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Abstract

Wireless sensor networks (WSNs) have become an enabling technology for a

wide range of applications. In contrast with traditional scenarios where static

sensor nodes are densely deployed, a sparse WSN architecture can also be used

in many cases. In a sparse WSN, special mobile data collectors (MDCs) are

used to gather data from ordinary sensor nodes. In general, sensor nodes do

not know when they will be in contact with the MDC, hence they need to

discover its presence in their communication range. To this end, discovery

mechanisms based on periodic listening and a duty-cycle have shown to be

effective in reducing the energy consumption of sensor nodes. However, if not

properly tuned, such mechanisms can hinder the data collection process. In this

paper, we introduce a Resource-Aware Data Accumulation (RADA), a novel and

lightweight framework which allows nodes to learn the MDC arrival pattern, and

tune the discovery duty-cycle accordingly. Furthermore, RADA is able to adapt

to changes in the operating conditions, and is capable of effectively supporting

a number of different MDC mobility patterns. Simulation results show that our

solution obtains a higher discovery efficiency and a lower energy consumption

than comparable schemes.
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1. Introduction

Wireless sensor networks (WSNs) have become an enabling technology for

a wide range of applications [1]. Typically, a large number of sensor nodes are

deployed over a geographical area. Sensors use multi-hop communication to send

data acquired from the physical environment to a sink node or to an access point

(AP) in the infrastructure. However, a dense WSN is not a requirement for many

application scenarios, such as monitoring of weather conditions in large areas, air

quality in urban scenarios, terrain conditions for precision agriculture, and so on.

In this case, it is possible to exploit a sparse wireless sensor network, i.e., a WSN

where the density of nodes is so low that they cannot communicate each other.

In order to make communication feasible, data collection in sparse WSNs can

be accomplished by means of mobile data collectors (MDCs) [2, 3]. MDCs are

special mobile nodes responsible for data gathering and/or dissemination. They

are assumed to be powerful in terms of data storage and processing capabilities,

and are not energy constrained, in the sense that their energy source can be

replaced or recharged easily. An MDC can serve either as a mobile sink (MS),

a mobile node which is also the endpoint of data collection, or as a mobile relay

(MR), which carries data from sensors to a sink node or an infrastructure AP.

In either role, typically the MDC moves autonomously in the WSN [4].

Sparse WSNs with MDCs have many advantages over traditional dense

WSNs [5]. First, costs are reduced, since fewer nodes can be deployed, as there

is no need for a connected network. Second, as data is collected directly by the

MDC from the sensor nodes, reliability is improved due to reduced congestion

and collisions. Finally, data collection by MDC can extend the WSN lifetime, as

the energy consumption is spread more uniformly in the network with respect

to a static WSN, where the nodes close to the sink are usually more loaded

than the others. However, data collection in sparse WSNs with MDCs also in-

troduces several significant challenges, including energy-efficient MDC discovery

and data collection.
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A possible approach for energy-efficient data collection in sparse WSNs with

MDCs requires that sensor nodes use a duty-cycle to discover presence of the

MDCs in their communication range [4]. Moreover, the duty-cycle can be tuned

according to the MDC arrivals, e.g., a sensor node can use a higher duty-cycle

when there is a high probability that a MDC is in the communication range.

This requires mechanisms to learn the arrival pattern of the MDC, even in the

presence of uncertainty, and use that knowledge to adaptively tune the duty-

cycle. To this end, solutions based on reinforcement learning [6] can be quite

effective. In fact, reinforcement learning allows a sensor node to learn from

the environment by merely interacting with it. Specifically, learning is based

on the feedback from tasks (i.e., actions) performed by a node at any given

state. A task can be selected either randomly or according to the accumulated

knowledge, and the corresponding outcome is evaluated in terms of reward. A

high reward means that the task is suitable to be executed in a given state, thus

increasing the probability that the task will also be executed again in the future.

As a consequence, reinforcement learning allows on-line learning and run-time

adaptation by continuous interactions and feedback from the environment.

In this paper, we address the problem of data collection in sparse WSNs with

MDCs, with focus on energy-efficient discovery of the mobile element. To this

end, we propose the Resource-Aware Data Accumulation (RADA) framework,

which exploits reinforcement learning to predict MDC arrivals and to adaptively

tune a sensor node’s duty-cycle for discovering the MDC. Our approach is quite

simple, i.e., it demands minimal computational resources, and does not require

any model of the environment. Therefore, it is very suitable for implementa-

tion on resource-constrained sensor nodes. RADA is based on discovery tasks

with different duty-cycles, and on a state representation which is general enough

to accommodate different MDC mobility patterns. As a consequence, RADA

can be used in many sparse WSNs scenarios – including habitat monitoring

and precision agriculture – without the need for application-specific strategies.

We show through simulation experiments that the proposed solution can au-

tonomously adapt to different application scenarios and diverse MDC mobility
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patterns, with a low energy-consumption and a high discovery efficiency.

The remainder of the paper is organized as follows. Section 2 overviews the

related work, while Section 3 presents the reference network scenario and the

considered mobility patterns. Section 4 describes the Distributed Independent

Reinforcement Learning (DIRL) approach used for the design of RADA, which

is presented in Section 5. Section 6 outlines the simulation setup, then Section

7 presents the experimental results. Finally, Section 8 concludes the paper.

2. Related work

Solutions for adaptive resource management and energy-efficient data collec-

tion in WSNs have already been considered in the literature. In the following,

we provide an overview of the most relevant approaches for adaptive data col-

lection, with particular focus on WSNs with mobile elements.

MDCs have been introduced first in opportunistic networks through the

message ferrying approach [7]. In this context, a general framework for power

management has been addressed by [8], and a knowledge-based approach to

address the mobility pattern of the MDC has been proposed in [7]. However,

as the proposed approach is devised for opportunistic networks, it cannot be

used without being redesigned in the scenario considered in this paper. Many

subsequent papers specifically focused on WSNs with MDCs, including [4, 9–

12]. However, they assume that the operating parameters are chosen prior to

deployment, and do not change with time. Clearly, these approaches lack flexi-

bility, as they require an a priori characterization of some network parameters

(e.g., the mobility pattern of the MDC, the duration of contacts or the message

generation rate). In addition, the chosen parameters cannot adapt to changing

operating conditions. An adaptive data collection scheme has been considered

in [13]. However, it does not address MDC discovery, but assumes that some

information on the MDC mobility pattern is available prior to deployment. In

this work, instead, we provide an adaptive strategy which can be used even

when there is limited knowledge on the mobility pattern of the MDC.
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Knowledge-based approaches for data collection in WSNs with MDCs have

been proposed in [14, 15]. In [14] the WSN is assumed to be rather dense, so that

nodes can organize into clusters. Within each cluster, a specific node operates as

a proxy, i.e., it collects data from other nodes in the cluster and relays them to

the MDC. After detecting the presence of the MDC in their proximity, proxies

initiate a reinforcement-based routing process so that messages are relayed to the

destination while it traverses the network. Instead, [15] exploits reinforcement

learning for discovery purposes, in the context of sparse WSNs where mobile

nodes act as peers. Specifically, nodes scan for neighbors and use the number of

encounters as a reward. The reward is mapped to a time-based domain. Then,

sensor nodes perform discovery according to the likelihood of the other peers

to be in contact, as per their energy budget. Although both [14] and [15] use

reinforcement learning for data collection, they do not specifically address the

problem of sparse WSNs with MDCs. In fact, the approach in [14] is more

focused on routing, and assumes that the network is dense enough to form

cluster of nodes. Even though the solution in [15] can also be applied to sparse

WSNs, it has been specifically designed for sensor nodes acting as mobile peers.

Instead, we consider WSNs where ordinary sensor nodes are static and only a

limited number of special nodes (i.e., the MDCs) collect data in the network. In

addition, we exploit an approach based on Q-learning [16], while the proposal

in [15] is based on simple reinforcement learning. Finally, we design a solution

which is flexible enough to support different mobility patterns in contrast to

that in [15] which is optimized for multiple MDCs obeying certain schedules.

Adaptive data collection in WSNs has also been investigated by means of

middleware solutions for proactive resource adaptation [17]. Among them, many

solutions such as [18–20] actually focus on dense WSNs where nodes are static

(or at most have a limited mobility), and assume some coordination between

nodes which is difficult to achieve in sparse WSNs. To the best of our knowl-

edge there are only a few solutions explicitly targeted to WSNs with mobile

elements. Among them, Impala [21] is a middleware architecture proposed for

optimizing the energy efficiency and reliability of WSN applications. However,
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Impala is targeted to scenarios where all nodes are mobile and act as peers with

focus on application adaptation and update, rather than on resource alloca-

tion. Instead, the TinyLime [22] middleware has been proposed for the specific

scenario of sparse WSNs. TinyLime provides mechanisms to perform data ag-

gregation and tune the activity of nodes in order to save energy. However, the

focus of TinyLime is on the proposed programming abstraction rather than on

adaptation and resource management. In contrast, in this paper we propose an

adaptive middleware approach to resource allocation for energy-efficient data

collection in sparse WSNs.

In this paper, we extend the work in [23] by providing a more general solution

which can be used for several different mobility patterns. Our scheme, which

also supports additional features as well as multiple MDCs, is shown to be more

energy-efficient than other approaches already proposed in the literature.

3. System Overview

In this section, we first describe the reference scenario and the different

phases involved in data collection, along with the corresponding communica-

tion protocols. Next, we provide an overview of some significant MDC mobility

models which will be later exploited as a reference for the design of our frame-

work.

3.1. Reference network scenario

The reference network scenario is illustrated in Figure 1(a). Specifically, we

assume that the network is sparse, i.e. at any time the MDC can communicate

with at most one sensor node and vice versa (even when multiple MDCs are

simultaneously present).

In the discussion below, we consider the communication between one MDC

and an arbitrary static node in a sparse WSN. Data collection takes place only

during a contact, i.e., when a sensor node and the MDC are within the com-

munication range of each other. The area within the communication range of
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Figure 1: Reference scenario (a) and an example of contact (b)

a sensor node is called contact area, and the overall time spent by the MDC

within the contact area is called contact time. We also assume that the MDC

mobility is not controllable, but has some periodicity. We further define as tour

the smallest time interval after which the arrival pattern repeats [14] and inter-

contact time as the actual time elapsed from the beginning of a contact to the

beginning of the subsequent one.

Overall, the data collection process can be split into three main phases:

discovery, data transfer, and sleep [8]. A sensor node enters the discovery phase

for the timely detection of the MDC, as shown in Figure 1(b). Due to power
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management mechanisms and the unreliability of the communication channel,

the successful MDC detection by a sensor node is not immediate, but rather

delayed by a discovery time denoted by td. Upon detecting the MDC, the node

switches from discovery state to data transfer state, and starts transmitting data

to the MDC. Due to the necessity of a discovery process, a node cannot exploit

the whole available contact time for data transfer. The portion of the contact

time that can be actually used for subsequent data transfer is called residual

contact time and is referred to as tr. At the end of the data transfer phase, the

node may switch to the discovery state again in order to detect the next MDC

arrival. However, if the MDC has a (even partially) predictable mobility, a node

can exploit this knowledge to further reduce its energy consumption [8]. In this

case, the node can go to sleep until the next expected arrival of the MDC.

Similar to [4], we will assume an asynchronous discovery protocol. In detail,

the MDC periodically sends special messages called beacons to advertise its

presence in the surrounding area. The duration of a beacon message is given

by TBD, and subsequent beacons are spaced by a beacon period TB . In order to

save energy during the discovery phase, the node operates with a duty-cycle δ,

whose active time TON ≥ TB + TBD so that a complete beacon can be received

during the active time. This is needed since the active time of a sensor node is

independent of the MDC presence in the contact area.

A node enters the data transfer phase upon receipt of a beacon from the

MDC. While in this phase, the node remains always active to exploit the con-

tact as much as possible. On the other hand, the MDC enters the data trans-

fer phase as soon as it receives the first message sent by a sensor node, and

stops transmitting beacons. Similar to [4], we assume that the communica-

tion protocol adopted for the data transfer phase is selective repeat [24], i.e., a

window-based and an Automatic Repeat reQuest (ARQ) protocol with selec-

tive retransmission, whose window size is assumed to be equal to W messages.

Note that acknowledgement messages in the ARQ scheme are used not only for

implementing a retransmission strategy, but also as an indication of the MDC

presence in the contact area [4]. The data transfer phase ends when either a
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sensor node has no more messages to transmit during a contact, or the MDC is

not reachable any more. A node assumes that the MDC has exited the contact

area when it misses Nack consecutive acknowledgements.

3.2. Mobility patterns

The following discussion presents a number of mobility patterns as a refer-

ence for the design of the RADA framework that will be detailed in Section 5.

The discussion also includes actual scenarios related to the considered mobility

patterns.

• Deterministic: MDC arrivals are periodic while the inter-contact time

is constant. Controlled MDCs such as robotized nodes [25] fall in this

category.

• Gaussian: the MDC arrivals are periodic, but the inter-contact time fol-

lows a normal distribution. An example of such a mobility pattern is

given by an uncontrolled MDC in an urban environment in the presence

of traffic [13].

• TimeOfDay : MDC arrivals are still periodic, but the inter-contact time is

generally variable. Specifically, MDC arrivals depend on a daily or weekly

schedule as in [9]. Within the schedule, the actual MDC arrival can be

either precise or not (e.g., similarly to the Gaussian mobility pattern).

• TimeOfDay-Multiple: this is similar to the previous one, but also ac-

counts for multiple MDCs. Traffic and pollution monitoring applications

exploiting either vehicles or people in high-density urban scenarios can be

modeled with this mobility pattern. In this case, and especially when the

number of MDCs is high, the sensor nodes should not rely on contacts

with specific MDCs, but rather rely on the higher chance of any MDC

passing through the contact area at a specific time of the day.

Different mobility patterns clearly impact on how the MDC arrivals can be

learned, and on how efficiently they can be predicted. In the following, we design
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a framework, based on reinforcement learning [6], which can be easily adapted

to the different mobility patterns, without the need for strategies specific to

each scenario. In the next section, we will introduce the reinforcement learning

strategy behind our resource-aware data collection framework, which will be

detailed in Section 5.

4. Distributed Independent Reinforcement Learning (DIRL)

Distributed Independent Reinforcement Learning (DIRL) [26] is a frame-

work for enabling autonomous and adaptive applications with inherent support

for efficient resource management. The main idea of DIRL is to allow each indi-

vidual sensor node to self-schedule its actions and allocate resources by learning

the corresponding utility. At the same time, DIRL allows to meet application-

defined constraints, as well as general goals (such as energy efficiency). Before

describing DIRL in detail, in the following we present an overview of reinforce-

ment learning.

Reinforcement learning (RL) is a branch of machine learning which is con-

cerned with determining an optimum policy that maps states of the world to

the actions that an agent should take (in the corresponding states) so as to

maximize a payoff [6]. Specifically, the agent receives a numerical outcome (i.e.,

a reward), which provides a reinforcement signal, as a result of its own actions.

Hence, the agent tries out different actions in order to learn what actions yield

the highest reward. An action is selected either based on past experiences (ex-

ploitation) or randomly (exploration). As a consequence, RL is very useful for

interactive (online) learning in dynamic and uncertain environments.

Let us first introduce the basic elements behind RL, and how they are

mapped to the considered scenario. An agent is an entity which is able to

sense the surrounding environment and perform some action. The actions per-

formed by the agent consist of a number of tasks, which are scheduled according

to the current state, i.e., a set of both application-defined and system variables

which characterize the learning context. A policy determines how the agent
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selects a task according to the current state, while a reward function maps the

state and the outcome of an action (i.e., task) to a numerical value. The learn-

ing process of the agent is guided by the reward function, with the purpose of

maximizing the total reward with time. To this end, a value function is also

used as indication of the long-term benefit from performing certain actions. The

value function is built on top of the reward function, even though it abstracts

from the immediate reward.

In our scenario, we consider each sensor node in the sparse WSN as an agent,

and the combination of a sensor and one or more MDCs in the contact area as

the environment. In addition, DIRL is based on independent learning, i.e., each

agent applies the learning algorithm without any interaction with other agents.

As a consequence, each agent can autonomously and dynamically self-configure

in order to maximize its own reward. The main advantage of using independent

learning in DIRL is that no coordination is required among sensor nodes, which

is beneficial to scenarios where sensors are sparsely deployed and cannot easily

communicate each other.

DIRL is based on Q-learning [16], a form of reinforcement learning which

does not require a model of the environment (hence it is also called model-free).

Q-learning uses a single data structure (i.e., an utility look-up table). The

elements of the data structures are the utilities Q(s, t) associated to the state s

and the task t. In detail, the utility of performing a task t in a state s is defined

as the expected value of sum of the immediate reward r and the discounted

utility of resulting state s′ after executing task t, i.e.

Q(s, t) = E [r + γ · e(s′)|s, t] (1)

where e(s′) = maxtQ(s′, t) over all tasks t. Note that the expected value above

is conditioned to the state s and the task t. As Q-learning is done online,

Equation (1) cannot be applied directly as the stored utility values may not

have converged yet to the final values. Hence, in practice, Q-learning is used

with incremental step updates as given by the following equation:

Q(s, t) = (1− α)Q(s, t) + α [r + γ · e(s′)] (2)
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In Equation (2), α is a learning-rate parameter between 0 and 1, that controls

the rate at which an agent tries to learn by giving more (α close to 1) or less

(α close to 0) weight to the previously learnt utility value. Furthermore, γ is a

discount-factor, also between 0 to 1; the higher the value, the greater the agent

relies on future reward rather than on the immediate reward.

DIRL uses a weighted Hamming distance between two states in order to

reduce the state space, which otherwise would be excessively large to be stored

and managed by constrained sensor nodes. In addition to defining a state rep-

resentation in the form of system and application variables, the application also

specifies the weight associated to each variable. This weight specifies the sig-

nificance of the corresponding variable in determining differences between two

given states. Therefore, if an application state representation consists of the

variables V1, V2, . . . , Vn with the corresponding weights W1,W2, . . . ,Wn, then

DIRL uses the related information to determine if two given states s1 and s2

are similar or not. Specifically, it calculates the Hamming distance between the

states as follows:

H(s1 − s2) = W1 · |V1(s1)− V1(s2)|+W2 · |V2(s1)− V2(s2)|

+ . . .+Wn · |Vn(s1)− Vn(s2)| (3)

Any two states sj and sk whose Hamming distance, as defined in Equation (3),

is lower than a certain threshold θ – i.e., H(sj−sk) < θ – are considered similar,

so that they can share a single entry in the Q data structure.

An important aspect of any RL system, including DIRL, is the trade-off

between exploration and exploitation. Exploration deals with trying out some

random actions which may not have higher utility in search of better rewarding

actions, while exploitation tries to use the learned utility to maximize the agent’s

reward. Most of the RL system uses exploration with a certain probability ε,

which can be a constant value (mostly around 0.1 to 0.5) or can be derived using

some other heuristics (e.g., starting with a high value and gradually decreasing

to a low value). In this paper, the original DIRL exploration policy [26] has

been improved by considering a mobility-aware exploration probability based
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Figure 2: Flowchart of the DIRL algorithm

on the number of contacts. More specifically, the exploration factor ε is given

by

ε = εmin + max (0, (εmax − εmin) · (cmax − c)/cmax) (4)

where εmax and εmin define upper and lower bounds for the exploration factor,

respectively; c represents the number of contacts detected by the agent at the

time of evaluation, while cmax represents the maximum number of contacts

for the learning policy. Note that cmax also controls the descending rate to

the minimum exploration probability in Equation (4). In fact, the exploration

probability is initially higher and gradually decreases over time towards εmin

as the agent is able to detect up to cmax contacts. Note that some minimum

exploration is always required, so as to allow a sensor node to dynamically

reconfigure in case of environmental changes.

DIRL needs the following inputs from the application: a set of tasks to be

executed, in some priority order (which is important only until utilities are not

established or if two tasks have same utility values); a reward function and an ap-

plicability predicate (incorporating application-specific constraints) associated

with each task; a state representation consisting of both system and applica-

tion variables, along with the corresponding weights for deriving the distance

between states, and aggregating similar ones. Furthermore, it is necessary to
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define an appropriate task duration. To this end, we split the time – as per-

ceived by the sensor – into a number of intervals called time domains, whose

duration is denoted as Td. More specifically, the sensor schedules a task for one

time domain, then updates the utilities and evaluates the new state at the end

of the same time domain.

After obtaining the input from the application, DIRL is executed accord-

ing to the algorithm illustrated in Figure 2. Initially, all Q-values are set to

zero. At each time domain DIRL selects a task to execute based on the ex-

ploration/exploitation strategy driven by Equation (4). Exploration selects an

available task randomly, while exploitation selects the best task according to the

learned utilities, i.e., the Q-values. After the execution of a task, DIRL observes

the new state s′ and compares it with all existing states based on a Hamming

distance. If any existing state s′′ has a Hamming distance to s′ lower than θ,

than s′ is mapped to s′′. Otherwise, a new state is created and added to the set

of the current ones. Finally, DIRL computes the reward for the task t (executed

while in the state s) and updates the corresponding Q-values accordingly.

5. Resource-Aware Data Accumulation (RADA)

In this section, we define an adaptive strategy based on DIRL for resource-

aware data collection in sparse WSNs, namely, Resource-Aware Data Accumu-

lation (RADA). The goal of this strategy is to maximize the number of contact

detections, as well as the amount of data successfully transferred, while minimiz-

ing the energy consumption at the sensor nodes. In the following, we describe

the task and state definitions (respectively) used by RADA as building blocks

for a given data collection application.

5.1. Task definition

As discussed in Section 3.1, the main phases of the data collection process are

represented by discovery, data transfer, and sleep. Since our goal is to learn the

arrival pattern of the MDCs, we restrict our attention to discovery. Specifically,
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we have defined the tasks in RADA as discovery tasks with different duty-cycles.

In order to make the derivation of tasks more general, we have defined the actual

duty-cycles on the basis of a maximum allowed duty-cycle, denoted by δmax, as

follows.

• High Duty-cycle (HD). The sensor performs discovery with a high duty-

cycle, equal to δmax. Ideally, this task should be executed whenever there

is a high probability that the MDC is in the contact area, so that the

sensor node can discover it as early as possible.

• Low Duty-cycle (LD). The sensor performs discovery with a low duty-

cycle, equal to 0.5 · δmax. Ideally this task should be executed whenever

the probability of an MDC being in the contact area is low, so that the

correspondent energy consumption is low as well (i.e., the sensor nodes

spends most of the time sleeping).

• Very Low Duty-cycle (VLD). The sensor performs discovery with a very

low duty-cycle, equal to 0.1 · δmax. Ideally this task should be executed

whenever the probability of an MDC being in the contact area is very

low, so that the correspondent energy consumption can be considered as

almost negligible. However, discovery is still performed in order to adapt

to eventual changes in the MDC mobility pattern.

Even though it is not a task itself, data transfer is performed whenever an

MDC is detected, i.e., when a discovery task is successful (a beacon is success-

fully received by the sensor). In order to address this, we have introduced an

internal variable ic which is set to one when an MDC is considered to be in

contact with the sensor. On the other hand, ic is set to zero when the sensor

has lost a number Nack of consecutive acknowledgement messages as a result of

the data transfer phase, thus assuming that the MDC has exited the contact

area. Hence, the data transfer phase can be entered only after an MDC has

been detected (i.e., ic = 1).
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Recall that the overall performance of data collection, especially in terms

of energy consumption, depends on how efficiently MDC contacts are detected.

Specifically, the efficiency of discovery can be maximized with a low energy-

consumption if the tasks in RADA are scheduled according to the learned prob-

ability that the MDC is in contact (at a specific time). To this end, RADA

learns this probability as the utility built by using the local rewards. Specif-

ically, for all the tasks scheduled by a sensor node, the reward is defined as

rt = (nc ·mp − 1) · es, where nc is the number of contacts detected while exe-

cuting that task, mp is a price multiplier, and es the energy spent. Note that

nc can be greater than one, e.g., in the case where multiple MDCs enter the the

contact area during the same time domain. The reason behind using a price

multiplier is to allow a symmetric evaluation of the reward function. Thus, for

each task, the reward is positive if at least one MDC is successfully detected. If

no MDC is detected, the reward is negative (equal to minus es).

5.2. State definition

The state definition is one of the most important elements of schemes based

on reinforcement learning. In fact, efficient learning heavily depends on how the

state definition is suitable to characterize the environment. In general, different

mobility patterns require different state definitions, since they have different

requirements for learning their own context. For instance, the arrival of an

MDC can be predicted based on the time elapsed between subsequent contacts

(i.e., the inter-contact time) when arrivals are periodic. On the other hand,

MDC arrivals can be predicted in terms of the hour of day (and/or of the week)

when the MDC follows a certain schedule.

For the sake of flexibility, we provide a generic state definition whose vari-

ables are general enough to represent all the different mobility patterns presented

in Section 3.2. Specifically, we define the following state variables.

• ict: the inter-contact time as observed by a sensor node.

• ir: a boolean value (i.e., either 1 or 0) denoting whether (at least) an
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MDC has been discovered or not.

• tod: the time-of-day value, related to the specific time at which the state

is evaluated.

Learning context can be customized to a specific scenario by appropriate

tuning of the weights associated with different state variables. Clearly, more

state variables can also be added if additional learning context is required. For

instance, if the day of week is also important in addition to the time of the day,

one more state variable representing the day of the week can be added. However,

increasing the number of variables in the state representation also increases the

state space and, as a consequence, the storage and computational requirements

at the sensor node. Therefore, it is necessary to evaluate the effectiveness of

additional variables in terms of overall performance before adding them.

As state variables are estimated by sensor nodes, we added some filtering

techniques to avoid misinterpretation of context. For instance, a sensor might

perceive a single actual MDC contact as multiple observed contacts. To this

end, we implemented a simple timeout technique, so that the sensor considers a

successful reception of a beacon message as a new contact only when a certain

time has elapsed since the previous contact detection. Similarly, missing an

actual contact would result in incorrect learning of the MDC arrival pattern.

For this reason, we maintained a history of recent contacts (i.e., the related inter-

contact time, where applicable), and used the minimum value of the sequence

in order to cope with eventual missed contacts.

6. Simulation setup

To evaluate the performance of RADA, we used a custom discrete event sim-

ulator written in Java. In our analysis, we considered the following performance

metrics.

• Discovery ratio: Ratio of the number of contacts correctly detected by

the sensor to the total number of contacts. This metric characterizes the

efficiency in discovering an MDC.
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• Residual contact ratio: Ratio of the residual contact time to the total

contact time. This metric is evaluated only for detected contacts, and

represents how timely is the discovery. Specifically, the earlier the MDC

is detected, the closer is the residual contact ratio to 100%, meaning that

most of the contact time can be used for data transfer.

• Activity ratio: Ratio of the active time to the total time spent during

discovery. Since it does not involve data transfer, this metric characterizes

the average duty-cycle used for discovery.

• Energy efficiency : Average energy spent by a sensor for each contact

correctly detected. It includes the energy spent for both discovery and

data transfer, and it is obtained as the ratio of total energy consumed and

the number of contacts detected.

As for the energy consumption, we used a simple model that characterizes the

radio and does not consider the CPU, since the related energy consumption is

almost negligible in most cases [1]. Specifically, the energy spent by the radio

is calculated as Pstate · Tstate, where Pstate and Tstate denote respectively, the

power consumption of the radio and the amount of time spent in a given state,

i.e., receive, transmit and sleep. We assume that the energy consumption of the

radio during idle periods, i.e., when it is monitoring the channel, is the same as

in the receive state.

In order to compare the performance of RADA with other approaches, we

considered the following schemes.

• Fixed High Duty-cycle (FixedHD). The sensor node always executes the

High Duty-cycle (HD) task. This scheme gives an upper bound on the

performance achievable by schemes based on learning, at the cost of a

high energy consumption.

• Fixed Optimal Duty-cycle (FixedOD). The sensor node only executes a

task with a fixed duty-cycle, whose value is set to the average duty-cycle

as obtained by RADA in the same operating conditions. As the duty-cycle
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Table 1: Weights of the state variables used for simulation

Scenario(s) State variable Weight

Deterministic/Gaussian Inter-contact time (ict) 0.005

MDC In Range (ir) 1.0

Time-of-day (tod) 0.0

Time-of-day Inter-contact time (ict) 0.0

MDC In Range (ir) 1.0

Time-of-day (tod) 1.0

Multiple MDCs Time-of-day Inter-contact time (ict) 0.0

MDC In Range (ir) 0.0

Time-of-day (tod) 1.0

is obtained dynamically by RADA, according to the actual scenario, this

scheme is not feasible in practice and is used only for comparison purposes.

• Oracle. The sensor node has a perfect knowledge of MDC arrivals, hence

it does not perform discovery at all. As a consequence, the sensor starts

transmitting data as soon as the MDC enters the contact area, and stops

whenever it does not have any more data or the MDC is out of contact.

This is clearly an ideal scheme, and is used only as a reference.

As for the MDC, in our analysis we considered all the mobility patterns

described in Section 3.2. The weights for the different state variables are set

accordingly, as shown in Table 1. In detail, the weight of ict is set to a non-zero

value only for the deterministic and Gaussian mobility patterns, which are thus

learned by exploiting only the inter-contact time (since they are both periodic).

On the other hand, the weight of tod is set to a non-zero value only for the

mobility patterns based on a schedule (i.e., both TimeOfDay and TimeOfDay-

multiple), so that they can be learned according to the time of the day. Finally,

the weight of ir is set to a non-zero value only for the scenario with multiple

MDCs, so that learning is not affected by the discovery of individual MDCs at

a given time (since multiple independent MDCs can be present during the same
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Table 2: Parameters used for simulation

Parameter Value

Minimum exploration (εmin) 0.02

Maximum exploration (εmax) 0.3

State distance threshold (θ) 1.0

Maximum contacts (cmax) 10

Time domain duration (Td) 100 s

Maximum duty-cycle (δmax) 3.0

Price multiplier (mp) 10

Beacon period (TB) 100 ms

Beacon duration (TBD) 10 ms

Recent contacts history size 5

Standard deviation of the Gaussian mobility pattern 30 s

Message generation interval 10 s

Message payload size 24 bytes

Frame size 36 bytes

Window size (W ) 16

Consecutive lost acknowledgements (Nack) 5

Radio transmit power (0 dBm) 49.5 mW

Radio receive/idle power 28.8 mW

Radio sleep power 0.6 µW

time domain).

In all experiments we performed 10 independent replicas, each consisting

of at least 1000 MDC tours. We also derived confidence intervals with a 95%

confidence level. In the following, we assume a MICA2 series mote [27] as the

static sensor node, and use the related parameters for power consumption. We

also assume that the radio is operating at a bitrate of 19.6 kbps. As for message

losses, we used the model considered in [4, 13] and based on experimental data

measured in a real testbed in the same scenario [28]. Specifically, the trans-

mission range is 93 m, while the minimum distance between the MDC and the

sensor node is 25 m. All other simulation parameters, chosen according to the
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methodology in [4], are summarized in Table 2.

7. Experimental results

The evaluation of RADA is divided into different sections. First we focus

on the performance of the learning algorithm, then we evaluate the impact of

the time domain duration. Finally, we present results for different mobility

patterns and speeds of the MDC. For the sake of clarity, in the following we

will consider a single MDC which collects data from a single sensor node, unless

stated otherwise. We also assume that the inter-contact time is 1800 s, with

specific reference to a value reasonable for a tour by a vehicle in an urban

scenario.

7.1. Performance of learning

In this section we evaluate the adaptive task scheduling capabilities of RADA.

In the following, we use the deterministic mobility model and a fixed time do-

main duration of 100 s.

Figures 3(a) and 3(b) show the number of task executions as a function of

time, when the MDC moves with a speed of 3.6 and 40 km/h, respectively. We

can see that VLD (i.e., the task with the lowest duty-cycle) has the highest

number of executions in both cases, and that the related slope is higher than

the other two tasks. This happens since VLD consumes the least energy, and

hence obtains the maximum reward when the MDC is not in the contact area.

However, both HD and LD are still executed even after a steady-state is reached,

i.e., when the exploration factor reaches its minimum value (i.e., after about

900 time domains). Specifically, Figure 3(a) shows that the slope of LD is

greater than that of HD, meaning that the discovery task with a low duty-

cycle is executed more than the discovery task with a high duty-cycle. This

is consistent with the MDC mobility, which is rather low (i.e., 3.6 km/h), so

that LD is adequate to discover the MDC. In contrast, Figure 3(b) shows the

opposite trend, i.e., the slope of HD is greater than that of LD. This happens
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Figure 3: Number of task executions over time for different MDC speeds: (a) 3.6 km/h and

(b) 40 km/h

since the MDC has a high speed (i.e., 40 km/h) in the latter case, hence the low

duty-cycle discovery task does not obtain enough reward when it is executed.

The different steady-state task execution patterns in the two cases clearly

show that learning takes place, and that RADA adapts to the different mobility

of the MDC. Specifically, the task with a higher duty-cycle is executed only when

necessary, i.e., when the MDC speed is high, hence the probability of missing

contacts is also high. As a result, RADA is able to preserve energy and also

to efficiently schedule the different discovery tasks according to the operating

conditions.
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Table 3: Impact of the time domain duration on the energy consumption

Scenario Time domain duration (Td) Energy per contact (mJ)

Deterministic ict · 0.5% 1064.52

ict · 5.0% 655.75

ict · 25.0% 751.44

Automatic (Initial value: ict · 0.5%) 647.93

Automatic (Initial value: ict · 25.0%) 673.30

Gaussian ict · 0.5% 1205.61

ict · 5.0% 643.15

ict · 25.0% 793.05

Automatic (Initial value: ict · 0.5%) 630.06

Automatic (Initial value: ict · 25.0%) 666.13

7.2. Impact of time domain duration

In this section, we evaluate the impact of the time domain duration (Td)

on performance, with specific reference to energy consumption. In fact, the

time domain duration is a critical parameter, since each task is executed for the

duration of a time domain, and then evaluated at the end of the related interval.

As a consequence, if the time domain duration is not properly set, learning can

be negatively affected. In order to evaluate the appropriate duration Td of the

time domain, we performed a set of preliminary experiments by considering

both the deterministic and Gaussian mobility patterns, with a MDC speed of

20 km/h. In order to be general enough, we set the time domain duration as

a fraction of the inter-contact time. The corresponding results are summarized

in Table 3.

In the first set of experiments, we considered time domain durations equal

to 0.5%, 5% and 25% of the inter-contact time ict, respectively. We can see

that the lowest energy consumption is obtained when Td = ict ·5%, for both the

considered mobility patterns. The performance is worse when the time domain

duration is either higher (ict · 25%) or lower (ict · 0.5%). This happens because

of the difference between the time domain duration with respect to the contact
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time. In fact, if the time domain is much longer than the contact time, a task

with higher duty-cycle can execute for an unnecessarily long time (e.g., either

before or after the actual contact takes place). Similarly, a low value of the

time domain duration can fragment the activity of the sensor, and even bias the

learning process.

According to the results presented above, we implemented an automatic

tuning mechanism which sets the time domain duration dynamically, based

on the observed value of the inter-contact time. Specifically, the time domain

duration is set to Td = ict · 5%. However, an initial value of the time domain

duration is needed to bootstrap the tuning process. In order to evaluate the

impact of the initial time domain duration on the automatic tuning strategy, we

performed an additional set of experiments. Specifically, the initial time domain

duration for the automatic tuning strategy were set to the extreme cases of 0.5%

and 25% of ict, respectively, as shown in Table 3. The results show that in both

cases the automatic tuning strategy leads to a low energy consumption, which

is close to that obtained with a fixed value of Td = ict · 5%. Even though the

energy consumption is a bit lower when the initial time domain duration is set to

ict · 0.5%, both values are close to each other. As a consequence, the automatic

tuning strategy is almost independent of the initial time domain duration, and

also robust against variations in the operating conditions. Thus, in the following

we use the automatic time domain tuning strategy for RADA.

7.3. Impact of mobility patterns

In this section, we evaluate the performance of RADA for all the mobility

patterns introduced in Section 3.2. As already mentioned at the beginning of

the section, we use an inter-contact time of 1800 s for both the Deterministic

and Gaussian mobility patterns. For the TimeOfDay mobility pattern, the inter-

contact time is varied according to the time of day. Specifically, the inter-contact

time is set to 1800 s between 9 pm and 9 am, whereas it is set to 450 s during the

rest of the day. We took a similar approach also for the TimeOfDay-Multiple

mobility pattern, where the number of MDCs per hour is varied as a function
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Figure 4: Discovery efficiency of the different schemes under different mobility patterns: (a)

discovery ratio and (b) residual contact ratio

of the time of the day. Specifically, 20 MDCs are present between 9 am and

6 pm, 4 MDCs between 6 am and 9 am as well as between 6 pm and 9 pm, while

no MDC visits the network between 9 pm and 6 am. In all cases, the MDC is

moving at 20 km/h. In the following, we compare RADA against the other

schemes described in Section 6.

The discovery ratio as a function of the mobility pattern is shown in Figure

4(a). We can clearly see that RADA has a very high discovery ratio, almost

independent of the mobility pattern (it is only slightly lower for the TimeOfDay
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Figure 5: Energy efficiency of the different schemes under different mobility patterns: (a)

activity ratio and (b) energy consumption per contact

scenario), and very close to FixedHD and Oracle1. Furthermore, RADA shows

significantly higher discovery ratio than FixedOD. Hence, RADA effectively

learns the mobility pattern of the MDC. Indeed, the discovery ratio alone is

not enough to characterize the effectiveness of the different schemes. In fact,

the data transfer phase is significantly affected by the residual contact time.

To this end, we also considered the residual contact ratio, illustrated in Figure

1Clearly, the Oracle scheme (which does not perform discovery at all) always obtains 100%

discovery and residual contact ratios, and is shown here only as a reference.
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4(b), which quantifies the amount of the contact time that can be actually

exploited by the data transfer phase (as a percentage). Here, we notice that

RADA obtains a residual contact ratio always higher than FixedOD, and close

to values achieved by FixedHD. As a consequence, the results clearly show that

RADA can easily adapt to different mobility patterns.

We now focus on the activity ratio, shown in Figure 5(a), which character-

izes the average duty-cycle used for discovering the MDC. RADA outperforms

other schemes for the mobility patterns involving a single MDC, by achieving

the lowest activity ratio (around 0.6%). Clearly, FixedOD has (almost) the

same activity ratio as RADA by design, even though, as shown in Figure 4, it

has a discovery efficiency which is much lower than that of RADA. The overall

energy consumption per contact (hence including also data transfer) is shown

in Figure 5(b). This metric jointly evaluates the discovery efficiency and the

energy consumption, and summarizes the results of the previous analysis. From

the figure, it is clear that RADA has the lowest energy consumption for all the

mobility patterns, excluding Oracle (which is not feasible, however). RADA

even achieves an energy consumption close to the Oracle scheme for the deter-

ministic mobility pattern. In conclusion, sensor nodes can conserve energy due

to RADA, as they can use a low duty-cycle while without significantly affecting

the MDC detection efficiency.

7.4. Impact of speed

In this section, we evaluate the impact of MDC speed on the performance

of RADA. To this end, we assume that the MDC follows a Gaussian mobility

pattern with a standard deviation of 30 s, and moves with a speed of 3.6, 20

and 40 km/h.

The discovery ratio as a function of the MDC speed is shown in Figure 6(a).

We can see that all schemes obtain a discovery ratio close to 100% when the

speed is low (i.e., 3.6 km/h). In addition, RADA has a discovery ratio higher

than 80% even when the speed is high (i.e., 40 km/h), and close to FixedHD in

any case. On the other hand, FixedOD is not very efficient even when the speed
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Figure 6: Discovery efficiency of the different schemes under different MDC speeds: (a) dis-

covery ratio and (b) residual contact ratio

of the MDC is moderate or high. The impact of speed is even more apparent

from the residual contact ratio, illustrated in Figure 6(b). In fact, almost all

the different schemes can use a large share of the contact time when the speed

is low. However, as the speed increases up to 20 km/h and above, the residual

contact ratio reduces substantially. In any case, RADA has the highest residual

contact ratio (obviously excluding Oracle), and is able to exploit more than 60%

of the contact time even in the worst case.

The activity ratio is illustrated in Figure 7(a). Note that the activity ratio

of RADA is consistently low (i.e., always lower than 1%) even though it slightly
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Figure 7: Energy efficiency of the different schemes under different MDC speeds: (a) activity

ratio and (b) energy consumption per contact

increases with the MDC speed. Clearly, FixedHD results in a much higher

activity ratio, even three times higher than RADA. The low energy consumption

of RADA is also testified by the energy spent per contact, as illustrated in Figure

7(b). In fact, RADA has the lowest energy expenditure among the (feasible)

investigated schemes, and is not sensitive to the MDC speed. In summary, the

evaluation showed that RADA is very efficient and robust, in the sense that it

incurs a low energy consumption for a wide range of MDC mobility patterns,

even when the contact time is short and the uncertainty on MDC arrivals is

high.
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8. Conclusions

In this paper we have proposed a novel Resource-Aware Data Accumulation

(RADA) framework for sparse Wireless Sensor Networks (WSNs) with Mobile

Data Collectors (MDCs). The issue of energy-efficient data collection has been

addressed by exploiting a distributed reinforcement learning scheme, where each

sensor node operates independent of the others. The proposed approach is

specifically targeted to MDC discovery, and is based on a general state repre-

sentation which is able to capture many realistic mobility patterns. Simulation

results show that RADA is highly efficient, i.e., it reduces the average duty-cycle

and the overall energy consumption of data collection, while detecting almost

100% of contacts. Compared to existing solutions, the proposed approach not

only performs better, but also can adapt to different operating conditions and

arrival patterns characterized by high uncertainty. As a result, RADA can be

effectively employed in a wide range of applications in sparse WSNs with MDCs.
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