
Phantom cascades: The effect of hidden nodes on
information diffusion
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Abstract

Research on information diffusion generally assumes complete knowledge of the
underlying network. However, in the presence of factors such as increasing pri-
vacy awareness, restrictions on application programming interfaces (APIs) and
sampling strategies, this assumption rarely holds in the real world which in turn
leads to an underestimation of the size of information cascades. In this work we
study the effect of hidden network structure on information diffusion processes.
We characterise information cascades through activation paths traversing vis-
ible and hidden parts of the network. We quantify diffusion estimation error
while varying the amount of hidden structure in five empirical and synthetic
network datasets and demonstrate the effect of topological properties on this
error. Finally, we suggest practical recommendations for practitioners and pro-
pose a model to predict the cascade size with minimal information regarding
the underlying network.
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Figure 1: An information cascade on an oracle (complete) network and its
partially observed counterpart.

1. Introduction

Simulating information diffusion processes is a critical aspect of understand-
ing how information spreads in real world networks. A word-of-mouth viral mar-
keting campaign is a well known example where a company wishes to estimate
the spread of an advertisement or uptake of a product over a social network. A
prerequisite for such studies is access to real network data over which the pro-
cesses of diffusion can be studied. Online social networks (OSNs) are a natural
choice for this purpose as they are readily available and in many cases constitute
the desired diffusion medium (e.g., Facebook and Twitter). Consequently such
datasets have been widely used in previous research [27, 8, 23, 20].

However, access to the complete network in question is rarely possible. Fac-
tors such as privacy settings, application programming interface (API) restric-
tions and sampling strategies contribute to missing network structure. For ex-
ample, it is well known that users of OSNs are growing increasingly privacy-
aware. A recent large-scale study of 1.4 million Facebook users [6] revealed an
increase in privacy-enabled profiles over 15 months from 17% to more than 50%,
effectively rendering those users hidden from study yet still actively connected
to their friends. A possible implication of this trend is that as these networks
become more and more partial, research using this data to simulate the spread
of information may become less accurate. The problem is illustrated by the
example in Figure 1 showing a hypothetical information cascade over two net-
works: a complete network referred to as the oracle, where information about
all nodes and edges is known, and a partial view, where some portion is hidden.

This leads to an important question: how does partial network knowledge
affect models of information diffusion? In other words, how can we quantify
the error introduced as we move away from the completeness assumption of the
underlying network?, and how can we correct for it? These are the central mo-
tivating questions we aim to address in this work. We focus on the Independent
Cascade Model (ICM) [12, 17, 4, 20] as a classic example of an information
diffusion algorithm and measure the differences between information cascades
on oracle and partial networks. To this end we formulate a three-step approach
that begins with a complete network, samples a set of nodes of increasing size to
be marked hidden (i.e., modelling users who have privacy enabled), and finally
simulates information spreading across the resulting networks.
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With the proposed methodology we are able to quantify the error introduced
due to network partiality based on a theoretical oracle scenario (i.e., how would
have the information spread with full knowledge). We pay particular attention
to the paths that lead to the activation of visible nodes in the oracle network by
distinguishing whether or not they were activated via hidden nodes. We refer to
this class of activated nodes as the phantom cascade and set out to understand
how the size of this cascade changes as a function of the percentage of hidden
nodes.

As we explain in Section 2, there is limited prior work studying the effect of
partial information on diffusion models [3, 23, 28] from which our work differs
in two fundamental aspects: i) by distinguishing between cascade types we are
able to compare the observed cascade on the partial network to a theoretical
cascade on the oracle network, ii) we focus on missing data at the network level
(as opposed to the cascade level [23, 28]) and study how information cascades
over the incomplete network. To the best of our knowledge, this is the first
study to quantify the error related to the diffusion cascade caused by nodes
hidden at the network level.

The remainder of this paper is organised as follows. In Section 2 we dis-
cuss related work on missing data in information cascades. In Section 3 we
present the datasets and the methodology we use to measure the effect of par-
tial knowledge on the diffusion model. Section 4 presents the results in which
we demonstrate the magnitude of the problem and its relation to topological
properties specific to different networks. In Section 5 we introduce a model
correcting for the effect of missing data. In Section 6.1 we discuss the implica-
tion and limitations of this work. Finally we envisage our future directions and
conclude this study in Section 7.

2. Related work

The problem of missing data in networks has been addressed from different
perspectives ranging from network sampling [22, 5, 10], where the aim is to ob-
tain a representative subset of the network, to network reconstruction [14, 8],
where nodes and edges are inferred to recreate the original network. Other
works, such as [5, 15], have examined the effect of missing nodes and edges on
topological metrics of the network (e.g., average node degree, diameter, clus-
tering coefficient). These and other studies [21, 19] have helped to build an
understanding of the implications of research conducted on sampled or other-
wise incomplete network data.

In the context of information diffusion, however, very little research has been
conducted and thus the effect of missing data on the information cascades them-
selves is not well understood. Of the vast amount of research on information
spreading and diffusion, we are aware of only four studies partially addressing
this problem [3, 23, 28, 27]. In [3], the authors uncovered a logarithmic error
as a function of the amount of missing data for diffusion simulations on a small
telecommunications call graph. Diffusions are simulated and compared on both
an oracle and partial graph. However, the partial graph is created by removing

3



Network # Nodes # Edges Nature
DBLP 1103412 4225686 Co-authorship
Astro Physics 18772 198110 Co-authorship
2.5K series (AstroPh) 16619 158218 Social Network
TOSHK 100000 1062105 Social Network
Erdős-Rényi 100000 1048894 Random

Table 1: Empirical (DBLP, Astro Physics) and synthetic (TOSHK, Erdős-
Rényi, 2.5K series) networks.

nodes, not hiding them, so the role they play in the oracle is not studied. On the
other hand, our approach permits comparison between theoretical spread on the
oracle and observed spread on the partial network through a characterisation of
cascades based on activation paths, yielding insight into how different cascades
contribute to diffusion error.

The other three approaches attempt to infer properties of the total informa-
tion cascade from a partially observed cascade [23, 28, 27]. In [23], the authors
address cascade distortions under missing data and propose fitting k-trees to
correct the distortion. In [28] a similar approach is taken but the authors in-
corporate node activation time to constrain the fit of consistent trees to the
information cascades, while [27] exploits node activation time in a model that
predicts the final number of activated nodes without knowledge of the network.
The key differences between these works and ours are i) they focus on missing
data at the cascade level, whereas we focus on missing data at the network level,
ii) they examine cascades that have already occurred, while we aim to estimate
the error under missing data prior to an attempted real world diffusion (e.g., a
viral marketing campaign) and propose a model to correct for it. Furthermore,
in [28], the authors assume complete knowledge of the underlying network in
order to fit the cascade trees, which is rarely the case in the real world.

3. Methodology

In this section we aim to study the effect of partial network knowledge on the
diffusion process using five datasets representing both empirical and synthetic
social networks. We describe the creation of partial networks and propose a
novel methodology to quantify the error due to missing information by charac-
terising the different paths through which a node can become activated during
the diffusion process.

3.1. Datasets

Three factors drove the choices in datasets. First, our aim is to use graphs
that are arguably as complete as possible to serve as oracle networks, i.e., where
all nodes and edges are known. We refer to them as oracle networks because they
represent relatively complete (in the case of empirical) or theoretically complete
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(in the case of synthetic) social networks.1 Secondly, to account for the effect
of network size we chose networks of different scale. Finally, the graphs should
have properties consistent with social networks (i.e. have community structure,
exponential degree distribution, small diameter, etc.) because we are simulating
a process from the social network domain, that is, where a message is spread by
word-of-mouth.

Empirical. We selected two empirical networks: the DBLP co-authorship
network [18] and the ArXiv Astro Physics co-authorship network [16]. These
networks were chosen because they represent the flow of knowledge through
scientific collaboration and are examples of relatively complete networks for
those communities.2

Synthetic. In addition to the empirical datasets, we generated random net-
works with different topological properties. Generating synthetic graphs has the
benefit of yielding networks of desired size and topological properties, providing
a benchmark comparison for the real networks and a more complete picture of
the results. Furthermore, the resultant graphs are by definition complete, as
they are realised from a generative process. We selected three graph models:
2.5K series [11], TOSHK [25], and the Erdős-Rényi random graph [9].

The 2.5K series requires a graph as input to explicitly model the joint degree
distribution (JDD) and degree-dependent average clustering coefficient (DACC).
The method works by replicating the JDD, overestimating the number of tri-
angles, and then systematically breaking triangles with double edge swaps until
the target DACC is reached. Due to the complexity of this method, we fit our
smallest empirical network, i.e., Astro Physics, by following the methodology
presented in [11]. Note that the exact number of nodes cannot be targeted
which is the reason this property does not exactly match the target network.

TOSHK is a social network growing model that targets two properties: an
exponential degree distribution and high clustering coefficient. We tune these
features based on the Astro Physics network (for consistency with 2.5K series)
using a grid search resulting in parameters k = 22 (average degree) and p = 0.9
(probability of connecting to a given node’s neighbours), however we increase
the size of the network to N = 100000 (nodes) to explore different size effects.

Finally, the Erdős-Rényi random graph was included for comparison (not
having any social structure) and was generated with N = 100000 (nodes) and
p = 0.00021 (edge probability) to match the average degree of Astro Physics.
Table 1 presents an overview of the described networks.

1The notion of completeness could indeed be argued for a known sampled network, given
that it could play the role of oracle compared to a partial network derived by sampling
it. However, for simplicity we define a complete network as one that is, to the best of our
knowledge, complete in that it encompasses all possible nodes and edges (i.e., it is not sampled
from a larger network).

2The DBLP network is a multigraph with parallel edges between authors denoting multiple
co-authored papers. However, in this work we ignore parallel edges in order to leverage the
seed selection strategy proposed by [4] and to maintain consistency across datasets.
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3.2. Partial network creation

To simulate an incomplete OSN crawled or otherwise collected we create
a partial network from the oracle by uniformly sampling nodes and edges for
removal. The decision to sample uniformly is motivated by evidence that users
are not influenced by their friends in deciding to be more private [6]. In addition,
some OSNs, such as Twitter, uniformly sample information to be displayed to
users [23].3 We chose the node removal interval to be 10–50% in 10% increments
to model privacy rates empirically measured [6] and make the assumption that
missing data in other OSNs would likely fall within this range.

Formally, we define an oracle graph as Go = (Vo, Eo) where Vo and Eo
represent the nodes and undirected edges in the oracle network. To create a
partial view Gp of Go, we uniformly sample a fraction ρ of hidden nodes Vh from
Vo where ρ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. Once a node is selected by the sampling
strategy as hidden, all its edges are also hidden from the partial network. The
resulting partial graph is thus defined as Gp = (Vp, Ep) where Vp = Vo \ Vh and
Ep = {(u, v) ∈ Eo | u, v ∈ Vp}.

3.3. Independent Cascade Model

The Independent Cascade Model (ICM) is a well-known model for the spread
of information over social networks [12]. We focus solely on this model because
it has been extensively studied for various diffusion problems such as seed se-
lection [12, 4] and spread maximisation [17, 20] and thus we can take advantage
of previously suggested guidelines and parameter settings. We will discuss the
possible impacts of these choices in Section 6.1.

Given a graph G = (V,E), a set of seed nodes S ⊆ V initially actived at
time t = 0 and all other nodes V \ S initially inactive, ICM works in a push
mode to spread information over the edges E. At each iteration t ≥ 1, every
node i that was activated at time t− 1 has exactly one chance to activate each
of its inactive neighbours j with transmission probability p. ICM terminates
when no further nodes are activated.

Transmission probability. Following previous work [4, 12], we assume a
global transmission probability p for all nodes in G. Previous empirical work
has shown evidence supporting low global transmission probabilities. In [2],
for example, the authors find a 0.191% likelihood of resharing friends’ posts on
Facebook. While it is difficult to draw a conclusion from this on an ideal value
for p, we report results using p = 0.01, but note that the same experiments
were conducted with p = 0.001 and we observed consistent results. We did not
consider a higher transmission probability such as p = 0.1 because it is known
to quickly saturate the network [4].

Seed size and selection. The number of seeds |S| and the heuristic to select
them is another important parameter to ICM which has attracted a large body

3In the event that correlation would exist between hidden nodes of a given network, uniform
sampling can be readily replaced by a more appropriate strategy (random walk, etc.).
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of research, among which extensive analyses can be found in [17, 4]. For seed
selection we chose the discounted degree strategy [4], which selects an additional
seed node by its degree adjusted by the estimated number of nodes, that will
be activated by already chosen seeds. This heuristic has been shown to have a
better performance than plain degree, and it guarantees the seed selection from
the core of the network.

Most importantly, the resulting cascades from the oracle and partial network
have to be comparable. In order to ensure this we use the same seeds in both
scenarios. To this end we first apply the seed selection algorithm on the partial
network and maintain this set for the oracle network. Finally, as each dataset
differs significantly in size, we select the number of seeds to be a fraction γ of
the number of nodes in the partial network (Vp) where γ ∈ {0.0001, 0.001, 0.01}.

3.4. Experimental setup

We run ICM in two scenarios:

1. the oracle scenario where ICM is run over the complete network allowing
the information to spread over the hidden nodes and edges, and

2. the partial scenario in which information spreads only over the visible part
of the oracle network (the partial network).

For each scenario, we conducted experiments for each fraction of hidden
nodes ρ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. We first account for variation due to different
samplings of hidden nodes by generating a total of v partial views (i.e., samples)
from the oracle network. Next, to account for variance due to ICM across each
sample, we run each diffusion r-times for each sample of the oracle and partial
networks. We empirically determined the minimum required values for both r
and v to be 50, that is 50 samples per experiment and 50 diffusions per sample.
As can be seen in Figure 2, the mean cascade size quickly converged and thus
this number of repetitions allows us to place an upper bound on the number
of required experiments while maintaining diffusions that are computationally
tractable. 4

Due to the stochastic nature of ICM, it is not possible to directly compare
a single diffusion on the oracle network with a single diffusion on the partial
network. However, it is perfectly valid to compare averages from the multiple
diffusions over the different samples.

3.4.1. Characterisation of activation paths and cascade sizes

Each diffusion run results in a set of information cascades with the seeds as
the root nodes. Let us first focus on the diffusion process in the oracle network
and the cascades that are formed as a result. Consider an information cascade
Cs represented as a tree with seed node s as its root and where an edge (i, j)
represents the activation of node j by node i.

4In the case of the largest dataset, DBLP, all experiments took 29 hours to compute using
24 Intel Xeon 2.4 GHz CPUs.
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Figure 2: Mean z-score (y-axis) of the z-scores measuring the difference
between the simulated cascade size after r diffusion trials (x-axis) and the
final mean obtained at r = 50. The error bars depict one standard deviation
from the mean z-score.
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Figure 3: Information cascades for the oracle (left) and partial (right)
networks.

We define three distinct ways that an arbitrary node j can be activated in
the oracle network and illustrate the resulting cascades in Figure 3.

Definition 1. A node j is observably activated if j is a visible node (j ∈ Vp)
and the activation path to j does not contain any hidden nodes.

Definition 2. A node j is phantomly activated if j is a visible node (j ∈ Vp)
and the activation path contains at least one hidden node.

Definition 3. A node j is hiddenly activated if j is a hidden node (j ∈ Vh)

8



regardless of whether it was activated through a visible or a hidden path.

Finally as in ICM, a node can be successfully activated by multiple neigh-
bours, we compute the expected value of phantomly activated and observably
activated nodes by considering the probability of activation by multiple parents,
some of which may be visible, while the others may be phantom or hidden. For
example, if a visible node is activated by two nodes, one visible and one hidden,
it will contribute by 0.5 to the σo and by 0.5 to σph.

We now turn our attention to measuring the sizes of the information cas-
cades.

Definition 4. The total cascade size, denoted by σ, is defined as the total num-
ber of nodes activated during the diffusion on the oracle network and corresponds
to the total number of nodes in the cascade.

Definition 5. The observed cascade size, denoted by σo, is defined as the num-
ber of observably activated nodes in the oracle network. We similarly define
and denote the phantom cascade size and hidden cascade size as σph and σh
respectively.

As these cascades are each a subset of the diffusion tree, their sum corre-
sponds to the total cascade size, that is σ = σo + σph + σh.

Finally the resulting cascades from the diffusion process on the partial net-
work are defined as:

Definition 6. The partial cascade size, denoted by σp, is defined as the total
number of nodes activated during the diffusion on the partial network.

3.4.2. Metrics

Measuring the partial cascade size allows us to quantify the measurement
error caused by partial knowledge of the network. We measure this error in
terms of relative error of the activated nodes, while accounting for the cascades
traversing hidden nodes unlike the previous approaches [3]. Distinguishing be-
tween phantom and hidden cascades allows us to account for what theoretically
would have happened to the same visible nodes in the partial network if knowl-
edge of the oracle network was available.

relative error =

∑
i∈v
|((E(σph)+E(σo))−E(σp)|

(E(σph)+E(σo))

v
, (1)

where E(σ·) is the expected cascade size over the r diffusions on each sample,
and v is the size of the sample set.The relative error is a simple metric to capture
the error in the partial cascade estimation by taking into account the size of the
phantom and observed cascades.

Note that we do not focus on the size of the hidden cascade σh in the
estimation of our error. Not only will including σh simply increase the relative
error, but, from an application perspective, the hidden nodes may be of less
interest to the campaigners than those visible nodes which are the focus of the
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Figure 4: Fraction of the activated nodes at each time for different exper-
iments for 2.5K.

campaign (i.e., diffusion process). Take the example of a telecommunications
operator who wishes to promote a new service to existing customers. Only the
operator’s own customers are of interest, but possible diffusion paths to existing
clients can exist that include parts of other provider’s networks (i.e., through
network structure hidden to the operator).

4. Quantifying diffusion error

This section presents an overview of the results of the experiments detailed
in the previous section. We first examine the problem through a sample use
case, highlighting the impact of hidden nodes on what is observed from the
diffusion process. We then investigate this problem in depth by quantifying the
diffusion error, measured by relative error, under partial knowledge. Finally, we
demonstrate how the fraction of hidden nodes, the seed size and the network
topology contribute to the observed effects.

4.1. Use case

To illustrate the impact of incomplete network data on the observed diffusion
process, consider the following hypothetical scenario. A company is launching
an advertising campaign on a social network where an initial group of users
(the seeds) will be given an incentive to spread to friends via word-of-mouth.
To realise such scenario, let us consider the 2.5K network which has been shown
to incorporate the typical social network structure [11]. Assume that 50% of
the users of this social network (N = 16619) are privacy aware and restrict
access to profiles, resulting in a partial view of the network that is collected by
the company. Furthermore, it has been decided that for the campaign to be
considered successful (e.g., to warrant the investment), it must reach least 100
users.
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Figure 4 presents the result of the diffusion process for both the partial and
the oracle networks. The y-axis represents the average cumulative number of
activated visible nodes5, and the x-axis represents time.

We first examine the case where the number of initial users constitutes 0.01%
of the partial network (i.e., corresponding to only 1 user) to spread the cam-
paign. For this seed size, the green curve (triangles) shows the diffusion launched
over the partial network that is observed by the company, whereas the red curve
(circles) represents the real number of users that the campaign has reached at
each time step (i.e., the oracle). The difference between the two curves demon-
strates that the partial cascade size gives an inaccurate estimation of the total
number affected users, showing that the campaign fails to reach the desired goal
of 100 users. However, in reality there are many more users affected through
the hidden portion of the network and the goal is reached at t = 30.

Since the estimated cascade size based on the partial network appears to
have failed to reach the campaign goal, the company may conceivably decide to
allocate more resources by increasing the number of initial users. Figure 4 de-
picts this scenario by showing the blue (squares) and purple curve (pluses) which
correspond to the seed size of 0.1% (8 users) and 1% (80 users), respectively.
In the case of 0.1%, the campaign again appears to fall short of the desired
number of users, while in the 1% case the target is met almost immediately
(although now 80% of the goal are in fact initial users, making the investment
substantially outweigh the return).

Allocating more resources to increase the seed size often incurs a high cost
and may not be an option on large networks where an increase in the seed size
may correspond to giving incentives to thousand of users. As highlighted by this
use case such actions may not always be necessary because the desired number of
activated users would have been already reached in the oracle scenario. However,
as we point out in Section 6.1, the increased seed size allows the campaign to
reach the target much faster.

Through this example use case we demonstrated how the partial view of
the network can impact how diffusion simulations can be perceived in practice
and in turn negatively affect decision making. We now turn our attention to
quantifying this estimation error and investigate the impact of the seed size and
the hidden portion of the network in depth, before moving on to understanding
the impact of network topology on cascade shape and spread.

4.2. Magnitude of the problem

As we have defined in Section 3.4.2, we quantify the diffusion error in terms of
relative error which measures the number of visible nodes theoretically activated
with complete knowledge of network structure in relation to the number of nodes
actually activated given partial knowledge that is typically available. Figure 5
shows the relative error as a function of the fraction of hidden nodes ρ for all

5Note that since the means for later time steps were computed over a smaller number of
cascades due to varying cascade lengths, the curves are not strictly monotonously increasing.
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Figure 5: Relative Error for various seed sizes as a function of the fraction
of hidden nodes ρ.
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networks. Each curve represents a different seed size γ with 95% confidence
intervals. The relative error is considerably high for all networks and increases
with an increase in ρ and decrease in γ. Furthermore, this error is consistently
due to underestimation, as opposed to overestimation, of the number of the
visible nodes in the partial network compared to the number of visible nodes
in the oracle network and is a direct consequence of the hidden nodes. More
specifically, in Eq. (1) (E(σph) + E(σo)) > E(σp). The exception to this is the
Erdős-Rényi graph. Indeed, as we will show in the next section the topological
structure (i.e., zero assortativity), yields uniform diffusion processes where a
diffusion on the partial network can reach more visible nodes than on the oracle.
Figure 5 shows evidence of this with the very low relative error and lower effect
of the seed size. Because of this expected behaviour, we exclude it from further
discussion in the following text.

Effect of the hidden nodes. As more of the network is hidden (i.e., increasing
ρ), the relative error also increases for all seed sizes. The curves begin to plateau
for the higher values of ρ because as the partial network gets smaller, the pool of
initial visible nodes shrinks, meaning there are more hidden nodes which, when
activated, are not accounted for in the calculation of Eq. (1).

Effect of seed size. With the exception of Erdős-Rényi (as noted above),
the error increases dramatically by reducing the seed size for all the networks,
reaching approximately up to 0.8 in the worst case (2.5K with smallest seed and
ρ = 0.5). The smallest seed size also results in a higher standard deviation, as
would be expected due to the inherent stochasticity of ICM. This effect is most
prominent for the smallest networks (Astro Physics and 2.5K) where the seed
fraction 0.0001 corresponds to selecting just one or two seeds. Conversely, for
the bigger networks such as DBLP (and TOSHK) the magnitude of the error
is smaller for all the seed sizes and decreases as the number of seeds increases
because the majority of the nodes are now activated observely. Figure 6 lends
evidence to support this argument by depicting the observed cascade size as a
fraction of the total cascade size after the first iteration of ICM (i.e., the spread
from the seeds to their direct neighbours), for DBLP and Astro Physics6. In
the case of the biggest seed size, up to 80% of the final cascade is observably
activated as a result of direct activation from seeds, whereas for Astro Physics,
this percentage is smaller, yielding higher chances of encountering hidden nodes
later in the diffusion process, which in turn results in a higher relative error. In
the next section, we discuss more on the shape and length of the cascades on
different networks accounting for their topological structures.

Finally, it is worth noting that while the relative error is decreased for larger
seed sizes, increasing the seed size in real world scenarios is not always feasible.
Indeed, as motivated by the use case detailed in the preceding text, the cost of
targeting more users must be weighed against the perceived gain in the total

6TOSHK and 2.5K are omitted due to space constraints but share similar characteristics
to DBLP and Astro Physics respectively
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Figure 6: Fraction of nodes that were observably activated at time 0 (seeds)
and 1 (directly from the seeds) for the three seed sizes (columns) for the
empirical networks.

cascade size. In most cases, simply increasing the seed size is prohibitively ex-
pensive, and in the absence of strict time constraints, may even be unnecessary.
For these reasons, we shall concentrate on the smallest seed size (γ = 0.0001)
for the remainder of this section.

4.3. Cascade Spread

The observation that the relative error in Eq. (1) is dependent on the seed
size, the fraction of hidden nodes and the number of first-hop (observable) ac-
tivations leads to the following questions:

i) How does cascade tree shape affect the estimation error as a function of the
fraction of hidden nodes?

ii) How does the error relate to the topological properties of the graph?

We answer the first question by showing that the trend that the relative error
follows is a direct consequence of the cascade shape. Specifically, the branches
of a wide and shallow cascade tree (and by extension, the phantom cascades)
will be small, even as more nodes are hidden by increasing ρ. Conversely, when
a cascade tree has numerous long branches, increasing the number of hidden
nodes will increase the size of the phantom branches. In order to characterise
the shape of these cascades we show the distribution of activated nodes at each
time step. Figure 7 shows that for the two empirical networks the cascades
have different behaviour (ρ = 0.1, γ=0.0001). Specifically, the cascades on
DBLP activate a large number of nodes during the first few time steps, but new
activations drop quickly in the subsequent time steps to finally end in relatively
short branches. In contrast, the cascades over Astro Physics are smaller in the
first few time steps, but maintain a higher number of newly activated nodes
subsequent time steps, resulting in longer branches.
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Figure 7: Cascade shape for the empirical networks (inner plot is log-log).

This explains why hiding more nodes, particularly those early on in the
cascade, will result in larger consequent branches (i.e., phantom cascades). The
subplot of Figure 7 shows the same empirical distributions on a log-log scale to
emphasise the behaviour of the cascade tails. Astro Physics has a higher and
longer tail which means that the likelihood of having many long branches is
higher than for the other network. This also explains why the relative error in
Astro Physics is double that of DBLP as reported in Figure 5.

Table 2: Topological features of empirical (DBLP, Astro Physics) and
synthetic (TOSHK, Erdős-Rényi, 2.5K series) networks. Average degree
(Deg), Average clustering coefficient (Clu), Diameter (Dia), Radius (Rad),
Assortativity (Asso).

Network (|V |, |E|) Deg Clu Dia Rad Asso
DBLP (1M, 4M) 7.7 0.634 19† 12† 0.114
Astro Physics (18K, 198K) 21.1 0.531 14 8 0.205
2.5K series (AstroPh) (16K, 158K) 19.0 0.552 10 6 0.223
TOSHK (100K, 1M) 21.2 0.528 11 6 0.043
Erdős-Rényi (100K, 1M) 21.0 0.0002 6 5 0.0002

† Estimated by sampling 1000 nodes averaged over 10 samples

We answer the second question by illustrating how clustering coefficient and
assortativity play a fundamental role in affecting the shape of the cascades. Ta-
ble 2 lists our selected networks and their most significant topological properties.
These spectrum of different networks ranges from purely random (Erdős-Rényi)
with negligible clustering structure (also indicated by a low average clustering
coefficient in Table 2) to those indicating strong community structure, such as
DBLP with an average clustering coefficient of 0.634. The synthetic networks,
with the exception of Erdős-Rényi, also have high average clustering coefficients
because this topological metric is specifically targeted in the generation process.
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Figure 8: Average node clustering coefficient and degree as a function of
node activation depth in the partial cascades for the empirical networks.

Table 2 also shows that real networks have positive assortativity indicating that
nodes tend to associate with those of similar degree. The synthetic graphs show
neutral assortativity which is consistent with many random graph models. The
2.5K series is the exception due to the explicit modelling of the JDD.

Figure 8 (upper) shows the average clustering coefficient for nodes activated
at each time step (ρ = 0.1, γ = 0.0001) with shaded areas as 95% confidence
intervals. The average clustering coefficient for DBLP continually increases as
a function of time, while for the other networks it remains low and relatively
constant after the second time step. Highly clustered and disassortative nodes
have a lower chance of spreading the information widely for two fundamental
reasons. First, once the diffusion enters a clique, it will likely remain within that
portion of the graph [26]. Second, recall from Table 2 the lower assortativity
of DBLP (0.114). Low degree heterogeneity has been shown to limit cascade
size [26] because spreading to high-degree nodes is less likely, especially when
seeds are chosen with discounted degree. This last point can be confirmed by
examining average node degree at each time step.

In Figure 8 (lower), we consistently observe across all networks that the
majority of high-degree nodes are activated during the initial time steps. The
networks that activate nodes with lower degree, e.g., TOSHK and Erdős-Rényi,
also tend to have shorter cascade branches which in turn leads to lower prob-
ability of nodes being activated through hidden nodes (hiddenly activated) as
the cascade progresses.
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(a) SiCE

(b) ReCE

Figure 9: The two approaches to correction of partial cascades. The visible
nodes that were activated during the diffusion over the partial network are
white and the grey nodes represent the unexplored nodes (in the partial
cascade) added by the correction method. The solid links represent the
activation pathways as observed during the simulation, while the dashed
links represent the additional activations of the unexplored nodes induced
by the correction method.

5. Correction

As we showed in the previous section, the phantom cascade can have a dra-
matic effect on the estimates of the number of activated visible nodes. Therefore,
in this section we focus on the problem of predicting the total cascade size given
the partial network, the fraction of hidden nodes ρ, and seed size γ. Having
knowledge of ρ is a reasonable assumption in cases when we know the total
population, and therefore we can easily estimate how many nodes are missing
in the network. For instance, in the case of the telecommunication operator
or social media campaigner, the total population may be known from a census
or can be estimated by a poll. We experimented with two approaches to the
correction of the partial cascade size. Both methods use the partial cascade size
σp assuming that it closely approximates a part of the total cascade and then
attempt to correct it by adding the remainder of the cascade. Although we are
aware that error correction for synthetic networks does not have much practical
value, we still investigate the results for synthetic networks in order to test the
robustness of the presented methods.

Simple Cascade Expansion (SiCE) The SiCE approach realizes a simple
correction of the partial cascade by inferring the size of the unexplored nodes
as proportional to the ρ fraction of missing nodes from the partial network.

This approach assumes that all nodes activated in the partial network, i.e.
σp, were also the visible nodes activated in the oracle network, thus σp is assumed
to be a tight approximation of σph + σo.
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Hence, the total cascade size σ, in the oracle network, can be approximated
as σ̂ = σp/(1 − ρ), which corrects the partial cascade size by adding the ex-
pected number of unexplored hidden nodes. This corresponds to estimating the
expected number of descendants, for each node i in the partial cascade, that
would have been unexplored compared to the oracle cascade. Let dp(i) be the
number of i’s direct descendants in partial cascade, then dp(i)/(1− ρ) would be
the expected number of i’s direct descendants in oracle cascade; thus, to correct
the partial cascade we only need to add, for each node i, the respectively missed
nodes, i.e. dp(i)/(1− ρ)− dp(i), as we show in gray colour in Figure 9a.

Recursive Cascade Expansion (ReCE) So far, we have shown that the
oracle and partial cascades often differ significantly (recall Figure 5) due to
the large phantom cascade, therefore, the assumption σp ≈ σph + σo in the
SiCE approach does not strictly capture reality. Here, we introduce a different
approach, i.e. ReCE, in which we assume that the partial cascade size σp is
a good approximation only of the observed portion, σo, of the oracle cascade.
Thus, ReCE tries to infer the total cascade size by growing the partial cascade
with new nodes while letting them diffuse further to account for the phantom
portion of the oracle cascade. As depicted in Figure 9b, ReCE expands the
cascade with a top-down approach level by level by inferring at each level t, the
expected total cascade σ̂t. ReCE starts from the nodes directly activated by
seeds, i.e. at level 1, where it is equivalent to SiCE. On the subsequent levels,
it adds also the estimated number of descendants of the new nodes from the
previous level, i.e. σ̂t−1 − σt−1p , as computed in the following formula:

σ̂t =


σt
p

1−ρ + (σ̂t−1 − σt−1p )E(degt−1)p for t ≥ 2
σt
p

1−ρ otherwise
(2)

where E(dt−1) is the expected number of the visible descendants of a node
activated at level t − 1 and p is the transmission probability. This method
is expected to outperform the simple correction model, i.e. SiCE, because it
allows the new added nodes to spread the diffusion process further. In the next
paragraph, we compare this two approaches together with the non-corrected
partial cascade by measuring their mean absolute relative error with the oracle
cascade, i.e. E(|σ − σ̂|/σ), recall that σ is the total cascade size.

Model validation. Figure 10 shows the relative error of three approaches in
predicting of the total cascade size σ. The mean values are denoted by points
which are interpolated by a smoothed line with a shaded 95% confidence inter-
val. The partial approach uses the partial cascade size without any correction.
In general we observe that both SiCE and ReCE feature smaller error than the
partial method, and ReCE provides the overall lower error among all. Note that
the Erdős-Rényi network is an exception in the sense that the error induced by
SiCE was the highest of all the three methods. On Erdős-Rényi the cascades
are particularly shallow, therefore blind correction, as for SiCE, quickly overes-
timates the cascade size. Conversely, ReCE, which expands the cascade layer
by layer, seems to be more robust and induce consistent results across all the
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Figure 10: The mean absolute relative error of three approaches to cor-
rection of partial cascade size for the networks (columns) and seed sizes
(rows).

networks. We identify two cases in which SiCE slightly outperforms ReCE (on
the TOSHK network with the highest seed size, and on the DBLP network with
the middle seed size). This observation highlights that when the cascades start
from many seeds and the visible part of the networks is quickly covered, so-
phisticated correction methods do not provide substantial benefits because the
phantom cascade size is negligible.

Generally, ReCE led to the smallest correction errors, in some cases improv-
ing the estimates of the oracle cascade size notably, e.g., for DBLP, smallest
seed size, and 50% missing nodes ReCE induced 15% error, reducing the error
by 49% (compared with the partial method). The relatively high error and
broader confidence interval for Astro Physics and the smallest γ is caused by
the very small number of seeds, and we see that the error decreases dramatically
for the medium seed size. However, as ρ increases, the difference between the
distributions of activation times on the oracle and partial networks grows which
in turn increases the error.

6. Discussion

In this section we first present several theoretical and practical implications
of this work. After that, we discuss a few limitations of our approach and
suggest ways to address them.
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6.1. Implications

Theoretical Implications. This study has quantified cascade size estimation
error caused by network partiality and has offered a way to correct for it. In
particular, this work highlights that the cascades can be much deeper than
what they appear to be in the partial network. This observation has also been
confirmed by [7] on the real cascades based on photo sharing on Facebook,
where the information that previously appeared to have been shared directly
from the source was traced back to a considerably greater depth in the cascade.
We believe this work has direct implication on how the diffusion process is
perceived and explained by the research community.

Practical Implications. Understanding ‘how many’ nodes have been acti-
vated and ‘how’ they were reached can be leveraged by campaign managers
and marketing companies to assist them with decision making. Based on the
results presented in this work, we argue that if one requires the campaign to
spread quickly (e.g., a time-sensitive petition), then more resources should be
allocated to engage a larger set of initial users. On the other hand, for a word-of-
mouth campaign which is delay tolerant and does not require fast spread (e.g.,
advertisement), the desired number of users can be still reached in a longer
period of time through the hidden parts of the network. Finally, our correction
method enables those relying on diffusion simulations to get a more accurate
understanding of the of the magnitude that the campaign has actually reached
assisting them to allocate their resources more efficiently.

6.2. Limitations

This work has a number of limitations. First, we modelled the diffusion
process based on the ICM. While we believe the problem addressed in this paper
still exists and can be quantified in the same way for other diffusion algorithms
such as the linear threshold model (LTM) [12], the correction process will differ
significantly.

Second, we confined our experiments to the most common case of global
transmission probability p = 0.01, which has been adopted widely by the litera-
ture [12, 4] and has been empirically measured in online social networks [24, 1, 2].
If we were to try with higher probability, we would observe that the diffusion
process reaches the saturation point quickly [4], resulting in short and wide
cascades with small relative error between the oracle and the partial cascade
sizes.

A global transmission probability assumes that all nodes have the same
threshold for diffusion. While this may hold in some cases such as with models
of disease spread, it is simplistic to assume that it applies to real world social
networks where users are influenced by others in more nuanced ways. Modelling
varied social tie strengths instead of a uniform global transmission probability is
straightforward: ICM has already been extended to weighted edges [13]. In this
extension, a biased coin flip according to the edge weight replaces the uniform
transmission probability at each edge. With respect to our work, the cascade
size measurement remains unchanged: if the activated node is hidden, then it is

20



attributed to the hidden cascade; if it is visible (including the entire sub-tree up
to the seed), then it is attributed to the observed cascade. If neither are true,
it is attributed to the phantom cascade.

Correcting the relative error, on the other hand, is slightly trickier. We can
recursively expand the cascade size using the average degree (at the cascade
level) and the transmission probability (Eq. 2). For ReCE, we posit that for
the size of the visible cascade at each level, we could simulate over the weighted
degree distribution one layer above (this would replace the expected degree at
the previous level ×p). In other words, we cannot take the product of the
average degree and p, since the weights would differ, so we would have to take
the weighted degree distribution instead. The other correction method we have
introduced, SiCE, does not require any modification for adaptation to weighted
edges.

Finally, we only reported the results of our experiments where the seed nodes
were selected by their discounted degree, but we also conducted experiments
with seeds selected uniformly at random to control for a possible bias introduced
by the seed selection strategy. Although the variance of the measured error
metrics rose, our findings were consistent with the results that are presented.

7. Conclusion

In this paper, we focused our investigation on the impact of network par-
tiality on information diffusion processes and have demonstrated the magnitude
of the estimation error when only partial data is available. Our work provides
a novel methodology to characterise this error and sheds light on features that
allow us to correct for it.

While we have taken the first step toward the correction of the estimated
error based on partial data, we believe our results can be extended to account
for different classes of graphs with different topological properties in other do-
mains. Also another valuable extension to our work would be obtaining a more
pragmatic way (e.g., community based) of sampling the hidden part of the net-
work that would correspond to individuals preferences in real world networks
such as mobile networks. As part of the same stream of future work, we are
also interested to investigate ‘who’ are the nodes that are activated and focus
more on their topological characteristics (e.g., degree, betweenness centrality,
their community etc.) rather than their sheer magnitude.
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