
Building Internet of Things Software with ELIoT

Alessandro Sivieria, Luca Mottolaa,b, Gianpaolo Cugolaa

aPolitecnico di Milano, Italy
bSICS Swedish ICT

Abstract

We present ELIOT, a development platform for Internet-connected smart devices.
Unlike most solutions for the emerging “Internet of Things” (IoT), ELIOT allows
programmers to implement functionality running within the networks of smart de-
vices without necessarily leveraging the external Internet, and yet enables the in-
tegration of such functionality with Internet-wide services. ELIOT thus reconciles
the demand for efficient localized performance, e.g., reduced latency for imple-
menting control loops, with the need to integrate with the larger Internet. To this
end, ELIOT’s programming model provides IoT-specific inter-process communi-
cation facilities, while its virtual machine-based execution caters for the need of
software reconfiguration and the devices’ heterogeneity. Moreover, ELIOT ad-
dresses network-wide integration concerns by enabling standard-compliant inter-
actions through REST and CoAP interfaces, with the added ability to dynamically
reconfigure REST interfaces as application requirements evolve. We demonstrate
the features and effectiveness of ELIOT based on a smart-home application, and
quantitatively derive performance figures atop two hardware platforms compared
to implementations using plain C or Java using the AllJoin framework. Compared
to the C implementation, our results indicate that the performance cost for the
increased programming productivity brought by ELIOT is still viable; for exam-
ple, memory consumption in ELIOT is comparable, whereas the processing over-
head remains within practical limits. Compared to the Java implementation using
AllJoin, ELIOT provides a similar level of abstraction in programming, with much
better performance both in memory consumption and processing overhead.

Keywords: Programming, Internet of Things

Email addresses: alessandro.sivieri@polimi.it (Alessandro Sivieri),
luca.mottola@polimi.it (Luca Mottola), gianpaolo.cugola@polimi.it
(Gianpaolo Cugola)

Preprint submitted to Elsevier March 11, 2016

Figure 1: Smart-home application.

1. Introduction

The “Internet of Things” (IoT) is emerging from sensors and actuators aboard
physical objects equipped with computing capabilities and able to access the larger
Internet. Most often, a blend of localized and Internet-wide interactions character-
izes IoT applications, as we exemplify next. How to effectively develop application
software for such settings is an open problem [1]: currently available platforms
rarely provide support for implementing applications that combine sharply differ-
ent interaction patterns [2, 3, 4]. This greatly impacts the operational costs of IoT
systems [5]. The same platforms often pay little tribute to the concerns arising
when integrating different IoT systems. When standard-compliant interfaces are
supported [6], they are typically carved in stone and therefore unable to accommo-
date evolving requirements.
Problem. Figure 1 describes an example smart-home [7] application. A con-
trol panel provides a user interface to coordinate the operation of several home
appliances, such as HVAC systems, kitchen machines, and in-house entertainment,
possibly based on environmental conditions gathered through sensors. Users input
to the control panel their preferences, e.g., the desired average temperature, and
constraints, e.g., the latest time for a dishwasher to complete washing.

Based on this information, per-appliance models of expected energy consump-
tion, and energy prices found on the Internet, the control panel determines a sched-
ule of activities to meet the user preferences while minimizing energy consump-
tion, e.g., by operating the dishwasher when energy is cheapest, but within the user
constraints. Meanwhile, the control panel offers information on the instantaneous
energy consumption over the Internet. The energy provider uses this information
to estimate the city-wide load and to take informed decisions in case of unexpected
peaks. Individual appliances should also be reachable through the Internet, e.g., for
appliance manufacturers to update their on-board software.

In this application, localized interactions are required to efficiently realize the
control loops to configure home appliances based on user preferences and sensed

2

data. On the other hand, Internet-wide interactions characterize the exchange of
information between the smart-home installation and energy providers or appliance
manufacturers. These traits are germane to many IoT applications [1, 8], including
patient monitoring [9], vehicular traffic control [10] and smart logistics [11].

Although the devices typically employed in this kind of IoT applications fea-
ture sufficient resources to implement localized interactions [12, 13], existing soft-
ware platforms almost exclusively delegate the application-specific functionality to
the Internet, e.g., using Cloud services such as Xively [14], ThingSpeak [15], and
OpenSense [16]. There, sensor data is processed and actuator commands are re-
motely generated. The application logic thus resides entirely outside the networks
of smart devices. This approach provides a quick path to working implementa-
tions, but it falls short if stricter performance requirements, e.g., low latency for
closed-loop control, become mandatory.
Contribution and road-map. This paper presents ELIOT, a programming plat-
form for Internet-connected smart devices, which allows programmers to imple-
ment functionality running within the local network, while still supporting interac-
tions with Internet-wide services. ELIOT is based on three cornerstones:
1) An IoT-tailored programming model: this includes, for example, dedicated lan-

guage constructs to discern different communication guarantees due to the un-
reliability of the wireless channel, and dedicated addressing schemes to effec-
tively support IoT interactions.

2) Support for standard-compliant interactions through REST and CoAP inter-
faces: while the latter seamlessly enable embedding low-power sensors and ac-
tuators in ELIOT applications, we also allow dynamic reconfiguration of REST
interfaces to keep up with evolving requirements.

3) A custom run-time system fitting embedded devices the size of a gum stick
and costing less than 10$: this also includes integrated simulation support for
testing and debugging, with the ability of running hybrid scenarios that include
simulated and real devices.

ELIOT programs are written in a dialect of Erlang [17]: an industry-strength
language originally designed for fault-tolerant applications in the telecommuni-
cation domain. Erlang provides a stepping stone to implement IoT applications,
because of its support for parallel and distributed programming.

Our evaluation indicates that ELIOT allows programmers to obtain concise
code that is easy to debug, maintain, and reason about. The corresponding perfor-
mance penalty is limited: by assessing the performance of a fault-tolerant ELIOT
implementation of the smart-home application against a C-based counterpart with
no embedded fault tolerance, we show that the overall memory consumption is
comparable to the C implementation, whereas CPU usage remains within practical

3

limits. Such a C-based implementation represents current practice in embedded
system programming [18]. Nevertheless, compared to a non-fault tolerant Java
implementation using the AllJoin framework, ELIOT shows orders of magnitude
smaller memory consumption and CPU overhead. Notably, AllJoin explicitly tar-
gets IoT applications with requirements akin to ours, while Java offers similar lev-
els of abstraction as ELIOT and a virtual machine-based implementation as well.

The paper unfolds as follows. In Section 2, we further analyze the smart-home
application, which serves as a running example throughout the paper. Section 3
provides a concise Erlang primer. We describe ELIOT’s programming model in
Section 4. The support to standard-compliant interfaces, along with their dynamic
reconfiguration, is discussed in Section 5, whereas ELIOT’s run-time system is
illustrated in Section 6. Next, Section 7 reports on our experimental evaluation.
We end the paper by surveying related work in Section 8 and with concluding
remarks in Section 9.

2. Motivating Application

The smart-home scenario we hint in the Introduction provides a paradigmatic
example of the issues in developing IoT applications. Here we discuss a base
design for this application, together with different deployment scenarios.
Base design. The devices in Figure 1 generally demand Internet access, e.g., the
control panel must be able to obtain energy rates from the provider and be acces-
sible from the Internet, while appliance manufacturers must be able to remotely
update the appliances’ on-board software. At the same time, a local control loop,
guided by the control panel, is beneficial to reduce communication costs and im-
prove performance. In particular, the control panel acts as a front end for the users
and coordinates the appliances’ activities, dealing with:

Functionality F1: discovery and bookkeeping of home appliances, obtaining the
data to compute their operating schedules;

Functionality F2: processing of the user inputs and computation of a schedule of
appliance operation;

Functionality F3: external communication, e.g., to query the energy providers for
energy prices or to offer energy consumption information over the Internet.

To ease the installation, smart-home devices are expected to feature wireless
communication. Because of this, one designs the discovery functionality required
in F1 using a soft-state approach [19]. The control panel periodically broadcasts
beacons that running appliances immediately acknowledge, either to join the sys-
tem initially or to confirm their presence afterwards. In absence of an acknowledg-
ment, the control panel removes the appliance from the application state.

4

4
:

e
n

e
rg

y
 r

a
te

s

3*: energy query

4*: energy prediction

1*:
 e

nerg
y

query

5: s
ch

edule

2*:
 e

nerg
y p

re
dic

tio
n

1*: beacon

5: schedule

3
:

e
n

e
rg

y

ra
te

s
 q

u
e
ry

2: executable

model

energy provider

home

appliance

home appliance

control panel

(a) Scenario A and B.

5: energy

consumption

and production

4: energy

queries 1*: beacon

2: add component

3*: energy statusenergy

provider
solar

panel

control

panel

(b) Scenario C.

Figure 2: Different scenarios in the smart-home application.

The design of the remaining functionality depends on application requirements
and hardware platforms:

Scenario A: if home appliances can locally compute their expected energy con-
sumption, one can design the schedule computation of F2 by issuing remote
queries from the control panel to obtain the necessary information. This is
shown in the black sequence of message exchanges in Figure 2a: whenever
the user inputs new information, the control panel queries the appliances for
their expected energy consumption according to different operating settings
(step 1 and 2), and asks the energy provider for the energy rates at differ-
ent times (step 3 and 4). Based on this and environmental data collected
from sensors, the control panel distributes an operating schedule back to the
appliances (step 5).

Scenario B: if an appliance is computationally constrained, e.g., in the case of a
light fixture, or the amount of data to exchange is excessive, the estimation
of expected energy consumption for F2 should be performed at the control
panel. The blue sequence of message exchanges in Figure 2a illustrates the

5

1 % Simple function returning the double of its input
2 double(Number) -> 2 * Number.
3
4 % Receive messages, process them, and return results to the original sender
5 loop() ->
6 % Extract the first message from the queue (blocking)
7 receive
8 % Pattern match the content of the message
9 {msg_type_1, SenderPID, ListOfNumbers} ->

10 % Apply function Double to the whole list, element by element
11 Result = lists:map(Double, ListOfNumbers),
12 % Send the result back to the original sender
13 SenderPID ! Result;
14 % A different content for the message
15 {msg_type_2, SenderPID, Content} ->
16 [...]
17 end,
18 % Recursive call to parse next message in queue (or wait for a new message)
19 loop()
20 end.

Figure 3: Erlang code sample.

corresponding interactions, which require computationally-constrained ap-
pliances to provide the control panel with an executable model of their ex-
pected energy consumption. The light fixture acknowledges the control pa-
nel’s beacon (step 1) by shipping the model to compute its energy consump-
tion (step 2). The control panel locally runs the model (step 3) to compute
an estimate of the fixtures’ energy consumption (step 4) before determining
and transmitting the schedule (step 5).

Scenario C: if some devices run different platforms, the necessary coordination
must rely on standard-compliant interfaces. Such interfaces may serve to
access low-power sensors and actuators, but they may also need to evolve
after the system is installed, especially for F3. For example, landlords may
decide to install solar panels and to sell the excess energy back to the grid.
As shown in Figure 2b, whenever this happens, the control panel should
offer an additional interface to query the amount of produced energy. This
is implemented by letting the newly installed solar panel answering the con-
trol panel’s beacon (step 1) by requesting the addition of a new software
component (step 2). This component will receive messages from the solar
panel to periodically inform the control panel about the produced energy
(step 3). The same component will make this information available over the
Internet, e.g., to the energy provider (step 4 and 5), in a standard-compliant
and vendor-independent manner, e.g., using a REST interface.

3. Erlang Primer

ELIOT devices are programmed using a dialect of Erlang: an industrial-
strength functional language designed to ease development of communication pro-

6

tocols, data manipulation algorithms, and distributed applications.
Erlang’s concurrency model follows the actor model [20]: Erlang processes

are named entities that do not share data, but communicate through asynchronous
message passing, only. The example code in Figure 3 shows the core of an Erlang
process that waits for incoming messages, processes them, and returns the result to
the original sender. The receive statement inline 7 takes the first message from
the process’ incoming queue, while the ! operator is used at line 13 to commu-
nicate the result back to the original sender. Notably, the syntax for inter-process
communication is independent of whether the communicating processes are local
or remote, which simplifies distributed programming by blurring the boundary be-
tween local and remote context.

As shown at line 9 and 15, distinguishing between message types is speci-
fied declaratively using pattern matching, i.e., by stating constraints on the mes-
sage format. In our example, msg type 1 and msg type 2 are two atoms
that appear at the beginning of messages to distinguish them, while SenderPID,
ListOfNumbers, and Content are unbound variables that are assigned a value
at the time of performing the pattern matching. The same mechanism also allows
one to parse and filter binary data, such as message payloads, using very com-
pact code, as shown later in the paper. This is an asset for implementing low-level
communication protocols, as often required in IoT applications.

Erlang code is compiled into a bytecode, which is interpreted or compiled just-
in-time by a virtual machine (VM). ELIOT borrows the same approach, which
elegantly addresses the issue of hardware heterogeneity typical of IoT applica-
tions. However, the original Erlang’s syntax, semantics, and system support are
not straightforwardly applicable in IoT scenarios. The IoT communication pat-
terns and resulting communication guarantees differ from those of traditional Er-
lang networks. Moreover, mainstream Erlang VMs demand hardware resources
rarely found in IoT settings. Finally, debugging and testing IoT applications can-
not be oblivious to the real-world interactions IoT systems are exposed to. ELIOT
tackles these issues as described next.

4. Communication and Coordination in ELIOT

ELIOT’s dedicated language constructs concerns four key aspects of IoT inter-
process communication and coordination: i) handling different communication
guarantees, ii) supporting code migration and remote process spawning, iii) offer-
ing extended addressing schemes, and iv) providing access to low-level information
from the networking stack.
Running example. To make our explanation concrete, we consider the smart-
home application introduced above. Figure 4 reports snippets of ELIOT code that

7

1 % Define some char constants (1 byte) used as message headers, plus the timer for beacons
2 -define(BCON, $M).
3 -define(APPLIANCE, $A).
4 -define(APPLIANCE_LOCAL, $L).
5 -define(TIMER, 60000).
6
7 % Define the ’appliance’ record with 3 fields: the appliance’s IP address, plus
8 % the process id and list of parameters of the appliance’s consumption model
9 -record(appliance, {ip, pid = none, parameters = []}).

10
11 % Main function to handle incoming messages; it takes the set of known appliances (a dictionary)
12 receiver(Appliances) ->
13 receive
14 [...]
15 % On receiving the timer self message...
16 timer ->
17 % Unreliably broadcast a beacon to processes named ’appliance’
18 Msg = <<?BCON:8>>,
19 {appliance, all} ∼ Msg,
20 % Re-send the timer self-message to myself, after TIMER ms
21 erlang:send_after(?TIMER, self(), timer),
22 % Recurse to parse next message
23 receiver(Appliances);
24 % On receiving a message coming from a neighboring appliance...
25 {RSSI, SourceAddress, Content} ->
26 case Content of
27 % If first byte equals APPLIANCE, the consumption model runs remotely
28 <<?APPLIANCE:8, SerializedParameters/binary>> ->
29 Pars = data:decode_params(SerializedParameters),
30 % Build a new set of appliances holding the new appliance information
31 NewRecord = #appliance{ip=SourceAddress, parameters=Pars},
32 NewAppliances = dict:store(SourceAddress, NewRecord, Appliances),
33 % Recurse to parse next message, passing the new set of appliances
34 receiver(NewAppliances);
35 % If first byte equals APPLIANCE_LOCAL, the consumption model runs locally
36 <<?APPLIANCE_LOCAL:8, Hash:20/binary, Len:8, SerializedName:Len/binary,
37 Code/binary>> ->
38 Name = erlang:binary_to_list(SerializedName),
39 % Spawn a new process to execute the received code
40 {Pid, Pars} = supervisor:start_model(Name, Code, Hash),
41 % Build a new set of appliances holding the new appliance information
42 NewRecord = #appliance{ip=SourceAddress, pid=Pid, parameters=Pars},
43 NewAppliances = dict:store(SourceAddress, NewRecord, Appliances),
44 % Recurse to parse next message, passing the new set of appliances
45 receiver(NewAppliances)
46 end
47 end.

Figure 4: Excerpt of control panel code.

implements different control panel’s functionality: discovery of home appliances,
as per functionality F1 in the application base design (lines 16 to 23); gathering
of the appliances’ operating parameters, as per scenario A (lines 28 to 34); and
installing of the executable model of an appliance’s expected energy consumption,
as per scenario B (lines 36 to 45).

After defining constants and structured types, the code in Figure 4 defines the
recursive function receiver run by the control panel (line 12), which takes the
current set of known appliances as input. Processing suspends at the receive
statement (line 13) and then unfolds depending on the type of received message.
Communication guarantees. As mentioned in Section 3, Erlang inter-process
communication is based on the ! operator, which is equally used for sending mes-

8

sages to a local or to a remote process. In blurring the distinction between local
and remote communication, Erlang assumes that the underlying protocol for send-
ing messages among Erlang VMs is reliable1. This is a strong assumption in the
IoT scenarios we target, where wireless communication is the rule more than the
exception. At the same time, several IoT applications do not need reliable commu-
nication and may sacrifice that for better efficiency. Accordingly, ELIOT comple-
ments Erlang’s ! operator, with a new operator: ∼∼∼, which implements unreliable,
best effort, sending of messages. We see it at work in line 19 of Figure 4: after cre-
ating the single byte beacon (line 18), the control panel sends it unreliably using
the∼∼∼ operator.

Besides adding the∼∼∼ operator, ELIOT also changes the semantics of the ! op-
erator. Instead of assuming reliable links and failing silently in presence of un-
recoverable faults, it places a special nack message into the sender’s incoming
message queue whenever a communication fault happens that cannot be auto-
matically recovered by the VM. This enables programmers to implement their
own application-specific failure-handling mechanisms, possibly based on the ac-
tual destination and payload of the failing massage, which are returned as part of
the nack message.

ELIOT saves memory and processing overhead for processes that do not re-
quire network interactions by adopting a two step approach in mapping processes
to names. A process registers under a symbolic name to allow (local) com-
munication without the hassle of knowing the process identifier assigned by the
VM. For the process to become accessible from the network, its name must be ex-
plicitly exported. It is this step that activates the (sometime expensive) run-time
infrastructure that allows the process to be reached from remote devices.

More generally, the need to carefully control the costs associated with wireless
communication—both in terms of energy and bandwidth consumed—hardly match
the level of abstraction inherent in Erlang’s original inter-process communication
model. Providing a best-effort message send operator, alongside a more reliable
one, while explicitly requiring processes to be exported reconciles the need for
keeping a reasonably high level of abstraction with the reality of unreliable wireless
communications. Notice that ELIOT retains the blurred distinction between local
and remote communication of Erlang by allowing both message sending operators
to be used with local processes, also. In this case, both operators straightforwardly
guarantee message delivery.
Code transfer and remote process spawning. As we mentioned in Section 3,
ELIOT uses a VM to execute a platform-independent bytecode. While elegantly

1Mainstream Erlang implementations use TCP to provide this guarantee.

9

supporting the heterogeneity typical of IoT scenarios, this approach also allows
code fragments to be sent over the network from device to device. This, together
with the ability of dynamically spawning processes across devices, eases the dy-
namic (re)deployment of distributed applications. Devices can be dynamically
added new capabilities by transferring the code that implements them and dynam-
ically spawning the processes that execute such code.

This feature is used at lines 36 to 40 of Figure 4, which implement scenario
B of our running example. Such fragment of code parses messages containing a
binary blob (line 36), links the received code to the application, and instantiates
a process to run it under the control of a supervisor process (line 40). In this
case the spawning of the new process is triggered by the device that receives the
code, but in principle a remote device may also send some code to a remote device
and remotely spawn the corresponding process. The fact that spawning a process
remotely uses the same primitives as in a local setting, while the message-passing
functionality remains the same for local or remote communication, also allows
ELIOT applications to move functionality from a local context to a distributed
setting with minimal effort.
Addressing schemes. The ! operator, originally offered by Erlang, allows sin-
gle processes to be easily reached once programmers know their unique identifier
or the name they registered to, together with the address of the VM they run on.
While intuitive and easy to use, this form of unicast communication is insufficient
to efficiently support scenarios where a process needs to send a message to mul-
tiple other processes. This form of broadcast communication is often used in IoT
applications, either as a primitive at the application level, e.g., for discovery, or as
a low-level mechanism to implement higher-level protocols.

ELIOT supports these scenarios by offering a richer addressing scheme than
Erlang. In particular, ELIOT messages addressed to {n, all} arrive at processes
registered under name n running on all reachable VMs2. We use this feature to im-
plement the discovery of new appliances in Figure 4 (line 19). The same addressing
scheme may be used within the spawn primitive, e.g., when a new functionality is
to be deployed on multiple nodes at once. To further control the nodes where pro-
cess spawning must happen, programmers may use ad-hoc scoping filters. They
express a condition—in the form of a lambda function—that predicates over the
devices’ environment variables or that invokes functions available within the ap-
plication itself. The process is actually spawned only onto those nodes where the
scoping filter evaluates true.

2The ELIOT prototype implements the sending to all by using broadcast UDP; thus, the span
of message spreading (and the notion of reachability) depends on the network configuration.

10

Low-level network stack information. Full isolation of the various layers that
build a networking stack is sometimes impossible to achieve and often not benefi-
cial. Some form of cross-layering is often required to improve efficiency, especially
with embedded devices and wireless communication, which are the norm for IoT.

ELIOT makes these considerations concrete by exposing information coming
from the networking stack to the receiver. More specifically, while Erlang fills
the incoming message queue of the receiver only with the payload of the mes-
sage, ELIOT’s communication driver explicitly exposes additional information. In
the current prototype, the IP address of the source node and the Received Signal
Strength Indicator (RSSI) obtained from the radio are added, but the communica-
tion driver can be extended to add other information. Line 25 of Figure 4 shows
how this information is easily accessible. This sharply contrasts the way program-
mers access similar information using low-level embedded system languages, like
C. The IP source address and RSSI reading in ELIOT are treated as any other type
of data, and automatically materialized by ELIOT into the receiver’s incoming
message queue, without requiring intricate platform-dependent code. As a result,
ELIOT simplifies not only the development of application-level functionality, but
also the implementation of system-level services, e.g., RSSI-based localization al-
gorithms [21] required for location-aware services.

5. Standard-compliant Interfaces

IoT applications are foreseen to emerge from the integration of a plethora of
different platforms communicating through standard-compliant interfaces [22].

One such example is the Constrained Application Protocol (CoAP) [23]: an
IETF proposal to allow wireless sensors and actuators to collaborate over low-
power lossy networks. To accommodate for similarly constrained devices, we im-
plement the CoAP standard in ELIOT and integrate it with the underlying run-time
system. This allows an ELIOT node to natively integrate in a CoAP network, by
invoking CoAP services to query a sensor or to send a command to an actuator.
As an example, in our smart-home application, native support to CoAP may allow
the control panel to query a CoAP-compliant weather station to enrich the schedul-
ing algorithm with information about external conditions, or to directly control a
CoAP-compliant appliance.

Dually, scenario C in the smart-home application requires standard-compliant
access to ELIOT devices from an external entity. To this end, ELIOT provides
support to reconfigurable REST interfaces, which provides two key features:
1) by facilitating the implementation of flexible REST interfaces, ELIOT enables

rapid prototyping of distributed interactions based on standard protocols and

11

inter-operable message formats. For example, any web browser may be used to
query sensors attached to an ELIOT node, with no ad-hoc programming.

2) ELIOT offers a means to dynamically extend existing REST interfaces. For
example, upon installation of the solar panel of scenario C, the attached ELIOT
device can deploy an additional function onto the control panel to extend its
REST interface with a new operation that allows interested parties to access
information on generated energy. The energy provider can access such data
in a platform-independent manner, facilitating interoperability. Note that this
kind of dynamic reconfiguration, enabled by ELIOT’s ability to spawn new
processes at run-time based on binary code received from the network, is rarely
available in existing REST-enabled IoT platforms [6].

6. Run-time System

ELIOT provides two system functionality to effectively support the application
execution and development: a lightweight VM that implements the language and a
dedicated simulator for testing and debugging.
Virtual machine. Over time, Erlang has grown to support a wide range of sce-
narios, by means of a large set of libraries and a complex run-time infrastructure.
Most of these features find limited application in IoT applications, unnecessarily
increasing the hardware requirements. To address this issue, we develop a custom
VM for ELIOT, which uses the Erlang VM as a foundation, keeping the available
functionality to the bare minimum required in our target applications, and integrat-
ing the communication and coordination extensions that are unique to ELIOT.

At the communication layer, the ELIOT VM uses a custom networking stack
with a double objective: improving efficiency and supporting the new communica-
tion primitives and addressing mechanisms described in Section 4. In particular, we
employ UDP-based communication instead of TCP3. This applies to support both
the reliable and unreliable communication primitives, and for remote spawning of
processes. On top of UDP we implemented our own reliability layer, which sup-
ports the nack mechanisms described in Section 4. For better efficiency we also
simplify the whole communication layer, limiting it to the minimum functionality
required for the IoT scenarios we target.

As a result of this work the ELIOT VM has very low hardware requirements,
especially in terms of memory consumption. This enables ELIOT to run on devices
that are quite unusual in the traditional Erlang realm. We test two such platforms: i)

3In general, this is a custom choice, which can be easily changed by providing a different imple-
mentation for the ELIOT’s communication driver.

12

a Raspberry Pi board model A with 256 MB of RAM, and ii) a custom embedded
board with a RT3050 MIPS processor called “Carambola”, featuring 32 MB of
RAM and 8 MB of embedded flash. Both can run ELIOT.
Simulator. Debugging and testing IoT applications is a key area scarcely sup-
ported by most platforms. Gaining the required visibility into the system state, in
particular, is deemed to be a crucial issue [24]. By leveraging ELIOT’s VM-based
run-time and the blurred distinction between local and distributed functionality, we
develop a custom simulator that allows programmers:
• to simulate an entire system by instantiating a set of virtual nodes running un-

modified ELIOT code;
• to model communication between nodes according to real wireless traces for

increased fidelity4;
• to interact with the simulation, if required, via a shell, e.g., to proactively inject

messages or to overhead transmitted ones;
• to run a hybrid deployment where virtual nodes seamlessly interact with physical

devices5, thus creating a hardware-in-the-loop configuration [26].
ELIOT programmers can thus start debugging a system in a fully simulated de-

ployment, and then progressively move to a setting where the execution also spans
physical nodes. This retains visibility into the system state through the simulated
nodes, but it also allows one to check the execution on real devices and the inter-
actions with the physical environment. As we discuss next, we leverage ELIOT’s
simulator for debugging and testing our implementation of the smart-home appli-
cation, using a Raspberry Pi as the control panel and simulated nodes as home
appliances. This happens with the guarantee that the code being tested coincides,
line by line, with the code that developers deploy.

7. Evaluation

We evaluate ELIOT by considering two aspects: the benefits it brings to devel-
opers’ productivity and the run-time overhead it introduces to offer such benefits.

As a baseline for comparison, we use a C implementation of the smart-home
application that realizes the same core functionality using the pthread library for
multi-processing and standard UDP sockets for communication. This largely re-
flects the current practice in programming networked embedded systems [18]. To

4We use the traces from the TOSSIM simulator [25]. Using different traces is possible by devel-
oping the needed model translation.

5The current prototype supports hybrid deployments with hardware devices that provide an Eth-
ernet or WiFi connection, but nothing precludes supporting other networks, like 802.15.4, provided
the PCs running the simulator can access such networks, e.g., via an ad-hoc gateway.

13

provide a comparison with a platform expressly conceived for IoT development,
we consider the AllJoyn [27] framework, using the Java language. AllJoyn is a
state-of-the art, open-source networking framework developed by a consortium
that includes most of the key players in the IoT panorama. The goal of the frame-
work is to provide as easy-to-use platform to address the communication needs of
IoT devices, covering, like ELIOT, both local and remote interactions. AllJoyn
supports multiple platforms (Android, iOS, Linux, Open WRT, OS X, and Win-
dows), languages (mainly C++, ObjectiveC, and Java), and networking technolo-
gies (Bluetooth and WiFi). Our decision of using Java is motivated by the desire to
compare a programming environment whose ease-of-use, level of abstraction, and
VM-based implementation are akin to ELIOT.

7.1. Benefits to IoT Software Development

ELIOT provides two benefits to programmers: it increases their productivity
by rising the level of abstraction compared to low-level languages, and it eases
debugging with custom tools.
Programmers’ productivity. It is notoriously difficult to objectively compare the
implementation effort using different programming languages. In absence of a pre-
cise tool, measuring the lines of code provides a rough, yet quantitative indication
often used in the literature [28]. In our case, the C-based smart home applica-
tion requires 1623 lines of code, while the ELIOT-based implementation merely
requires 649 lines, corresponding to a 60% saving. The AllJoyn-based implemen-
tation requires 1408 lines of code. The latter shows better figures than C but still
more than double the size of the ELIOT version.

These improvements become even more relevant as one considers that the C
and AllJoyn implementations only provide the core functionality of the smart-home
application. Indeed, 187 lines of ELIOT code, out of the 649 total, are actually
used to set up the application supervisor, which handles process crashes as well as
the testing and debugging services. These functionality are not available in the C
and AllJoyn implementations. Nevertheless, these fragments of ELIOT code are
largely borrowed from existing templates; thus, the number of application-specific
lines of ELIOT code is effectively 462, for a 71.5% reduction compared to the C
implementation and a 67% reduction compared to the the AllJoyn implementation.
Such a big difference makes the result, even in presence of an approximate metric
like the number of code lines, hardly questionable.

Beyond the raw numbers, the higher level of abstraction in ELIOT improves
code readability, facilitating reuse and maintenance. This becomes visible by look-
ing at the structure of the control panel code, shown in Figure 4. This structure is
typical of ELIOT applications that implement communication protocols. The code

14

is organized as a single receive statement with multiple cases, each associated
to a specific message type determined declaratively by pattern matching.

As an example, line 36 in Figure 4 uses binary pattern matching to determine
when the message payload contains a function to be executed locally. Matching
happens in blocks: the first 8 bits are interpreted as a user-defined code indicating
the message type; the next 20 bytes are a SHA-1 hash code; then a single byte spec-
ifies the length of the string that follows. Variable L1 is assigned the latter value
and immediately used as the length of the next field, namely the function name.
The rest of the sequence is a binary block that holds the function’s bytecode6. The
name, hash, and code of the received function are then passed to the application
supervisor (line 40) to spawn a new process executing the code and to monitor its
execution should run-time errors occur.

Figure 5 provides additional insights into the expressive power of ELIOT, fo-
cusing on deserializing the operating parameters of a newly discovered appliance,
as required in line 29 of Figure 4. In C, as shown in Figure 5a, this requires writing
error-prone code that explicitly manages type conversions, memory allocation, and
copying. Developers achieve the same functionality recursively and in a declarative
fashion with ELIOT, again using binary pattern matching. The decode params
function in line 3 of Figure 5b takes the message payload as input and invokes a
function with the same name and an additional argument: an initially empty list of
appliance operating parameters. In line 7, if the payload is empty, indicating that
message deserialization is complete, the list of deserialized parameters is returned
as the final result. Otherwise, the first parameter is matched and decoded, as in
lines 11-12. Each parameter includes the length of the parameter’s name (L1) fol-
lowed by the name itself (SerializedName), the parameter’s type (Type), its
value (Value), and a Boolean indicating whether the parameter is read only (Ro).
The decoded information is used in line 14 to build a record prepended to the list
of decoded parameters in the recursive call of line 17. Overall, the 25 lines of C
code in Figure 5a reduce to 7 lines of (uncommented) ELIOT code in Figure 5b.

A comparison with the AllJoyn implementation is harder as AllJoyn adopts an
RPC-based communication model rather than a message-based one as in ELIOT
and C. This choice has the benefit of hiding most of the communication details and
in particular the steps required to serialize and de-serialize RPC parameters. At
the same time, the need of supporting multiple languages and platforms requires
AllJoyn programmers to use ad-hoc code to let AllJoin know the format and size of
involved data types. Considering the data types that encode the operating parame-

6The bit syntax allows one to specify the length of each field using different units (bits or bytes),
depending on the field’s type.

15

1 int deserialize_params(char *buf, GList **params) {
2 unsigned int params_len;
3 int tot, i;
4 parameter_t *param = NULL;
5 memcpy(¶ms_len, buf, sizeof(unsigned int));
6 for (i = 0, tot = 0; i < params_len; ++i) {
7 tot += deserialize_parameter(buf + sizeof(unsigned int) + tot, ¶m);
8 *params = g_list_append(*params, (void *) param);
9 }

10 return sizeof(unsigned int) + tot;
11 }
12 int deserialize_parameter(char *buf,
13 parameter_t **param) {
14 unsigned long name_len;
15 parameter_t *p = NULL;
16 p = malloc(sizeof(parameter_t));
17 memset(p, 0, sizeof(parameter_t));
18 memcpy(&name_len, buf, sizeof(unsigned long));
19 p->name = g_string_new_len(buf + sizeof(unsigned long), name_len);
20 memcpy(&p->type, buf + sizeof(unsigned long) + name_len, 1);
21 memcpy(&p->value, buf + sizeof(unsigned long) + name_len + 1, sizeof(uint8_t));
22 memcpy(&p->ro, buf + sizeof(unsigned long) + name_len + 1 + sizeof(uint8_t), sizeof(uint8_t));
23 *param = p;
24 return sizeof(unsigned long) + name_len + 1 + 2*sizeof(uint8_t);
25 }

(a) C implementation.

1 % Decode Payload by calling the two-args version of the function passing an empty list,
2 % which will be filled with the data extracted from the payload
3 decode_params(Payload) -> decode_params(Payload, []).
4
5 % Pattern matching on the first arg: if the binary variable is empty, then we finished
6 % (we reached the base case for the recursion) and we can return the ListOfPars...
7 decode_params(<<>>, ListOfPars) -> ListOfPars;
8 % ... otherwise, the first byte (L1) contains the length of the parameter’s name (next field),
9 % and the following bytes represent: its type, its value, and it being read-only; the rest

10 % of the payload contains other parameters that will be extracted in the next (recursive) call
11 decode_params(<<L1:8, SerializedName:L1/binary, Type:8/unsigned-integer,
12 Value:8/unsigned-integer, Ro:8/unsigned-integer, Rest/binary>>, ListOfPars) ->
13 % Fill a new record with the extracted content
14 NewRecord = #parameter{name = erlang:binary_to_list(SerializedName),
15 type = Type, value = Value, ro = Ro},
16 % Recursive call to continue parsing the payload. The new record is saved into the list
17 decode_params(Rest, [NewRecord|ListOfPars]);

(b) ELIOT implementation.
Figure 5: Deserializing appliance operating parameters.

ters of a newly discovered appliance, the code programmers need to implement to
let AllJoin correctly handle this information amounts to 12 Java lines. In addition,
70 Java lines are needed to implement the hashCode and equals methods that
need to be redefined for Java objects passed around a network. This compares with
the 7 lines of ELIOT code mentioned above.

One might argue that the compact ELIOT code, which results from its func-
tional paradigm, may lead to higher chances of programming errors, essentially be-
cause the code is semantically more dense. The evidence, however, demonstrates
that this is not the case. On the contrary, and especially for highly distributed func-
tionality, the more compact code resulting from the use of functional programming
ultimately yields more dependable systems [29, 30].

16

⟨1⟩ ⟨2⟩

⟨3⟩

Figure 6: Simulator user interface.

ELIOT also simplifies implementing concurrent functionality, by virtue of its
functional nature and system support to multi-threading. As an example, mutexes
and condition variables, required in C (but also in Java) to synchronize concurrent
threads, are unnecessary with ELIOT. Already in the relatively simple smart-home
application, nonetheless, C and Java programmers (albeit the latter with the help
of higher-level language constructs) heavily rely on these synchronization primi-
tives to coordinate access to the shared list of appliances. ELIOT programmers
can organize the code in such a way that the list of appliances is modified by the
receiving thread only, whereas other threads operate on an immutable copy of such
data structure, included in the message that triggers their processing.
Testing and debugging. The real-world dynamics and the decentralized opera-
tion of IoT applications complicate testing and debugging. The ELIOT simulator
helps deal with these tasks by providing monitoring and inspection tools for hybrid
configurations of real and simulated nodes.

Figure 6 shows the simulator at work. When debugging the smart-home ap-
plication, we use a real Raspberry Pi to run the control panel, plus four simulated
appliances. Developers interact with the ELIOT simulator in three ways: i) a pro-
cess monitor shows the ELIOT processes running on simulated nodes, identified
according to their register-ed names; ii) a code monitoring tool enables inspec-
tion of the currently running code and allows to step through instructions and set
breakpoints, as well as to manipulate the values of variables; iii) a custom shell al-
lows developers to trigger specific executions, e.g., the schedule computation on the
Raspberry Pi. The simulator then shows how the appliances answer to the control
panel through the process and code monitors. The shell allows one to automatize
these operations by scripting sequences of test cases.

The ELIOT simulator offers functionality that are rarely available using main-
stream programming platforms for networked embedded systems [19]. The VM-
based execution, together with the actor model that simplifies inter-process com-

17

Raspberry Pi Carambola
0

20

40

60

80

100

M
B

y
te

s
C (thread default stack size)

C (thread 1M stack size)

C (thread 256K stack size)

ELIoT bare

ELIoT app. running

Java-AllJoyn bare
(10M heap size)

Java-AllJoyn app. running
(10M heap size)

Figure 7: Memory consumption (pmap).

munications, facilitates building tools that effectively support developers in testing
and debugging distributed functionality.

7.2. System Performance

Increasing developers’ productivity comes at a cost. This is also the case for
ELIOT, where such cost materializes as performance overhead. To precisely eval-
uate this aspect, we compare the performance of the C, AllJoyn, and ELIOT im-
plementations of the smart-home application by measuring memory consumption,
CPU usage and power consumption, as well as network traffic and latency. For
the C version, we perform this comparison on both embedded devices currently
running the ELIOT VM, while the AllJoyn version is only tested on the Raspberry
Pi board, since a Java VM is not available for the Carambola board.
Memory. We measure memory usage with pmap: a Linux utility that reports the
entire memory allocated for a given application, including code, libraries, stack,
and heap. This gives a precise indication of the amount of memory a device needs
to run the application: devices with less memory would just be unable to run the
same application implementation.

Figure 7 reports the results. The caveat in the results we obtain from the C
implementation is that it uses the pthread library for multiprocessing, which leaves
programmers with the burden to explicitly choose the stack size for each thread.
Over-provisioning this value is common practice in mainstream programming, as
plenty of memory is typically available. In embedded programming, however, this
is conducive to interesting observations: a naive C programmer who uses the de-

18

fault stack size7 would build an application that uses the same or more memory
than the corresponding ELIOT implementation. ELIOT programmers, on the other
hand, rely on lightweight multiprocessing provided by the VM and do not need to
worry about such system configuration. Nevertheless, a skilled C programmer able
to manually fine-tune the system configuration—a typically error-prone and time-
consuming task—would find working settings at 1MB or even 256 KB per-thread
stack space, the latter being the minimum that allows the application to run cor-
rectly. In this case, the C implementation consumes less than half the memory of
the ELIOT implementation. With the application running, instead, AllJoyn using
Java consumes one order of magnitude more memory than ELIOT, even after fine
tuning the Java VM’s heap size.

To better characterize memory usage in AllJoyn and ELIOT, we separately as-
sess the two VMs with no application loaded and when the smart-home application
is running. As shown in Figure 7, it turns out that both VMs are responsible for
most of the memory used. But while in ELIOT the application consumes a few
additional KB, in AllJoyn using Java the amount of additional memory required to
run the application is significant. This analysis points at the VM as an avenue for
further improvements to battle the memory overhead in ELIOT. At the same time,
it also suggests that the gap between C and the other two, higher-level platforms,
would likely reduce with more complex applications, as the memory occupation
due to the VM is a fixed cost that ELIOT and AllJoin pay once and for all, with
ELIOT showing better relative performance on this metric.
CPU usage and power consumption. We measure the time the CPU is busy pro-
cessing using the getrusage primitive, which returns per-process CPU time split
between user and system time. At the control panel, we run 50 consecutive execu-
tions of the operations to compute the appliances’ schedule, as per functionality F2,
by assuming that the expected energy consumption at the appliances is computed
remotely, corresponding to scenario A. We also include six rounds of beaconing
for discovery and monitoring of appliances between scheduling operations, as per
functionality F1. Such setting is representative of foreseeable usages of the smart-
home application. Each cycle lasts 60 seconds. We repeat the 50 iterations across
30 different runs, and plot the resulting average with the 95% confidence intervals.

Figure 8 depicts the results. Using the C implementation, the user time is
much lower than the system time, especially on a relatively powerful device like
the Raspberry Pi. Differently, the time spent by the CPU using ELIOT on the Rasp-
berry Pi is split almost equally between user and system time, while on the Caram-

7The default stack size in the pthread library is 8 MB for the Raspberry Pi (vanilla Linux) and 2
MB for Carambola (OpenWrt).

19

2450

2460

2470

2480

2490

2500

2510

2520

C User

C System

ELIoT User

ELIoT System

Java-AllJoyn User

Java-AllJoyn System

Raspberry Pi Carambola
0

50

100

150

200

250

Figure 8: CPU times (in hundreds of seconds).

bola most time is spent executing user code. Using ELIOT, both user and system
times are larger compared to the C counterparts. In absolute terms, however, the
latency that such CPU times may introduce are less than 30 ms per iteration, which
includes a schedule computation and six rounds of beaconing. These are reason-
ably within tolerance of non-realtime applications such as a smart-home. The num-
bers we gather from the AllJoyn implementation tell a different story. While the
system time is comparable with ELIOT, the user time is 18 times greater. Con-
sidering that AllJoyn is a state-of-the-art platform for IoT development, this result
puts ELIOT’s performance in a different perspective. Albeit offering a high-level
programming model similar to using Java with AllJoyn, ELIOT has a much lower
overhead compared to a pure C implementation, providing a much better compro-
mise between ease of use and performance.

Increased CPU times also correspond to higher power consumption. To assess
this aspect, we hook the Raspberry Pi and the Carambola to a professional volt-
age generator/multimeter to measure their average power consumption throughout
a single application iteration. Figure 9 shows the results of our measurements by
factoring out the power consumption when the board is completely idle. Com-
pared to the C implementation of the smart-home application core functionality,
ELIOT imposes an overhead of about 5 mW on the Carambola and of 6 mW on
the Raspberry Pi, arguably negligible for the scenarios we consider. The power
consumption of the AllJoyn version reflects the CPU usage we reported above,
consuming 30 times more than the ELIOT version.

20

200

205

210

215

220

m
W

C

ELIoT

Java-AllJoyn

Raspberry Pi
(Idle: 1600 mW)

Carambola
(Idle: 590.7 mW)

0

5

10

15

20

m
W

Figure 9: Power consumption. (The idle power consumption is factored out.)

On a general note, we may observe that adding the idle baseline to the measures
above results in a relatively high overall figure for the platforms we tested, which
are not optimized for limiting power usage. On the other hand, better engineered
platforms exist, which are powerful enough to run ELIOT and still have a reduced
power usage, in particular at idle. For example, a modern smartphone using a
Samsung S3C2442 SoC absorbs about 268 mW when idle [31], while the ARM
board that runs the Amazon Kindle 4—a device explicitly designed for low power
consumption—absorbs 45 mW when idle with WiFi enabled and connected, as we
measured using the same equipment used for the other platforms.
Network traffic and latency. Using a standard network inspection tool, we mea-
sured the amount of bytes transferred through the network during a single iteration
of the smart-home application. This includes several messages exchanged between
the control panel and the appliances of our smart-home example. While the appli-
cation payload of such messages in the same for the three platforms we tested, the
header and format differ. For ELIOT this is a result of its specific features plat-
form, such as the abstract addressing mechanism it provides, for example, to reach
specific ELIOT processes within a given node. Using AllJoyn results in a com-
plete change of the communication paradigm, which moves from message passing
to RPC. In comparison with C, ELIOT shows a 10.21% overhead (2126 bytes vs.
1929). The number of messages, however, is the same in both implementations.
Overall, this small overhead appears acceptable. Using AllJoyn results in much
greater overhead, with a total traffic of 9572 bytes, adding to 496% overhead com-
pared to C. The number of messages also greatly increases, as AllJoyn employs its
own beaconing mechanism to discover new devices and maintain reachability and

21

LAN WAN 802.15.4
(CoAP)

0

20

40

60

80

100

120

140

m
s

ICMP ping

Schedule

Company

CoAP GET

Figure 10: Network delay (LAN and Internet).

bookkeeping information for all devices involved.
We also measure the network latency of ELIOT messages in LAN and Internet-

scale interactions. The first two sets of bars in Figure 10 show the round-trip time of
two exemplary ELIOT messages used in our scenario: the “schedule” message ex-
changed between the control panel and an appliance to inform it of the new agreed
schedule and the “company” message exchanged between the electrical company
and the control panel. They are both representative examples of complex interac-
tions that may happen in an ELIOT application.

The LAN measurements (first set of bars) have been taken using two Rasp-
berry Pis on a wired connection to the same router, while the WAN measurements
(second set of bars) have been taken using two Raspberry Pis situated in Italy and
Sweden. The two devices execute a control panel and an appliance in the first
case and a control panel and the company functionality in the second case. The
chart shows also the network delay measured through ICMP ping messages. In all
cases, the interactions have been executed 10000 times, and the plot shows the 95%
confidence intervals, barely visible since they are under 0.5%. We observe that, re-
gardless of the network delay, it takes about 20 to 25 ms for each ELIOT message
to traverse the network stack from the application level down to the Ethernet inter-
face on the sender, traverse back the stack on the receiver, elaborate the response
and send it back to the sender. We expect such small latency to be acceptable in
most practical IoT applications.

To complement these measures, the rightmost bars in Figure 10 show the time
required for the control panel running on a Raspberry Pi to invoke a CoAP service
offered by a TMote Sky node running Contiki on a 802.15.4 network. As in the
previous case, we also plotted the delay measured on the same 802.15.4 link using

22

ICMP v6 ping messages. We note that the time required to perform this interaction
is below 150ms. More interesting is the comparison between the round trip time
measured through ICMP and the CoAP invocation latency. The two measures looks
very similar. This can be explained because of the Contiki-based implementation
at the TMote Sky device, whereby there is not much difference in the processing
to receive, decode, and answer an ICMP packet vs. a CoAP request. In both cases,
most of the processing time is actually spent in the routing (RPL), MAC (802.15.4),
and physical layers.
Spawn time. We assess the time needed by ELIOT to spawn a new process whose
bytecode comes from the network. This is key to evaluate the actual usability of the
ELIOT mechanisms to upload new functionality on a running node; for example,
in the smart-home application where appliance manufacturers need to update the
on-board software. Particularly, we measure the time it takes from when a message
with the necessary bytecode is received at the node to when the new functionality
is ready to accept input data. On average, this goes from 50 ms on the Raspberry
Pi to less than 20 ms on the Carambola: arguably acceptable in most practical IoT
applications.

8. Related Work

Works closely related to ELIOT mainly target IoT software architectures and
IoT application frameworks. From a conceptual standpoint, the body of work on
sensor network programming and pervasive computing also shares some objectives
with ELIOT, along with some existing application-specific frameworks.
IoT architectures and frameworks. Significant activities are undergoing to define
software architectures for the IoT. At the lowest layers, for example, Calipso [32]
aims to define a global network architecture for IPv6-based smart objects. The
IoT6 project [22] exploits an IPv6-based network layer to build CoAP services
atop. The IoT-A project [33] defines an architectural reference model for the inter-
operability of IoT devices, whereas Spitfire [34] investigates unified concepts for
facilitating the effective development of IoT applications.

ELIOT is largely complementary to these efforts. It already integrates with
the results of the IoT6 project thanks to the embedded support to CoAP, and fits
the IoT-A architecture as a possible tool to implement the functionality offered by
Internet-connected smart devices. Generally, sound software architectures are nec-
essary to improve interoperability, organize applications’ functionality, and reason
about the system operation. Orthogonal to these aspects is how to specify the ac-
tual application processing within the individual components and how to establish
and perform communication and coordination across the network of devices and
with Internet-wide services. ELIOT provides support for the latter aspects.

23

Integrating smart devices with the Internet may follow different approaches.
Solutions exist to proactively export sensor data to the Internet, such as Publish/-
Subscribe middleware [3] and shared memory systems [35]. Cloud-hosted plat-
forms providing storage and processing facilities for sensor data also exist, such as
Xively [14], ThingSpeak [15], and OpenSense [16]. Other solutions instead pro-
vide remote access to sensors and actuators from the Internet, such as sMAP [6]. A
notion of “physical mashup” [36] is also emerging, e.g., as in systems like IBM’s
Node-RED [37]. Mitton et al. [38] present a concept of sensor virtualization ap-
plied to a smart-city use case.

In all these approaches, the application logic runs outside the network of em-
bedded sensor and actuators. This simplifies quickly prototyping IoT applications,
yet it does not allow an efficient implementation of combined Internet-wide and
localized interactions. ELIOT aims at efficiently enabling the latter by retain-
ing the ability to coordinate with Internet-wide services. For example, as seen
in the smart-home scenario, ELIOT developers can implement control loops that
span neighboring ELIOT- enabled devices; coordinate with non ELIOT- enabled
devices using standard protocols; and integrate them with externally-running ser-
vices. Moreover, ELIOT’s REST interface enables the integration with systems
based on RESTful interactions, such as Actinium [4].

There also exist works tackling different facets of IoT applications. Srijan [39],
for example, presents a model-driven development approach by establishing spe-
cific roles for the involved stakeholders, and by introducing domain-specific lan-
guages to model both the application and the underlying systems. Latronico et
al. [40] present the notion of “accessor” as a way to tackle heterogeneity in IoT
applications. An accessor is a software wrapper that exports the functionality of
sensors, actuators, and Internet-wide services according to an actor-like model.
These works are complementary to ELIOT, which focuses on providing effective
programming and system support. For example, ELIOT may serve as a target lan-
guage for Srijan, to simplify code generation. Even more strikingly, as ELIOT
natively supports the actor model, it becomes a natural candidate for supporting
the implementation and execution of accessors.
Pervasive computing and sensor networking. Most pervasive computing plat-
forms are conceived as stand-alone systems, where Internet-wide interactions
are typically mediated by ad-hoc gateways designed and implemented on a per-
application basis. For example, Aura [41] and Gaia [42] focus on effective devel-
opment of on-the-fly interactions between users and nearby pervasive computing
devices, whereas MundoCore [43] provides a low-level framework and middleware
for developing platforms integrating diverse devices, from mobile systems to main-
stream PCs. Although MundoCore caters for effective integration of heterogeneous
hardware—an issue we also tackle in ELIOT using a VM-based execution—these

24

system do not tackle the problem of effectively developing systems featuring both
Internet-wide and localized interactions.

Similar considerations apply to traditional sensor networking. Although based
on a different hardware, existing solutions in the field [19] do enable the imple-
mentation of localized interactions—especially by deploying the application logic
right onto the embedded devices—but lack support for Internet-wide interactions.
Programming may occur at the operating system level [44, 45], by relying on cus-
tom virtual machines [46], or by using higher-level abstractions [19]. Conceptu-
ally, ELIOT aims at bringing the localized interactions already enabled by sensor
network programming in Internet-connected embedded networks. For example,
support to CoAP-based interactions in ELIOT helps achieve this goal.
Application-specific frameworks. We use a smart-home application to exem-
plify the use of ELIOT. Ad-hoc solutions exist for developing software in specific
domains. For example, HomeOS [47] is a middleware layer implementing higher-
level abstractions for smart-home applications, giving the illusion that the house
itself can be treated as a single computing device. ELIOT’s applicability extends
beyond this particular context. For example, in the logistics domain, sensor at-
tached to packages may provide fine-grained continuous monitoring of the shipped
goods, used to inform business analysts at the back-end of item availability and
market trends [11]. Such applications show similar combinations of localized and
Internet-wide interactions as our smart-home example. ELIOT precisely aims at
enabling both kinds of interactions within the same platform.

9. Conclusions

We presented ELIOT, a development platform for the IoT that allows devel-
opers to combine localized and Internet-wide interactions. ELIOT builds upon
Erlang by adapting its inter-process communication facilities to the specifics of
IoT applications, using custom language syntax and semantics. The VM-based
execution supports the diverse IoT hardware and provides the necessary software
reconfiguration capabilities. ELIOT nodes export reconfigurable REST interfaces
for standard-compliant interactions, while a dedicated VM tailored to mainstream
IoT devices supports the distributed executions of ELIOT applications, and a cus-
tom simulator aids testing and debugging using hybrid configurations of real and
simulated devices.

By comparing, both qualitatively and quantitatively, the implementation of a
smart-home application using ELIOT and standard C, we found that the former
facilitates development by producing more concise and more readable code that is
easier to test and debug. The performance penalty is, on the other hand, limited.
For example, memory usage in ELIOT is often comparable to the C counterparts,

25

whereas CPU usage remains within practical limits. The comparison with the state-
of-the-art programming framework AllJoyn, paired with Java to offer a high-level
programming style analogous to that of ELIOT, shows how the latter provides a
much better compromise between ease-of-use and performance, with a much lower
performance overhead.

Acknowledgment. This work was partially supported by the European Commis-
sion, Programme IDEAS-ERC, Project 227977-SMScom.

References

[1] F. Kawsar, G. Kortuem, B. Altakrouri, Supporting interaction with the internet of
things across objects, time and space, in: Proc. Internet of Things Conf., 2010.

[2] Cosm, cosm.com.
[3] G. Fox, S. Kamburugamuve, R. Hartman, Architecture and Measured Characteristics

of a Cloud Based Internet of Things, in: Proc. Int. Conf. on Collaboration Technolo-
gies and Systems, 2012.

[4] M. Kovatsch, M. Lanter, S. Duquennoy, Actinium: A RESTful runtime container for
scriptable IoT applications, in: Proc. Int. Conf. on the Internet of Things, 2012.

[5] P. Marron, S. Karnouskos, D. Minder, A. Ollero, The Emerging Domain of Cooper-
ating Objects, Springer, 2013.

[6] S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, D. Culler, sMAP: a simple mea-
surement and actuation profile for physical information, in: Proc. 8th ACM Conf. on
Embedded Networked Sensor Systems, 2010.

[7] D. J. Cook, S. K. Das, How smart are our environments? An updated look at the state
of the art, Pervasive Mob. Comput. 3 (2).

[8] D. Uckelmann, M. Harrison, F. Michahelles, Architecting the Internet of Things,
Springer, 2011.

[9] K. Lorincz, B.-r. Chen, G. W. Challen, A. R. Chowdhury, S. Patel, P. Bonato,
M. Welsh, Mercury: a wearable sensor network platform for high-fidelity motion
analysis, in: Proc. 7th ACM Conf. on Embedded Networked Sensor Systems, 2009.

[10] R. Sen, A. Maurya, B. Raman, R. Mehta, R. Kalyanaraman, N. Vankadhara, S. Roy,
P. Sharma, Kyun queue: a sensor network system to monitor road traffic queues, in:
Proc. 10th ACM Conf. on Embedded Network Sensor Systems, 2012.

[11] SenseAware powered by FedEx, goo.gl/zKc3Q.
[12] BeagleBoard, beagleboard.org/Products/BeagleBone.
[13] Raspberry PI, www.raspberrypi.org.
[14] Xively, www.xively.com.
[15] ThingSpeak, www.thingspeak.com.
[16] OpenSense, open.sen.se.
[17] J. Armstrong, Programming Erlang: Software for a Concurrent World, Pragmatic

Bookshelf, 2007.
[18] M. Barr, A. Massa, Programming Embedded Systems, O’Relly Media, 2006.

26

goo.gl/zKc3Q
www.xively.com
www.thingspeak.com
open.sen.se

[19] L. Mottola, G. P. Picco, Programming wireless sensor networks: Fundamental con-
cepts and state of the art, ACM Compututing Surveys 43.

[20] C. Hewitt, P. Bishop, R. Steiger, A universal modular actor formalism for artificial
intelligence, in: Proc. Int. joint Conf. on Artificial intelligence, 1973.

[21] K. Langendoen, N. Reijers, Distributed localization in wireless sensor networks: a
quantitative comparison, Comput. Netw. 43 (4).

[22] IoT6 - Universal Integration of the IoT, www.iot6.eu.
[23] Z. Shelby, K. Hartke, C. Bormann, Constrained application protocol (CoAP),

draft-ietf-core-coap-18 (Dec. 2013).
[24] A. Bernauer, K. Roemer, Meta-debugging pervasive computers, in: Proc. Workshop

on Programming Methods for Mobile and Pervasive Systems, 2010.
[25] P. Levis, N. Lee, M. Welsh, D. Culler, TOSSIM: accurate and scalable simulation

of entire TinyOS applications, in: Proc. 1st ACM Conf. on Embedded Networked
Sensor Systems, 2003.

[26] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ramanathan, D. Estrin, EmStar:
a software environment for developing and deploying wireless sensor networks, in:
Proc. USENIX Annual Technical Conference, 2004.

[27] Alljoyn, allseenalliance.org.
[28] R. W. Sebesta, Concepts of Programming Languages, 9th Edition, Addison-Wesley

Publishing Company, USA, 2009.
[29] U. Wiger, G. Ask, K. Boortz, World-class product certification using erlang, SIG-

PLAN Not. 37 (12).
[30] B. J. MacLennan, Functional programming: practice and theory, Addison-Wesley

Longman Publishing Co., Inc., 1990.
[31] A. Carroll, G. Heiser, An analysis of power consumption in a smartphone, in: Proc.

of the USENIX annual technical conference, 2010.
[32] CALIPSO: Connect All IP-based Smart Objects!, www.ict-calipso.eu.
[33] Internet of Things - Architecture, www.iot-a.eu.
[34] Spitfire Semantic Web interaction with Real Objects, spitfire-project.eu.
[35] P. Langendoerfer, K. Piotrowski, M. Diaz, B. Rubio, Distributed Shared Memory as

an Approach for Integrating WSNs and Cloud Computing, in: Proc. 5th Int. Conf. on
New Technologies, Mobility and Security, 2012.

[36] D. Guinard, et al., A resource oriented architecture for the Web of Things, in: Internet
of Things (IOT), 2010.

[37] IBM Node-RED, www.nodered.org.
[38] N. Mitton, et al., Combining Cloud and sensors in a smart city environment, Journal

on Wireless Communications and Networking 2012 (1).
[39] P. Patel, A. Pathak, D. Cassou, V. Issarny, Enabling high-level application develop-

ment in the Internet of Things, in: Proceedings of the 4th International Conference
on Sensor Systems and Software, 2013.

[40] E. Latronico, E. Lee, M. Lohstroh, C. Shaver, A. Wasicek, M. Weber, A vision of
swarmlets, Internet Computing, IEEE 19 (2) (2015) 20–28.

[41] J. a. P. Sousa, D. Garlan, Aura: an architectural framework for user mobility in ubiq-
uitous computing environments, in: Proceedings of the IFIP 17th World Computer
Congress, 2002.

27

www.iot6.eu
allseenalliance.org
www.ict-calipso.eu
www.iot-a.eu
spitfire-project.eu
www.nodered.org

[42] M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, K. Nahrstedt, A
middleware infrastructure for active spaces, IEEE Pervasive Computing 1.

[43] E. Aitenbichler, J. Kangasharju, M. Mühlhäuser, MundoCore: A light-weight infras-
tructure for pervasive computing, Pervasive and Mobile Computing 3.

[44] A. Dunkels, B. Grönvall, T. Voigt, Contiki - a lightweight and flexible operating
system for tiny networked sensors, in: Proc. Int. Workshop on Embedded Networked
Sensors, 2004.

[45] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, System architecture
directions for networked sensors, SIGPLAN Not. 35 (11).

[46] N. Brouwers, K. Langendoen, P. Corke, Darjeling, A Feature-Rich VM for the Re-
source Poor, in: Proc. of the 7th ACM Conference on Embedded Networked Sensor
Systems, 2009.

[47] C. Dixon, R. Mahajan, S. Agarwal, A. J. Brush, B. Lee, S. Saroiu, P. Bahl, An operat-
ing system for the home, in: Proc. 9th USENIX Conf. on Networked Systems Design
and Implementation, 2012.

28

	1 Introduction
	2 Motivating Application
	3 Erlang Primer
	4 Communication and Coordination in ELIoT
	5 Standard-compliant Interfaces
	6 Run-time System
	7 Evaluation
	7.1 Benefits to IoT Software Development
	7.2 System Performance

	8 Related Work
	9 Conclusions

