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Abstract

Heterogeneous cellular networks are promising solutions to address the need

for the exponentially increasing data traffic demands by ensuring an acceptable

level of quality of service. In such networks, base stations with different cell sizes

serve the cellular areas (i.e., macro cells along with small cells). The access

technologies of such base stations can be different as well. Small cell access

points (SAP) are typically connected either directly to the core network through

a wired link or to a macro-cell base station through a wireless backhaul link. In

this paper, we consider the scenario where the SAP is connected to a macro-cell

base station through a wireless backhaul link operating at the same frequency

band as the access links from the SAP to its users. We consider amplify and

forward (AF) protocol under both full/half duplex transmission modes for the

SAP. Under such circumstances, we study the price-based resource allocation

where the SAP charges each user equipment (UE) proportional to the amount

of the power it allocates for transmission to that UE. A Stackelberg game is

employed to model and investigate the joint utility maximization problem of the

SAP and UEs. In our game model, the SAP is the leader and the UEs are the

followers. We formulate the utility maximization problems for both the leader

Email addresses: rahmati.ali@alumni.ut.ac.ir (Ali Rahmati), vmansouri@ut.ac.ir
(Vahid Shah-Mansouri), majid.safari@ed.ac.uk (Majid Safari)

1Corresponding Author
Part of this paper was presented at the IEEE Conference on Communications (ICC’15 ),
London, UK, Jun. 2015.

Preprint submitted to Journal of LATEX Templates July 29, 2016



and the followers as optimization problems. We consider two pricing schemes,

namely non-uniform and uniform. Moreover, we present a condition which gives

a proper criterion for resignation of the UEs from the proposed Stackelberg game

when transmitted power of the SAP is limited. We prove that both sub-games

are convex optimization problems which ensures their tractability. We also

propose a novel algorithm to obtain the optimal prices of Stackelberg equilibrium

of the game. Numerical results validate the efficiency of our proposed priced

based resource allocation scheme.

Keywords: Heterogeneous cellular networks, full/half duplex self-backhauled

small cells, Stackelberg game, amplify and forward, price-based resource

allocation.

1. Introduction

Mobile data traffic has been growing dramatically in recent years. An or-

dinary smartphone is expected to generate approximately 1.3 GB data traffic

per month in 2015, which leads to a 11-fold increase in global data traffic in

2015 in comparison to 2013 [1]. To alleviate this data traffic storm, mobile

operators have increased the capacity of the radio access and backhaul links

not only through development of new technologies but also via operating at

higher and wider frequency bands. Despite of all these efforts, the demand is

expected to exceed the capacity of the fourth generation cellular networks in

near future [1],[2].

The use of small cell access points (SAP) operating at the same frequency

band with the same access technology or different frequency bands with differ-

ent access technologies are attractive solutions to cope with the explosive data

traffic demand. Such networks which consist of various types of base stations

with various sizes (i.e., macro cells along with small cells) and possibly various

access technologies are employed. is called heterogeneous networks. Heteroge-

neous networks are attractive solutions providing better quality of service (QoS)

and support higher number of users. SAPs are connected to the core network
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through a wired or wireless link. Wired backhaul links which employ optical

transmission technology are costly. Microwave backhaul links require extra fre-

quency bands which is costly as well. One solution to solve this issue is to use

a SAP capable of communicating with the macro base station (BS) at the same

frequency band that it uses for the users. In the downlink channel, the SAP

would receive data from the macro BS while simultaneously transmitting the

data to the UEs. In this method, the SAP uses the same channel for access and

backhaul. Therefore, there is no need for a separate backhaul channel which

decreases the cost and capital expenditure (CAPEX) [3, 4, 5, 6]. This is called

a self-backhauled SAP.

The enabling technology behind the self-backhauled SAPs is full duplex (FD)

operation of the SAP transceivers. We shall notice that there is no need to

change BS or UEs. Authors in [7] have designed and implemented the first real

FD WiFi radio using single antenna for simultaneous transition and reception on

the same channel. They have proposed novel analog and digital self-interference

cancellation techniques that cancel the self-interference and enables FD mode

of operation. uplink, downlink, and backhaul transmissions. Self-backhauling is

particularly efficient when coupled with FD relaying. Antenna design, as well as

cancellation in radio frequency and digital domains at an FD relay enables reuse

of the same resources for backhaul and access hops. The use of radio resources in

the self-backhauling and access hops can be coordinated to maximize end-to-end

performance [8].

Recently, different aspects of pricing and economics of heterogeneous cel-

lular networks and mobile data offloading are investigated. In [9], authors in-

vestigated the virtual resource allocation issues in small cell networks with FD

self-backhauls and virtualization. They formulated the virtual resource allo-

cation problem as an optimization problem by maximizing the total utility of

mobile virtual network operators (MVNOs). In [10], authors studied the eco-

nomics of mobile data offloading and proposed a Stackelberg game model for

multiple BSs and APs. The authors in [11] studied the economic incentive issue

by using an iterative double auction mechanism. In [12], authors proposed an
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economic framework and formulated the interactions between the users and the

BS by using a Stackelberg game model. In [13], a well described price-based

resource allocation for a two tier spectrum sharing femtocell network is consid-

ered. A Stackelberg game was formulated to study the joint utility maximization

of the macrocell and femtocell and a closed form solution for the Stackelberg

Equilibrium of the game is proposed. In [14], a price-based resource allocation

for a hybrid spectrum femtocell network is investigated using Stackelberg game.

In [15], authors studied the economic incentive issue by using the cooperative

game framework, precisely Nash bargaining model. They used a one-to-one bar-

gaining model between the mobile operator and fixed-line operator. In [16], the

authors consider a capacity maximizing power allocation based on a Stackelberg

game, where the MBS is the leader and the FBSs are assumed as followers. The

game is formulated as a mathematical program with equilibrium constraints,

and an iterative algorithm has been presented to reach the Stackelberg equilib-

rium. Most of these works only consider SAPs with wired backhaul which is

cost-prohibitive.

In this paper, we investigate a price-based power allocation in an imperfect

self-backhauled FD SAP using Stackelberg game. We also consider the half

duplex SAP as a benchmark. A Stackelberg game is proposed in which the

SAP plays as the leader and the UEs are the followers. The SAP has limited

power and shares it between the UEs. Moreover, the SAP uses AF protocol

to transmit the information of the UEs. The UEs need to pay based on the

portion of the power they use from the SAP. The higher the power SAP uses

for transmission to each UE, the higher its data rate as well as the higher its

payment to the SAP. Our goal is to jointly maximize the utility of the SAP and

UEs. In the first stage of the game, the FD SAP proposes a set of prices to the

UEs by maximization of its utility subject to an aggregate power constraint.

Then, each UE calculates its optimal downlink transmit power for the given

prices. We consider two pricing schemes: non-uniform pricing or discriminatory

pricing in which the SAP imposes different prices to different UEs, and uniform

pricing or nondiscriminatory pricing in which the same price is imposed to all
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UEs. In the paper, we will use these words interchangeably. In this paper, both

half duplex and full duplex transmission modes are considered for comparison.

To find the Stackelberg equilibrium, backward induction method is used.

The UEs’ sub-game is proved to be a convex optimization problem and a closed

form solution is proposed. The leader’s sub-game is also proved to be a convex

optimization problem. We propose an algorithm to find the best response of

the leader sub-game. At the end, the proof of optimality of the algorithm

is proposed. In addition, in case that the transmitted power of the SAP is

limited, some UEs should resign from the game. We present a condition so

that based on that, UEs can decide weather resign the game or not. Each

UE can check the proposed price with a given threshold, and decide to resign

the game or not. To the best of our knowledge, this is the first work which

investigates the price-based resource allocation in an imperfect self-backhauled

FD SAP using Stackelberg game. Most of works which investigated the pricing

and economics of SAPs and heterogeneous networks assumed that the SAPs use

wired backhaul. The underlying self-backhauld system eliminates the need for a

separate backhaul solution and also separate frequency band (whether licensed

or unlicensed), that can effectively decrease the cost and complexity of rolling

out a small cell network [6].

The rest of the paper is organized as follows. The system model is described

in Section II. We formulate the Stackelberg game problem in Section III. Section

IV presents the Stackelberg equilibrium point of the proposed game under both

pricing schemes and the numerical results are presented in section V. Finally,

section VI concludes the paper.

2. System Model

We consider a two-tier heterogeneous network consisting of one macro BS

and N UEs. We assume there is a SAP within the coverage area of the BS.

As shown in Fig.1, due to the distance between the BS and the UEs, the BS

can route information through SAP to provide better QoS for the UEs. Since
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Figure 1: System Model for the FD SAP

the SAP is a selfish node, it charges the UEs for forwarding their information.

Each UE adjusts its downlink power (i.e., rate) taking into the account the price

charged by SAP. The SAP aims to maximize its revenue under the aggregate

power constraint on the downlink power. In this paper, we focus on the downlink

transmissions but it is worth pointing out that this scenario can be extended to

the uplink direction with slight modifications.

We assume that the SAP uses AF protocol to transmit the information of

BS to UEs. For AF protocol, the SAP amplifies its received information and

forwards it to the UEs. Let γ0 and γi,∀i denote the channel gain from BS to

SAP and from SAP to UE i, respectively. The additive noise is modeled as

white Gaussian with zero mean and unit variance. Each slot is called a frame

and Tf denotes the frame duration. The data link packets are divided into

frames at the physical (PHY) layer. The frame duration is assumed to be less

than the fading coherence time. So we assume channel gains will be fixed for

the duration of each time slot. Both half and full duplex transmission modes

are investigated under AF protocol in the following subsections.

2.1. Half-Duplex Transmission Mode

Under the half duplex transmission mode, the frame time is divided into two

portions. The BS transmits data to the SAP during the first portion and then

the SAP forwards data to the UEs during the second half of the frame. The

achievable rate of the AF protocol under half duplex transmission mode of SAP
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for the UE i is [17, 18]

RHDi =

(
TfWi

2

)
log2

(
1 +

4γ0p0γipi
1 + 2γ0p0 + 2γipi

)
, (1)

where Wi is the bandwidth allocated to each UE. To make the comparison fair,

in half duplex mode, we assume the BS transmits with power 2p0 during the

first half of the frame time and it is silent during the second half so the average

is p0. The SAP is silent in the first half and it forwards data with power 2pi

during the second half of the frame time on a bandwidth of Wi for UE i.

2.2. Full-Duplex Transmission Mode

Under the full duplex transmission mode, the SAP can transmit and receive

simultaneously at the same bandwidth in one frame but since the SAP is an

imperfect FD node, it needs to endure the self-interference due to simultane-

ous transmission and reception of data. It is critical to accurately measure,

and suppress the self-interference in FD communication. The self-interference

cancellation techniques are classified into to categories: passive and active self-

interference suppression methods. Three key passive suppression mechanisms

are directional isolation, absorptive shielding, and cross-polarization. In direc-

tional isolation, directional antennas is used such that the gain of the transmit

antenna is low in the direction of the receive and visa versa. Directional iso-

lation is the simplest passive self-interference cancellation mechanism, and it

consists in loss in interference power due to propagation losses caused by sepa-

rating the transmit and receive antennas at a node [19]. On the other hand, in

absorptive shielding, lossy materials is used to attenuate the self-interference,

and transmit and receive antennas in orthogonal polarization states is employed

for cross-polarization implementation [20].

Active methods include digital and analog cancellation methods. Analog

Cancellation mechanism sends a canceling signal through another radio chain

and adds it to the signal at the receiving antenna. On the other hand, Digital

Cancellation uses the knowledge of the interfering signal to cancel the interfering

signal in baseband [19].
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We consider κ as a coefficient which reflects the ability of SAP in suppressing

its own self interference under full duplex transmission mode. Self-interference

cancellation strategies can depend on the transmit power [17, 21] or can be

independent of the transmit power [22]. We assume the self-interference is inde-

pendent of the transmit power. The value of cancellation coefficient κ depends

on a number of factors, such as system bandwidth, antenna displacement error,

and transmit signal amplitude difference, etc [18]. We have 0 < κ ≤ 1. When κ

is one, it means that the SAP is able to completely cancel its own self interfer-

ence (i.e., perfect full duplex operation). On the other hand, when κ approaches

zero, FD SAP is not able to cancel any self-interference. The achievable rate of

AF protocol under full duplex transmission mode of SAP for the UE i can be

written as [17, 18]

RFDi = (TfWi) log2

(
1 +

κγ0p0γipi
1 + κγ0p0 + γipi

)
. (2)

where the data of UE i is transmitted by the BS with the power p0 on bandwidth

Wi to SAP and the SAP forwards it to UE i with power pi using AF protocol

during the whole frame time. That is why the pre-log coefficient 1
2 is omitted

for Tf but there is self-interference cancellation coefficient which decreases the

achievable rate.

3. Problem Formulation

In this section, at first the price-based power allocation problem is formulated

using Stackelberg game. Then, the definition of Stackelberg equilibrium for the

proposed game is investigated.

3.1. Price-Based Power Allocation Problem

We consider a price-based power allocation scheme where each UE pays for

the power that SAP allocates for it. The design parameters are the power that

SAP allocates to UE i, i.e. pi,∀i and the price, i.e. µi,∀i, the UE pays for

that. Both the UEs and the SAP would like to maximize their utility. To

8



formulate the joint problem of maximizing the utility of the UEs and the SAP,

a Stackelberg game model is employed. A Stackelberg game is a strategic game

where there is a leader and several followers [23]. The followers compete with

each other for a certain commodity. The leader moves first and the followers

move subsequently. In our model, the SAP plays the leader’s role and the UEs

are followers. In the first stage of the game, the SAP imposes a set of prices

for each unit of the power allocated to UE i. In the second stage, based on

the given prices, each UE optimizes its individual utility Ui over pi. At each

frame duration, the two stages of the game should be done by players. So,

the Stackelberg game consists of two sub-games, i.e., leader sub-game and the

followers’ sub-game. At the SAP side, the aggregate transmit power should not

be greater than Pmax as
N∑
i=1

pi ≤ Pmax. (3)

The price that UE i pays for the power pi is a linear function of pi where µi

denotes the price per power unit for simplification. The revenue of the SAP can

be formulated as a function of powers p = {p1, . . . , pN} and their corresponding

prices µ = {µ1, . . . , µN} as

USAP(µ,p) =

N∑
i=1

µipi(µi), (4)

Note that pi is a function of the proposed µi by the SAP in the Stackelberg

game formulation. So the Stackelberg game formulation for full duplex and half

duplex transmission modes are described in the following subsections.

3.1.1. Problem Formulation for Full Duplex Transmission Mode

Under full duplex transmission mode for SAP, the SAP sub-game problem

can be formulated as
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Problem 1: (FD SAP Sub-game):

max
µ�0

USAP (µ,p) (5)

s.t.

N∑
i=1

pi ≤ Pmax. (6)

The SAP aims to maximize its revenue subject to an aggregate power thresh-

old. The UEs pay for the power allocated to them by the SAP. Under the full

duplex transmission mode of the SAP, the utility of UE i can be formulated as

UFDi (pi, µi) = λiR
FD
i − µipi,∀i, (7)

where λi is the utility gain per unit transmission rate for UE i. For each UE i

the optimization problem can be formulated as follows

Problem 2: (UE i Sub-game for FD SAP):

max
pi≥0

UFDi (pi, µi). (8)

Each UE maximizes its utility based on the announced price by SAP by choosing

pi. Problem 1 and Problem 2 together form a Stackelberg game for full duplex

transmission mode.

3.1.2. Problem Formulation for Half Duplex Transmission Mode

For the Stackelberg formulation under half duplex transmission, the leader sub-

game can be written as

Problem 3: (HD SAP Sub-game):

max
µ�0

UHDSAP (µ,p) (9)

s.t.

N∑
i=1

pi ≤ Pmax, (10)
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and the UE i sub-game can be formulated as

Problem 4: (UE i Sub-game for HD SAP):

max
pi≥0

UHDi (pi, µi), (11)

where the individual utility of each UE i under half duplex transmission mode

can be written as follows:

UHDi (pi, µi) = λiR
HD
i − µipi,∀i, (12)

Problem 3 and Problem 4 together form a Stackelberg game for half duplex

transmission mode.

The goal of the games are to find the Stackelberg Equilibrium (SE) points.

The SE of the proposed game is investigated in the following subsection.

3.2. Stackelberg Equilibrium

The Stackelberg game equilibrium is a point where neither the leader nor

the followers have incentive to deviate from their strategy unilaterally. In our

proposed game under full duplex transmission mode, it can be written as follows:

Definition 1: Stackelberg Equilibrium

Let µ∗ and p∗ denote the optimal power prices and optimal powers for

UEs, respectively. Then, the point (µ∗,p∗) is a Stackelberg equilibrium if the

following conditions are satisfied [23]:

USAP (µ∗,p∗) ≥ USAP (µ,p∗), (13)

UFDi (p∗,µ∗) ≥ UFDi (pi,p
∗
−i,µ

∗), ∀pi ≥ 0. (14)

where p∗−i is the optimal power vector for all the UEs except UE i. This

definition can be used for half duplex transmission mode of SAP as well.
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To find the SE point, the sub-game perfect Nash Equilibrium (NE) of the

proposed game should be investigated. We use the well-known backward induc-

tion method to find the SE of the proposed game which is described in [23].

For the proposed Stackelberg games, the backward induction method can be

described as follows: For a given price vector imposed by SAP, the followers’

sub-game is solved first. After substituting the best responses of the followers

sub-game into the leader sub-game the optimal power price vector is obtained

as best response of the SAP.

4. Analysis of the Proposed Stackelberg Game

In this section, using the backward induction method, we aim to find the

SE of the proposed Stackelberg games (i.e., the optimal power allocation for the

followers’ sub-game and the optimal pricing strategy for the leader sub-game).

We consider two different pricing schemes for the SAP, namely non-uniform

and uniform pricing. In the non-uniform pricing scheme, the SAP charges each

UE with different power prices while in uniform pricing scheme, the SAP use

the same price for all the UEs. In the following subsections, these two pricing

schemes are investigated under both full duplex and half duplex transmission

modes.

4.1. Non-Uniform (discriminatory) Power Pricing

In the non-uniform power pricing, the SAP imposes different power prices to

different UEs. For a given price vector in full duplex mode, the optimal power

vector p∗ is given in the following lemma.

Lemma 1. Given the power price µi, Problem 2 has a global optimal solution

as

p∗i (µi) =

(
1

2γi

√
(κa)2 +

4κabiγi
µi

− κa+ 2

2γi

)+

, ∀i, (15)

where a = γ0p0 and bi = λiTfWi/ ln 2.
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Proof: The proof can be found in appendix A. �

By setting p∗i (µi) ≥ 0 in (15), with some manipulations, one can obtain

µi ≤
κabiγi
κa+ 1

, ∀i. (16)

Lemma 1 shows that if the power price is above a threshold given in (16), UE

i is not willing to pay for the power to the SAP. Therefore, the UE leaves the

game if the power price proposed is too high and we have

p∗i (µi) = 0 if µi ≥
κabiγi

(κa+ 1)
,∀i. (17)

Substituting equation (15) into Problem 1, we can get

Problem 5:

max
µ�0

N∑
i=1

(
1

2γi

√
(κa)2µ2

i + 4κabiγiµi −
κa+ 2

2γi
µi

)+

(18)

s.t.

N∑
i=1

(
1

2γi

√
(κa)2 +

4κabiγi
µi

− κa+ 2

2γi

)+

≤ Pmax. (19)

We propose an approach to solve Problem 5 efficiently for large number of

UEs. At first, we assume that Pmax is sufficiently large. Therefore, we remove

the constraint from Problem 5 and also we assume the positivity constraint on

pi,∀i to solve it. We define Problem 6 as

Problem 6:

max
µ�0

N∑
i=1

1

2γi

√
(κa)2µ2

i + 4κabiγiµi −
κa+ 2

2γi
µi. (20)

The objective function of Problem 6 is decomposable. Taking partial deriva-

tive with respect to all µi and set them to zero, one can obtain the optimal

solution of Problem 6 as

µ̃i
∗ = biγi

κa+ 2− 2
√
κa+ 1

κa
√
κa+ 1

, ∀i. (21)

Similarly, the optimal price imposed by SAP, under half duplex transmission

mode, can be written as:

µ̃i
∗ = biγi

a+ 1−
√

2a+ 1

a
√

2a+ 1
, ∀i. (22)
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It is observed from (21) and (22) that µ̃∗i > 0,∀i always holds. As previously

discussed, when the power price is higher than a threshold, i.e., µi ≥ κabiγi
κa+1 , the

UE i leaves the game and we have p∗i (µi) = 0. However, it does not happen

when there is no limit on the aggregate power which is proved in the following

lemma.

Lemma 2. For the optimal solutions of Problem 6, µ̃∗i , no UE leaves the game.

Proof: UE i is not rejected if

µ̃∗i <
κabiγi
κa+ 1

, ∀i. (23)

Substituting (21) in (23), we have

biγi
κa+ 2− 2

√
κa+ 1

κa
√
κa+ 1

<
κabiγi
κa+ 1

, ∀i. (24)

By some simplification, one can obtain

0 < (κa)2 + 3κa+ 3, ∀i. (25)

Since a ≥ 0, it is observed that the inequality (25) always holds for all UEs and

no UE is rejected due to high value of µ̃∗i . �

As a consequence of Lemma 3, we have p∗i (µ̃
∗
i ) > 0,∀i. We use P to denote

P =

N∑
i=1

p∗i (µ̃∗i ) =
√
κa+ 1

N∑
i=1

1

γi
. (26)

So, for any P ≤ Pmax, the optimal solution of Problem 5 is the same as the

optimal solution of Problem 6, i.e., µ̃∗i ,∀i. To solve Problem 5 for P > Pmax,

we use the following approach. We define two functions fi(µi) and gi(µi) as

fi(µi) =
1

2γi

√
(κa)2µ2

i + 4κabiγiµi −
κa+ 2

2γi
µi, ∀i, (27)

gi(µi) =
1

2γi

√
(κa)2 +

4κabiγi
µi

− κa+ 2

2γi
, ∀i. (28)
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To solve Problem 5, a sufficiently small ε > 0 is chosen and I = P−Pmax

ε

steps is needed to reach to the optimal solution. The constraint (19) is an active

constraint, so we can get
N∑
i=1

gi(µi) = Pmax. (29)

It is because gi(µi) is monotone decreasing for all i and for a Pmax < P , we need

to increase the prices in a way that the objective function decreases at least in

order to satisfy (29). Besides, by increasing the prices, the objective decreases

due to the monotone decreasing property of each fi(µi),∀i for µi > µ̃∗i .

In the proposed algorithm, we increase µi in a way that the constraint (29)

is satisfied and the objective function is maximized. The algorithm starts from

the optimal prices of Problem 6 , i.e., µ̃i
∗,∀i. It starts from P and converts it

to Pmax by subtracting ε from P for I times. At step 1 ≤ t ≤ I, for a certain

Pmax, let P ′ = P − tε. To go one step closer to Pmax, the following problem

should be solved

max
µt+1�0

N∑
i=1

fi(µ
t+1
i ) (30)

s.t.

N∑
i=1

gi(µ
t+1
i ) = P ′ − ε. (31)

The proposed algorithm is described in details in Algorithm 1. First, in Step

2, the SAP initializes the prices (i.e., µ
(0)
i = µ̃i

∗,∀i). Then, the SAP satisfies

constraint (31) by changing each µti,∀i unilaterally and then, it checks UEs

condition on prices and if the price is too high for a UE, such UE is rejected.

After removing the rejected UE, the problem will be solved again for other

UEs (Steps 5 to 9). If the UE is not rejected, SAP computes its corresponding

objective function which decreased due to increase in its price in comparison

to µti (Steps 10 and 11). Then the price that decreases the objective function

at least is chosen to change (Step 12). The SAP updates the prices (Steps 13

and 14) and checks the termination condition. The algorithm terminates when

the P ′ is equal to Pmax. When a UE resigns, that UE is omitted from input

parameters of Algorithm and the problem is solved again.
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Algorithm 1: Proposed Algorithm under Non-Uniform Pricing

Input: N , ε, µ̃i
∗,∀i, P and Pmax

Output: The optimal solutions µi
∗,∀i

1 t← 0 , P ′ ← P

2 Initialize µi
(0) = µ̃i

∗,∀i

3 while Pmax ≤ P ′ − ε do

4 for j ← 1 to N do

5 Calculate µ′j
(t+1)

=
4κabjγj(

2γj
(
P ′−ε−

∑N
i=1,i 6=j gi(µ

(t)
i )
)
+κa+2

)2
−(κa)2

6 if µ′j
(t+1)

>
κabjγj
κa+1 then

7 µ∗j ←
κabjγj
κa+1

8 p∗j ← 0

9 Remove UE j and run Alg. 1 by N − 1 UEs.

10 else

11 Calculate fj(µ
′
j
(t+1)

),∀j

12 k = argminj fj(µ
(t)
j )− fj(µ′j

(t+1)
)

13 µ
(t+1)
k ← µ′k

(t+1)

14 µi
(t+1) ← µi

(t),∀i, i 6= k

15 P ′ ← P ′ − ε

16 t← t+ 1

17 µ∗i ← µi
(t),∀i
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Lemma 3. The Algorithm 1 converges to the optimal solution of Problem 5.

Proof: The proof can be found in appendix C. �

Corollary 1. The SE of the proposed Stackelberg for non-uniform power pric-

ing scheme is (µ∗,p∗), where µ∗ can be obtained by Algorithm 1 and p∗ is given

by (15).

4.2. Half Duplex versus Full Duplex transmission mode Under Non-Uniform

Power Pricing

In this section, we compare the full duplex and half duplex transmission

modes for non-uniform pricing. For this goal, since there is a closed-form so-

lution for optimal power prices for Problem 6, the revenue of the SAP under

full duplex and half duplex transmission mode are compared for P ≥ Pmax.

Substituting (21) in objective of (20), the revenue of the SAP under full duplex

transmission mode can be written as

UFDSAP (µ̃∗) =
κa+ 2− 2

√
κa+ 1

κa

N∑
i=1

bi (32)

It can be observed that the revenue of the SAP is independent on channel gains

for P ≥ Pmax because the SAP compensates the effect of channel gains due to

the relaxation of the power constraint.

Similarly, the revenue of the SAP under half duplex transmission mode can

be written as

UHDSAP (µ̃∗) =
a+ 1−

√
2a+ 1

2a

N∑
i=1

bi (33)

Comparing the revenue of the SAP under both full duplex and half duplex trans-

mission mode, we can find a self-interference cancellation coefficient threshold

κth which can be used to determine whether to use full duplex or not. The κth

can be found by setting the revenue of the SAP equal under both half duplex

and full duplex transmission modes, as follows:

UFDSAP (µ̃∗) = UHDSAP (µ̃∗) (34)
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By some manipulations, the self-interference cancellation coefficient threshold

can be written as:

κth =
8(a+ 1−

√
2a+ 1)

(
√

2a+ 1− 1 + a)2
(35)

Considering sufficiently large values of Pmax, for κ ≥ κth, the revenue of the

SAP under full duplex transmission mode is higher than that of half duplex

transmission mode while for κ < κth, the revenue of the SAP under half duplex

transmission mode is higher than that of full duplex transmission mode.

4.3. Uniform (nondiscriminatory) Power Pricing

In uniform power pricing, the SAP imposes the same power price to all

UEs, i.e., µi = µ,∀i. For a given uniform power price µ, under full duplex

transmission mode, the optimal power allocation for UEs can be obtained by

setting µi = µ,∀i in (15) as follows:

p∗i (µ) =

(
1

2γi

√
(κa)2 +

4κabiγi
µ

− κa+ 2

2γi

)+

, ∀i, (36)

Setting the p∗i (µ) ≥ 0,∀i, the following condition should hold in order to no UEs

resigns the game:

µ ≤ κabiγi
κa+ 1

, ∀i. (37)

Based on this, by decreasing the Pmax, let j denotes the first UE that resigns

the game. The first UE that resigns the game can be obtained by

j = argmini=1,2,...,N

κabiγi
κa+ 1

. (38)

Substituting (36) in Problem 2 with µi = µ,∀i, the optimization problem at

SAP side can be written as

Problem 7:

maxµ≥0

N∑
i=1

(
1

2γi

√
(κa)2µ2 + 4κabiγiµ−

κa+ 2

2γi
µ

)+

(39a)

s.t.

N∑
i=1

(
1

2γi

√
(κa)2 +

4κabiγi
µ

− κa+ 2

2γi

)+

≤ Pmax. (39b)
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Algorithm 2: Proposed Algorithm under Uniform Pricing

Input: N , ε, µ̃∗, and Pmax

Output: The optimal solution µ∗

1 t← 0

2 Initialize µ(0) = µ̃∗

3 while Pmax ≤ P ′ do

4 µ(t+1) ← µ(t) + ε

5 j = argmini=1,2,...,N
κabiγi
κa+1

6 if µ(t+1) >
κabjγj
κa+1 then

7 µ∗j ←
κabjγj
κa+1

8 p∗j ← 0

9 Remove UE j and run Alg. 1 by N − 1 UEs.

10 else

11 Calculate P ′ =
∑N
i=1 gi(µ

(t+1))

12 t← t+ 1

13 µ∗ ← µ(t)

The characteristics of this Problem is the same as Problem 5. So this problem

can be solved by the same approach. Assuming that (38) holds, i.e., no UE leaves

the game, Problem 7 is a convex optimization problem. To solve Problem 7

with no constraint, as the objective function of Problem 7 is not decomposable,

finding a closed form expression for unconstrained problem is not trivial. So,

this problem can be solved using gradient descent method or another similar

methods. After solving Problem 7 without power constraint, the optimal price

solution and sum power corresponding to this price are denoted by µ̃∗ and

P =
∑N
i=1 pi(µ̃

∗), respectively.

So, for any P ≤ Pmax, the optimal solution of Problem 7 is the same as the

optimal solution Problem 7 without power constraint, i.e., µ̃∗. To solve Problem

7 for P > Pmax, we proposed an approach as Algorithm 2.

Corollary 2. The SE of the proposed Stackelberg for uniform power pricing
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scheme is (µ∗,p∗), where µ∗ can be obtained by Algorithm 2 and p∗ is given by

(36).

5. Numerical Results

In this section, numerical results are presented to evaluate the performance

of the proposed price-based power allocation algorithm. We assume that there

are three UEs, i.e., N = 3. In our setup, the coverage area of BS is a circle

with 500 m diameter in which the SAP is randomly located, and SAP UEs are

randomly distributed inside the coverage of it. The coverage area of the SAP

is considered as 50 m. Furthermore, for channel gains, we assume γi = Ψid
−β
i

where β = 2 is the path-loss exponent, Ψi is exponential random variable (i.e.,

representing the Rayleigh fading) with mean one, and di is the distance between

UE i to SAP. For the channel gain between BS and SAP similar channel model

is considered. The other parameters are p0 = 10W, Wi = 1 MHz, λi = 1,∀i,

and Tf = 1. We assume ε = 10−3. Figs. 2 and 3 show the revenue of SAP

and the sum-utility of the UEs versus the maximum power constraint at SAP

for different pricing schemes, under full duplex transmission mode. The self-

interference cancellation coefficient is fixed at κ = 0.5. For similar Pmax, in Fig.

2, the revenue of the SAP for non-uniform pricing is greater than that of the

uniform pricing. However, in Fig. 3, the sum-utility of UEs for uniform pricing

is larger than that of the non-uniform pricing because in uniform pricing the

SAP can not impose different prices proper to the channel gains of the UEs.

It is observed that for small values of Pmax, the revenue of the SAP is equal

for both pricing schemes and also this is true for sum-utility of UEs. It is

because for small Pmax, there is just one UE in the game and uniform pricing

and non-uniform pricing results in similar solutions. For sufficiently large values

of Pmax, there is a trade-off in SAP to sell at optimal price. Therefore, due to

the concavity of both the revenue of SAP and sum utility of UEs, both Figs.

converge to a certain value, i.e., increasing the prices does not increase the

objective function anymore.
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Figure 2: Utility of the SAP versus Pmax under uniform and non-uniform pricing schemes.
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Figure 3: Sum-utility of the UEs versus Pmax under uniform and non-uniform pricing schemes.
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Figure 4: Utility of UEs versus Pmax for non-uniform pricing, under full duplex transmission

mode.
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Figure 5: Utility of UEs versus Pmax for uniform pricing, under full duplex transmission

mode.

In Figs. 4 and 5, the utility of UEs are presented for non-uniform and

uniform pricing schemes respectively, under full duplex transmission mode. For

sufficiently large values of Pmax, under non-uniform pricing, it is observed that

for the same Pmax, all the UEs achieve similar utility and the utility of the

UEs are independent of their channel gains from SAP. We notice that other

parameters such as the utility gain and the allocated bandwidth are identical

for all UEs. It is because the SAP can provide the power to each UE as much

as it needs due to lack of constraint on Pmax. In uniform pricing, the UE with

better channel condition gains more utility compared to the non-uniform pricing

while for the UE with poor channel condition, a higher price is proposed and

its utility is less than that of non-uniform pricing. It can be mentioned that

although the sum-utility of the UEs for uniform pricing is larger than that of

uniform pricing, the non-uniform pricing is more fair for UEs. For Pmax < P ,

the utility of the UEs depends on their channel gains and the UE with higher

channel gain achieves higher utility for both pricing schemes.

In Fig. 6, as Pmax increases, under both pricing schemes, the power price

for all UEs decreases. It means that when the supply goes up, the price comes

down as it is expected. Moreover, for sufficiently large values of Pmax, as the

demand is unlimited, the SAP is not able to increase its revenue by increasing

the price.
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Figure 6: Power prices versus Pmax under both uniform and non-uniform pricing schemes.
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Figure 7: Self-interference cancellation coefficient threshold (κth) versus p0γ0.

Also, in non-uniform pricing, the power price for the UE with better channel

gain is higher due to the better QoS that it experiences. It can be observed that

for small values of Pmax, the power price for the both pricing schemes are similar.

It is because for small values of Pmax, there is only one UE in the game and

both of the problems are similar. Moreover, we observe that the UE with the

lowest channel gain is the first one that resigns the game. For uniform pricing,

the SAP increases the price when Pmax decreases and based on (38), the UE

with lowest channel gain resigns the game first. The resigned UE receives no

power and the SAP sets the price as µj =
κabjγj
κa+1 for resigned UE j.

In Fig. 7, the self-interference cancellation coefficient threshold κth de-

creases as γ0p0 increases. Intuitively, when the BS uses higher power for trans-
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Figure 9: Utility of SAP versus κ under both full/half duplex transmission modes.

mission to the SAP, the simultaneous transmission of the SAP, which causes

self-interference, has lower impact on the received signal. Therefore, a lower

self-interference cancellation coefficient threshold is needed to achieve the same

revenue of half duplex transmission mode for SAP.

In Fig 8, the revenue of he SAP for sufficiently large value of Pmax is

presented for both transmission schemes versus p0γ0. It is observed that for

very large values of p0γ0, the revenue of the SAP is independent of the self-

interference cancellation coefficient and the revenue of SAP under full duplex

transmission mode is two times higher than that of the half duplex mode. In-

tuitively, when the BS transmits to the SAP at the highest possible power, the
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SAP does not hear its transmission to UEs.

In Fig. 9, the revenue of the SAP versus the self-interference cancellation

coefficient is presented. It is observed that when κth < κ, the SAP revenue

under full duplex transmission mode is larger than that under the half duplex

mode.

6. Conclusion

In this paper, we introduced a price-based power allocation scheme for UEs

using a self-backhauled SAP. We consider both full duplex and half duplex trans-

mission modes for the SAP.. We formulated the price based resource allocation

in such a system by using Stackelberg game. We considered both non-uniform

and uniform pricing schemes in the game. It is shown that both of followers’ and

leader’s problems are convex optimization. We solved the former and a closed

form solution proposed, while for the latter we proposed a novel algorithm to

find the optimal power prices. At the end, the optimality of the proposed al-

gorithm is proved. The results of this paper are useful to practically design

self-backhauled SAP for the downlink transmissions in heterogeneous networks.

7. Appendices

7.1. Proof of Lemma 1

For concavity of the objective function of Problem 2, the following condition

should hold for pi ≥ 0:
∂2UFDi (pi, µi)

∂p2i
≤ 0,∀i (40)

Calculating the second derivative of the objective function of Problem 2 and

combining with the condition in (40) with some manipulations, one can obtain:

(1 + γipi)
2 ≤ (1 + κa+ γipi)

2,∀i (41)

It is obvious that the inequality (41) always holds for pi ≥ 0, so the objective

function of Problem 2 is concave. Since the constraint pi ≥ 0 is affine, Problem
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2 is a convex optimization problem. This guarantees the existence of the global

optimal solution [24]. To find the optimal solution, we take the first order

derivative of UFDi (pi, µi) with respect to pi. Setting this derivative equal to

zero, we obtain

γ2i p
2
i + (2 + κa)γipi + 1 + κa− κabiγi

µi
= 0, ∀i. (42)

Equation (42) is a quadratic equation respect to pi and the optimal solutions

are the roots of this quadratic equation. The solutions for pi can be written as

p∗i (µi) = ± 1

2γi

√
(κa)2 +

4κabiγi
µi

− κa+ 2

2γi
, ∀i. (43)

One solution for p∗i is always negative. Therefore, it is rejected due to pi ≥ 0

constraint. So, the optimal solution of Problem 2 can be written as equation

(15). �

7.2. Proof of Lemma 5

The algorithm will be converged to a solution after I steps. We need to prove

that this solution is the optimal solution. It is enough to prove the convergence

of the algorithm to the optimal point for only one step. The proof for all steps

is identical. At the step 1 ≤ t ≤ I for a special Pmax, let P ′ = P − tε.

At step t+ 1, we only change each of µti,∀i unilaterally to satisfy constraint

(31). Using the first order Taylor approximation for sufficiently small ε, which

leads to a small εi,∀i, i.e., g(µti + εi) ≈ g(µti) + εig
′(µti), we can get

ε1g
′
1(µt1) = ε2g

′
2(µt2) = ... = εNg

′
N (µtN ) = −ε. (44)

Now, we change all µti,∀i to satisfy constraint (30) as follows

g1(µt1 + δ1) + g2(µt2 + δ2) + ...+ gN (µtN + δN ) = P ′ − ε. (45)

Then, combining (44) and (45) and using first order Taylor approximation, we

can get

δ1g
′
1(µt1) + δ2g

′
2(µt2) + ...+ δNg

′
N (µtN ) = ε1g

′
1(µt1). (46)
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Considering the monotone decreasing property of gi(µi),∀i, we can get εi >

δi,∀i. By some manipulation and using first order Taylor approximation for

sufficiently small ε which leads to a small εi,∀i, i.e., f(µti+εi) ≈ f(µti)+εif
′(µti),

the objective function changes for each µti unilaterally can be written as

∆fi(µ
t
i) = −εif ′i(µti), ∀i. (47)

Note that gi(µi),∀i is a monotone decreasing function (i.e., g′i(µi) < 0,∀i).

Moreover, f ′i(µi) ≤ 0,∀i for µi ≥ µ̃∗i which µti,∀i satisfies µti ≥ µ̃∗i due to mono-

tone decreasing property of gi(µi),∀i. Without loss of generality, we assume

that ∆f1(µt1) ≤ mini=2,...,N ∆fi(µ
t
i). Combining it with (44) and (47), we can

get
f ′1(µt1)

g′1(µt1)
≤ min
i=2,...,N

f ′i(µ
t
i)

g′i(µ
t
i)
. (48)

The corresponding change in objective function for changing all prices to

satisfy (30) can be written as

∆f(µt) =

N∑
i=1

−δif ′i(µti). (49)

Our aim is to prove

∆f1(µt1) ≤ ∆f(µt). (50)

Combining (46), (47), (49), and (50), using the fact that εi > δi,∀i, we can

get

f ′1(µt1)

g′1(µt1)
≤
∑N
i=2−δif ′i(µti)∑N
i=2−δig′i(µti)

. (51)

Finally we need to prove (51). Without loss of generality, we sort all
−δif ′

i(µ
t
i)

−δig′i(µt
i)
, i =

2, ..., N in an ascending order as

−δ2f ′2(µt2)

−δ2g′2(µt2)
≤ −δ3f

′
3(µt3)

−δ3g′3(µt3)
≤ ... ≤ −δNf

′
N (µtN )

−δNg′N (µtN )
. (52)

We know the inequality a
b ≤

a+c
b+d ≤

c
d for a, b, c, d > 0. Using this inequality

for N − 1 times for the inequalities in (52) and using (48) we can get

f ′1(µt1)

g′1(µt1)
≤ f ′2(µt2)

g′2(µt2)
≤
∑N
i=2−δif ′i(µti)∑N
i=2−δig′i(µti)

. (53)
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So the change in f1(µt1) unilaterally is optimal solution and the optimal

solution for step t + 1 can be written as µt+1
i = µti,∀i = 2, ..., N and µt+1

1 =

µt1 + ε1. �
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