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Abstract—We investigate the problem of estimating the
transmission time of fragmented messages over multiple dis-
rupted links. We build a system model for the case where a
single message is sent over a chain of links and the disruptions
in these links are identically and independently distributed.
For this case, we derive an approximation formula for the
mean transmission time, based on number of links, length
of fragments and distributions of disruptions. The formula is
verified against simulation experiments in the cases of uniform
and exponential distributions for disruptions.

I. INTRODUCTION

Delay-tolerant networks (DTNs) [1] may use potentially

large messages (rather than small packets) as basic transmis-

sion unit offered to applications. Sending large messages

implies that those will be broken down into individual

packets for the actual transmission across a physical link

that comply with the link’s MTU size. Such a mechanism is

defined, e.g., for the convergence layers of the DTN bundle

protocol [2].

Since messages may be large, their transmission as a

series of packets may not complete during a contact period,

i.e., while a link is available (“ON”). When a link comes up

again after a down (“OFF”) period (the inter-contact time),

the message transmission should resume (roughly) where

it stopped, rather than have to restart from the beginning.

For this purpose, it is required to fragment a message into

smaller pieces (“units”) whose transmission is more likely

to fit into a contact period than the complete message.

One example are opportunistic networks formed between

mobile nodes (e.g., smartphones of mobile users). Contacts

may often be short (e.g., when people walk past each other),

thus limiting the amount of data that can be transferred.

Fragmentation effectively increases the connectivity in such

networks by allowing also shorter contacts to be exploited

[3].

Two types of DTN message fragmentation are defined

in [2]: pro-active, i.e., defining the fragment prior to trans-

mission, and reactive. The latter means determining the

fragment size based upon what got transmitted after a link

went down so that no decision on the fragment size would

need to be taken prior to transmission. However, this has

two deficiencies: 1) Since duplicates detection is difficult

with arbitrarily-sized fragments, reactive fragmentation may

lead to reduced performance [3]. 2) Cryptographic message

validation, e.g., using message authentication codes (MACs)

will not work with arbitrary-sized fragments since MACs

would need to be available for every conceivable fragment

size [4]. Both suggest introducing quantization of messages

in evenly sized fragments of which as many as possible are

sent together, which has been shown to be beneficial [3].

But this size has to be determined proactively.

Recent work [5]–[8] has investigated fragmented mes-

sages transmission over a single disrupted link, modeling

packet or file transmission over a wireless link as well

as single-hop forwarding of DTN messages. Typical DTN

scenarios will, however, usually require message delivery

over multiple links, which has not received attention so far.

In this paper, we address the case of message fragmen-

tation over a chain of disrupted links. This case occurs,

e.g., in a static multi-hop wireless network, where link

disruptions can be due to transient channel effects. We

are aware that, for opportunistic communication between

devices of mobile users, message fragments will be sent

by the routing protocol along different paths—i.e., multiple,

possibly partly overlapping chains—towards a destination

node [3]. But these multi-path scenarios cannot be unpacked

without understanding the multi-link ones first.

We define a basic model for message transmission over n
links in section II. The disruptions of communication links in

the chain are characterized by i.i.d. ON/OFF periods. In sec-

tion III we first identify the natural lower and upper bounds

on the mean transmission time over n links. Then we derive

a generic approximation formula for the mean transmission

time. Estimates of the queue sizes in intermediate nodes

are needed to compute this formula. In section IV we show

how to compute these estimates in the cases of uniform and

exponential distributions for disruptions. Using these results

we can estimate the mean transmission times of fragmented

messages in those cases.

To confirm our analysis we have computed the relative

error between mean transmission times estimated with our

formulas, and the actual transmission times in a simulated

environment, where messages are transmitted according to

our model over five disrupted links. From those experiments

we conclude that our approximation is suitable for large

message sizes, that are at least a few times bigger than what



can be typically transmitted within a single contact time;

and the (relative) accuracy of our estimates increases with

the message size.

II. SYSTEM MODEL

The model used to obtain the analytical results is as

follows. Network node A sends messages over a chain of

n communication links to node B. Nodes are numbered

0,1, . . . ,n; node 0 is the sender A and node n is the receiver

B.1 The links change their state between ON and OFF

independently from each other in a random manner. This

arrangement is illustrated in Figure 1.

Figure 1. Schematic illustration of a chain of three disrupted links’ chain
between the sender A (node 0) and the receiver B (node 3). T1(x), T2(x),
and T3(x) are the mean transmission times of a message having size x
over one, two, and three links, respectively. Q1(x, t) and Q2(x, t) model the
average amount of data queued in the intermediate nodes 1 and 2 at time
t.

The link speed during the ON state is constant (and the

same) for all links.2 We divide all message sizes by the

(constant) link speed, measuring message sizes in seconds.

The message size is denoted with x. The electromagnetic

signal’s propagation times and the time it takes to acknowl-

edge transmission over one link are neglected (zero) in our

model.

The sending node A can choose to transmit the message

in a single unit, thus requiring sufficiently long contact

durations for the whole message to fit. Or A may split the

message into blocks of size f , thus allowing transmission

of message fragments consisting of one or more such (equal

sized) blocks during shorter contacts. f may vary between

messages, and we call it “message fragmentation unit”.

Typical values of f could be 10−3, 10−2, 1, all measured in

seconds.

We assume, for simplicity, that message size x is an

integral multiple of fragmentation unit f .

If the kth link in the chain is disrupted (fails) during

transmission, node k − 1 will attempt to retransmit the

remaining message fragmentation units during the next ON

epoch.

1In DTNs, paths of successfully delivered messages are often short
because the network diameter is naturally constrained (as, e.g., in deep
space networks), or messages do not travel very far in terms of distance
and hops (as in mobile opportunistic networks). Therefore, we consider
small values of n, say, less than 10, to be more interesting than large ones.
But we do not exclude larger numbers of links in what follows.

2Please note that a sequence of ON/OFF epochs having different average
link speeds during ON epochs, can be transformed into a sequence having
constant link speed, that still retains same durations of OFF-ON epoch pairs
as the original sequence. The details of this transformation are described
in [8].

While the remainder of the message fragmentation units

is still being transmitted over the first link, its head part

consisting of fragmentation units already received in the first

intermediate node, may be transmitted in parallel over the

subsequent links. The same holds for all other links, but

note that data bits inside the same fragmentation unit can

be transmitted only over one link at a time; a node starts the

transmission of a block, only if it has received all of that

block.
We assume that the message transmission’s starting time

t = 0 is a random point in the sequence of ON/OFF periods.

We denote time by t, and by tk(x) the moments at which

the transmission of a message with size x over kth link

completes. We also agree that t0(x) = 0.
The mean of tk(x) is denoted with Tk(x). When talking

about the mean transmission time over a single link, we

often omit the subscript; and write T (x) rather than T1(x).
The distributions of the link state durations (ON and OFF)

are (i) the same in all links, and (ii) do not depend on time.

Relaxing these assumptions to generalize our model is left

for future study.
We denote with qk(x, t) the amount of data queued in

node k at time t during transmission of message size x. The

mean of that random process at time t is Qk(x, t). The limit

of qk(x, t) when x → ∞ and k ≥ 1 describes the saturated

input case, and is denoted by qk(t). It can be thought of

as the kth queue size at time t, when the message size x is

very large—much larger than any message we may wish to

send over a chain of links. The mean of that random process

at time t is Qk(t). From the system model it is clear that

Qk(x, t) =Qk(t) whenever x> t because not more than t first

seconds of the message may have been transmitted over any

link at the time moment t. (This holds even in the limiting

case where all links are in ON-state all the time.)

III. ESTIMATING Tn(x)
Consider the mean transmission time Tn over n links. It

follows from our system model that the mean transmission

time of a message over k links is less than or equal to the

sum of the mean transmission time Tk(x) of all message

parts over the first k− 1 links, and the mean transmission

time T (x) (again, of all message parts) over the last, kth,

link.

Tk(x)≤ Tk−1(x)+T (x), (1)

where k = 1,2, . . . ,n.
The equality in the above equation holds only if the

transmission over the kth link cannot start until all of the

message parts have been received in the (k−1)th node. This

limiting case appears, for example, in transmission of a to-

tally unfragmented message—then this kind of dependency

exists between all adjacent links, and Tn(x) is the sum of

T (x) values over individual links.
This limiting case gives us the natural upper bound on the

mean transmission time Tn(x).



The trivial lower bound on Tn(x) is given by another

limiting case, where the n links are fully synchronous,

i.e. they go ON and OFF simultaneously. Here the mean

transmission time over n synchronous links equals that over

a single link:3

Tn(x) = T (x). (2)

Combining upper and lower bounds we have:

T (x)≤ Tn(x)≤ nT (x). (3)

The upper bound in Eq. (3) implies that the growth of

the mean transmission time with the number of links n is

sub-linear.

In the rest of this section we derive an approximate

formula for the mean transmission time in other cases

(i.e. ‘in between’ those bounds).

Transmission time tk(x) over k links, is the time tk−1(x)
it takes to transmit the whole message over the first k− 1

links, plus the time it takes to transmit the remaining data

over the last, kth, link. The size of the remaining data in the

(k− 1)th node at the time tk−1(x) is qk−1(x, tk−1(x)), and

therefore:

tk(x) = tk−1(x)+ t(qk−1(x, tk−1(x))), k = 2,3, . . .n. (4)

It follows that the mean transmission time over n links

Tn(x) is the sum of Tn−1(x) and the mean of the last term:

Tn(x) = Tn−1(x)+E[t(qn−1(x, tn−1(x)))].

In our approximation we replace the last term with

T (Qn−1(Tn−1(x))). (We replace all variables with the

respective means, and replace the mean queue size

Qn−1(x,Tn−1(x)) with the mean queue size Qn−1(Tn−1(x))
in the case of saturated input.) The result is a recursive

formula that, together with the combined bounds of Eq. (3),

characterizes Tn(x):

Tn(x)≈ Tn−1(x)+T (Qn−1(Tn−1(x))). (5)

Please note that variants of Eq. (1-5) hold also in the case

when the ON-OFF periods’ statistics are not the same in all

links.

We now proceed to the question of computing Eq. (5).

To compute this recursion we need to know how to estimate

(i) the mean transmission times over a single link T (x) (for

any message size x), and (ii) the mean queue size Qk(t) in

intermediate nodes.

We already know how to do (i): The transmission time

over a single link T (x) can be estimated using the results of

our previous paper [7].

For the derivations below we restrict ourselves to the

cases where the ON and OFF epochs are either uniformly

3Note that the lower bound could be tightened, because our system model
assumes that fragmentation units cannot be forwarded by an intermediate
node before they are entirely received. This causes an additional systematic
per-hop delay that is a function of the chosen fragmentation unit size f .

or exponentially distributed with the mean of one second in

both cases. For the limiting case where the fragmentation

unit f is the smallest possible, it is clear that we get a good

estimate by T (x)= 2x because the link is in the ON state half

of the time (in average) and it is possible to utilize the whole

of each ON epoch for transmitting message fragments.

For the cases where the fragmentation unit f is larger,

only part of ON epochs can be utilized for transmission,

and consequently T (x) becomes longer. For the uniform

distribution we obtain a relatively good approximation by

simply including in the calculation only those ON epochs

that are long enough for accommodating at least one frag-

mentation unit f . For example, in the case of f = 0.1s

the proportion of those epochs is (2−0.1)/2 = 19/20, and

T (x) = 2x/(19/20)= (40/19)x; for f = 1s we get T (x) = 4x.

This kind of straight-forward approximation does not

work as well for the exponential distribution, but slightly

more complex reasoning (see the derivation of Eq. (V.17)

in [7]) provides the following approximations for the same

example fragment sizes: for f = 0.1s we have T (x) =
20x(e0.1−1) and for f = 1s we have T (x) = 2x(e−1).

Note that in all of these cases, T (x) is a linear function

of x. This is asymptotically true also for any distribution

of ON and OFF epochs with finite mean and variance (see

Eq. (V.12) in [7]).

We will go into the question (ii) of estimating Qk(t) in

the next section.

IV. ESTIMATION OF MEAN QUEUE SIZES Qk(t)

In this section we give estimates of queue sizes Qk(t) in

intermediate nodes in the cases of exponential and uniform

distributions for disruptions. We begin by summarizing the

results in §IV-A, then outline the estimation method in

§IV-B, and end with the derivation details in §IV-C.

A. Summary of the results

Our approximation for Qk(t) builds on the following

estimate for the queue in the first intermediate node:

Q1(t)≈ c
√

t, (6)

where the constant c depends on distribution of ON and

OFF epochs. We will show how to derive c for various

distributions and give also explicit formulas for c in cases

where ON and OFF epochs are distributed exponentially or

uniformly.

We further have

Qk(t)≈ akQ1(t), k > 1,

with the constants ak tabulated below for k up to 10:

k 2 3 4 5 6 7 8 9 10
ak .63 .50 .42 .36 .33 .29 .27 .25 .23

Our approximation model is built in such way that these

constants depend only on the means of the ON and OFF

epochs distributions.
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Figure 2. Plots of the actual and the approximated values of Tk(48s) for
five links and two fragmentation unit sizes f : 10−3s, and 1s. The mean
duration of ON and OFF epochs in all links is 1s. The x-axis is the link
number k = 1, 2, 3, 4, and 5. The y-axis is the mean transmission time in
seconds.

Combining these approximation formulas for the queue

sizes with the approximations for T (x) from the previous

section, we get the following formulas for our example

distributions:

Tk(x)≈ Tk−1(x)+bk−1

√
Tk−1(x), k > 1.

Here the constants bk are as follows:

For the exponential distribution with a mean of 1s we

have

bk =

⎧⎪⎨
⎪⎩

2ak/
√

π, f = 10−3 (smallest unit);

20(e0.1−1)ak/
√

π, f = 10−2;

2(e−1)ak/
√

π, f = 1.

and for the uniform distribution (again, with a mean of 1s)

we have

bk =

⎧⎪⎨
⎪⎩

(2/3)2ak/
√

π, f = 10−3;

(2/3)(40/19)ak/
√

π, f = 10−2;

(2/3)4ak/
√

π, f = 1.

Table I
BIGGEST (IN ABSOLUTE VALUE) RELATIVE ERROR, IN %, BETWEEN

THE ACTUAL AND THE ESTIMATED MEAN TRANSMISSION TIMES.

x[s] 2 4 8 12 48

Exp. f [s]
10−3 2.4 0.9 −0.4 −0.8 −1.3
10−1 −1.8 −1.7 −1.9 −1.6 −1.6

1 −15.2 −12.5 −10.4 −8.7 −4.5

Uni. f [s]
10−3 17.4 −1.0 0.8 1.0 −0.7
10−1 13.2 −3.2 −1.1 0.9 0.3

1 12.9 4.9 3.5 2.9 0.6

To confirm our analysis we have written a custom simu-

lator in C; it implements transmission of a message over a

chain of n links according to our model.

We summarize next the simulation results in the 5-link

cases, for both exponential and uniform distributions of

ON/OFF epochs, and three fragmentation unit sizes f =
10−3s, 10−1s, and f = 1s. The mean value of the ON (or

OFF) epochs is 1s, in all cases; the message size x varies

between 2s and 48s.

Each simulation run consisted of 100 single message

transmissions. The start of the first message’s transmission

in each run coincides with the beginning of an ON epoch.

Transmission of subsequent messages begins as soon as the

previous message has been delivered to the destination. For

each set of parameters we carry out 20 simulation runs with

different random seeds and report on the mean results.

The results for x = 48s and comparison to the estimates

given earlier in this section are plotted in Fig. 2. The data

points corresponding to f = 10−2s are omitted from Fig. 2

for clarity. It can be seen that the mean transmission time

is concave with respect to the number of links k. The

approximation for x = 48s is very good, except in the case

of exponential distribution and f = 1s. (But we can see from

Table I that even in this case the absolute value of the error

is less than 5 %.)

In Table I we give the biggest (in absolute value) relative

error values for message sizes 2, 4, 8, 12 and 48 seconds.

The relative errors were computed as the difference between

the actual (simulated) value of Tk(x) and our approximation

to Tk(x), divided by the actual value of Tk(x). We see that:

(i) The maximum absolute value of the error between our

approximation and the actual Tn(x) decreases as the message

size grows larger. The (maximal) errors are in general

bigger for the exponentially distributed disruptions, than for

the uniformly distributed disruptions. (ii) The threshold of

±10% in the relative error value occurs between x = 8s and

x = 12s for the exponential case; and between x = 2s and 4s

in the uniform case.

In summary, our approximation is good for large message

sizes that are a few times bigger than the mean time

between disruptions. The reason for this limitation is that

the message transmission must last several ON/OFF epochs

for our random walk model (described below) to apply.



B. Estimation method

Recall that Qk(t) describes in the transient behavior of the

system with saturated input. (The input is saturated because

the sender always has more data to send.) In some sense

the only steady state of such system is the trivial case of the

initially empty system. For that reason, steady-state solutions

of queueing networks are not directly applicable in our case.

We use the concept of a random walk in our estimations

of Qk(t); this is commonly used in queuing theory [9].

A queuing process can be coupled with that of a one-

dimensional ‘walk’ in the following way: The walker takes

only a single step of size ±1 in each move. The amount of

queued data is zero at the initial position of the walker. After

the walk starts, the amount of queued data increases by a

constant l if the walker makes a move to the right (i.e. when

the position of the walker increases by 1); and it decreases,

again by l, if the walker makes a move to the left (i.e. when

the position of the walker decreases by 1). However, there is

an additional important rule: the amount of the queued data

is always non-negative; e.g., if the queue is empty and the

walker makes a move to the left then the size of the queue

remains as zero.

Let us denote with sk the position of the walker relative

to its starting point after k moves, and with mn the minimum

of sk after n moves:

mn = min
0<k≤n

(sk).

It can be shown from the coupling above that the amount

of queued data is l(sn − mn). The mean queue size is,

therefore,

l · (E[sn]−Mn) , (7)

where Mn denotes E[mn].
Also, the number of time points when the corresponding

queue is empty equals to −mn.

In our derivation below, we define a walk coupled with

q1(t) that makes n(t) moves up to time t, and compute an es-

timate of E[sn(t)], and Mn(t) for that walk. An approximation

of Q1(t) is obtained then from Eq. (7).

This procedure is repeated for each subsequent queue in

the intermediate nodes, up to Q10(t). The procedure for

subsequent queues Q2(t), Q3(t) etc. is more complex than

for the first queue, because the walk is affected by the cases

when the previous queue is empty. At these time points

the succeeding queue cannot ever increase. We will go into

details in the next section.

C. Derivation details

Whenever there is an ON epoch on the first link, then at

least a part of the message can also be transferred. In other

words, during the message transmission over the first link

the queue in the sending node A behaves in a simple way:

q0(x, t) is decreasing for all values of t that belong to an ON

epoch (of the first link) and q0(x, t) is stable for all values

of t that belong to an OFF epoch (of the first link).

Let us consider now q1(t), the length of the queue in the

first intermediate node when we assume that the source node

always has more data to transmit. In a certain sense, we have

a relatively simple situation.

Figure 3. Combined states between two consecutive links

There are four possible cases for the behavior of q1(t)
depending on whether the first link/second link is ON/OFF.

For values of t where the combined state of the first two

links is either ON/ON, or OFF/OFF, the queue length q1(t)
remains stable. For values of t where we have ON/OFF,

the queue becomes longer while, for points in time where

we have OFF/ON, the queue becomes shorter (unless it is

already empty).

Next we show how the concept of a combined state can

be turned into a random walk model. Let us first exclude

the possibility that two consecutive links would change their

states in exactly the same moment in time. (It is clear that

this assumption does not introduce any big error.)

A sequence of ON/OFF states in two consecutive links is

illustrated in Fig. 3. We notice that every second combined

state (time) interval keeps the queue size q1(t) unchanged.

From the other combined state intervals, typically every sec-

ond (altogether every fourth) would increase the queue size

while the rest (altogether also every fourth) would decrease

the queue size. This motivates grouping four consecutive

combined state intervals together. An expected length of

such group is two seconds in case the mean of each epoch

is one second.

Now the behavior of the random variable q1(t) can be

modeled by a random walk where we would take a random

walk move every 2 seconds. The length of the random

walk move depends on the length difference between the

‘increased queue’ time interval and the ‘decreased queue’

time interval. The model is based on the assumption that

these differences for two consecutive groups (each consisting

of four consecutive combined states) do not depend on each

other too much.

The distribution of the above length difference depends on

the distributions of ON and OFF patterns. On this aspect,

uniform and exponential distributions behave differently. If

we have two i.i.d. variables U and V whose mean is one sec-

ond and the distribution is uniform (resp. exponential) then



(it is easy to calculate that) the absolute difference |U −V |
has the mean of 2/3s (resp. 1s). Although the combined state

intervals do not have exactly uniform (resp. exponential)

distributions, this however gives a pretty good approximation

for the purposes of our model.

Summary of the model for q1(t) is the following. We have

a random walk model for the queue size q1(t) in which one

move is taken every 2 s to the left or to the right with equal

probability; n(t) is approximately t/(2s); the length of the

move is 1s in the case of exponential distribution of ON/OFF

epochs, and it is 2/3 s in the case of uniform distribution.

We denote this length with l. As discussed in the previous

section, an additional constraint is imposed by the natural

fact that the queue size is never negative. Random walk

theory provides now formulas for the mean queue size Q1(t)
(and also for frequencies of empty queue instances).

We return to these formulas in a moment, but first we

note that the situation is slightly different for the next queue

q2(t). Whenever the first queue is empty, i.e. q1(t) = 0,

then the queue size q2(t) cannot increase. This implies a

negative drift in the walk related to q2(t). The same is true

for q3(t) etc. Moreover, the negative drift implies smaller

average queue sizes Q2(t) (when compared to queue sizes

Q1(t)).
Also, the queue in the second intermediate node is more

often empty than the queue in the first intermediate node,

which in turn implies even bigger negative drift for random

walk related to q3(t) etc.

As a conclusion of this reasoning, it seems that in the

intermediate nodes Qk(t)> Qk+1(t). (Please recall here that

we defined Qk(t) in such way that the queue in the source

node is never empty.)

Now we turn our attention to the actual formulas for queue

sizes Qk(t).
For the simple random walk the mean position of the

walker relative to its starting point after n moves E[sn] is

zero, and the ratio between the expected minimum Mn and√
n tends to the constant −√2/π as n grows.4 Thus Mn ≈

−√2n/π . (This estimate is rather good already for moderate

values of n: e.g., at n= 50 the error is less than 10%.) In our

case n(t) ≈ t/(2s), and so Mn(t) is approximately −√t/π ,

where π has the dimension of seconds. Therefore, by Eq.

(7)

Q1(t)≈ l
√

t/π.

The constant c in Eq. (6) is l/
√

π and has the dimension

s1/2.

The value
√

t/π is also an estimate to the expectation

for the number of time points when the queue in the first

intermediate node q1(t) is empty. As explained above, this

fact gives us the means to estimate the negative drift that

4By symmetry considerations the −Mn equals to the expected maximum
of simple random walk. The limit for the ratio between the expected
maximum and

√
n is given in, e.g., [10] p. 235, Eq. (4.8.23).

affects the mean queue size in the second intermediate node

Q2(t). The drift is referred to by −δ
√

t in Fig. 4.

Unfortunately, the drift is a nonlinear function of t, and

therefore q2(t) cannot be modeled directly by a (proper)

random walk. Instead, we model q2(t) with a sum of a

simple random walk (like the one in the model of q1(t))
and the nonlinear negative drift function −√t/π .

The expected end point E[sn(t)] of this combined walk is

−√t/π , and by the formula (7):

Q2(t)≈ l ·
(
−
√

t/π−Mn(t)

)
. (8)

It is a little bit tricky to estimate Mn(t), because it depends

on the nonlinear drift component. On the one hand, the

nonlinear negative drift naturally pushes the time point, say

γ , where the minimum mn(t) is reached closer to the end

point t, compared to the case where γ is determined by the

random walk component alone. It can be shown that without

the drift component

Γ = E[γ]≈ t/2.

On the other hand, this kind of bias in the “selection”

of minimum point γ restricts the amount that the random

walk component contributes to Mn(t). (If the minimum would

depend only on the drift then, of course, we would have

γ = t, and the contribution of the random walk component

would be zero.) The component of the minimum contributed

by the negative drift is marked as −β
√

t in the Fig. 4.

Figure 4. Illustration of the queue qk(t), and the related random walk
with negative drift.

We try to approach these two aspects sequentially, starting

by an estimate for γ . We use a simple triangular approxi-

mation for the probability density function of γ between 0

and t, assigning density of 0 for the time point τ = 0 and

increasing the density function linearly towards 2/t at time

point τ = t. Then we obtain Γ≈ (2/3)t.
Using this estimate for Γ we approach the deviation of

Mn(t) from the negative drift function at point Γ. The closer

Γ is to t, the smaller is the absolute value of the expected

deviation.

We give a simple estimate for this deviation as well.

A natural choice for an estimate is given by the value

−√2(1−Γ/t) · (t/π): The deviation corresponding to Γ =
t/2 can be approximated by the expected minimum of



the random walk component, −√t/π; and as Γ increases

towards t, the absolute value of the approximated deviation

decreases proportionally towards zero.

These two estimates can now be put together to find an

estimate for the expected minimum Mn(t) of the combined

walk, and subsequently also for Q2(t): At Γ = (2/3)t the

drift, as well as the deviation, equal to −√(2/3)(t/π)
each. Therefore, Mn(t) ≈ −2

√
(2/3)(t/π), or −1.63

√
t/π .

By Eq. (8),

Q2(t)≈ l(0.63
√

t/π).

For the next node and the queue size Q3(t) we repeat

similar calculations. The negative drift −δ
√

t is now bigger

(namely, −1.63
√

t/π) and therefore Γ should be closer to

t.
This is captured by fine-tuning the triangular approxima-

tion to the probability density of γ a little bit: we assign

density of 0 to all points τ ∈ [0, t] where δ
√

τ <
√

t/π .

(At those points the magnitude of the negative drift δ
√

τ
is still less than the magnitude of the random walk com-

ponent’s expected minimum
√

t/π .) After this adjustment,

the probability density function of γ is 0 for τ ≤ τ0, where

τ0 = (1−1/(
√

πδ ))2t, and it increases linearly from 0 at τ0,

towards 2/(t− τ0) at time point t.
Now we obtain Γ= 0.717t. The rest of the calculation is as

described in the Q2(t) case, resulting in Mn(t)≈−2.14
√

t/π ,

and

Q3(t)≈ l(0.50
√

t/π).

For the subsequent queue sizes we can repeat exactly the

same calculations as were done for Q3(t). They lead to the

end results summarized earlier in section IV-A.

V. CONCLUSION AND FUTURE WORK

We have shown how to estimate mean transmission times

of fragmented message over a chain of disrupted links,

where the link disruptions are identically and independently

distributed. We validated our approximation formulas by

simulating the cases of uniform and exponential distributions

for disruptions. From those simulations we conclude that

our approximation is suitable for large message sizes, that

are at least a few times bigger than what can be typically

transmitted within a single contact time, and its accuracy

increases with the message size.

An immediately obvious item for future work is estimat-

ing the mean transmission times for smaller messages. Other

future work topics on the multi-link chain scenario include

estimating the variance of the mean transmission time,

verifying our approximation with additional distributions

of contact and inter-contact times, and analyzing the case

where statistics of those times for different links are not the

same. Based upon those, our target is (as mentioned in the

introduction) investigating fragmented message transmission

over multiple paths in mobile opportunistic networks.
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