algorithm, to form the action-set of each learning automaton iA , its corresponding 

host (i.e., ih ) propagates locally a message to its one-hop neighbors. The hosts which are within the 
transmission range of the sender host, upon receiving the message, reply it and return their action-set 
information. The sender forms its action-set on the basis of the received replies, so that each host jh by 

which the message is replied is associated with action ji,α  in the action-set of automaton iA . 

Action ji,α corresponds to the selection of host jh  as a dominator host by learning automaton iA . This 
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way, the action-set size of each learning automaton is strongly dependent on the degree of its 
corresponding host. Due to the frequent topology changes in mobile Ad-hoc networks, the action-set size 
of the learning automata is always changing.    

The problem with the action-set defined above is that the number of actions is fixed and does not 
vary (with time) as the algorithm proceeds. This may result in a host to be chosen many times, the virtual 
backbone contains loops and suffers from the redundant dominators by which no more hosts can be 
dominated. Therefore, the fixed action-set decreases the convergence speed of algorithm and increases the 
virtual backbone size also. To overcome these shortcomings, we propose the learning automata with 
changing number of actions [59], and introduce the following rules for pruning the action-set of such 
learning automata. 
Rule I. To avoid choosing the same dominators (by different hosts), each activated learning automaton is 
allowed to prune its action-set by disabling the actions corresponding to the dominator hosts selected 
earlier. This rule increases the convergence speed, and consequently, decreases the running time of the 
proposed algorithm. 
Rule II. To avoid the loops and the redundant dominator hosts by which no more (dominatee) hosts can be 
dominated, the proposed algorithm prunes the action-set as follows. As mentioned earlier, when host ih  is 
going to form the action-set of its automaton, it receives some messages from its neighboring hosts which 
include the action-set information of these hosts. Depending on the received information, activated 
automaton iA updates its action-set by disabling the actions corresponding to the hosts whose one-hop 
neighbors all have been dominated (or added to the dominatee set) earlier (see Figures 4(a)-4(f)), if any. 
This rule reduces the dominator set size, decreases the running time and improves the convergence rate of 
algorithm.    

In these rules, the action probability vector of each activated learning automaton is scaled as 
described in Section 2.5, on the variable action-set learning automata, in such a way that the probability of 
choosing the hosts corresponding to the disabled actions is temporarily set to zero. At the end of each 
iteration, the disabled actions of each activated learning automaton must be enabled for the next iteration.  

 
4.2. Host Mobility Metric 

Since our multicast routing algorithm is proposed to utilize in wireless mobile Ad-hoc environments, 
it must be adaptable to the various mobility conditions of this environment. To realistically predict the 
mobility behavior of a given host in the mobile wireless Ad-hoc networks, the mobility parameters of the 
other relative hosts also need to be taken into consideration. Therefore, the concept of the relative mobility 
is defined (as a weight) so as to characterize the mobility degree a mobile host exhibits with respect to its 
neighboring hosts. A host with a higher mobility degree is more prone to the unstable behaviors than a host 
with less mobility degree, and so the proposed multicast routing algorithm attempts to select the hosts with 
less relative mobility for constituting the multicast routes. To compute the relative mobility, the mobility 
profile of each host must be exchanged with its neighboring hosts. Since the mobility characteristics (speed 
and direction) of a mobile host vary with time, the host relative mobility is a random variable and may also 
change as the host moves. Therefore, the relative mobility of a host must be periodically reevaluated for 
adaptation to the future states of the network. The criterion upon which the proposed mobility-based 
multicast routing algorithm is based enables the algorithm to find the more stable routes from the multicast 
source to the receivers. This criterion is calculated on the basis of the mobility characteristics of each host 
and its neighbors (provides by GPS) as follows. 

Let )(tiυ  and )(tiθ  denote the mobility speed and movement direction of host ih  at time t , 

respectively. Thus, the relative mobility, between two mobile hosts ih and jh  at time t , ),,( tjiM R , is 
defined as 

))()(cos()()(2)()(),,( 22 tttttttjiM jijijiR θθυυυυ −⋅⋅−+=    

To achieve the average relative mobility between any pair ),( ji hh of the hosts, the instant relative 
mobility between the given hosts are averaged over the time as  

∑Κ

=Κ
=

1
),,(1),,(

k kRR tjiMTjiE    
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whereT denotes the time period over which the relative mobility is averaged, and Κ is the number of times 
the mobility information is calculated and disseminated to the other hosts during time interval T . Then, 
the relative mobility of a given host with respect to all its neighboring hosts can be achieved as 

∑ ∈∀
=

ij Nh R
i

R TjiE
N

TiD ),,(1),(  (4) 

where iN  denotes the set of all neighbors of host ih . Criterion ),( TiDR is periodically calculated and 

assigned to each host ih as a weight. 
 

4.3. The Proposed Algorithm  
As mentioned earlier, the aim of the proposed algorithm is to design a mobility-based multicast 

routing protocol for mobile Ad-hoc networks regarding the relative mobility of hosts. On the other side, the 
multicast routing problem in mobile Ad-hoc networks is equivalent to the NP-hard Steiner connected 
dominating set problem described in Section 2.2. Therefore, finding a near optimal solution to the 
minimum weight Steiner connected dominating set problem (problem stated in Section 3) where the 
relative mobility of each host is considered as the weight of the host, is a promising approach which we 
propose for mobility-based multicast routing. 

In this method, each mobile host immediately broadcasts its mobility information (mobility speed and 
movement direction) to its neighboring hosts, when it experiences a new epoch (or its mobility 
characteristics change). Each mobility epoch is considered as a (short) period of time in which both the 
mobility speed and the movement direction of a mobile host are constant. Then, each host calculates its 
relative mobility, RD , on the basis of the recently received information from its neighbors as described in 
Subsection 4.2. The relative mobility of each host (with respect to all its neighbors) is considered as a 
criterion to measure the mobility degree of the host, and to classify the hosts for finding the more stable 
multicast routes.   

Each host included in the Steiner connected dominating set (multicast route) is called a dominator 
host, otherwise a dominatee host. Indeed, a dominatee host is a one-hop neighbor of at least one host in the 
SCDS, if it is not included in the SCDS. In this method, upon receiving a multicast message, the dominator 
hosts re-broadcast it, while the dominate hosts only receive the message. Indeed the dominator hosts 
assume the role of the (intermediate) relay hosts. At each iteration of algorithm, the hosts which are 
selected as dominators form a route from the multicast source to each of the multicast receivers. The 
process of choosing the dominators is described later. The learning automata iteratively construct the 
multicast routes and update the action probability vectors until they find a near optimal solution to the 
WSCDS problem that guarantees the stability of the formed multicast route. Each host needs to maintain 
the following data structures to participate in the multicast routing process: 
• MAX_ITR, a stopping condition for the algorithm as a maximum number of iterations. 
• DOMINATOR_SET, the set of dominator hosts by which the WSCDS is formed. 
• DOMINATEE_SET, the set of hosts in which each member is a one-hop neighbor of at least one 

dominator host in the DOMINATOR_SET. 
• MRP, a threshold required for termination the multicast routing process as the product of the probability 

of choosing the dominator hosts in the DOMINATOR_SET. 
• PROB_VCT, a vector of the probability of choosing the members of the DOMINATOR_SET. 
• ITR_NUM, a counter which keeps the number of constructed DOMINATOR_SET. 
• MULTICAST_GRP, the set of hosts to which the multicast message must be sent. 
• MULTICAST_SRC, the host by which the multicast message is sent out.  
• TRSHLD, a dynamic threshold that contains the average weight of all constructed multicast routes 

(dominator sets), and it is initially set to zero. 
• DOM_SET_WGT, the weight associated with the chosen DOMINATOR_SET. 
•  DOM_SET_VCT, a vector including the average weight of the various dominating sets.  

When a multicast source decides to initiates a multicast session (or to send a multicast message to a 
multicast group), it inserts its one-hop neighbors' ID to the DOMINATEE_SET, activates its learning 
automaton, disables some actions according to rules I and II, chooses an action according to its action 
probability vector, generates an ACTIVATION message, and finally sends it to the mobile host 
corresponding to the chosen action. Each ACTIVATION message includes DOMINATEE_SET, 
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DOMINATOR_SET, MULTICAST_GRP, MULTICAST_SRC, THRESHOLD, DOM_SET_WGT, 
DOM_SET_VCT, PROB_VCT, and ITR_NUM. The multicast group members are included in the 
MULTICAST_GRP, and multicast source adds the probability of choosing the action to the PROB_VCT. 
The ACTIVATION message is described below.  
ACTIVATION MESSAGE 

When a given host ih  receives an ACTIVATION message, it inserts its ID as a new dominator host 
into the DOMINATOR_SET. To update the DOMINATEE_SET it adds its ID and its one-hop neighbors' ID 
to this set. The relative speed (or weight) of the activated host is added to the DOM_SET_WGT. The 
action-set of learning automaton iA  is updated by disabling some actions as described in Subsection 4.1. 

Now, if there exist actions to be chosen by learning automaton iA  and the DOMINATEE_SET does not 

include all the multicast group members, learning automaton iA is activated. It then chooses one of its 
actions as a new dominator host, updates PROB_VCT by adding the probability of choosing the action, and 
sends an ACTIVATION message to the chosen dominator host.  

To verify the stopping condition of the multicast routing process, the probability of choosing the 
recently selected DOMINATOR_SET is computed. This probability is defined as the product of the 
probability of choosing the dominator hosts contained in the DOMINATOR_SET. If this probability is 
greater than the certain threshold MRP or ITR_NUM exceeds a per-specified threshold MAX_ITR, 
dominator host ih  generates a MULTIICAST message including the last selected DOMINATOR_SET (or 
multicast route) and broadcasts it within the network. Otherwise (i.e., when the stopping condition is false), 
the average relative speed of the chosen DOMINATOR_SET (multicast route) is calculated and inserted in 
the DOM_SET_VCT. If the average weight of the selected DOMINATOR_SET is less than the dynamic 
threshold TRSHLD, and MULTICAST_GRP is a subset of the DOMINATEE_SET (i.e., all the multicast 
members are dominated by the selected DOMINATOR_SET) all the chosen actions of the activated 
automata (corresponding to the dominator hosts) are rewarded by sending back a REWARDING message, 
otherwise, they are penalized by sending back a PENALIZING message. For future iterations, the dynamic 
threshold TRSHLD is computed as the average relative speed of all the constructed dominator sets, and 
ITR_NUM is incremented by one. As the algorithm proceeds, the average relative speed of each 
DOMINATOR_SET (multicast route) tends to its actual value, and so the probability of rewarding the more 
stable routes increases as the probability of penalizing the unstable routes increases. Finally, the probability 
of choosing the multicast route with the minimum expected relative speed (i.e., the most stable multicast 
route) converges to one. In what follows, we describe the MULTICAST, PENALIZING and REWARDING 
messages which are used in an ACTIVATION message. The flowchart of the multicast routing process, 
when a given host receives an ACTIVATION message, is shown in Figure 3.   
MULTICAST MESSAGE 

A MULTICAST message includes the multicast routes selected during the last iteration. When host ih  

receives a MULTICAST message, it is noticed that the multicast routing process has been completed, and it 
thereafter uses the multicast routes contained in the MULTICAST message to send the multicast packets to 
the given multicast members. It will then terminate the MULTICAST ROUTING procedure. 
REWARDING MESSAGE 

Let ji,α denotes the chosen action by learning automaton iA . When dominator host ih  receives a 
REWARDING message, it updates its action probability vector using the learning algorithm given in 
equation (5), under which the chosen action (i.e., ji,α ) is rewarded, and the other actions ( ki,α , for all 

jk ≠ ) are penalized.       

)](1[)()1( ,,, npanpnp jijiji −+=+ , 

jknpanp kiki ≠∀−=+ )()1()1( ,, . 
(5)  

where jip , is the probability with which host ih  chooses host jh as a dominator host.  
After rewarding the chosen action, the scaled action probability vector must be updated once again 

(or rescaled) by enabling all the disabled actions according to the rescaling method described in Section 2.5 
on the variable action-set learning automata. In this case, the multicast source starts a new iteration as 
described earlier. 
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PENALIZING MESSAGE 

Since the reinforcement scheme by which the learning automata update their action probability 
vectors is IRL − , the action probabilities of the activated learning automata (corresponding to the dominator 
hosts) remain unchanged when they receive a PENALIZING message. In this case, the disabled actions of 
each activated learning automaton are enabled again, and the multicast source starts a new iteration upon 
receiving a PENALIZING message. 

 
Figure 3. Flowchart of the multicast routing process, when a given host receives an ACTIVATION message 

 
An Example 

Figures 4(a)-4(i) illustrate the step-by-step process of the proposed multicast routing algorithm for an 
example Ad-hoc network. The Ad-hoc network graph has 12 nodes (hosts) and 20 edges. In these figures, a 
black circle represents a dominator host and the number beside it represents the host ID. An encircled node 
represents the multicast source. The set near a host represents the action-set of the learning automaton 
corresponding to it. For instance in Figure 4(c), since hosts 2, 3 and 5 are within the transmission range of  
the multicast source, the action-set of the learning automaton corresponding to the multicast source 
contains three actions for choosing hosts 2, 3 and 5 as dominators. A crossed action represents a disabled 
action which can not be temporarily chosen by the learning automaton (e.g., action 3 in Figure 4(c)). A 
grey circle represents a dominatee host, and so a white circle represents a host that it is neither a dominator 
nor a dominatee. Letters “S” and “R” near a host represent a multicast source or a multicast receiver, 
respectively. In this example, host 1 is the multicast source and hosts 7, 11 and 12 are the multicast group 
members. An arrow represents a message and the text beside it represents the type of the message. A 
random variable is associated with each host for generating the host relative speed at random. In what 
follows, three possible execution scenarios are discussed to construct the multicast routes in the first three 
iterations of the proposed multicast routing algorithm.  
• As shown in Figure 4(a), host 1 is going to hold a multicast session, and to send the multicast messages 
to hosts 7, 11, and 12. It adds its one-hop neighbors' ID to the DOMINATEE_SET. Hosts 2, 3 and 4 form 
the initial action-set of the learning automaton (i.e., }5,3,2{ ) corresponding to host 1. Applying rule II to its 
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action-set, host 3 is disabled, and host 1 randomly chooses one of its remaining actions, according to the 
scaled action-set }5,2{ . Let us assume that host 2 to be chosen as the second dominator host. Host 1 sends 
an ACTIVATION message to host 2 (see Figure 4(c)). 
• Host 2 receives the ACTIVATION message and adds its ID to the DOMINATOR_SET and its one-hop 
neighbors' ID to the DOMINATEE_SET. The relative speed of host 1 is added to the DOM_SET_WGT. We 
assume that the sampled relative speed of host 1, at this time, is 5. The updated dominator and dominatee 
sets are }2{  and }7,6,5,4,3,2,1{ , respectively. As described earlier, the action-set of the current dominator 
host is updated by applying the action disabling rules. Thus, host 2 chooses the second dominator host 
among hosts 4, 6, and 7 at random. It then sends an ACTIVATION message to the selected host (see Figure 
4(c)). 
• Assume that host 2 chooses host 7, host 7 chooses host 8, and finally host 8 chooses host 9 (see Figures 
4(d)-4(f)). Host 9 receives the ACTIVATION message, updates the DOMINATOR_SET, 
DOMINATEE_SET, DOM_SET_WGT as well as its action-set. It terminates the current iteration, when it 
finds out that there are no more actions to be chosen (see Figure 4(g)) and the DOMINATEE_SET includes 
all the multicast members too. We assume that the relative speed of the dominator hosts 7, 8, and 9 are 4, 5, 
and 6, respectively. Therefore, at the end of the first iteration, DOMINATOR_SET is }9,8,7,2{  and 
DOM_SET_WGT is 20. 
• The stopping condition is false. Therefore, host 9 computes the average relative speed of the selected 
DOMINATOR_SET and updates DOM_SET_VCT. It then compares this average with the dynamic 
threshold TRSHLD. Since this is the first iteration of algorithm, the TRSHLD is zero and less than the 
average relative speed of the DOMINATOR_SET. As a result, host 9 generates a PENALIZING message 
and sends it back to the dominator hosts (see Figure 4(h)). Note that in Figures 4(h)-4(j), the arrows only 
show the shortest paths to the dominator hosts for the flooded REWARDING or PENALIZING message. 
• After receiving the PENALIZING message, all activated learning automata (corresponding to the 
dominator hosts) penalize their chosen actions by a IRL −  reinforcement scheme, and then enable the 
disabled actions. This decreases the probability of choosing the selected DOMINATOR_SET (i.e., 

}9,8,7,2{ ) for future iterations. 
• When the multicast source receives the PENALIZING message, it updates its action-set and starts a new 
iteration.   

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 
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(g) 

 
(h) 

 
(i) 

 
(j) 

Figure 4. 
At the beginning of each iteration, DOMINATOR_SET, DOMINATEE_SET and PROB_VCT are 

reset.  
• The multicast source starts the second iteration and chooses host 5, host 5 chooses host 9, and host 9 
chooses host 8. Let us assume that, at the second iteration, the relative speed of hosts 5, 9, and 8 is 3, 5, and 
2, respectively. The value of the dynamic threshold TRSHLD is 20 (i.e., the average relative speed of the 
previously selected dominator sets), and the relative speed of the current DOMINATOR_SET is 10. 
Therefore, host 8 generates a REWARDING message and sends it back to the selected dominator hosts (see 
Figure 4(i)). As described earlier, the dominator hosts reward their selected actions and then enable the 
disabled actions. Thus, the probability of choosing this dominator set increases. At each iteration, the 
TRSHLD is averaged over the relative speed of all previously selected dominator sets, and so it is now 15. 
•  At the third iteration, we assume that the multicast source chooses host 5, host 5 chooses host 4, host 4 
chooses host 8, host 8 chooses host 10, and eventually host 10 chooses host 12. We also assume that the 
relative speed of these hosts is 4, 5, 7, 5, and 4. Thus, the average relative speed of the selected 
DOMINATOR_SET (i.e., 25) is larger than the TRSHLD (i.e., 15), and so the selected dominator set must 
be penalized (see Figure 4(j)). 
• The process of constructing the multicast routes is repeated until the stopping condition is satisfied. At 
each iteration, the selected multicast route is rewarded, if its average relative speed is less than the dynamic 
threshold TRSHLD, and penalized otherwise. As the algorithm proceeds, the average relative speed of each 
multicast route tends to its expected value. Finally, the probability of choosing the multicast route with the 
minimum expected relative speed (i.e., the most stable multicast route) converges to one. That is, the 
multicast route which is selected before the algorithm stops is the multicast route with the minimum 
expected relative speed among all the multicast routes. This multicast route is broadcasted through the 
network by sending a MULTICAST message. 
 

5. Convergence Results 
In this section, we study the convergence results of the distributed learning automata-based algorithm 

presented in the previous section, when all learning automata use IRL −  learning algorithm and operate 
under stationary global and exclusive environments. For this purpose, using the weak convergence 
theorems the proposed algorithm is first approximated by an ordinary differential equation (ODE). Then, it 
is shown that the resulting ODE (and hence the proposed algorithm) converges to the solution of the 
optimization problem. Before approximating ODE, we present the some definitions and preliminary 
lemmas. 
Definition 7. Let 
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denotes the set of all possible probabilistic configurations of the distributed learning automata, where ip is 

a im -dimensional vector which denotes the probability vector of learning automaton iA , and im denotes 

the number of actions can be taken by learning automaton iA .    
Definition 8. Let 

  )()](|)1([)( kpkpkpEkp ijijij −+=Δ . 

denotes the drift of the j th component of the action probability vector of automaton iA , which is defined 

as the increment in the conditional expectation of ijp . 

Lemma 1. The drift )(kpijΔ for the proposed learning algorithm defined in equation (5) is 
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Proof. Define 
  )()](|)1([)( kpkpkpEkp −+=Δ . 

Since 0)}({ ≥kkp is a Markov process whose dynamics depend on a , and )(kβ depends only 

on )(kp and not on k explicitly, then )(kpΔ can be given by a function of )(kp . Now using 

the IRL − algorithm given in equation (5), the components of )(kpΔ can be obtained as follows. 
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From the definition of (.)f , we have 
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Differentiating both sides of equation (7), we obtain  
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Substituting equation (8) in equation (6), we have 

(8) )()()()(
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f

p
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∂
∂

−
∂
∂

=Δ ∑ ≠
. 

and hence the proof of the lemma.                                                                                              ■ 
Remark 1. It can be seen that ijpΔ is not directly a function of the time step k , and so can be rewritten as  
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where ijp  denotes the probability of choosing the j th action of learning automaton iA , and 

)}(,),(),({)(
21

kpkpkpkp
n

K= denotes the state of the team of the learning automaton at instant k .      

For each 0>a , 0)}({ ≥kkp is a Markov process whose dynamics depend on a , and can be 
described by the following difference equation 

)10( ))(),(),(()()1( kkkpaGkpkp βα+=+  
where )}(,),(),({)( 21 kkkk nαααα K= denotes the set of actions selected by the distributed learning 

automata at instant k , )}(,),(),({)(
21

kkkk
n

ββββ K= denotes the set of reinforcement signals 

emitted from the environment in response to the chosen actions, and (.,.,.)G is the learning function 
(defined by equation (5) ) by which the action probabilities are updated.     

Define a piecewise-constant interpolation )(tpa of )(kp as 

)11(  ])1(,[     )()( akkatifkptpa +∈=  
where a is the learning parameter used in equation (5). Now consider the sequence }0:)({ >⋅ apa . We 
are interested in the limit of this sequence as a converges to zero. The following theorem gives the limiting 

behavior of ap as 0→a .  

Theorem 1. Given the sequence of interpolated processes }0:)({ >⋅ apa , and )0()0(0 ppa ==Χ . 

The sequence )}({ ⋅ap weakly converges to )(⋅Χ  as a  converges to zero, where )(⋅Χ is the solution of the 
following ODE, 

)12(   )0()0(,)( ps
dt

d
ij

ij =ΧΧ=
Χ  

Proof. The theorem above is a particular case of the weak convergence theorem [61]. The following 
conditions are satisfied by the learning algorithm given in equation (5), and equivalently equation (10). 
I ) 0))}1(),1((),({ ≥−− kkkkp βα is a Markov process. 

II ) ))1(),1(( −− kk βα  takes values in a compact metric space. The outputs of the learning automata are 
from a finite set, and the reinforcement signals take values from the closed interval ]1,0[ .  

III ) The function (.,.,.)G (defined in equation (10)) is bounded, continuous and independent of a . 

IV ) If pkp =)(  is a constant, then 0))}(),({( ≥kkk βα  is an independent identically distributed 

sequence. Let pM denotes the distribution of this process. 
V ) The ODE given in equation (12) has a unique solution for each initial condition )0(Χ . 

Hence using the weak convergence theorem [61], the sequence (.)}{ aP converges weakly as 
0→a  to the solution of the following ODE   

  )0()0(,)( ps
dt

d
=ΧΧ=

Χ  

where ))(),(),(()( kkkpGEps p βα= , and pE denotes the expectation with respect to the invariant 

measure pM . 
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Since for pkp =)( , sequence ))(),(( kk βα is an independent identically distributed sequence 

whose distribution depends only on p and the rule under which the selected actions (or multicast routes) 
are rewarded. Therefore, we have 

  ])(|))(),(),(([)( pkpkkkpGEps == βα  

where )(⋅s is a vector whose components, ijs , are defined as given in equation (9), and 

hence the theorem.                                                                                                                  ■  
This theorem enables us to understand the long term behavior of )(kp . It can be shown that the 

probability with which )(kp follows the trajectory )(tΧ , of the ODE given in equation (12), is close to 
one (with a small error) as a decreases. That is, this theorem implies that for small fixed learning 
parameters, the deviation of )(kp  from )(⋅Χ  over finite time interval will be made as small as possible. 

Theorem 2. For large values of k and small enough values of learning rate a , the asymptotic behavior of 
)(kp generated by the distributed learning automata can be well approximated by the solution to the ODE  

given in equation (12) with the same initial configuration. 
Proof. The interpolated process 0)}({ ≥t

a tp  is a sequence of random variables that takes values from 
nmmmD ××× L21 , where nmmmD ××× L21 is the space of all functions that, at each point, are continuous on the 

right and have a limit on the left over ),0[ ∞  and take values in Κ , which is a bounded subset of 
nmmm ×××ℜ L21 . Let (.)Th  be a function over nmmmD ××× L21 and given by 

  ||)()(||sup)(
0

ttYYh
Tt

T Χ−=
≤≤

  
for every ∞<T . It must be shown that with probability increasingly close to one as a  decreases, 
)(kp follows the solution of the ODE given in equation (12), )(tΧ , with an error bounded above by 

some fixed 0>ε . This result can be specialized to characterize the long term behavior of )(kp , when 

the initial configuration, )0(p , is in the neighborhood of an asymptotically stable compatible 

configuration. Let 0p  be the equilibrium point to which the solution of the ODE given in equation (12) 

when the initial condition is )0(p . 
Because of the weak convergence result of theorem 1, we have 

)13( 
0

)]([)]([
⎯→⎯

ΧΕ⎯→⎯Ε
a

T
a

T hph    

where Χ is the solution to the ODE defined in equation (12). Let 0p be the equilibrium point to which the 

solution of the ODE converges, when 0)0( Χ=Χ is the used initial condition. The weak convergence 
result given in equation (13) along with the nature of interpolation given in equation (11) imply that for the 
given initial configuration, any 0>ε and integers 1k and 2k , where ∞ppp 210 kk , there exists a *a  
such that 

  ∗

≤≤
<∀=⎥⎦

⎤
⎢⎣

⎡ >− aapkpprob
kkk

        0||)(||sup 0

21

ε  

Since 0p is an asymptotically stable equilibrium point of the ODE given in equation (12), then for all 

initial configurations in small neighborhood of 0p , the distributed learning automata converges to 0p , 

and completes the proof.                                                                                                           ■ 
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6. Numerical Results 
To study the performance of the multicast routing algorithms, we have conducted several simulation 

experiments (Experiments I-IV) in two sets. In the first set of experiments, we investigate the impact of the 
host mobility on the performance of the algorithms. In these simulation experiments, the multicast group 
size is fixed at 10, and the host speed varies from 10 to 70 (km/h). The second set of the simulation 
experiments is aimed at evaluating the scalability of the multicast routing algorithms, and so in these 
experiments, the host mobility speed is fixed at 15 (km/h) and the multicast group size changes from 5 to 
30. In these experiments, the performance of the various multicast routing algorithms is evaluated in terms 
of the following metrics of interest. 
• Packet delivery ratio. This metric is defined as the number of data packets delivered to the multicast 
members over the number of data packets supposed to be received by multicast members. This ratio 
represents the efficiency of routing in our proposed method. 
• End-to-end delay. The time elapsed between the instant when the source has data packet to send and the 
instant when the destination receives the data. Note that if no multicast route is available, the time spent for 
building a route (route acquisition latency) is also included in the end-to-end delay. In this case, this metric 
is defined as the time required for multicast route creation as well as the time required for transmitting the 
multicast packets. 
• Number of total transmitted packets per data packet delivered (TP/DPD). The number of all packets (data 
and control packets) transmitted divided by data packet delivered to destinations. This metric shows the 
efficiency in terms of channel access and is very important in Ad-hoc networks since link layer protocols 
are typically contention-based. 
• Multicast route Lifetime. The time interval during which the multicast routes remain connected. In 
mobile Ad-hoc networks, the network topology changes, caused by the host movement, shortens the 
lifetime of the links. To find the stable routes, these movements should be exactly estimated. This metric 
represents the efficiency of each algorithm to predict the realistic mobility behavior of a host.   

To show the efficiency of our proposed multicast routing algorithm, we compare its results with those 
of the basic ODMRP proposed by Gerla et al. [2], two enhanced versions of the ODMRP proposed by Su 
et al. [1], hereafter referred to as Su-1 and Su-2, and the mobility-based hybrid multicast routing protocol 
proposed by An and Papavassiliou [4], hereafter referred to as MHMR.  

In our simulation scenarios, a mobile Ad-hoc network consisting of 50 mobile hosts is modeled in 
which the mobiles are randomly and uniformly distributed within a square simulation area of size 
1000(m)×1000(m). Each host is modeled as an infinite-buffer, store-and forward queuing station, and is 
assumed to be aware of its mobility information with the aid of a reliable positioning system. The IEEE 
802.11 DCF [62] (Distributed Coordination Function) with CSMA/CA (Carrier Sense Multiple 
Access/Collision Avoidance) is used as the medium access control protocol, and two ray ground as the 
propagation model. The wireless hosts communicate through a common broadcast channel of capacity 
2(Mb/s) using omnidirectional antennas. All mobile hosts have the same radio propagation range of 
250(m). CBR (Continuous Bit Rate) traffic sources are used to generate the traffics with a rate of 20 
packets per second. The packet size is 512 bytes. In our experiments, MRP is set to 0.9, and MAX_ITR is 
set to 100. Mobility characteristics change at the beginning of each epoch and remain constant during the 
epoch. Each multicast group is associated with a multicast source, and the multicast members and source 
are randomly chosen with a uniform distribution. The multicast members join the group at the start of the 
multicast session and remain as members throughout the session. Each experiment is run on 100 connected 
graphs and the results, presented in this paper, are averaged over these runs.     
Experiment I. In these experiments, the packet delivery ratio is shown as a function of the host mobility 
speed. It is clear from Figure 5 that, the packet delivery ratio of ODMRP and MHMR rapidly degrades as 
the mobility speed increases. Su-1 and Su-2 are more stable, and the packet delivery ratio of MMR-LA 
more slowly decreases compared with the other algorithms. As shown in Figure 5, ODMRP has the lowest 
packet delivery ratio, and MMR-LA provides the highest packet delivery ratio. This is due to the fact that, 
it uses the relative speed of the host (with respect to all its neighbors) as a criterion for selection of the 
routes. Therefore, it chooses the more stable routes that are not affected by the host mobility. In algorithms 
Su-1 and Su-2, since they reconstruct the routes in advance of the topology changes, most data are 
delivered to the multicast receivers without being dropped. Therefore, they show a good performance in 
highly dynamic environments, and are ranked below MMR-LA. 
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Figure 5. Packet delivery ratio of the multicast routing algorithms as a function of the mobility speed  

 
The packet delivery ratio of the multicast routing algorithms as a function of the multicast group size 

is shown in Figure 6. As shown in this figure, the packet delivery ratio of all algorithms is slightly 
improved as the multicast group size increases. Since in MMR-LA the dominator hosts broadcast the 
multicast packets to all its neighboring hosts, MMR-LA is robust to multicast group size. Like those given 
in Figure 5, here MMR-LA has the highest packet delivery ratio, and Su-1 and su-2 lag behind. ODMRP 
has the lowest delivery ratio and MHMR performs only slightly better that ODMRP. 

0.85

0.9

0.95

1

5 10 15 20 25 30
Multicast Group Size

Pa
ck

et
 D

el
iv

er
y 

R
at

io

0.85

0.9

0.95

1
5 10 15 20 25 30

MMR-LA
Su-2
Su-1
MHMR
ODMRP

 
Figure 6. Packet delivery ratio of the multicast routing algorithms as a function of the multicast group size  

 
Experiment II. Figure 7 shows the end-to-end delay of each multicast routing algorithm as a function of 
the mobility speed, and Figure 8 shows it as a function of the multicast group size. In these experiments, 
we varied the mobility speed from 10(km/h) to 70(km/h) and measured the end-to-end delay of each 
algorithm. As shown in these figures, Su-2 and MMR-LA have the shortest end-to-end delay, and ODMRP 
performs worst compared with the others. In ODMRP, multicast source floods the Join Request and waits 
for a certain time before sending data until the routes are established among the multicast members. But, in 
Su-2, multicast source floods the Join Data before they form the forwarding groups. Therefore, in Su-2, the 
route acquisition latency is eliminated and the packets are delivered to the multicast receivers in a shorter 
time. MMR-LA finds the more stable routes, and this causes a longer delay. On the other side, it minimizes 
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the size (number of relay hosts) of the multicast routes also. Generally, it sends the multicast packets in a 
reasonable delay. 
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Figure 7. End-to-end delay as a function of the mobility speed 
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Figure 8. End-to-end delay as a function of the multicast group size 

 
Experiment III. Figure 9 shows the number of total transmitted packets per data packet delivered 
(TP/DPD) as a function of the mobility speed for each of the multicast routing algorithms. As mentioned 
earlier, this metric shows the efficiency of the algorithm in terms of the channel access. Since the channel 
assignment is typically contention-based in wireless mobile Ad-hoc networks, this metric is important to 
show the performance of algorithms. The results given in Figure 9 show that MMR-LA, Su-1, and Su-2 
have the same TP/DPD, and considerably outperform the other algorithms. This figure also shows that 
ODMRP performs worst among the others, and MHMR is slightly better than ODMRP. As shown in 
Figure 5, the number of data packets delivered decreases as host mobility speed increases. It can be seen 
that the amount of the control bytes also decreases as the mobility speed increases. Therefore, the TP/DPD 
must remain unchanged. But, we see that, in most cases, it slightly increases as the mobility speed 
increases. This is due to the fact that more control packets must be sent to adapt to the host mobility speed, 
and so the total number of transmitted packets increases as the host speed increases. Figure 10 shows the 
TP/DPD of each algorithm as a function of the multicast group size. From Figure 6, we observe that the 
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packet delivery ratio slightly increases as the multicast group size increases. On the other hand, the ratio of 
the transmitted packets to the number of multicast members decreases as the group size increases. 
Therefore, as shown in Figure 10, for all multicast algorithms, the number of all packets transmitted per 
data packet delivered slightly decreases as the group size increases. 
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Figure 9. The number of total transmitted packets per data packet delivered (TP/DPD) as a function of the 

mobility speed 
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Figure 10. The number of total transmitted packets per data packet delivered (TP/DPD) as a function of the 

multicast group size 
 
Experiment IV. Among the studied algorithms, MHMR, Su-2, and MMR-LA consider the mobility-
prediction issues for constructing the stable multicast routes. As described earlier, Su-2 uses the route 
expiration time as the route selection criterion, and MHMR utilizes the concept of the relative mobility to 
characterize the mobility degree of a host. Su-2 and MHMR predict the motion behaviors of a host based 
on the samples taken from the mobility parameters during a single epoch. Indeed, these methods assume 
that the movement characteristics are constant, while these parameters are stochastic and vary with time. 
For this reason, they are not capable of predicting the long-term motion behavior of a host. MMR-LA 
samples the mobility characteristics in different epochs to estimate their expected values. That is, MMR-
LA learns the mobility distribution as the algorithm proceeds. Therefore, it finds the more stable routes that 
stay connected for a longer time. The lifetime of the multicast routes constructed by the various algorithms 
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is presented in Figure 11. As shown in this figure, MMR-LA significantly outperforms the others and 
ODMRP performs worst in terms of the route lifetime. The routes constructed by Su-2 are more stable than 
those of MHMR, but their lifetime is much shorter compared with MMR-LA. From Figure 11, it is obvious 
that the route lifetime is degraded as the mobility speed increases. This is because the wireless connections 
between the hosts become looser as the host speed increases. The number of the intermediated hosts 
required for relaying the multicast packets increases as the number of the multicast members increases. On 
the other side, the duration of the multicast route is directly proportional to the number of the relay nodes. 
Therefore, as shown in Figure 12, the multicast route duration is increases as the multicast group size 
increases.  
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Figure 11. The lifetime of the multicast route as a function of the mobility speed  
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Figure 12. The lifetime of the multicast route as a function of the multicast group size 

 
7. Conclusion 

In this paper, we proposed a multicast routing algorithm for wireless mobile Ad-hoc networks in 
which the expected relative mobility of each host was estimated to predict its motion behavior, and the 
Steiner connected dominating set was exploited to form the virtual multicast backbone. In this scheme, a 
stochastic version of the minimum Steiner connected dominating set problem in weighted networks, where 
the expected relative mobility of each host is considered as its weight was introduced, and proposed as a 
promising approach to solve the multicast routing problem. The experiments showed the superiority of the 



ACCEPTED MANUSCRIPT 
Manuscript 

24 

proposed multicast routing algorithm over the existing methods in terms of the packet delivery ratio, 
multicast route lifetime, and end-to-end delay. We presented a strong convergence theorem in which the 
convergence of the proposed distributed learning automata-based algorithm to the optimal solution was 
proved. It was shown that the most stable multicast route is found with a probability as close as to unity by 
the proper choice of the parameters of the distributed learning automata. 
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