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Abstract

In the last few years, Online Social Networks (OSNs) attracted the interest of a large number of researchers, thanks
to their central role in the society. Through the analysis of OSNs, many social phenomena have been studied, such as
the viral diffusion of information amongst people. What is still unclear is the relation between micro-level structural
properties of OSNs (i.e. the properties of the personal networks of the users, also known as ego networks) and the
emergence of such phenomena. A better knowledge of this relation could be essential for the creation of services for the
Future Internet, such as highly personalised advertisements fitted on users’ needs and characteristics. In this paper, we
contribute to bridge this gap by analysing the ego networks of a large sample of Facebook and Twitter users. Our results
indicate that micro-level structural properties of OSNs are interestingly similar to those found in social networks formed
offline. In particular, online ego networks show the same structure found offline, with social contacts arranged in layers
with compatible size and composition. From the analysis of Twitter ego networks, we have been able to find a direct
impact of tie strength and ego network circles on the diffusion of information in the network. Specifically, there is a high
correlation between the frequency of direct contact between users and her friends in Twitter (a proxy for tie strength),
and the frequency of retweets made by the users from tweets generated by their friends. We analysed the correlation for
each ego network layer identified in Twitter, discovering their role in the diffusion of information.
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1. Introduction

The impressive penetration of Internet technologies and
the establishment of participatory forms of content gener-
ation and exchange, such as the Web 2.0 paradigm, paved
the way for the diffusion of Online Social Networks (OSNs).
OSNs are nowadays a significant part of the prosumer
paradigm shift in communication and data exchange, whereby
users can actively create and share information with each
other, rather than being passive consumers of contents as
in more traditional media. In addition, OSNs are becom-
ing one of the preferred ways to manage social relation-
ships for an increasing number of people and their use is
growing also far beyond supporting social relationships be-
tween people. Today OSNs are already successfully used,
among others, for commercial recommendations, online
content curation, advertising, and much more.

OSNs are significantly contributing to the so called
cyber-physical world (CPW) convergence [1], which envi-
sions a world where people actions and interactions in the
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cyber (virtual) world, enabled by ICT, and in the physical
world are strongly dependent upon each other and knit-
ted into a single whole. In the CPW, actions taken in the
virtual world are directly transferred to the physical world
and vice versa. For example, social relationships in OSNs
(i.e. in the virtual world) often depend upon those existing
in the physical world and actions taken in OSNs modify
the state of the physical world (e.g., mass movements or
rallies that are organised and advertised exclusively over
OSNs).

Characterising the properties of OSNs has been a very
active research topic recently. The scale of these networks
make this task challenging per se, and the diffusion of OSN
services makes results obtained from this type of analysis
impactful. In addition, the study of OSN structural prop-
erties is fundamental for the creation of a series of new
services for the Future Internet highly customised on the
user’s characteristics and needs. For example, the struc-
ture of OSNs can be exploited to develop new efficient and
cost-effective marketing strategies, as shown in [2]. De-
spite this, most of the analyses conducted so far on OSNs
are focused on macro-level structural properties only (e.g.
global clustering coefficient, diameter, presence of com-
munities), whereas micro-level structures (i.e. the prop-
erties of personal social networks of the users) have not
been investigated in detail. In sociology and anthropology,
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the micro-level structures of social networks formed offline
(not mediated by the use of the Internet) are found to be
directly related to most of the social phenomena arising in
the network and, therefore, it can be reasonably expected
that micro-level structures in OSNs could impact on the
aforementioned OSN services.

The chief aim of this paper is twofold. On the one
hand, we investigate in detail key properties of OSNs at
the micro level. On the other hand, we show how these
properties determine patterns of information diffusion in
OSNs. In this way, we contribute to discover the relation
between microscopic and macroscopic properties of OSNs,
where the former are related to the social behaviour and
structure of individual users, while the latter relate to so-
cial phenomena involving the network as a whole.

In order to characterise the micro-level structures of
OSNs, we focused our analysis on ego networks. An ego
network is defined as a portion of a social network formed
of a given individual, termed ego, and the other persons
with whom she has a social relationship, termed alters.
Ego networks have been the subject of a very significant
body of work in the sociology and anthropology literature,
that has characterised some of their fundamental proper-
ties (see Section 2.3 for more details). One of the most
important is the presence, in the ego network structure,
of a series of concentric layers of alters with different lev-
els of intimacy and size. The key parameter to distin-
guish between alters at different layers is the tie strength

of the social relationship with the ego, which is typically
approximated with the frequency of contact between them
(a more precise description of these results is presented as
background material in Section 2).

Section 4 of this paper reports an analysis that inves-
tigates whether similar ego network structures can also be
found in OSNs. This analysis allowed us to assess the dif-
ferences between the baseline results in social sciences and
the properties we have observed in different OSN data sets
(described in Section 3) obtained from Facebook and Twit-
ter. Notably, we have found a layered structure in OSN
ego networks similar to the one identified in offline social
networks in terms of: (i) number of layers, (ii) frequency
of contact of the layers, and (iii) scaling factor between
the size of adjacent layers. This indicates that, as far as
the structural properties of social relationships are con-
cerned, human social behaviour seems to be unaltered by
the use of OSNs. This further confirms the existence of
the CPW convergence and it must be taken into account
for the creation of user-centric future-Internet services.

Starting from these results, in Section 5, we report an
analysis aimed at assessing the role of the ego network
structure on the diffusion of information. We analysed the
impact of tie strength and the presence of ego network cir-
cles on information propagation in Twitter ego networks,
for which we have complete information on the creation
of tweets and retweets. In accordance with the literature
(see for example [3]), we found that weak ties, associated
with lower levels of direct interactions than strong ties,

also transport a lower number of retweets. Despite this,
the high number of weak ties in the ego networks makes
the total amount of information circulating through them
exceed the amount of information passing through strong
ties. Then, we analysed the correlation between the fre-
quency of interaction between users in Twitter (a proxy
for their tie strength) and the frequency of retweets that
flow through the social links that connect these users. The
correlation has a medium/high value (r = 0.46), but it is
not sufficient to justify a model able to predict information
diffusion from tie strength. Hence, we further investigated
this aspect on two axes: (i) by studying the correlations
within single ego network layers, and (ii) by dividing social
relationships in two classes, the first related to alters who
use Twitter for socialising and the second containing other
types of alters, like companies, public figures, etc. The
results indicate that the correlation between tie strength
and information diffusion increases when we move from
the outer to the inner parts of ego networks (from weak
to strong ties), with values greater than 0.6 for the inner-
most layer. Perhaps more surprisingly, the correlations for
both classes of alters are sensibly higher than those found
when the two are mixed together, with the first class (i.e.
people with social behaviour) showing the higher values of
correlation (close to 0.8 for the innermost layer and always
higher than 0.6 for the other layers).

Therefore, in summary, the results presented in the
paper show a significant similarity between social network
structures in online and offline environments. Not only
the structure of ego networks is remarkably similar, but
also these structures significantly impact on the way OSN
services are used. Specifically, we have found that the
patterns of information diffusion can be explained quite
precisely starting from ego network structures of the indi-
vidual users.

2. Background and Motivations

Social networks are structures composed of a set of so-
cial actors (e.g. individuals, organisations) and a set of ties
(i.e. social relationships) connecting pairs of these actors.
They are usually expressed in the form of graphs consisting
of nodes representing social actors connected by edges, or
arcs, which represent social relationships. We define online
social networks as the social networks in which social re-
lationships are maintained by the use of the Internet (e.g.
Facebook, Twitter, e-mail exchange networks), and offline

social networks as social networks formed outside the In-
ternet, for example, face-to-face communication networks
or phone call networks.

Both offline and online social networks have been anal-
ysed as typical complex network systems [4], i.e. with
the same methodology used for other kinds of networks,
such as biological and technological networks. Indeed, they
have shown to present well-known properties of complex
networks, such as the small-world property [5]. As dis-
cussed in [6], a small-world network is characterised by
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short average distances between any two nodes connected
via a chain of intermediate links. In addition, a small
world network shows a high level of clusterisation (or net-
work transitivity) compared to a random network, where
clusterisation is the probability that two neighbours con-
nected to a node will also be connected to each other. The
small-world property directly impacts on the ability of the
network to spread information quickly. Not surprisingly,
another typical property found in offline and online social
networks is the presence of communities [7]. These studies
are normally carried out considering the unweighted net-
work graph in which each edge (or arc) represents the mere
existence of a social relationship without including infor-
mation that can distinguish between different types of re-
lationships. This is due to the fact that information about
social relationships is not trivial to infer since it normally
refers to qualitative aspects that are difficult to measure.
Nevertheless, in particular for the analysis of microscopic
social network properties, characterising (and distinguish-
ing between) different types of social links is fundamental.
In particular, tie strength, i.e. a quantitative measure of
the importance of the social links linking two people, is a
very important parameter, which has been widely investi-
gated in the sociology and anthropology literature.

2.1. Measures of Tie Strength in Social Networks

In his seminal work, Mark Granovetter informally de-
fined the strength of a social relationship as a linear combi-
nation of time, emotional intensity, intimacy, and recipro-
cal services [8]. Social relationships can be roughly divided
into strong and weak ties, where the former denote more
important relationships and the latter represent acquain-
tances. Besides their lower strength, weak ties are gen-
erally more numerous than strong ties. For this reason,
the cumulative strength of weak ties could exceed that of
strong ties and their impact on social phenomena could
be substantial. Other measures of tie strength have been
successively constructed and validated by Peter Marsden
in [9].

Based on the results found by Marsden, several tech-
niques to measure tie strength have been proposed also for
OSNs, for example in [10, 11, 12, 13]. These studies in-
dicate that tie strength can be effectively estimated using
some measurable indicators. In particular, the frequency
of contact seems to be the best among them, especially
in online environments, also considering that it is easy to
obtain from online communications logs. This has been
confirmed in a study on Facebook [14], where the authors
asked a set of Facebook users to name their closest friends
in real life, and they found that contact frequency can
be used to accurately discriminate closest friends from ac-
quaintances.

2.2. OSN Analysis based on Tie Strength

Recently, some work has been done to characterise the
differences between strong and weak ties in OSNs, and to

Support clique

Sympathy group

A�nity group

Active network

Ego

Alter

Tie Strength

Figure 1: Ego network structure.

relate them with observable properties of the networks.
Ties connecting otherwise disconnected parts of the net-
work (also known as bridges) are associated to lower inter-
action levels than ties connecting clusterised parts of the
network [15]. This has been observed also in phone call
networks [16], and is consistent with the strength of weak

ties hypothesis of Granovetter [8] that postulates that so-
cial links connecting distant and otherwise disconnected
parts of a social network must be weak ties. In [17, 18] two
studies on Facebook and Google+ show that considering
tie strength in the analysis of social network structures re-
veals properties that are not visible from the unweighted
networks, and can lead to significantly different results.
For example, the average distance between nodes in the
Facebook network, that is less than 4 in the unweighted
network, is between 5 and 10 when tie strength is consid-
ered. This is because many links in OSNs appear to be
inactive, and considering them in the structural analysis
of OSNs can lead to inconsistent or wrong results. For ex-
ample, if we consider information diffusion, no information
passes through inactive links, and they cannot be consid-
ered effective channels for information diffusion.

In addition, a relation between geographical location
and tie strength has been found, with strong ties con-
necting most of the time people in physical proximity,
and bridges connecting part of the network far from each
other [15, 19]. Mobility also plays an important role in the
formation of social ties and in determining their strength,
since meeting other people enables social interactions [20].

2.3. Ego Network Model

In order to study the micro-level structural properties
of social networks, researchers defined the ego network,
as a simple social network model formed of an individual
(called ego) and all the persons with whom the ego has a
social link (alters). In an ego network, alters are normally
arranged in a series of four or five inclusive groups (called
circles) according to the strength of their social ties. Fig-
uratively, an individual ego can be envisaged as sitting at
the centre of the series of concentric circles [21] as depicted
in Figure 1. Each of these circles has typical size and tie
strength. The latter is usually estimated using the fre-
quency of contact between the ego and the alters. Note
that in the following, as typically done in the literature, a
circle also contains all alters of the more internal circles

3



(with higher tie strength), while a ring only contains al-
ters of a given circle that are not part of any more internal
circle.

The first circle, called support clique, contains alters
with very strong social relationships with the ego, infor-
mally identified in the literature as best friends. These
alters are people contacted by the ego in case of a strong
emotional distress or financial disasters. The size of this
circle is limited, on average, to 5 members, usually con-
tacted by the ego at least once a week. The second circle,
called sympathy group, contains alters who can be broadly
identified as close friends. This circle is formed of, on
average, 15 members contacted by the ego at least once
a month. The next circle is the affinity group (or band

in the ethnographic literature), which contains about 50
alters usually representing causal friends or extended fam-
ily members [22]. Although some studies tried to identify
the typical frequency of contact of this circle, there are
no accurate results in the literature about its properties,
due to the difficulties related to the manual collection of
data about the alters contained in it through interviews or
surveys. The last circle in the ego network model is the
active network, which includes all the other circles, for a
total of about 150 members. This circle contains people
for whom the ego actively invests a non-negligible amount
of resources to maintain the related social relationships
over time. People in the active network are contacted, by
definition, at least once a year. The active network size co-
incides with the Dunbar’s number, that identifies the aver-
age limit of the number of social relationships an individual
can actively maintain due to cognitive constraints of the
brain and the limited time for socialising [23]. Alters be-
yond the active network are considered inactive, since they
are not contacted regularly by the ego. These alters are
grouped in additional external circles called mega-bands

and large tribes. One of the most stunning facts about
ego network circular structure is that the ratio between
the size of adjacent circles appears to be a constant with
a value around 3, and this holds true for ego networks of
users belonging to various social environments, as shown
in [24]. For a complete discussion about the properties of
the ego network circles we refer the reader to [25].

2.4. Analyses on Ego Networks in OSNs

As far as the structure of ego networks in OSNs are
concerned, and in particular the ego network model ap-
plied to online environments, still little is known. In the
following, we summarise the preliminary results found on
ego network properties of OSNs, which represent the start-
ing point of this work.

The authors of [12] and [26] analysed two data sets from
Facebook and Twitter respectively, founding evidences of
the presence of the Dunbar’s number in OSNs. Its presence
indicates that, even though Facebook and Twitter allow
people to have thousands of online social contacts, they
only maintain a limited set of active relationships.

The authors of [27] analysed a large data set of Twit-
ter communications discovering that the limited capacity
people have for socialising bounds the amount of contacts
they can actively maintain over time, as defined in the ego
network model.

In a recent analysis on Twitter communication data, it
has been found that the structure of Twitter ego networks
is directly related to the network status of egos (defined
as the ratio between followers and following), to the topic
diversity of the tweets generated by egos, and to geogra-
phy [28]. In particular, egos who have contacts spanning
structural holes (gaps between separated groups of peo-
ple) have higher network status, higher topic diversity, and
more geographically sparse networks than egos with highly
clusterised networks. This validates the idea that social
capital is created by bridging structural holes, as proposed
by sociologist Ron Burt [29]. This has been further con-
firmed by the work presented in [30], where the authors
identify a trade-off between the diversity of information
that a network can provide and the average strength of
its social ties (called bandwidth). This trade-off is con-
nected to the ability of egos to bridge structural holes. In
a highly clusterised network the diversity of acquirable in-
formation is low, but bandwidth is high, with a positive
impact on the quantity and quality of resources that ego
can obtain from her intimate alters. On the other hand,
in ego networks where egos bridge many structural holes,
the diversity of information is higher, to the detriment of
network bandwidth. This also confirms results in the so-
ciology literature, which show that the higher the number
of social links (and, therefore, the higher the accessible
information diversity), the lower the average strength of
social ties. This is, again, related to the fact that humans
can only allocate a finite amount of cognitive resources for
socialising, and therefore a higher number of social rela-
tionships translates into a lower average tie strength. Note
that this very same phenomenon has also been observed
in Twitter [26].

Although these results give a first insight on the prop-
erties of ego networks in OSNs, there is still a lack of
knowledge about the micro-level structural properties of
OSNs. Specifically, it is not clear if structures similar to
those described by the ego network model could be found
also in OSNs (e.g. the presence of ego network circles and
their properties). In this paper, we aim to bridge this gap
by providing a solid analysis of the ego network structures
in OSNs.

This paper extends our initial analyses on Facebook
and Twitter [31, 32, 33]. Specifically, in this paper we pro-
vide a more detailed analysis of ego network structures in
both Online Social Networks, and we exploit it to charac-
terise the impact of these structures on information diffu-
sion.

2.5. Analyses on Information Diffusion in OSNs

In this paper, we also investigate the role of the struc-
tural properties of OSN ego networks in the diffusion of
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information, one of the most important macro-level phe-
nomena in social networks. Specifically, we study informa-
tion diffusion in Twitter ego networks and we investigate
the role of tie strength and the ego network structure in
the process.

Prior work on information diffusion has focused on de-
tecting collective behaviour in the network, such as the
formation of information cascades (i.e. the epidemic dif-
fusion of information triggered by the observation and the
adoption of the behaviour of others). Some works suc-
cessfully predicted the outbreak of cascades in social net-
works [34, 35]. Other papers show that different types of
users have different roles in diffusing information (e.g. nor-
mal users, opinion leaders, mass media sources) [36]. Mass
media diffuse most of the information, but are focused on
major topics. Opinion leaders and other users classified as
“evangelists” contribute to diffuse major as well as minor
topics to audiences far from the core of the network, and
normal users usually have a low contribution on the diffu-
sion process, and are more passive consumers than active
producers of contents.

In social networks, and in Twitter in particular, differ-
ent sources of information diffusion coexist. In fact, in-
formation may come and is propagated directly from the
users within the platform following the word-of-mouth ef-
fect [37], as well as from other sources that are external
to social networks (e.g. television and radio) [38]. More-
over, analyses of information cascades in Twitter confirm
that various elements impact on the information diffusion
process [39, 40]. Among others, the “standing” of users
(e.g., their importance in their personal social network),
their network centrality (according to standard complex
network indices), as well as the freshness of information
are directly related to the probability of propagation across
nodes, and thus ultimately impact on the breadth of infor-
mation cascades. In this work, we are interested in charac-
terising in detail information diffusion through the word-
of-mouth effect. In particular, we focus on the analysis of
information diffusion seen from an ego network perspec-
tive, and we assess the impact of ego network circles on
the process. To the best of our knowledge, this is the first
detailed analysis on these particular aspects.

Before describing the analysis to characterise the struc-
tural properties of OSNs, we present a description of the
Facebook and Twitter data sets that we used.

3. Online Communications Data Sets

To study the structural properties of OSNs and to as-
sess their role in the diffusion of information in the net-
work, we have analysed two data sets containing traces
of communication between people in Facebook and Twit-
ter, two amongst the most important social media nowa-
days (see Appendix A for a detailed description of these
platforms). From the data sets, we have obtained the fre-
quency of contact between online users, that has been used
to estimate the strength of the social links (as we discuss

in Section 3.3). Hence, we have built an ego network for
each user, and we have analysed their structural properties
(in Section 4) and their role in the diffusion of information
(in Section 5).

3.1. Data Download

3.1.1. Facebook

Although Facebook generates a huge amount of data
regarding social communications between people, obtain-
ing these data is not easy. In fact, publicly available data
have been strongly limited by the introduction of strict
privacy policies and default settings for the users after
2009. Nevertheless, before that date, most of the user
profiles were public and the presence of the network fea-
ture, that has been removed in 2009, allowed researchers
to collect large-scale data sets containing social activity
between users. A network was a membership-based group
of users with some properties in common (e.g. workmates,
classmates or people living in the same geographical re-
gion). Each user profile was associated to a regional net-
work based on her geographical location. By default, each
user of a regional network allowed other users in the same
network to access her personal information, as well as her
status updates and the posts and comments that she re-
ceived from her friends. Exploiting these characteristics of
regional networks, some data sets have been downloaded,
such as those described in [18], which have been made
partly publicly available for research1. In this paper, we
used the data set referred as “Regional Network A”.

The use of the regional networks feature allowed re-
searchers to download large data sets from Facebook, how-
ever, it entails some limitations that must be taken into
account for our analysis. In fact, the considered data set
contains information regarding only the users and their so-
cial interactions within a regional network, excluding all
the interactions and the social links that involve users ex-
ternal to this area. Therefore, assuming that, for each
user, a part of her social relationships involve people who
do not belong to the same network, this could lead to a
reduction of the ego networks’ size. Moreover, we do not
have specific information about the completeness of the
crawling process that should have downloaded only a sam-
ple of the original regional network. For example, in [18]
the same crawling agent was used for downloading several
other regional networks (not publicly available) collecting,
on average, 56.3% of the nodes and 43.3% of the links. We
used this additional knowledge in the analysis to obtain
the highest possible accuracy in the results, as explained
in detail in Section 4.

3.1.2. Twitter

For Twitter, we have implemented a crawling agent
that is able to download user profiles and their communi-
cation data from Twitter. The agent visited the Twitter

1http://current.cs.ucsb.edu/facebook/
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Table 1: Statistics of the Facebook social graph

# Nodes 3, 097, 165

# Edges 23, 667, 394

Average degree 15.283

Average shortest path 6.181

Clustering coefficient 0.209

Assortativity 0.048

graph considering the users as nodes and following the
links between them. In our study, a link between two
nodes exists if at least one of the users follows the other
or an interaction between them has occurred. As an indi-
cation of an interaction, we use the presence of a mention

in a tweet (i.e. the fact that a user explicitly mentions the
other in a tweet) and a reply (i.e. a direct response to a
tweet).

The crawling agent starts from a given user profile
(seed) and visits the Twitter graph following the links.
For each visited node, we took advantage of the Twitter
REST API to extract the user timeline (i.e. the list of
posted tweets that can include mentions and replies), the
friends list (i.e. the people followed by the user) and the
followers list (i.e. the people who follow the user). Twit-
ter REST API limits the amount of tweets that can be
downloaded per user up to 3, 200 tweets. This does not
represent a constraint to our analysis since, as we show in
the following, it is sufficient for our purposes.

The crawling agent uses 250 threads that concurrently
access a single queue containing the IDs of the user pro-
files to download. Each thread extracts a certain num-
ber of user IDs from the queue, then it gets the related
profiles and communication data from Twitter using the
REST API. Finally, after extracting new user IDs from the
communication data and from the friends/follower lists,
the threads add them to the queue. The use of multiple
threads allowed us both to speed-up the data collection
and to avoid that the crawler remains trapped in visiting
the neighbourhood of a node with a large number of links.
The seed that we used to start the data collection is the
profile of a widely know user (user id: 813286), so that
her followers represent an almost random sample of the
network.

The crawling agent allowed us to obtain a snowball
sample of a complete portion of the Twitter network. Com-
pared to the Facebook data set, this contains complete ego
networks.

3.2. Data Sets Properties

3.2.1. Facebook

The Facebook data set that we used in this work con-
sists of a social graph and four interaction graphs. These
graphs are defined by lists of edges connecting pairs of
anonymised Facebook user IDs.

Table 2: Statistics of the Facebook interaction graphs (preprocessed).

Last mo. Last 6 mo. Last year All

# Nodes 414, 872 916, 162 1, 133, 151 1, 171, 208

# Edges 671, 613 2, 572, 520 4, 275, 219 4, 357, 660

Avg. degree 3.238 5.616 7.546 7.441

Avg. weight 1.897 2.711 3.700 3.794

The social graph describes the overall structure of the
downloaded network. It consists of more than 3 million
nodes (Facebook users) and more than 23 million edges
(social links). An edge represents the mere existence of
a Facebook friendship, regardless of the quality and the
quantity of the interactions between the involved users.
Basic statistics2 of the social graph are reported in Table 1.

The social graph can be used to study the global prop-
erties of the network, but alone it is not enough to make
a detailed analysis of the structure of social ego networks
in Facebook. Indeed, this analysis requires an estimation
of the strength of the social relationships. To this aim, in
Section 3.3, we leverage the data contained in the inter-
action graphs to extract the frequency of contact of the
social links that can be used to estimate the tie strength.

Interaction graphs describe the structure of the net-
work during specific temporal windows, providing also the
number of interactions occurred for each social link. The
four temporal windows in the data set, with reference to
the time of the download, are: last month, last six months,
last year and all. The latter temporal window (“all”) refers
to the whole period elapsed since the establishment of each
social link, thus considering all the interactions occurred
between the users. In an interaction graph, an edge con-
nects two nodes only if an interaction between two users
occurred at least once in the considered temporal window.
The data set that we used for the analysis contains in-
teractions that are either Facebook Wall posts or photo
comments.

In Facebook, an interaction can occur exclusively be-
tween two users who are friends. In other words, if a link
between two nodes exists in an interaction graph, an edge
between the same nodes should be present in the social
graph. Actually, the data set contains a few interactions
between users which do not correspond to any link in the
social graph. These interactions probably refer to expired
relationships or to interactions made by accounts that are
no longer active. To maintain consistency in the data
set, we excluded these interactions from the analysis. The
amount of discarded links is, on average, 6.5% of the total
number of links in the data set.

In Table 2, we report some statistics regarding the dif-
ferent interaction graphs. Each column of the table refers
to an interaction graph related to a specific temporal win-
dow. The average degree of the nodes is the average num-
ber of social links per ego that have at least one interaction

2The clustering coefficient is calculated as the average local clus-
tering coefficient (Equation 6 in [4]).
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Table 3: Twitter data set (all users) and classes statistics.

All users Soc. rel. users Other users

N 2.463.692 1, 653, 436 810, 256

N3,200 510, 119 260, 632 249, 487

(% N3,200) (20.7%) (15.8%) (30.8%)

# Tweets 1, 207 979 1, 696

# Following 3, 157 2, 553 4, 448

# Followers 7, 353 2, 744 17, 201

% TweetsREPL 17.4% 18.4% 15.4%

% TweetsMENT 22.7% 21.6% 24.7%

in the considered temporal window. Similarly, the average
edge weight represents the average number of interactions
for each social link.

3.2.2. Twitter

We collected a data set from 2, 463, 692 Twitter users,
whose data were downloaded between November 2012 and
March 2013. In contrast to Facebook, whose users are
generally people who want to socialise with others, com-
municating and maintaining social relationships, Twitter
users are more heterogeneous. In fact, the downloaded
accounts can also be related to companies, public figures,
news broadcasters, bloggers and many others. We can
thus classify the users in two different categories: (i) so-

cially relevant users, which represent people who use Twit-
ter for socialising, and (ii) other users, which use Twitter
for other purposes. This classification is fundamental for
our study since, in order to analyse the human social be-
haviour, we want to consider socially relevant users only.
To automatically distinguish between the two classes of
users, we built a classifier based on Support Vector Ma-
chines (SVM) that, relying on the activity logs and on the
meta-data of the accounts in the data sets, distinguishes
socially relevant users from other users. The accuracy of
the SVM is 83%, and the false positives rate around 8%.
The details of the classifier are described in Appendix B.
Note that, also in Facebook, some accounts represent users
that are not socially relevant (e.g. companies and public
figures). Nevertheless, Facebook is more naturally used
as a private communication channel, and public commu-
nications (e.g. status updates) are not considered in the
data set. For this reason, and for the lack of sufficiently
detailed information about the nature of Facebook users
in the data set, we analysed all the Facebook accounts
without splitting them into separate classes.

In the column “all users” of Table 3, we present some
statistics of all the users in the data set, while in the next
two columns we present the statistics of the socially rel-
evant users and of the other users respectively. For each
category, we present the number of users N and the aver-
age number of tweets, friends, and followers. Each average
value is reported with its 95% confidence interval between
square brackets.

We can notice that socially relevant users are the ma-
jority and their statistics indicate that they are less active
than the other users. This could be explained by the fact
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Figure 2: Downloaded tweets per user distribution.

that users in the “other users” class may be companies or
other kinds of accounts managed by more than one per-
son at the same time and aimed at advertising goods or
services.

In the table, we also report, for each class of users,
the average ratio of replies (tweetsREPL) and mentions
(tweetsMENT), calculated over the total number of tweets.
These values indicate that around 40% of the tweets down-
loaded by our crawler contain mentions or replies between
people. These tweets are important for our study since
they represent direct interactions, rather than broadcast
communications. Moreover, socially relevant users show
a slightly higher percentage of replies than other types of
users (18.4% vs. 15.4%), indicating that they use more
directional communications, a typical human social be-
haviour.

In Figure 2, we show the distribution of the number
of tweets downloaded per user. We can notice the pres-
ence of a peak corresponding to the value 3, 200, which is
the maximum amount of tweets downloadable using the
Twitter REST API. Cases where the number of tweets is
lower than 3, 200 correspond to users that have generated
less than 3, 200 tweets from the creation of their accounts.
The number of users that posted a number of tweets above
this threshold is indicated in the table by N3,200. Note
that, for socially relevant users, this is a relatively small
fraction of the total number of users (15.8%). This means
that our crawler was able to download the entire twitting
activity for the majority of the users relevant for our study,
and for those users for whom we have not obtained the en-
tire history of outgoing communications, we still have a
significant number of tweets.

In order to further investigate the behavioural differ-
ences between socially relevant users and the other users,
we studied the number of replies the users send to their
friends on average. In [26], a similar analysis was used
to conclude that a concept similar to the Dunbar’s num-
ber (the maximum number of active social relationships
an individual can actively maintain) holds also in Twitter.

Figure 3 depicts the trend of the average number of
replies per friend as a function of the number of friends
of the user. Differently from [26], we have divided the
analysis for the two classes identified: “socially relevant
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Figure 3: Points represent the average number of replies made by ac-
counts with different number of friends; thick lines are their running
averages.

users” and “other users”. The results highlight a clear
distinction between the properties of the two classes.

Socially relevant users show a higher mean value of
replies per friend and a maximum around 80 friends. This
is an indication of the effect of the cognitive limits of hu-
man brain on the ability to maintain social relationships in
OSNs. The peak of the curve identifies the threshold be-
yond which the effort dedicated to each social relationship
decreases. This is due to the exhaustion of the available
cognitive/time resources, which, therefore, have to be split
over an increasing number of friends. As discussed in [26],
this can be seen as an evidence of the presence of the Dun-
bar’s number in Twitter.

Other users show a quite different pattern, with lower
average value of replies per friend without any significant
discontinuities. This indicates that accounts belonging to
the class “other users” are not influenced by cognitive ca-
pabilities. In fact they, are often managed by more than
one person or by non-human agents.

3.3. Obtaining the Frequencies of Contact

3.3.1. Facebook

In order to characterise tie strength in Facebook, we
need to estimate the link duration, that is the time elapsed
since the establishment of the social link. This is essen-
tial to calculate the frequency of contact between the users
involved in a social link, and the latter is then used to es-
timate the tie strength. In the literature, the duration of
a social link is commonly estimated using the time elapsed
since the first interaction between the involved users [10].
Unfortunately, the data set does not provide any indica-
tion regarding the time at which the interactions occurred.
To overcome this limitation, we have approximated the
links duration leveraging the difference between the num-
ber of interactions made in the different temporal windows.
Details on how we have estimated the link duration and
the frequency of contact between users in the Facebook
data set are given in Appendix C. The frequency of con-
tact between pairs of users has been calculated as the total
number of interactions occurred (obtained from the “all”
interaction graph) divided by the estimated duration of

their social link. In case the users have never interacted
their frequency of contact is set to zero.

3.3.2. Twitter

The Twitter data set contains all the tweets sent by
the users (with the limit of 3, 200 tweets per user). Hence,
obtaining the frequency of contact between users in Twit-
ter is more straightforward than in Facebook. Considering
socially relevant users with all their social contacts, we cal-
culated the duration of each social link as the time elapsed
between the first mention or reply exchanged between the
involved users and the time of the download. Given a so-
cial link, we have thus calculated the frequency of contact
for each of the two users as the number of replies sent to
the other divided by the duration of the social link. In
the calculation, we have used the number of replies since
it is the strongest indicator of the strength of a social link
in Twitter and since it has been already used in previous
work [26].

4. Ego Networks Structure in Online Social Net-

works

In this section, we analyse the structures of the ego
networks that can be identified in Facebook and Twitter
and we compare them with the model for offline social
networks presented in Section 2.3.

In order to extract the ego networks from our data
sets, we have grouped the relationships of each user into
different sets3. Then, to avoid including possible outliers
in the analysis, we have selected only the ego networks
that meet the following criteria:

1. The account of the ego must have been created at least

six months before the time of the download. In case
of the Facebook data set, the lifetime of the accounts
is estimated as the time since the user made the first
interaction. In case of the Twitter data set, we know
the time of the account creation as it is included in
the meta-data we downloaded.

2. Ego must have made, on average, 10 or more in-

teractions per month. For both data sets, we can
calculate the average activity as the total number of
registered interactions divided by the lifetime of the
account.

This selection is also motivated by the findings in other
OSNs analyses (see for example [41]), in which ego net-
works are found to be highly unstable and with a high
growing rate soon after ego joins the network, but tend
to be stable after the first few months of activity. This
selection allowed us to consider only users who regularly

3Since social links in the Facebook interaction graphs represent
undirected edges, we have duplicated each social link in the data set
in order to consider it in both the ego networks of the users connected
by it.
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Figure 4: Aggregated CCDF of the normalised frequency of contact
for all the ego networks in the data sets.

use OSNs, and filter out typical initial bursts of activi-
ties of new users. This resulted in the selection of 91, 347
ego networks from the Facebook data set and 394, 238 ego
networks from the Twitter data set. These numbers, as
we will see later, are sufficient to draw significant results
about the ego network properties of OSNs. Note that the
selected socially relevant users can have both socially rel-
evant users and other users in their ego networks. In our
analysis, we consider all the possible kinds of alters of so-
cially relevant users. This is important to have a complete
view of the structure of their social networks, since each
ego spends cognitive efforts for communicating with all her
alters, and the properties of her ego network are impacted
by her cognitive and time constraints, no matter whether
she spends all her time communicating with robots or with
other humans.

4.1. Analysis of the Aggregated Frequency Distribution

The possible presence of social structures in Facebook
and Twitter may be revealed by steps in the distribution
of the frequency of contact since it is the key aspect to
quantify the tie strength. If the frequency of contact of
an ego network gracefully degrades and does not present
steps in the distribution, this suggests the absence of any
structure. On the contrary, if the frequency of contact

appears clustered in different intervals, each of them may
reveal the presence of a ego network layer.

A simple initial analysis to check the presence of such
steps in the distribution is considering the CCDF of the
aggregate normalised frequency of interaction. In particu-
lar, we have considered the distribution obtained by taking
together all the frequencies of contact of all ego networks
in each data set. A normalisation of the frequencies of con-
tact for each ego network is necessary in order to level out
the differences between users in the use of the platforms.
Analysing the aggregate distribution permits to focus on a
single distribution, instead of analysing all individual ego
networks’ distributions. The obtained CCDFs, depicted
in Figure 4, show a smooth trend. Clearly, this does not
allow us to conclude that ego networks are clustered, but
is not a sufficient condition to rule out this hypothesis. In
fact, even if the individual ego network distribution had a
social structure, and therefore steps in their distributions
would be present, such steps may appear at different po-
sitions from one network to another, thus resulting in a
smooth aggregate CCDF (remember that also in the ego
network model the sizes of the layers are average values,
but variations are possible at an individual ego network
level).

The CCDFs show a long tail, which can be ascribed to
a power law shape. A power law shape in the aggregate
CCDF is a necessary condition to have power law distri-
butions in at least one ego network [42]. However, this is
not a sufficient condition to have power law distributions
in each single CCDF [43]. Although formally the presence
of a long tail in the CCDF is not a conclusive proof of the
existence of small numbers of very active social links in
the individual ego networks, this is anyway a strong indi-
cation in this direction, and a possible similarity between
ego networks in offline and online social networks. Studies
in the social and anthropology literature revealed that ego
networks are characterised by a small set of links with very
high frequencies of contact (corresponding to the links in
the support clique), which appear as a heavy tail in the
CCDF of individual ego network contact frequency.

4.2. Revealing Ego Network Structure through Clustering

To further investigate the online ego network struc-
tures, we have applied cluster analysis on the normalised
frequencies of contact of each ego network, looking for the
emergence of layered structures. For each ego network, the
frequencies of contact between ego and alters represent a
set of values in a mono-dimensional space. Applying clus-
ter analysis to mono-dimensional values does not require
advanced clustering techniques, therefore we can consider
standard widely-used methods such as k-means clustering

and density-based clustering (e.g. DBSCAN algorithm).
Using k-means clustering, given a fixed number of clusters
k, the data space is partitioned so that the sum of squared
euclidean distance between the centre of each cluster (cen-
troid) and the objects inside that cluster is minimised. In
density-based clustering, clusters are defined as areas of
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Figure 5: Density function of k∗ in Facebook and Twitter ego net-
works.

higher density than the remainder of the data set, which
is usually considered to be noise [44]. In [31], both clus-
tering techniques have been applied on the same Facebook
data set used in the present analysis. Nonetheless, results
showed that the clusters identified by the two methods are
substantially equivalent and that both can be used for the
study of social structures in ego networks leading to the
same conclusions [31].

In this work, we report the analysis using the k-means
clustering since it is the simplest and the most computa-
tionally affordable method. This method is defined as an
optimisation problem that is known to be NP-hard. Be-
cause of this, the common approach for k-means clustering
is to search only for approximate solutions. Fortunately,
in the special case of mono-dimensional space, we can use
an algorithm, called Ckmeans.1d.dp, able to always find
the optimal solution efficiently [45].

4.2.1. Typical Number of Clusters

In the first step of our cluster analysis, we have sought,
for each ego network, the typical number of clusters (i.e.
the number k∗) in which the frequencies of contact can
be naturally partitioned. In order to do this, we have
evaluated the goodness of the result of different cluster-
ing configurations. For k-means methods, this is usually
expressed in terms of explained variance. In fact, a small
variance in the individual clusters means that data are well
described by the current clustering, and this is evidenced
by a high value of the explained variance (up to the max-
imum value 1.0). Specifically, the explained variance is
defined by the following formula:

V ARexp =
SStot −

∑k

j=1 SSj

SStot

, (1)

where j is the jth cluster, SSj is the sum of squared dis-
tances within cluster j and SStot is the sum of squared
distances of the all the values in the data space. Given a
vector X, the sum of squared distances SSX is defined as
SSX =

∑

i (xi − µX)2, where µX denotes the mean value
of X.

Given the number of clusters k, k-means clustering al-
gorithms partition the space minimising the sum of squared

distance within the clusters
∑k

j=1 SSj . According to Equa-
tion 1, for a given k, the solution of k-means clustering
also provides the maximum value of the explained vari-
ance V ARexp, since the sum of squared distances SStot is
constant given the data space. In principle, the optimal
number of clusters k∗ would be equal to the number of ob-
jects in the data space, as the value of V ARexp increases
monotonically with k. Thus, there is a inherent overfit-
ting problem. To overcome this problem and determine
the typical number of clusters we used the Akaike Infor-
mation Criterion (AIC), an information-theoretic measure
that trades off distortion against model complexity, de-
fined by the following equation:

AIC = −2L(k) + 2q(k) (2)

where−L(k) is the negative maximum log-likelihood of the
data for k clusters, and is a measure of distortion. q(k) is
the number of parameters of the model with k clusters and
measures complexity. The model showing the minimum
value of AIC is the one with the best trade-off between
distortion and complexity.

We have calculated the AIC for all the ego networks in
Facebook and Twitter, by applying k-means with k from 1
to 20. For each ego network we define as k∗ the the value
of k that minimises equation 2. In Figure 5, we report
the density function of k∗ for the ego networks in our data
sets.

We have found that the distribution of k∗ has a peak
between 3 and 4 for Facebook and between 4 and 5 for
Twitter. The presence of a typical number of clusters close
to 4 is the first indication of similarity between the findings
in offline and online ego networks.

In Table 4, we report the properties of the ego net-
works found with different numbers of k∗. The average
network size (“net size” in the table) is reported with its
95% confidence interval between square brackets.

Ego networks with only one circle tend to have similar
values of contact frequency for all their links, and in many
cases the contact frequencies are exactly the same. This
could be ascribed to automated forwarding of messages on
all the links, associated to bots or spammers, and indi-
cates the presence of a small set of biased ego networks in
the data set. Remember that, although the classifier we
used to select socially relevant users has a high accuracy,
some accounts could be false positives, as probably in this
case. Whilst the size of the ego networks with one circle
in Facebook is relatively small, in Twitter we notice very
large ego networks (i.e. with average size of 192.77 alters).
This could be explained by the fact that it is more difficult
for bots or spammers to create a large network of social
relationships in Facebook, whereas in Twitter is easier to
have a large number of followers with a significant interac-
tion. This is due to the differences in the nature of the two
platforms. In fact, in Facebook users tend to accept friend-
ships requests only if they know the requester in person,
or they recognise a real human behind her profile, whilst
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Table 4: Optimal number of clusters (k∗) of ego networks.

Facebook Twitter

kopt # of nets Net size # of nets Net size

1 844 (0.9%) 29.68 [±1.95] 2, 500 (0.6%) 192.77 [±12.44]

2 10, 465 (11.47%) 41.82 [±0.39] 14, 683 (3.7%) 104.93 [±2.35]

3 28, 918 (31.66%) 39.00 [±0.27] 40, 099 (10.2%) 91.42 [±0.98]

4 26, 124 (28.60%) 41.99 [±0.38] 57, 227 (14.5%) 89.09 [±0.73]

5 13, 584 (14.87%) 53.89 [±0.66] 58, 410 (14.82%) 92.56 [±0.70]

> 5 11, 412 (12.50%) 82.02 [±1.00] 221, 319 (56.1%) 100.42 [±0.31]

in Twitter the heterogeneity of profiles makes this kind of
selection more difficult.

The size of the ego networks seems to be almost con-
stant between two and five circles, and it increases for
networks with more than five circles.

4.2.2. Ego Network Circles

According to the previous analysis, the typical num-
ber of clusters in online ego networks appears to be equal
to 3 − 4 in Facebook and 4 − 5 in Twitter. Yet, to be
able to compare the structure of online ego networks with
that found in offline networks we have applied the algo-
rithm Ckmeans.1d.dp with k = 4 for Facebook and k = 5
for Twitter. This choice will be more clear in the follow-
ing, but we motivate it anticipating that in Twitter a new
internal circles appear, that is not visible in the used Face-
book data set. For each ego network, we obtained a set
of clusters that we refer as S1, S2, S3, S4, and S5 (where
needed), sorted by decreasing value of the centroid (i.e.
the average frequency of contact of the cluster) so that S1

represents the cluster of the social links with the highest
frequency of contact. The obtained clusters are not di-
rectly comparable with the circles of offline ego networks
discussed in Section 2. In fact, while clusters are disjoint
groups, social circles, as depicted in Figure 1, are hier-
archically inclusive (i.e. the support clique is included in
the sympathy group which is included in the affinity group

which is included in the active network). For this reason,
in order to compare social structures in online and offline
ego networks, we have aggregated the clusters to form hi-
erarchically inclusive circles. Specifically, we have defined
the circles C1, C2, C3, C4, and C5 as Ck =

⋃k

i=1 Si so that
C1 ⊆ C2 ⊆ C3 ⊆ C4 ⊆ C5.

In Table 5, we compare the properties of the circles in
Facebook and Twitter ego networks with those found in
offline ego networks. One of the main features that we
considered for the analysis is the minimum frequency of

contact. It defines, for the alters included in each circle, the
lower bound of the frequencies of contacts of their social
links. In other words, this value indicates the minimum
frequency of contact for an alter to be included in a given
circle. In the table, we report the average value of this
measure as “min freq.”, calculated for all the ego networks
in terms of number of contacts per month. The minimum
frequencies of contact of offline ego networks have been
taken according to the definition discussed in Section 2:

once a week for the support clique, once a month for the
sympathy group and once a year for the active network
while, for the affinity group, the minimum frequency of
contact has not been defined yet.

In the table, we also show the average size of the ob-
tained circles for online ego networks while, for offline net-
works, we report the values presented in [24], that sum-
marise the properties of a large number of offline social
networks obtained in diverse social environments. Despite
the size of the circles in Facebook and Twitter ego net-
works appear to be very close to each other, it is worth
to remind that they should not be compared directly. In
fact, as already explained in Section 3.1, the ego networks
in the Facebook data set contain just a sample of the so-
cial relationships of the egos. This is because the crawling
process may have not downloaded the considered regional
network completely and because all the contacts external
to this area have been excluded. In absence of precise in-
formation, we assume that the crawled data represent a
uniform random sample of both nodes and links. On the
contrary, the sizes of the circles of Twitter ego networks
are more reliable, since we have at our disposal the entire
outgoing communication log of each ego (given the limit
of 3, 200 tweets).

Rather than the size, a better feature to consider to
compare the properties of online and offline ego networks
is the scaling factor between the circles (“scal. fact.” in
the table), defined as the ratio between the size of two
hierarchically adjacent circles. This measure can provide
insights about how the circles in ego network are hierarchi-
cally arranged and is not affected by a random sampling
of the links. In fact, with random sampling, the size of
all the circles changes proportionally without affecting the
scaling factors.

4.3. Comparing Online and Offline Ego Networks

Looking at the scaling factors in Table 5, we can see
that their values are very similar to each other and close
to 3, for both Facebook and Twitter ego networks, and
they are compatible with the results found offline. A scal-
ing factor of three has been found in several offline social
networks and it appears to be a fundamental property of
human ego networks [24]. This result is another indication
that Facebook and Twitter ego networks show a hierar-
chical structure remarkably similar to that found in offline
environments.
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Table 5: Ego network circles’ properties.

C1 C2 C3 C4 C5

Facebook

min freq. 5.09 1.95 0.67 0.11 −

size4 (1.79) (5.83) (17.05) (50.46) −

scal. fact. 3.26 2.93 2.96 −

Twitter

min freq. 20.55 8.91 3.98 1.36 0.18

size 1.66 5.06 12.87 32.66 97.47

scal. fact. 3.04 2.55 2.54 2.98

Offline

min freq. 4.29 1.00 − 0.08 −

size 4.6 14.3 42.6 132.5 −

scal. fact. 3.10 2.98 3.11 −

Table 6: Offline/online ego networks mapping.

Super
support
clique

Support
clique

Sympathy
group

Affinity
group

Active
network

Facebook

circle − C1 C2 C3 C4

min freq. − 5.09 1.95 0.67 0.11

size5 − (4.70) (15.31) (44.77) (132.50)

Twitter

circle C1 C2 C3 C4 C5

min freq. 20.55 8.91 3.98 1.36 0.18

size 1.66 5.06 12.87 32.66 97.47

Offline

circle − C1 C2 C3 C4

min freq. − 4.29 1.00 − 0.08

size − 4.6 14.3 42.6 132.5

Considering the average minimum frequency of contact
of the circles, we can note that there is a match between
the circles of the two OSNs and those of offline social net-
works. Specifically, as we report in Table 6, we find the
same magnitude in the “min freq.” values of C1 in Face-
book, C2 in Twitter and C1 in offline social networks, that
therefore we map to the concept of support clique. In the
same way, C2 in Facebook can be matched to C3 in Twit-
ter and C2 in offline environments (the sympathy group),
C3 in Facebook matches C4 in Twitter, and we hypothe-
sise that the two match C3 offline (affinity group). C4 in
Facebook matches C5 in Twitter and C4 offline (the active
network). It is worth noting that Twitter shows higher
values of min. freq (nearly double) for all the circles com-
pared to Facebook and offline ego networks. This could
be ascribed to the nature of the platform, and to the mea-
sure of interaction that we used, which could be slightly
different than the one used in the other environments.

Last, we have compared the ego networks according to
the sizes of their layers, which is another important signa-
ture of offline ego networks. The match between C2-C5 in
Twitter and C1-C4 offline is further confirmed by a strong
similarity in their size, as reported in Table 6. In the case
of Facebook, a direct comparison is not possible, because
of the unknowns in the sampling process previously dis-
cussed. Nevertheless, we can obtain strong hints about a
significant match by re-scaling the Facebook sizes, as fol-
lows. Assuming that C4 in Facebook matches C4 offline
(which is suggested considering the minimum frequency
and the scaling factors), we have re-scaled the size of C4

in Facebook to match the size of C4 offline (132.50). The
resulting ratio has a value of 2.63 that we have applied
to the other Facebook layers. Note that the value of 2.63
is compatible with the reported subsampling of other net-
works obtained using the same crawling agent [18]. It is
interesting to note that, scaling the size of other Facebook
circles (C1, C2 and C3) according to this ratio, they match
very well the respective sizes of the offline layers.

Interestingly, in Twitter we have found that there is an
additional circle (C1) with a very high minimum frequency
of contact that represents a subcircle of the support clique.
Since the sizes of C2-C5 in Twitter show a good match with
those found offline, we can say that C1 in Twitter, which
we call “super support clique”, has a typical size of 1 or 2
people. This additional circle has been already hypothe-
sised in offline social networks, but its existence remained
unconfirmed hitherto, due to absence of big enough data
sets to reliably highlight this type of relationships [46].

Summarising, our results show that there is a remark-
able similarity between ego networks in OSNs (both Face-
book and Twitter) and offline networks, in terms of scal-
ing factors, minimum interaction frequency and size of the
layers. This suggests that the use of OSNs does not af-
fect the structural properties of ego networks, that are
instead controlled by the constrained nature of the hu-
man brain. In addition our results also highlight addi-
tional structural elements, i.e. the “super support clique”
in Twitter. This is a very interesting result per se, and
also shows that OSNs can be used as an extremely useful
tool to collect large-scale data sets to characterise human
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social network properties. The scale at which data can be
collected with OSNs permits to draw statistically relevant
conclusions, which is often much harder or cumbersome
with more conventional data collection campaigns (such
as standard questionnaires). From a more technological
standpoint, our results could be useful for the creation of
advanced social platforms and efficient networking solu-
tions for the Future Internet. For example, differences in
the properties of social contacts of the user, arranged into
the ego network circles, could be exploited to automati-
cally set privacy policies (e.g. giving more trust to close
friends) or to facilitate the management of social relation-
ships giving specific tools for each circle.

5. Analysis of Information Diffusion in Twitter Ego

Networks

In this section, we assess the extent to which ego net-
work structural properties in OSNs impact on information
diffusion inside the ego networks. To do so, we analyse
ego networks in Twitter, for which we have accurate infor-
mation regarding the creation of tweets and retweets and
we can thus understand how information is propagated by
users, and we seek for the relation between direct interac-
tions of egos with their alters and the quantity of infor-
mation that these egos retweet from each social link. This
kind of analysis is clearly not possible in the Facebook
data set, in which no exact information is known about
the data exchanged amongst users.

Since the Twitter data set contains information about
complete ego networks and also about all the tweets circu-
lating in these networks, we can perform a detailed anal-
ysis of one-hop information diffusion. Clearly, we do not
have enough data for the analysis of complete information
cascades in Twitter, but this would be a natural exten-
sion of our work that we are currently investigating us-
ing additional Twitter data. In addition, we did not con-
sider the textual content of tweets, to see to what extent
structural properties alone explain information diffusion
patterns, without delving into analysis of the content of
exchanged messages.

In this work, we analysed the same Twitter ego net-
works that we already described, in terms of structural
properties, in Section 4. The key idea that we used to
assess the impact of the structure of ego networks in the
diffusion of information is to count the number of tweets
originally generated by each alter that are retweeted by the
considered ego, relating this measure to the tie strength of
their social link, calculated - as previously done - as the
frequency of direct communication between them.

All the information diffusion mechanisms induced by
sources external to ego networks, such as, for example, the
trending topic page of Twitter, are not considered. This
allows us to study the information diffusion derived from
the presence of a social relationship, eliminating possible
bias derived from external sources. Of course, external

sources play an important role in the diffusion of informa-
tion, but this is out of the scope of the present work and
has been already characterised in Twitter [38].

Before performing the analysis, we normalised the data
by the duration of each social link between users and by
the differences between ego networks due to the character-
istics of the egos. This ensures a homogeneous analysis,
eliminating differences between ego networks due to their
different duration or the different frequency of use of the
users. To normalise the data, we used, as a measure of tie
strength, the percentage of frequency of replies sent by ego
to her alter with respect to the total frequency of replies
of ego to all her alters during her entire lifespan. This
measure is expressed by the following equation.

frepe,a =
link reply frequency

ego total reply frequency
=

repe,a
le,a

∗
lte

reptote
(3)

where repe,a is the number of replies sent from ego (e) to
alter (a), le,a is the lifespan of the social link between e and
a, reptote is the total number of replies sent by e to her
alters, and lte is the lifespan of the ego. As already done in
Section 4, the frequency of contact (replies) is estimated by
dividing the number of recorded replies sent from the ego
to the the considered alter by the time elapsed between
the first mention or reply sent by ego to the alter and
the time of the download (link lifespan). The lifespan of
the ego is the time elapsed between the creation of her
account and the time of the download. Note that frep
is different from the normalised contact frequency used
in Section 4, where each contact frequency was divided
by the maximum contact frequency of the respective ego
network to obtain a value in [0,1]. Here the purpose of
the normalisation is different and the obtained measure
is more suited for capturing the differences between egos,
although it does not necessarily result in a value in [0,1].

To measure information diffusion, we used the frequency
of retweets of egos generated from tweets of their alters,
divided by the total frequency of retweets of the egos, as
defined by the following equation.

frete,a =
link retweet frequency

ego total retweet frequency
=

rete,a
lrete,a

∗
lte

rettote
(4)

where rete,a is the number of retweets by ego (e) of tweets
originally generated by her alter (a), lrete,a is the maxi-
mum between le,a and the time elapsed between the first
retweet done by e to a tweet originally created by a and
the time of the download, rettote is the total number of
retweets done by e of tweets originally generated by her
alters, and lte is the lifespan of the ego.

As a first analysis of the relation between tie strength
and information diffusion, we calculated the correlation
between frep and fret for all the relationships belonging
to the active network (C5) of the ego networks in our Twit-
ter data set and we also fitted a linear function relating the
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Figure 6: fret as a function of frep.

two measures, defined as follows.

fret = α+ β ∗ frep (5)

For the analysis, we have considered all the relation-
ships of the ego networks together. Nevertheless, we also
performed the same analysis by considering each ego net-
work separately, and then averaging the results for all the
egos. The results obtained with the two techniques are
very similar, although for the second case the significance
is sometimes not sufficient for ego networks with a small
number of relationships. For this reason, in the following
we report only the results obtained by taking all the ego
networks together.

The correlation between frep and fret (rxy) and the
estimated parameters α and β are reported in the last row
of Table 7, under the column “all alters”.

The medium/high value of correlation (r = 0.46) is
a first indication of a relation between tie strength and
information diffusion. To further analyse the impact of
ego network structure on the relation between frep and
fret, we performed the same analysis by considering each
layer of the ego networks separately. To do so, we as-
signed each social link in the network to a position in the
ego network model, according to the contact frequency be-
tween the users it connects. Remember that, by definition,
the ego network model forms a hierarchical structure, and
therefore outer layers include inner ones. Thus, to avoid
ambiguity, we have assigned each link to a social ring, de-
fined as the part of a social circle that is not included in
any nested circles. To do so, we used the same clustering
technique described in Section 4.2, considering that the
clusters coincide with social rings. A mapping between
ego network circles and rings is provided in Table 8, where
R1 represents the ego network ring containing alters with
higher contact frequency, and R5 is the outermost ring.

The results of the analysis for the different rings are
reported in Table 7 in the rows related to R1-R5. The
correlation between frep and fret ranges between 0.61
for the innermost ego network ring and 0.22 for the outer-
most one (note that we are refferring here to the “all alters”
column only). Compared to the average correlation calcu-
lated on all the relationships in the ego networks (equal

to 0.46), these values denote that the correlation is higher
for more internal rings, and decreases as we move from
inner to outer rings. This indicates that in the outer part
of the ego networks the two measures are less dependent,
and this could be explained by the fact that in this part
of the network alters are more heterogeneous. The lower
correlation might also be due to the fact that for informa-
tion coming from outer rings, the content of information is
more important than the strength of the ties (also because
in general tie strength is quite low on outer layers), and
therefore the retweeting behaviour is less correlated with
social interactions.

The value of β increases from inner to outer rings. In
the inner rings, a direct contact is related to less than one
retweet (β < 1), whilst in the outer circles a direct contact
is related to a higher number of retweets (β > 1). This
is visible in Figure 6, which depicts fret as a function of
frep.

A possible explanation of the lower values of β in the
innermost layers could be that the relative gain in terms
of information diffusion due to an increment in terms of
tie strength may saturate after a certain level of strength
(i.e., there is a sort of marginal utility law governing the
dependency between tie strength and information diffu-
sion). From the literature, we know that information com-
ing from strong ties tends to remain trapped into highly
clusterised parts of the network formed of nodes socially
close to egos. Therefore, the information circulating be-
tween strong ties tend to be not very diverse, and thus an
increment in terms of tie strength could not be accompa-
nied by an equal increment of information diffusion. On
the other hand, for lower values of tie strength, the in-
formation coming from alters is generally much more di-
verse, and this could explain a lower dependency upon tie
strength, and thus higher values of β. In other words, the
diversity of information coming from weak ties increases its
probability of being retweeted, with respect to the sole ef-
fect of the strength of the social tie over which information
arrives to the ego. Another possible explanation for this
trend is that egos may choose their strong ties primarily
on the basis of their emotional closeness, while weak ties
could be picked primarily because of the information they
allow the ego to access, which is therefore proportionally
more likely to be retweeted.

As described in Section 3, users in Twitter can be di-
vided in two distinct groups: socially relevant users and
other users. We have already seen the differences in terms
of social behaviour of the users in these groups, with the
former containing people who use Twitter for socialising
and maintaining relationships with others, and the latter
containing users with a less “human” social behaviour, e.g.
companies, public figures, bots, and others. In the analysis

4Facebook circles’ size are affected by the data set subsampling
discussed in Section 3.1.

5Scaled size to match offline active network dimension.
6Social circles are defined in Section 2.3.
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Table 7: Information diffusion properties of ego network rings in Twitter, where x and y are frep and fret.

all alters soc. rel alters other alters

Ring rxy β̂ α̂ rxy β̂ α̂ rxy β̂ α̂

R1 0.61 0.49 0.03 0.80 0.74 0.03 0.74 0.58 -0.01
R2 0.52 0.62 0.01 0.76 0.76 0.02 0.71 0.59 0.02
R3 0.44 0.74 0.00 0.72 0.80 0.03 0.67 0.64 0.02
R4 0.34 0.97 0.00 0.66 0.85 0.06 0.65 0.72 0.02
R5 0.22 1.58 0.00 0.61 0.99 0.09 0.65 0.93 0.03

Whole net (C5) 0.46 0.57 0.02 0.68 0.83 0.09 0.65 0.78 0.03

Table 8: Ego network rings.

Ring Social circles correspondence6

R1 super support clique
R2 support clique, excluded the super support clique
R3 sympathy group, excluded the support clique
R4 affinity group, excluded the sympathy group
R5 active network, excluded the affinity group

performed in Section 4, we studied the structure of the ego
networks of socially relevant users, considering all their al-
ters, which could belong to both classes. Going deeply into
detail into the relation between information diffusion and
the structural properties of ego networks, we need to anal-
yse the behavioural differences of socially relevant users
towards their different classes of alters. For this reason,
the analysis introduced in this section is performed not
only on all alters without distinction, but also considering
socially relevant alters and other alters separately. Unfor-
tunately, we have complete information about the nature
of an alter only in case her profile has been downloaded
by our crawler, so, for each ego network, we only have a
fraction of alters that we can classify, which is, on aver-
age, ∼ 30% of the ego network. Nevertheless, the sample
of classifiable relationships for each ego network can be
considered a random sample of the relationships of egos.
Therefore, the results presented for the different classes are
estimated by using the set of classified alters. Moreover,
as we consider all the social relationships of each circle
for all the ego networks in the data set, the number of
relationships is sufficient to obtain significant results.

In the Twitter ego networks that we have crawled we
find that there are, on average, 27.8% socially relevant
alters, and 72.2% other alters. Note that, as already shown
in Section 3, the majority of egos in the initial data set are
socially relevant users. This means that, also according to
the statistics presented in Section 3, socially relevant users
have less connections than other users, and this results in
a higher proportion of connections towards “other alters”
than to socially relevant alters, also for socially relevant
egos.

As shown in Table 7, the correlations between frep
and fret considering all the social relationships in the ego
networks (C5) for the two classes of alters are respectively
0.68 for socially relevant alters and 0.65 for other alters.
In addition, Table 7 reports the statistics regarding the
relation between frep and fret for the different categories

of alters divided into the different social rings.
When considering socially relevant alters and other al-

ters separately, the correlation is significantly higher in
both cases then the case where alters are taken altogether.
This indicates that there are two separate processes under-
pinning the relation between tie strength and information
diffusion for the two classes, and, when the processes are
mixed together, this difference is less visible. The different
values of α and β for the two classes support this hypothe-
sis. The higher and more homogeneous values of β for so-
cially relevant users indicates that these alters are treated
in a more homogeneous way by egos across the different
rings. The increasing value of β for both classes moving
from internal to external rings, in addition, confirms the
same phenomena already discussed when analysing all al-
ters at the same time.

Figure 7 depicts the average number of retweets per
link, for the different rings. Inner circles show a higher
number of retweets per link, in accordance with the values
of correlation and the estimated values of the regressors of
equation 5. It is worth noting that this value, when mul-
tiplied by the average number of alters in each ring (cal-
culated from the size of the ego network circles obtained
in Section 4), indicates that, cumulatively, the quantity
of information diffused through the outer layers is higher
than that in the inner layers. This is visible in Figure 8
and it is in accordance with the idea of “the strength of
weak ties” [8], as also empirically found in Facebook [3].
Interestingly, the first three rings show approximately the
same amount of diffusion, whilst the outermost rings, R4
and R5, bring significantly higher levels of diffusion. When
we divide socially relevant alters and other types of alters,
we find that the amount of information diffused in the first
four rings coming from the former class is higher than that
coming from the latter. In the outermost ring, we found
the opposite behaviour, with socially relevant alters pro-
viding less information than other types of alters. This is
perhaps not too surprising, as we expect to find alters that
are not socially relevant prevalently in the outermost ring,
where the level of emotional closeness or intimacy with the
alters is lower than more internal rings.

Finally, to understand also the relation between the
properties of the individual egos and their information
diffusion patterns, we analysed the relation between the
activity of the egos, defined as the sum of contact frequen-
cies of the links of each ego network (see Section 4), and
the properties of tweets originally generated by egos and
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Figure 7: Average number of retweets per link divided by rings.

of her retweets. The correlation between the activity of
the egos and the number of tweets they generate is 0.38.
By applying a logarithmic transformation to both the ac-
tivity and the number of tweets generated by the egos we
obtain a higher correlation (0.51), indicating a non-linear
relation between the two measures. The correlation be-
tween the activity and the number of retweets generated
by egos (after the logarithmic transformation) is 0.38. We
also analysed the relation between activity of the egos and
the average popularity of their tweets, calculated as the
number of retweets they received. Activity on Twitter
appears to be uncorrelated to popularity, showing a corre-
lation value of 0.004.

6. Conclusion

In this paper, we presented an analysis aimed at char-
acterising the micro-level properties of OSNs and to un-
derstand how these properties influence the formation of
macro-level social phenomena, specifically the diffusion of
information in the network following the word-of-mouth
effect.

As far as the structure of OSNs is concerned, we have
found that online ego networks show properties that are re-
markably similar to those found in offline social networks.
Specifically, we have analysed two data sets containing in-
teraction data collected from Facebook and Twitter, that
have been processed to obtain the online ego networks of a
large number of users. The results of our analysis indicate
that the structures of offline and online ego networks are
compatible. In fact, we have found that the typical num-
ber of social circles in online ego networks is equal to 4 and
the scaling factor between hierarchically adjacent circles is
very close to 3. Moreover, the characteristic frequency of
communication inside the circles is comparable with that
measured offline, and that the sizes of the circles are very
similar. These results are in line with the fundamental
properties of human social networks found offline.

Looking in detail at the properties of the circles ob-
tained from Facebook and Twitter, we matched them with
those defined in sociology and anthropology. The results
indicate that the four circles in Facebook are directly mapped
with their offline equivalents. The higher richness of the
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Figure 8: Average number of retweets per ego network, divided by
ring.

Twitter data set allowed us to discover an additional circle
nested in the support clique, that we called “super support
clique”. This circle is characterised by a very high fre-
quency of contact (17.28 interaction per month) and small
size, with one or two members on average. Alters inside
this circle could be a partner and/or a best friend of the
ego. For a long time this result has been hypothesised in
sociology and psychology, but, for the lack of data, the
presence of this additional circle has never been experi-
mentally demonstrated until now.

Building on the results on ego network structures in
OSNs, we performed an information diffusion analysis as-
sessing the impact of the different ego network rings (i.e.
portion of each circle not containing the other nested cir-
cles) on the process. Specifically, we performed a corre-
lation analysis on Twitter data to assess the relation be-
tween direct contact frequency (of Twitter replies) and the
frequency of retweets passing through social links. The re-
sults indicate that the two measures are highly correlated,
with links in the internal ego network layers showing the
highest correlation. As a further refinement of the analysis,
we classified the alters of each ego network into “socially
relevant users” and “other users”, and we calculated the
correlations for these classes separately. Interestingly, the
correlations of both classes are higher when taken sepa-
rately rather than analysing them together. This could
indicate the presence of two separate processes governing
the diffusion of information for the two classes of alters.
The different values of angular coefficients of the func-
tion explaining the relation between the measures of tie
strength and information diffusion for the two classes, es-
timated through linear regression, support the presence of
these two separate processes. The correlations found for
socially relevant alters are high (higher than 0.8 for the
innermost layers), indicating that the diffusion of infor-
mation can be accurately explained as a function of tie
strength.

A possible practical application of our results may be
to use them to improve existing information diffusion mod-
els. The knowledge about the role of ego network rings in
the diffusion process may lead to more representative syn-
thetic diffusion traces than traditional models. Differences

16



in the structural properties of ego networks (e.g. size, num-
ber of layers, tie strength distribution) could also be useful
for identifying influential information spreaders in the net-
work. Another possible application field for the results of
our analysis is related to distributed online social networks,
an alternative to OSNs based on peer-to-peer communica-
tions. DOSN users would probably like to replicate their
data on nodes that they trust and help disseminate con-
tent coming primarily from these nodes [47, 48]. From the
analysis presented in this paper, we know that there is a
significant influence of tie strength on information propa-
gation, and DOSN system could exploit knowledge about
tie strength between users to estimate the level of informa-
tion diffusion, and replicate it accordingly (an initial effort
in this sense is presented in [49].

APPENDIX

Appendix A. Facebook and Twitter

In this section, we present a brief discussion about the
main features of Facebook and Twitter with particular re-
gard to the mechanisms they provide to the users to com-
municate with each other.

Appendix A.1. Facebook

Facebook is the most used online social networking ser-
vice in the world, with roughly 1.26 billion users as of 2013.
Facebook was founded in 2004 and is open to everyone
over 13 years old. Facebook provides several features to
the users. First, each user has a profile which reports her
personal information and it is accessible by other users ac-
cording to their permissions and the privacy settings of the
user. Connected to her profile, the user has a special mes-
sage board called wall, which reports all the asynchronous
messages made by the user (status updates) or messages
received from other users (posts). Posts (that include sta-
tus updates) can contain multimedia information such as
pictures, URLs and videos. Users can comment posts to
create discussions around them. Comments have the same
format as posts. To be able to access the personal page of
other users, a user must obtain their friendship. A friend-
ship is a bi-directional relation between two users. Once a
friendship is established, the involved users can communi-
cate with each other and view their personal information
- depending on their privacy settings. The users can visu-
alise the activity of their friends by using a special page
called news feed.

Appendix A.2. Twitter

Twitter is an online social networking and microblog-
ging service founded in 2006, with more than 500 million
registered users as of 20127. In Twitter, users can post
short public messages (with at most 140 characters) called

7According to Twitter CEO Dick Costolo in October 2012.

tweets. All the users’ tweets are accessible by other users,
unless the users’ profiles are private or the access is re-
stricted by other specific settings. Users can also auto-
matically receive notifications of new tweets created by
other users by “following” them (i.e. creating a subscrip-
tion to their notifications). People following a specific user
are called her followers, whilst the set of people followed
by the user are her friends.

Tweets can be enriched with multimedia content (i.e.
URLs, videos, pictures) and by using special text charac-
ters to insert additional information. Specifically, a tweet
can reference one or more users with a special mark called
mention. Users mentioned in a tweet automatically re-
ceive a notification, even though they are not followers of
the tweet’s author. Users can also reply to tweets. In this
case, a tweet is generated with an implicit mention to the
author of the replied tweet. This implies that replies rep-
resent directional communications. Replies often require
additional effort in terms of cognitive resources compared
to other tweets since they presuppose that the user creat-
ing the reply has read the tweet she is replying. Twitter
has also a private messaging system, however, since private
messages are not publicly accessible, we did not collected
them in our data set.

In addition to mentions and replies, Twitter provides
a series of mechanisms for broadcast communication that
represent the most popular features of the platform. First,
all the tweets are automatically sent towards all the fol-
lowers of their authors. Moreover, tweets can also be
retweeted. A user can make a retweet to forward a tweet it
to all her followers. Each tweet can be assigned to a topic
through the use of a special character called hashtag (i.e.
“#”) placed before the text indicating the topic. Hashtags
are used by Twitter to classify the tweets and to obtain
trending topics.

Appendix B. Classifier for the selection of socially

relevant users in Twitter

To build the supervised learning classifier used to select
socially relevant users from Twitter data set (see Section 3
for more details), we manually classified a sample of 500
accounts, randomly drawn from the data set, and we used
this classifications to train a Support Vector Machine [50].
This SVM uses a set of 115 variables: 15 of them related
to the user’s profile (e.g., number of tweets, number of
following and followers, account lifespan) and 100 obtained
from her timeline (e.g., percentage of mentions, replies and
retweets, average tweets length, number of tweets made
using external applications).

To test the generality of the SVM (i.e., the ability to
categorise correctly new examples that differ from those
used for training), we took 10 random sub-samples of the
training set, each of which contains 80% of the entries,
keeping the remaining 20% for testing. Then, we applied
the same methodology used to create the SVM generated
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from the entire training set on the 10 sub-samples. Do-
ing so, we obtained different SVMs, trained using differ-
ent sub-samples of the training set, and of which we were
able to assess the accuracy. The average accuracy of these
SVMs can be seen as an estimate of the accuracy of the
SVM derived from the complete training set. Specifically,
we calculated the accuracy index, defined as the rate of
correct classifications, and the false positives rate, where
false positives are accounts wrongly assigned to the “so-
cially relevant user” class. In our analysis, we considered
only users falling in the “socially relevant users” class, thus
it is particularly important to minimise the false positive
rate8. Minimising the false negative rate is also important
but less critical, as false negatives result in a reduction of
the number of users on which we base our analysis.

The average accuracy of our classification system is
equal to 0.813 [±0.024] and the average false positives rate
is 0.083 [±0.012] (values between brackets are 95% confi-
dence interval). These results indicate that we were able
to identify socially relevant people in Twitter with suf-
ficient accuracy, even if people have different behaviours
and characteristics (e.g., different culture, religion, age).
Moreover, the false positive rate is quite low (below 10%).
The results are of the same magnitude as those found in a
similar classification performed in Twitter [51].

Appendix C. Frequency of contact estimation in

Facebook

In this section, we provide details about the procedure
that we used to estimate the frequency of contact between
users in the Facebook data set described in Section 3. As
described in the text, the data set is divided into snap-
shots representing four temporal windows containing the
number of interactions occurred between the users during
the considered time period.

Appendix C.1. Definitions

We define the temporal window “last month” as the
interval of time (w1, w0), where w1 = 1 month (before the
crawl) and w0 = 0 is the time of the crawl. Similarly, we
define the temporal windows “last six months”, “last year”
and “all” as the intervals (w2, w0), (w3, w0) and (w4, w0)
respectively, where w2 = 6 months, w3 = 12 months and
w4 = 43 months. w4 is the maximum possible duration
of a social link in the data set, obtained by the difference
between the time of the crawl (April 2008) and the time
Facebook started (September 2004). The different tempo-
ral windows are depicted in Fig. C.9.

For a social relationship r, let nk(r) with k ∈ {1, 2, 3, 4}
be the number of interactions occurred in the temporal

8False negatives are “socially relevant users” with behaviour sim-
ilar to the subjects in the “other users” class. For this reason we
consider them as outliers, since our analysis is focused on Twitter
average users.
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Figure C.9: Temporal windows.

window (wk, w0). Since all the temporal windows in the
data set are nested, n1 ≤ n2 ≤ n3 ≤ n4. If no interactions
occurred during a temporal window (wk, w0), then nk(r) =
0. As a consequence of our definition of active relationship,
since n4(r) refers to the temporal window “all”, n4(r) > 0
only if r is an active relationship, otherwise, if r is inactive,
n4(r) = 0.

The first broad estimation that we can do to discover
the duration of social ties in the data set is to divide the
relationships into different classes Ck, each of which indi-
cates in which interval of time (wk, wk−1) the relationships
contained in it has started (i.e. the first interaction has oc-
curred). We can perform this classification by analysing,
for each relationship, the number of interactions in the
different temporal windows. If all the temporal windows
contain the same number of interactions, the relationship
must be born less than one month before the time of the
crawl, that is to say in the time interval (w1, w0). These
relationships belong to the class C1. Similarly, consider-
ing the smallest temporal window (in terms of temporal
size) that contains the total number of interactions (equal
to n4), we were able to identify social links with duration
between one month and six months (class C2), six months
and one year (class C3), and greater than one year (class
C4). The classes of social relationships are summarised in
Table C.9.

Appendix C.2. Estimation of the Duration of the Social

Links

Although the classification given in the previous sub-
section is extremely useful for our analysis, the uncertainty
regarding the estimation of the exact moment of the estab-
lishment of social relationships is still too high to obtain
significant results from the data set. For example, the du-
ration of a social relationship r3 ∈ C3 can be either a few
days more than six months or a few days less than one year.
To overcome this limitation, for each relationship r in the

Table C.9: Facebook classes of relationships.

Class Time interval (in months) Condition

C1 (w1 = 1, w0 = 0) n1 = n2 = n3 = n4

C2 (w2 = 6, w1 = 1) n1 < n2 = n3 = n4

C3 (w3 = 12, w2 = 6) n1 ≤ n2 < n3 = n4

C4 (w4 = 43, w3 = 12) n1 ≤ n2 ≤ n3 < n4
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Figure C.10: Graphical representation of two social relationships
with different duration.

classes Ck∈{2,3,4}, we estimate the time of the first interac-
tion comparing the number of interactions nk, made within
the smallest temporal window in which the first interaction
occurred (wk, w0), with the number of interactions (nk−1),
made in the previous temporal window in terms of tempo-
ral size (wk−1, w0). If nk(r) is much greater than nk−1(r),
a large number of interactions occurred within the time
interval (wk, wk−1). Assuming that these interactions are
distributed in time with a frequency similar to that in the
window (wk−1, w0), the first occurred interaction must be
near the beginning of the considered time interval. On the
other hand, a little difference between nk(r) and nk−1(r)
indicates that only few interactions occurred in the consid-
ered time interval (wk, wk−1). Thus, assuming an almost
constant frequency of interaction, the first contact between
the involved users must be at the end of the time interval.
The example in Figure C.10 is a graphical representation
of this concept.

In the figure, we consider two different social relation-
ships r1, r2 ∈ C3. The difference between the respective
values of n2 and n3 is small for r1 and much larger for
r2. For this reason, fixing the frequency of contact, the
estimate of the time of the first interaction of r1 is near to
w2, while the estimate for r2 results closer to w3.

In order to represent the percentage change between
the number of interactions nk and nk−1, we calculated, for
each relationship r ∈ Ck, what we call social interaction
ratio h(r), defined as:

h(r) =

{

nk(r)/nk−1(r)− 1 if r ∈ Ck∈{2,3,4}

1 if r ∈ C1
. (C.1)

If r ∈ C1 we set h(r) = 1 in order to be able to per-
form the remaining part of the processing also for these
relationships. The value assigned to h(r) with r ∈ C1 is
arbitrary and can be substituted by any value other than
zero without affecting the final result of the data process-
ing. Considering that nk(r) is greater than nk−1(r) by
definition with r ∈ Ck∈2,3,4, the value of h(r) is always in
the interval (0,∞)9.

Employing the social interaction ratio h(r), we define

the function d̂(r) which, given a social relationship r ∈ Ck,

9In case nk−1(r) = 0, we set nk−1(r) = 0.3. This constant is the
expected number of interactions when the number of interactions,
within a temporal window, is lower than 1.

estimates the point in time at which the first interaction
of r occurred, within the time interval (wk, wk−1):

d̂(r) = wk−1 +(wk −wk−1) ·
h(r)

h(r) + ak
r ∈ Ck, (C.2)

where ak is a constant, different for each class of relation-
ship Ck.

Note that the value of d̂(r) is always in the interval
(wk−1, wk). The greater h(r) - which denotes a lot of in-

teractions in the time window (wk, wk−1) - the closer d̂(r)

is to wk. The smaller h(r), the closer d̂(r) is to wk−1.

Moreover, the shape of d̂(r) and the value of ak are cho-
sen relying on the results about the Facebook growth rate,
available in [18]. Specifically, the distribution of the esti-

mated links duration, given by the function d̂(r), should
be as much similar as possible to the distribution of the
real links duration, which can be obtained analysing the
growth trend of Facebook over time. For this reason, we
set the constants ak in order to force the average link dura-
tion of each class of relationships to the value that can be
obtained by observing the Facebook growth rate. In [52]
we provide a detailed description of this step of our anal-
ysis.

Appendix C.3. Estimation of the Frequency of Contact

After the estimation of social links duration, we were
able to calculate the frequency of contact f(r) between the
pair of individuals involved in each social relationship r:

f(r) = nk(r)/d̂(r) r ∈ Ck. (C.3)

Previous research work demonstrated that the pairwise
user interaction decays over time and it has its maximum
right after link establishment [53]. Therefore, if we as-
sessed the intimacy level of the social relationships with
their contact frequencies, this would cause an overestima-
tion of the intimacy of the youngest relationships. In order
to overcome this problem, we multiplied the contact fre-
quencies of the relationships in the classes C1 and C2 by
the scaling factors m1 and m2 respectively, which correct
the bias introduced by the spike of frequency close to the
establishment of the link. Assuming that the relationships
established more than six months before the time of the
crawl are stable, we set m1 and m2 comparing the average
contact frequency of each of the classes C1 and C2, with
that for the classes C3 and C4. The obtained values of the
scaling factors are: m1 = 0.18, m2 = 0.82. Setting m3 = 1
and m4 = 1, the scaled frequencies of contact are defined
as:

f̂(r) = f(r) ·mk r ∈ Ck. (C.4)
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K. Kaski, J. Kertész, A. L. Barabási, Structure and Tie
Strengths in Mobile Communication Networks, PNAS 104 (18)
(2007) 7332–7336. doi:10.1073/pnas.0610245104.

[17] N. Z. Gong, W. Xu, L. Huang, P. Mittal, E. Stefanov, V. Sekar,
D. Song, Evolution of Social-Attribute Networks: Measure-
ments, Modeling, and Implications using Google+, in: IMC
’12, 2012, pp. 131–144.

[18] C. Wilson, A. Sala, K. P. Puttaswamy, B. Y. Zhao, Beyond
Social Graphs: User Interactions in Online Social Networks and
Their Implications, ACM Transactions on the Web 6 (4) (2012)
1–31. doi:10.1145/2382616.2382620.

[19] J. Leskovec, E. Horvitz, Planetary-Scale Views on
an Instant-Messaging Network, Tech. rep. (2007).
arXiv:arXiv:0803.0939v1.

[20] P. A. Grabowicz, J. J. Ramasco, B. Gonçalves, V. M. Egúıluz,
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