
ar
X

iv
:1

81
0.

08
93

8v
1

 [
cs

.N
I]

 2
1

O
ct

 2
01

8

Routing-Aware Partitioning of the Internet Address
Space for Server Ranking in CDNs

(A more recent version of this manuscript is published in Elsevier Computer Communications, vol. 106, July 2017)

Gonca Gürsun

DEPARTMENT OF COMPUTER SCIENCE, OZYEGIN UNIVERSITY

ABSTRACT

The goal of Content Delivery Networks (CDNs) is to

serve content to end-users with high performance. In or-

der to do that, a CDN measures the latency on the paths

from its servers to users and then selects a best avail-

able server for each user. For large CDNs, monitoring

paths from thousands of servers to millions of users is

a challenging task due to its size. In this paper, we ad-

dress this problem and propose a framework to scale the

task of path monitoring. Simply stated, the goal of our

framework is clustering IP addresses (clients) such that

in each cluster the choice of best available server is same

(or similar). Then, finding a best available server for one

client in a given cluster will be sufficient to assign that

server to the rest of the clients in the cluster.

To achieve this goal, first we introduce two distance

metrics to compute how similar the server choices of any

given two clients. Second, we use a clustering method

that is based on interdomain routing information. We

evaluate the goodness of our clusters by using the met-

rics we introduce. We show that there is a strong cor-

relation between the similarity in how two destination

clients are routed to in the Internet and the similarity in

their server selections. Finally, we show how to choose

representative clients from each cluster so that it is suffi-

cient to learn the latencies from the CDN servers to the

representative and find a best available server accord-

ingly for the rest of the clients in the same cluster.

1. INTRODUCTION

A Content Delivery Network (CDN) is a collection

of servers that deliver content to end-users on behalf

of content owners. Today, significant amount of Inter-

net traffic is served by CDNs. For example, one of the

largest CDNs, Akamai, currently delivers 15-30% of all

web traffic from a large distributed platform. This plat-

form consists of over 160,000 servers in more than 100

countries and 1200 ISPs around the globe [32].

The main job of a CDN is replicating content across

its geographically distributed server regions and redirect

end-users to a best available server region at a given

time. The goal is serving end-users with high perfor-

mance [7], that is each user is redirected to a region

to which it has low latency. One can expect that map-

ping an end-user to its geographically closest server re-

gion is sufficient. However, there are many cases where

geographical closeness does not infer low latency [21].

Instead, the conditions in the network determine which

server regions are best performing at a given time. The

challenge is, since the network is dynamic, the condi-

tions on its paths are to change frequently. Therefore,

the CDN needs a monitoring solution that can keep pace

with the variability of the Internet paths.

In large CDNs, such as Akamai, monitoring paths be-

tween all the server regions and end-users is challeng-

ing due to the scale of the task. At a given day Aka-

mai sees more than 788 million unique IPv4 addresses

[24]. It is not feasible to measure latencies from hun-

dreds of thousands of servers to all these IPs. In the

practice of traditional DNS-based mapping, end-users

are represented by their local DNS resolvers and the

path measurements are taken between the servers and

the local DNS resolvers [23]. Although, this reduces the

size of the task up to some extent, there is still need for

clustering local DNS resolvers since there are millions

of them in the Internet. Recently, with the increase in

usage of public DNS resolvers [8, 9] and the adoption

of EDNS [31], CDNs move towards end-user mapping

[4]. In the case of end-user mapping, the users are not

represented by their local DNS any more. That is, the

need for partitioning the Internet address space to scale

the path monitoring task is more crucial than ever. In

this paper, we present a method that reduces the size of

the path monitoring and server ranking tasks both in the

case of DNS-based and end-user based mapping.

Our study has the following three stages.

1. Clustering clients. We seek to find a partitioning

of the IP address space such that the clients in a given

partition1 orders the server regions from least latency to

most in similar fashion. The reason why we are not only

1Throughout this paper, we use the terms clustering and par-
titioning interchangebly.

http://arxiv.org/abs/1810.08938v1

interested in finding the least latency region but also in

ordering the regions is as follows.

In addition to high performance, best available server

region is subject to some other constraints such as load

balancing at the CDN, availability of the requested con-

tent at the server, allowance rules (enforced by ISPs and

content publishers) on serving specific contents to users

from specific regions etc. Therefore, for a given client, a

best available server region is the one with the lowest la-

tency that also satisfies the constraints. For that reason,

the clients rank the server regions from least latency to

most and then these rankings are used as input to the

server mapping algorithm.

The clustering scheme we propose for our problem

is called RS-CLUSTERING and it is introduced in [19].

RS-CLUSTERING is a method that groups BGP prefixes

based on how similar the ASes in the Internet route to

these prefixes. The key idea behind using this clustering

scheme for our problem stems from the fact that routing

is one main factor that impacts path latencies. There-

fore, our hypothesis is that if traffic from the server re-

gions to two client prefixes follow the same paths, then

these clients rank the server regions similarly. We show

that this intuition holds. Routing-aware clustering suc-

cessfully partitions the address space and outperforms

other clustering methods, such as the ones based on AS

or geography.

2. Evaluating the Goodness of Clusters. Once the

clusters are obtained, the next step is evaluating their

goodness. In a good cluster, we expect that the server

rankings of clients to be similar to each other. Such sim-

ilarity can be defined in various ways. For instance, one

can expect that in a good cluster, all clients have the ex-

act same server region as their first (rank-1) choice. Or

alternatively, one can expect that each server region is

ranked in close positions by all clients in the cluster.

To capture these expectations we propose two met-

rics, called GEOMETRIC DISTANCE (g-dist) and PAR-

TIAL SPEARMAN FOOTRULE DISTANCE (ps-dist) We

use g-dist and ps-dist to measure the similarity between

two server rankings. Using these metrics we show how

to evaluate any given clustering scheme.

3. Finding representative clients for each cluster. Fi-

nally, we seek to find a client from each partition whose

server ranking is a good representative of all the other

clients in its partition. We scale the task of path mon-

itoring by taking measurements only to the representa-

tive of each cluster. We first find a consensus ranking

per cluster by aggregating the rankings of all clients in

the cluster. Then, we show that assigning one client at

random from the center of the cluster is almost as good

as the consensus ranking.

Roadmap. The rest of the paper is organized as fol-

Figure 1: Simplified view of Akamai CDN architecture

with four Akamai server regions, {T1,T2,T3,T4}, and

six clients {X1,X2,X3,X4,X5,X6}. Dotted lines show the

paths that are monitored for client X6.

(a) (b)

Figure 2: Latencies between the server regions and the

clients (a) and the corresponding rank vectors (b) for the

example in Figure 1.

lows. In Section 2 we describe the server mapping sys-

tem of Akamai. In Section 3, we introduce the metrics

we use to evaluate the goodness of clusters and follow

by describing our dataset in Section 4. In Section 5, we

set basis for the routing-aware clustering by investigat-

ing whether IP addresses can be pre-clustered to their

BGP prefixes. In Section 6 we show how to group BGP

prefixes further based on inter domain routing choices

in the Internet. In Section 7 we show how to find rep-

resentative nodes per cluster to scale the path monitor-

ing task. We present related works in Section 8, discuss

some issues related to our work in Section 9, and finally

conclude in Section 10.

2. BACKGROUND

In this section, we first provide a high-level descrip-

tion of the server mapping system in Akamai’s CDN.

Next, we present the challenges in the system and the

goals of our work.

2.1 Ranking Server Regions

The core component of Akamai’s CDN is the map-

ping system. One main job of the mapping system is

finding a best available server region for each client. In

order to do that, first, the mapping system monitors the

network conditions in the Internet to learn the latencies

on the paths from the server regions to the clients. Next,

2

using these measurements, it generates a list per client

by ranking the server regions from best performing to

worst. Finally, these candidate lists are used as input to

the server region assignment algorithm that matches one

server region with each client.

Note that in practice server region assignment algo-

rithm has various other inputs and constraints in addi-

tion to latency. For instance, delivery cost of traffic (that

varies based on ISPs and the content), availability of the

content in the servers, capacity of the servers, the al-

lowance rules enforced by ISPs, the type of the content

application are some of the constraints that effect the

choice of a best available server for a given client. That

is, a best available server for a client is not necessarily

the least latency one. In fact, this is exactly the moti-

vation behind ranking the servers instead of just finding

the best performing server, i.e. the best performing one

might not be the best available match in terms of the ad-

ditional constraints. In practice, these constraints are ap-

plied after the ranking is performed. Their use and how

the server matching is performed based on these con-

straints are not in the scope of this paper. Instead, we

study the methods that lists the server rank lists based

on path performance in a scalable fashion.

Figure 1 shows a simple example with six clients and

four Akamai server regions. Both Akamai server re-

gions and the clients are spread across the globe. For

each client, the paths from server regions to the client

are monitored as shown for client X6 in the example. Let

{34,40,80,65} be the latencies in milliseconds from the

set of server regions {T1,T2,T3,T4} to X6, respectively.

Then the ranking list of X6 is x6 = {1,2,4,3}.

At the high-level, there are two main challenges in

this context. First, due to the dynamic nature of the In-

ternet, the mapping system works in real-time. There-

fore rank lists need to be regenerated a few times in a

minute. This requires constantly measuring path per-

formance. Second, the scale of the problem is too large.

There are millions of end-users and taking measurements

from thousands of server regions to each of them is not

feasible. Note that in the case of DNS-based mapping,

end-users are represented by their DNS resolvers, i.e.

measurements are taken between the server regions and

the DNS resolvers to estimate the path performance to

end-users behind each DNS resolver. Even in that case,

the scale of the problem is too large since there are mil-

lions of DNS resolvers 2.

To overcome these challenges and make the monitor-

ing scalable, the mapping system aims to cluster clients

2Note that methods described in this paper are applicable to
not only end-users but also DNS resolvers. Therefore, in the
rest of the paper we will use the term client to refer to either
DNS resolver (in the case of DNS-based mapping) or end-user
(in the case of end-user mapping)

into groups and select one representative client per group

such that measurements are taken for only the represen-

tative client. Then, all clients in the group are assigned

to a server based on the ranking of the representative

client.

2.2 Goals and Challenges

Our first goal in this work is finding a partitioning of

the Internet address space so that, in each partition, the

server region rankings of the clients are similar to each

other. We expect a good partitioning to be stable, i.e.

the clients do not migrate from one partition to the other

one frequently over time. There are various ways of par-

titioning the address space, e.g. by mapping clients to

their geography or autonomous systems. Although these

mappings might work up to some extent, our intent is a

partitioning that is driven by the network dynamics in

order to capture the changes on the paths. For that rea-

son, we propose using a clustering method that is based

on the routing state in the Internet.

Our second goal is developing metrics to evaluate the

goodness of a given partition. That is, given a pair of

clients, our intent is quantifying their similarity in terms

of ranking server regions. There are well-known metrics

such as Kendall tau and Spearman footrule that com-

putes the correlation between two rank vectors [6]. The

assumption behind these correlation metrics is that the

rank vectors are fully known, i.e. each region is assigned

a rank position by each and every client. However, in

practice, even for a single client, taking measurements

from all the server regions to the client is not scalable.

Therefore, the mapping system samples from the set of

server regions for each client and take measurements

only from this sampled subset. Such sampling is nec-

essary in order not to overwhelm the clients with large

number of requests. This results in learning the per-

formance of the paths from only a subset of server re-

gions per client. The subset vary for each client. For

instance, in Figure 1, assume that measurements from

only 3 server regions are available for some clients. Then,

the known latencies and the corresponding rankings are

as shown in Figure 2 (a) and (b), respectively. The empty

entries in the tables are due to the unknown latencies.

The missing values in the rank vectors make the well-

known rank correlation metrics unsuitable. To overcome

this challenge, in the next section, we propose metrics

that measure similarity between server rankings in the

case of unknown measurements.

Note that the actual server assignment algorithms is

not in the scope of this paper. Instead, we study the

server ranking problem which is an input to the server

assignment algorithm. To that end, our goals are 1) find-

ing a method that clusters IP addresses based on similar-

ity in path performance they receive from server regions,

3

2) developing the metrics that evaluate the success of

clustering, and 3) developing methods to select repre-

sentative clients to scale the server ranking problem.

3. EVALUATION METRICS

Before we introduce our clustering method, we first

propose two metrics to measure the similarity between

two clients based on how they rank server regions. In

the following sections, we use these metrics to evaluate

how good (compact) clusters are.

A successful partitioning generates clusters where the

server rankings of clients within a given cluster are simi-

lar to each other. We propose two similarity definitions:

1) we expect that in a good cluster, server regions are

ranked in close positions. In other words, two rankings

that are close to each other in l1 norm should be grouped

together. 2) top few rank positions are more important

than the others since they have higher probability to be

matched with the client. Therefore we expect that in

a good cluster, all users have same server regions for

their top few rank positions. That is, each rank position

has a weight that is proportional to its order in the rank-

ing. Note that this is a much more strict constraint than

the previous definition and more sensitive to the missing

measurements.

To capture each of these similarity definitions we pro-

pose two metrics, called PARTIAL SPEARMAN FOOTRULE

DISTANCE (ps-dist) and GEOMETRIC DISTANCE (g-dist).

Let x1 be a real-valued rank vector of length m for

client X1, where m is the total number of server regions.

We define a ranking (or ordering) of its elements σ1 such

that σ1(i) is the rank position of element i in the sorted

x1. That is σ1 is a permutation of numbers from 1 to m.

We say that in x1, i is preferred over j if σ1(i)< σ1(j).
Given two vectors x1 and x2 of same length, below

we define two distance metrics between their ranking

vectors σ1 and σ2, respectively.

3.1 Partial Spearman’s Footrule Distance

One well-known distance metric for rankings is Spear-

man’s footrule. It is the l1 distance between two vectors

σ1 and σ2 s.t. ρ = ∑m
i=1 |σ1(i)−σ2(i)| [6]. By defini-

tion, Spearman’s foot rule distance is maximum when

the ordering in σ1 is the reverse of the ordering in σ2.

Note that Spearman’s footrule requires the complete

information on the rankings, i.e. for each entry i of x1

the ranking of i must be known (likewise for x2). In

cases where x1 and x2 are only partially known, Spear-

man’s foot rule can be modified as follows [12].

Let τ1 be the ranking of elements in x1 such that τ1(i)
is the rank position of element i only if x1(i) is known.

Let k be the number of known elements in x1. Then for

any unknown element j, one can set its rank to l, where

l > k. Likewise τ2 is defined for x2.

The intuition is that the servers whose latency are un-

known are still considered (equally) but not preferred

over the servers whose latency are known. This modi-

fied version of Spearman Footrule Distance have some

nice properties (e.g. being a metric) as discussed in [12].

Then, the Partial Spearman’s footrule distance between

x1 and x2 is PS− dist(x1,x2) = ∑m
i=1 |τ1(i)− τ2(i)|.

In this work, we set all the unknown ranks to l = k+
1. Then, we normalize PS− dist by k× (k+ 1) so that

it is always between 0 and 1. We call the normalized

distance as ps-dist.

For the example in Figure 2, k = 3. Therefore any un-

known rank value is assigned 4. Then, ps-dist(x2,x4) =
8
12

and ps-dist(x2,x3) =
6
12

.

Note that ps-dist computes the distance between two

rankings without assigning weights to the rank positions.

However, in some applications the higher rank positions

matter more than the lower ones. Below we define an-

other distance metric that assigns weights to the rank

positions such that the distance between x1 and x2 is

smaller when the elements in the higher rank positions

are the same.

3.2 Geometric Distance

We define geometric distance (g-dist) between x1 and

x2 as follows:

g-dist(x1,x2) = 1−
m

∑
i=1

I(i)
1

2i
(1)

where I is an indicator function s.t. I(i) = 1 if x1 and

x2 both prefer the same element for the ith position, oth-

erwise it is 0.

Note that g-dist(x1,x2) → 1 as m → ∞ and it drops

proportionally to the importance of the rank position.

For instance if the highest ranked element (i.e. rank-1)

of x1 and x2 are the same then their distance is guaran-

teed to be less than or equal 0.5. Likewise, if both their

rank-1 and rank-2 elements are the same then their dis-

tance is guaranteed to be less than or equal to 0.25. For

the example in Figure 2, g-dist(x2,x4) = 1,

and g-dist(x1,x2) =
1
2
.

One very important point to note is that we use neither

ps-dist nor g-dist to cluster the clients. We only use them

to evaluate the goodness of an already formed cluster.

Although, our purpose is grouping clients whose server

rankings are similar, the reason we do not cluster based

on ps-dist and g-dist is as follows.

As we introduce in Section 2.1, the mapping system

works at real time. That is, the paths need to be moni-

tored a few times in a minute. However, the task of clus-

tering itself should be run much less frequently. There-

fore, the clusters should be stable over time. That is,

the clients should not migrate from one cluster to the

4

other one frequently, at least until the next run of clus-

ter generation. For that reason, the clusters should be

formed based on a more stable metric than latency. We

know that latency is prone to fluctuations due to many

factors, such as queueing time, server response time etc.

Moreover, in order to cluster based on ps-dist and g-dist

we still need to know the latency between server regions

and the clients which is the challenge that we tackle to

solve in the first place. Therefore, we propose a cluster-

ing method that is based on inter domain routing which

is more prone to frequent to fluctuations compared to

latency on the paths.

Finally, in addition to ps-dist and g-dist , one can de-

fine a metric that considers the degree of the latencies

instead of their orders. That is, one can categorize la-

tency values as (really low, low, ok, high, really high) by

defining a lower and upper boundary latency values for

each category and then measure the similarity between

categorical vectors. For brevity, in this paper, we only

note that such similarity metric yields similar results to

ps-dist and g-dist. We refer the reader to [18] for details.

4. DATASETS

In this study, we use traceroute measurements and

BGP announcements that are collected in the Akamai’s

CDN. We collected each of them on two separate days,

July 2, 2014 (Day-1) and January 24, 2016 (Day-2).

1. Traceroute Measurements. We collected tracer-

oute measurements from Akamai server regions to local

DNS clients. For Day-1, the measurements are taken

from 2211 server regions to 20110 clients. For Day-2,

the measurements are taken from 2073 server regions

to 23004 clients. The Akamai server regions are spread

across the globe. The DNS clients are located in six Eu-

ropean countries (France, Germany, Spain, Italy, Switzer-

land, Belgium) and they belong to various ISPs.

In practice, there are limitations on the number of

times a DNS client can be tracerouted at a given time

period. Such limitations are set by the ISPs in order not

to keep DNS clients busy. Therefore, each DNS client is

tracerouted from a subset of the Akamai server regions.

The number of server regions (known vector entries) per

DNS client is 20 at minimum. Therefore we set k = 20

for ps-dist.

Each measurement from a server region to a DNS

client consists of three consecutive ICMP packets and

among these three, we use the one with the minimum

latency. Using these latency values we generate a rank

vector for each DNS client.

2. BGP Announcements. We use a collection of BGP

tables collected from Akamai routers. For Day-1, the

tables are collected from 233 peer routers and consist of

over 1.7M BGP paths to over 37K prefixes located in the

six European countries (France, Germany, Spain, Italy,

Switzerland, Belgium). Using this dataset, we map our

DNS client IPs to their longest matching BGP prefixes.

20110 DNS servers in Day-1 map to 5491 unique pre-

fixes.

For Day-2, the tables are collected from 297 peer

routers and consist of over 790K BGP paths to over

48K prefixes located in our six European countries. Us-

ing this dataset, we map our DNS client IPs to their

longest matching BGP prefixes. 23004 DNS clients map

to 3272 unique prefixes.

5. BGP PREFIXES AS PRE-CLUSTERS

One can group clients by their longest matching net-

work prefixes as advertised by the BGP system. Such

grouping is atomic in terms of routing because BGP

dictates that all clients matching a destination prefix are

routed the same way at the inter-domain level.

Our intent is pre-grouping the clients by their prefixes
3 and using these prefixes as data points for clustering

instead of using individual client IPs. Our aim is provid-

ing a faster and more efficient partitioning by reducing

the number of data points to be clustered.

To that end, we ask whether pre-grouping clients by

their prefixes yields good partitioning. That is, we test

whether two clients from the same prefix are close to

each other in terms of their server rankings. In order

to do this, we first define optimal partitioning to set the

benchmark for testing goodness of prefix clustering.

Optimal Partitioning. Let X be the set of clients and

Pr = {Pr
1,P

r
2, . . . ,P

r
n} be a partitioning on X such

that every Xi ∈ X belongs to one partition Pr
l . Let x1

and x2 be the ranking vectors of Xi and X j, respectively.

If two clients, Xi and X j, prefer the same servers in the

same order as their top-r choices then they belong to the

same partition, i.e. Xi ∈ Pr
l and X j ∈ Pr

l .

For instance, in the example in Figure 2, for P2, X5

and X6 are in the same partition since they prefer T1, T2

in the same order as their top-2, whereas none of the

other clients will be partitioned together as they all have

different top-2 orderings.

The reason we call such partitioning r-optimal is that

it does not allow two clients to be in the same partition

if they don’t agree on the same servers in the exact same

order for their top-r choices. Therefore it sets the tight-

est constraints and guarantees the most compact clusters

for the particular choice of r.

Also notice that, by definition, optimal partitioning

groups clients based on their g-dist. For instance, in a

1-optimal partition, g-dist between any pair of client is

not greater than 0.5. Similarly, in a r-optimal partition

3Throughout this paper, we will refer longest matching BGP
prefix as prefix.

5

0

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

subnet size (/value)

ps
−

di
st

0

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

subnet size (/value)

g−
di

st

0

50

100

150

200

250

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

subnet size (/value)

la
te

nc
y

di
ffe

re
nc

e
(m

s)

0

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

subnet size (/value)

ps
−

di
st

0

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

subnet size (/value)

g−
di

st

0

10

20

30

40

50

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

subnet size (/value)

la
te

nc
y

di
ffe

re
nc

e
(m

s)

(a) (b) (c)

Figure 3: ps-dist (a), g-dist (b), latency difference (c) vs. BGP prefix length. In each box, the red line is the median,

the upper and the lower end of the box are the first and third quantiles, respectively. The upper and lower ends of the

whiskers are the maximum and minimum values in the data, respectively. The individual red points are outliers. The

top row shows the results from Day-1 and the bottom row shows the results from Day-2.

0 5 10 15 20
0

5000

10000

15000

r

pa

rt
iti

on
s

Day−1
Day−2

Figure 4: The number of optimal partitions for a range

of r values.

for a slightly large value of r, g-dist between any pair of

client is close to 0.

We apply optimal-partitioning on the set of 20110

(Day-1) and 23004 (Day-2) rank vectors that we de-

scribed in Section 4. Figure 4 shows the number of par-

titions for r values from 1 to 20. The number of par-

titions increases as r increases. This is expected since

for large values of r, there exists larger number of com-

binations for top-r rankings. For r values of 1,2,3, the

number of partitions are around 200, 2000, 5400 respec-

tively. For r values greater than 6, the number of parti-

tions converges to a number slightly greater than 10000

(Day-1) and 14000 (Day-2). That is, on average, there

exists only one or two clients under the same partition

for r values greater than 6.

Next, for each partition Pr
l , let tr

l be the number of

clients in the partition and µ r
l be the mean of all pairwise

ps-dist values within the partition as written below:

µ r
l =

∑Xi,X j :Xi ,X j∈Pr
l

ps-dist(xi,x j)

tr
l ∗ (t

r
l − 1)

(2)

Then Mr = {µ r
1,µ

r
2, . . . ,µ

r
n} is the distribution of mean

of pairwise distances for the partitioning Pr.

Comparing BGP prefix clusters with optimal parti-

tioning. One variable in BGP prefixes is the length, i.e.

the number bits in the subnet mask. The longer a prefix,

the less clients it has and the more likely that the clients

are close to each other in the network.

In order to understand the role of the prefix length,

first we cluster clients by their longest matching prefixes

as found in the BGP dataset we described in Section 4.

Note that each client is matched with only one prefix.

Second, we compute the pairwise g-dist and ps-dist be-

tween each and every pair of clients that are from the

same prefix. Then we compute the average of pairwise

distances within each prefix. Third, we group these av-

erages by the length of their prefixes. In our dataset, the

length of BGP prefixes vary from /10 to /26 in Day-1

and /10 to /27 in Day-2.

Figure 3 shows the statistics of each prefix length group

as a separate box. The top row shows the results from

Day-1 and the bottom row shows the results from Day-

6

2. In Figure 3 (a) we see that there are client pairs from

small prefixes (e.g. /19- /26) that are close to 1-optimal.

However, in large prefixes (e.g. /10, /11) the clients are

far away from each other. In Figure 3 (b), we see the

same trend, i.e. as the lengths of the prefixes increase,

the distances within the prefix group decrease. This sug-

gests that smaller subnets generate more compact clus-

ters.

Next we investigate how large the latency can get for a

client due to clustering. We compute the worst possible

latency difference for each client in a given prefix as

follows. For each client Xi in a given prefix, we find the

largest latency server with respect to Xi, say Tj s.t. Tj is

the top-1 for some other client in the same prefix. Then,

we compute how much the latency to Xi increases if Tj

is assigned to Xi instead of its top-1 server. Figure 3

(c) shows the average of such latency differences per

prefix grouped by prefix length. The figure shows that

the latency difference drops significantly as the prefix

length grows and the difference is around 0 for small

prefixes.

Next, we test grouping the clients by prefix against

the optimal partitioning with a range of r values. We

compute the average pairwise ps-dist within each prefix

(as described above). Then we divide the set of these

average values into four groups by the length of their

prefixes, /10-/15, /15-/18, /18-/24, /24-/26. We com-

pare the distribution of values in each group with Mr for

r = 1 . . .5 in Figure 5 and Figure 6 for Day-1 and Day-

2, respectively. We see that the distributions of the pre-

fixes from the /15-/18, /18-/24, and /24-/26 groups are

very close the 2-optimal, 3-optimal, and 4-optimal, re-

spectively. To quantify the results, we run Kolmogorov-

Smirnov tests to check the similarity of distributions from

prefixes and their corresponding optimal partitions. The

/18-/24 and /24-/26 groups passed the test at the 1% sig-

nificance level. In addition, we note that 20110 clients in

Day-1 map to 5491 prefixes and 23004 clients in Day-

2 map to 3272 prefixes. That is, the mapping to BGP

prefixes reduce the set of clients almost as much as 3-

optimal partitioning and better.

Finally, we compare the pairwise ps-dist and g-dist

between clients that are from the same prefixes with the

ones from different prefixes. We randomly sample 1000

client pairs that are from the same prefix and 1000 client

pairs that are from different prefixes. Figure 7 shows the

distribution of their pairwise distances. We see that for

both metrics, the distance values between clients from

the same prefixes are much lower compared to the the

distance values between clients from different prefixes.

We conclude that grouping clients by their longest

matching BGP prefixes generates successful clusters. More-

over, the similarity of server ranking within prefixes (es-

pecially the small ones) are close to the optimal. For

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ps−dist

C
D

F

opt−1
opt−2
opt−3
opt−4
opt−5
/10−15
/15−18
/18−24
/24−26

Figure 5: Day-1: Distributions of optimal partitioning

for r values from 1 to 5 and avg. pairwise ps-dist within

each prefix-length group.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ps−dist

C
D

F

opt−1
opt−2
opt−3
opt−4
opt−5
/10−15
/15−18
/18−24
/24−27

Figure 6: Day-2: Distributions of optimal partitioning

for r values from 1 to 5 and avg. pairwise ps-dist within

each prefix-length group.

that reason, one can use prefixes as data units for further

clustering. We suggest dividing prefixes of small subnet

lengths (e.g. /10- /12) into smaller subnets (e.g. /24s) in

practice.

6. ROUTING-AWARE CLUSTERING

One factor that has large impact on the latency be-

tween two ends is the routing path between them. In this

section, we apply a routing-aware clustering on the set

of prefixes and study these clusters for the server rank-

ing problem.

6.1 Correlation Between Routing State and
Server Ranking

Our hypothesis is that if the routing paths to two des-

tination prefixes, p1 and p2 are similar from a set of

server regions, then p1 and p2 experience similar laten-

cies from these server regions and therefore rank them

similarly. To test this hypothesis, first we revisit the no-

tion of routing similarity as introduced in [19].

Let A be the set of all ASes in the Internet s.t. A =
{a1,a2, . . . ,at} and p1 and p2 are announced by a1 and

a2, respectively. We assume that for any ai there is a

7

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ps−dist

C
D

F

\10
\12
\18
\24
\26
rnd

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

g−dist

C
D

F

\10
\12
\18
\24
\26
rnd

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ps−dist

C
D

F

\10
\12
\18
\24
\26
rnd

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

g−dist

C
D

F

\10
\12
\18
\24
\26
rnd

(a) Day-1 (b) Day-2

Figure 7: Distribution of pairwise distance values between 1000 pairs of clients that are from the same BGP prefix and

1000 pairs of clients that are from randomly selected, different BGP prefixes.

unique4 a j which is the next hop AS on the path to p1.

That is, nexthop(ai, p1) = a j, and nexthop(a1, p1) = a1.

Then, the routing state of p1 is the collection of next hop

choices to p1 as described below:

routestate(p1) =

〈nexthop(a1, p1),nexthop(a2, p1), ...,nexthop(at , p1)〉

Given routestate(p1) and routestate(p2), we measure

the routing similarity between p1 and p2 by the number

of ASes that prefer the same next hops to p1 and p2 as

defined below:

rsim(p1, p2) = #{ai |nexthop(ai, p1) = nexthop(ai, p2)}

Similarly, the routing dissimilarity between p1 and p2

is called Routing State Distance (rsd) and it is defined

below:

rsd(p1, p2) = #{ai |nexthop(ai, p1) 6= nexthop(ai, p2)}

Applying rsd on the BGP dataset. Having defined

routing similarity, we seek to compute rsd for prefix

pairs in our BGP dataset. However, there are two main

issues. First, for a given prefix, we can not observe a

nexthop from every AS in the Internet. To address this

case when nexthop(ai, p1) is not available, rsd(p1, p2)
is approximated by the fraction of known next hops in

which routestate(p1) and routestate(p2) differ, times the

total number of ASes in set A. This normalizes rsd so

that it always ranges between zero and the total num-

ber of ASes in set A, i.e. |A|. We called the normalized

version RSD.

The second issue is that for some AS-prefix pairs

nexthop function is not uniquely defined, that is traf-

fic destined for the same prefix may take different next

hops e.g. when an AS uses hot-potato routing. We ad-

dress this problem as in [17], i.e. by dividing each AS

in set A into a minimal set of sub-ASes such that for

each (sub-AS, prefix) pair there is a unique next hop AS

4This assumption is relaxed later.

for the prefix. We call this extended version of A, A′.

For the dataset of Day-1, |A′| = 1460, and for Day-2,

|A′| = 1404. There are around 50 next hops in average

per prefix in both days. Note that both implementation

considerations are discussed in [17] in great detail.

Having addressed these two issues, we compute, rsim

and RSD for each pair of prefixes in our BGP dataset.

Notice that due to the normalization, unknown next hop,

and multiple next hop issues described above, RSD(p1, p2)
is not simply |A|−rsim(p1, p2).

Next, we seek to understand the correlation between

routing similarity and server ranking of two prefixes.

For each prefix pair we compute the minimum, average,

and maximum ps-dist and g-dist between the clients of

the prefixes as defined below. Note that the g-dist coun-

terparts are defined likewise.

ps-distmin(p1, p2) = min
X1∈p1,
X2∈p2

ps-dist(x1,x2) (3)

ps-distmax(p1, p2) = max
X1∈p1,
X2∈p2

ps-dist(x1,x2) (4)

ps-distavg(p1, p2) =
1

|p1||p2|
∑

X1∈p1,
X2∈p2

ps-dist(x1,x2) (5)

Note that ps-distmax(p1, p1), ps-distmin(p1, p1) are the

maximum and minimum ps-dist between two clients

within p1, and they can be written as ps-distmax(p1) and

ps-distmin(p1), respectively. Similarly, ps-distavg(p1) is

the average pairwise distances of clients in p1. Note that

g-dist counterparts are defined likewise.

Given a pair of prefixes, Figure 8 and Figure 9 show

the relationship between the number of ASes that pre-

fer the same next hops for these prefixes and their server

ranking similarity. Prefix pairs are placed in buckets of

size 10 according to their rsim values. Then, for each

bucket, mean of the ps-distmin, ps-distmax, ps-distavg, g-distmin,

g-distmax, g-distavg values are plotted with 95% confi-

dence interval.

8

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

di
st

an
ce

rsim

min. ps−dist
min. g−dist
avg. ps−dist
avg. g−dist
max. ps−dist
max. g−dist

Figure 8: Day-1: ps-dist and g-dist vs. rsim between

pairs of prefixes grouped by their rsim values.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

di
st

an
ce

rsim

min. ps−dist
min. g−dist
avg. ps−dist
avg. g−dist
max. ps−dist
max. g−dist

Figure 9: Day-2: ps-dist and g-dist vs. rsim between

pairs of prefixes grouped by their rsim values.

Both Figure 8 and Figure 9 show that there is a strong

correlation between the next hop choices for two pre-

fixes and their server ranking. As the number of ASes

that choose the same next hops increases, the server rank-

ing distance between two prefixes decreases. The amount

of decrease is larger for the ps-distmin and g-distmin met-

rics, i.e. there is at least a pair of clients, one from each

prefix, that are very close to each other if the similarity

between prefixes is high.

Similarly, in Figure 10 and Figure 11 prefix pairs are

placed in buckets of 0-50, 50-200, 200-400, . . . 1200-

1400 according to their RSD values. Then, for each

bucket, mean of the ps-distmin, ps-distmax, ps-distavg, g-distmin,

g-distmax, g-distavg values are plotted with 95% confi-

dence interval. Both figures show that as the RSD be-

tween two prefixes decreases, their max, min, and av-

erage ps-dist and g-dist decrease. In other words, two

prefixes that are close to each other in the RSD space are

close to each other in ps-dist and g-dist space too.

6.2 Clustering by Routing Similarity

Having shown the correlation between routing and

server ranking similarity, next we seek clustering pre-

fixes in RSD space. Intuitively, we are looking for a par-

50 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

RSD

di
st

an
ce

min. ps−dist
min. g−dist
avg. ps−dist
avg. g−dist
max. ps−dist
max. g−dist

Figure 10: Day-1: ps-dist and g-dist vs. RSD between

pairs of prefixes grouped by their RSD values.

50 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

RSD

di
st

an
ce

min. ps−dist
min. g−dist
avg. ps−dist
avg. g−dist
max. ps−dist
max. g−dist

Figure 11: Day-2: ps-dist and g-dist vs. RSD between

pairs of prefixes grouped by their RSD values.

titioning that minimizes the RSD between two prefixes

that are from the same cluster. One extended version of

this intuition is formalized as RS-CLUSTERING prob-

lem in [19] and solved by Algorithm 1.

Algorithm 1 The Pivot algorithm .

A set of prefixes P = {p1, . . . , pn} and a threshold

τ ∈ [0, t ′].
A partition P of the prefixes

1: pick a random prefix p ∈ P

2: create a cluster Cp = {p′ | RSD(p, p′)≤ τ}
3: P = P\Cp

4: Pivot(P,τ)

The inputs of the algorithm are the set of prefixes,

their pairwise RSD values, and a threshold parameter

τ ∈ [0, t ′], where t ′ = |A′| is the maximum possible value

of RSD. The algorithm works as follows: Starting from

a random prefix p, it finds all prefixes that are within the

distance τ from p. All these prefixes are assigned in the

same cluster, Cp – centered at prefix p. We call p the

pivot of cluster Cp. Then the prefixes that are assigned

to Cp are removed from the set of prefixes P and the

9

0 500 1000 1500
0

500

1000

1500

2000

τ

C

lu
st

er
s

Day−1
Day−2

Figure 12: Number of clusters vs. τ

Pivot algorithm is reapplied to the remaining subset of

prefixes that have not been assigned to any cluster.

Scaling with RS-CLUSTERING. Notice that Pivot al-

gorithm is a nonparametric algorithm where the number

of clusters are not pre-set. In fact, the number of clusters

is an output which is controlled by the choice of τ . Set-

ting τ to a larger value is likely to decrease the number

of clusters but increase in-cluster RSD. That property

of the Pivot algorithm provides flexibility in adjusting

the scale of the problem in practice. Figure 12 shows

the number of clusters we get by applying the algorithm

on the 5491 prefixes (Day-1) and 3272 prefixes (Day-2)

in our datasets. For each choice of τ , we run the algo-

rithm 10 times and show the average number of clusters

for these runs with 95% confidence interval. The figure

suggests that up to 600, as τ increases, the number of

clusters decreases. Figure 10 and Figure 12, together,

show the trade-off between the number of clusters and

the closeness between prefixes within a given cluster.

For the rest of the evaluation in this paper we set τ to

200. This results in around 600 clusters, i.e. reduces the

scale of the problem by 90% for Day-1 and by 82% for

Day-2. The impact of τ and other properties of Pivot

are discussed in [19, 15] in further detail.

Next, we analyze the goodness of the clusters. In or-

der to do that, we first introduce the following notations.

For a client X1 ∈ pi, if pi ∈ Cl , then we write X1 ∈ Cl .

In addition, we use the definitions ps-distmax, ps-distmin,

ps-distavg, and their g-dist counterparts that are intro-

duced in Section 6.1.

Evaluating RS-CLUSTERING . We evaluate the good-

ness of a cluster with two metrics: (1) Growth of the

diameter: Diameter of a cluster is the maximum dis-

tance between any two clients of the cluster. We mea-

sure the growth of the diameter as the ratio of the maxi-

mum server ranking distance between any clients in the

RS-cluster over the maximum diameter of the prefixes

that are in that RS-cluster. Diameter growth of a clus-

ter Cl , dg(Cl) is defined below for ps-dist. Note that the

g-dist counterpart is defined likewise.

dgps-dist(Cl) =

max
X1,X2∈Cl

ps-dist(x1,x2)

max
pi∈Cl

ps-distmax(pi)
(6)

(2) Growth of the average pairwise distances: It is the

ratio between average pairwise distances within a clus-

ter and the maximum average pairwise distances of its

member prefixes. Let sl be the number of clients in Cl .

Average pairwise growth of a cluster Cl , ag(Cl), is de-

fined below for ps-dist. Note that the g-dist counterpart

is defined likewise.

agps-dist(Cl) =

1
sl∗(sl−1) ∑X1,X2∈Cl

ps-dist(x1,x2)

max
pi∈Cl

ps-distavg(pi)
(7)

By definition, when dg and ag values for a cluster

Cl are near 1, it means the diameter and average pair-

wise distances within Cl did not grow further than the

diameter and the average pairwise distances of its least

compact prefix, respectively. Figure 13 shows dg and

ag statistics for each cluster. The figure shows that the

dg and ag values for both ps-dist and g-dist are around

1, that is the clusters did not grow out of their prefixes

significantly. That means RS-CLUSTERING generates

compact clusters with respect to its data units.

Next, in order to test the goodness of clusters fur-

ther, we compare the average pairwise ps-dist and g-dist

across prefixes that belong to the same cluster with the

ones that belong to different clusters. We call the for-

mer in-cluster and the latter out-cluster distances. Fig-

ure 15 shows that there is a great difference in the dis-

tribution of distances between prefixes that are from the

same cluster compared to the ones that are from differ-

ent clusters.

In order to investigate the cluster statistics even fur-

ther, we look at top 10 clusters in more detail. For

each prefix p1 ∈ Cl , we compute ps-distavg(p1, p2) for

all p2 ∈ Cl . Also, we compute ps-distavg(p1, p3) for all

p3 /∈ Cl . We call the the former in-cluster, and the latter

out-cluster. The hypothesis is that the average distance

of a prefix should be much closer to another prefix that

is in the same cluster compared to the ones that are out-

side the cluster. We compute in-cluster and out-cluster

averages for all prefixes in the largest 10 clusters from

Day-1 and plot the statistics in Figure 14. The figure

shows that across all clusters, in-cluster distances are

lower compared to the out-cluster distances.

In addition Table 1 shows some statistics for these 10

clusters including their sizes (the number of prefixes per

cluster), average RSD values between prefixes, the num-

ber of unique ASes that the prefixes in the clusters be-

long to, and the geo locations of the prefixes in each

cluster. One thing to note is that for 7 out of these 10

clusters, the prefixes are from one single country. Also

note that, the variety of ASes within a cluster ranges

from 1 to 23. In fact, looking closer into the set of

all clusters, we find that 80% of the clusters are com-

10

dg(ps-dist) dg(g-dist) ag(ps-dist) ag(g-dist)
0

1

2

3

4

5

6

g
ro

w
th

 r
a
ti

o

dg(ps-dist) dg(g-dist) ag(ps-dist) ag(g-dist)
0

1

2

3

4

5

6

g
ro

w
th

 r
a
ti

o

(a) Day-1 (b) Day-2

Figure 13: In each box, the red line is the median distance, the upper and the lower end of the box represent the

first and third quantile, respectively. The upper and lower ends of the whiskers represent the maximum and minimum

values in the data, respectively. The individual red points are outliers.

C1 C1 C2 C2 C3 C3 C4 C4 C5 C5 C6 C6 C7 C7 C8 C8 C9 C9
C10 C10

Top Clusters

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

p
s-

d
is

t

In-cluster Distribution
Out-cluster Distribution

C1 C1 C2 C2 C3 C3 C4 C4 C5 C5 C6 C6 C7 C7 C8 C8 C9 C9
C10 C10

Top Clusters

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

g
-d

is
t

In-cluster Distribution
Out-cluster Distribution

Figure 14: (a) ps-dist (b) g-dist. In each box, the red line is the median distance, the upper and the lower end of the box

represent the first and third quantile, respectively. The upper and lower ends of the whiskers represent the maximum

and minimum values in the data, respectively. The individual red points are outliers.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

distance

C
D

F

In cluster (ps−dist)
Out cluster (ps−dist)
In cluster (g−dist)
Out cluster (g−dist)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

distance

C
D

F

In cluster (ps−dist)
Out cluster (ps−dist)
In cluster (g−dist)
Out cluster (g−dist)

(a) Day-1 (b) Day-2

Figure 15: in-cluster vs. out-cluster distances

11

posed of prefixes from the same country and 38% of

them are composed of prefixes from the same AS. To

that end we ask the following question next : how does

RS-CLUSTERING compares with clustering prefixes by

their ASes or geographic locations ?

6.3 RS-CLUSTERING vs. clustering by AS and
Geography

First we compare RS-CLUSTERING with clustering

by country. We map each prefix to its country5 . Then,

for each prefix, we compute ps-distavg and g-distavg with

every other prefix in its RS-cluster and country cluster

separately. Then, we take the mean of these averages

and plot them in Figure 16 (a-b) for Day-1 and in Fig-

ure 17 (a-b) for Day-2. Each point in the figure repre-

sents a prefix. We plot x = y line for comparison, i.e. if

the prefix is above the line it indicates that the prefix is

closer to the other prefixes in its RS-cluster than the ones

in its country cluster. Figure 16 (a-b) and Figure 17 (a-

b) show that clustering by routing similarity is not same

as clustering by geo location. They also show that clus-

tering by routing similarity results in better clusters as

the majority of the prefixes are above the x = y line both

in ps-dist and g-dist.

Second we compare RS-CLUSTERING with cluster-

ing by AS. We map each prefix to its AS. The set of 5491

prefixes from Day-1 map to 1397 unique ASes. The set

of 3272 prefixes from Day-1 map to 1206 unique ASes.

For each prefix, we compute ps-distavg and g-distavg with

every other prefix in its RS-cluster and AS-cluster sep-

arately. Then, we take the mean of these averages and

plot them in Figure 16 (c) and Figure 17 (c). Each point

in the figures represents a prefix. We plot x = y line

for comparison, i.e. if the prefix is above the line that

indicates the prefix is closer to the other prefixes in its

RS-cluster than the ones in its AS-cluster. In Figure 16

(c) and Figure 17 (c), we see that almost all prefixes are

above the x = y line for both ps-dist and g-dist. In fact,

we see a group of prefixes that are on the y-axis. For

any one of these prefixes, the ps-dist (or g-dist) between

itself and the others in its RS-cluster is 0, whereas the

ps-dist (or g-dist) between itself and the others in its AS

cluster is greater than 0.4.

In summary, Figure 16 and Figure 17 show that RS-

CLUSTERING is different than clustering by geo and

AS. In fact, RS-CLUSTERING outperforms clustering

clients by their countries or ASes. In addition, by RS-

CLUSTERING we can control the number of clusters to

be generated, whereas clustering by AS and geo fix the

number of clusters by definition. In that sense, RS-

CLUSTERING is a flexible and accurate way of cluster-

ing.

5We use Akamai’s EdgeScape tool for IP to geo mapping [11]

7. FINDING REPRESENTATIVE

CLIENTS

Having partitioned the address space, we seek to find

a representative client from each partition such that in-

stead of measuring the paths to all clients in the par-

tition, we only measure the ones that are to the repre-

sentative. Then we rank the servers according to that

representative client.

One can apply various methods to select a represen-

tative. For instance, one method is randomly choosing

a client from the each cluster. The assumption is that if

the cluster is compact enough, any client will be a good

representative. Second method is choosing a client from

the pivot prefix of each cluster as described in Section 6.

Pivot prefix is the prefix that is the center of its cluster,

i.e. it is guaranteed that all other prefixes in the cluster

are at most τ away in RSD space. Given the high corre-

lation between RSD and ps-dist (g-dist) we expect that

clients from the pivot prefix are good representatives.

In order to investigate the effectiveness of these meth-

ods, first we find a single ranking for each cluster that

best describes the rankings of all clients in the cluster.

In other words, we find a consensus for each cluster

and evaluate the goodness of the representative client

by testing it against the consensus.

The problem of aggregating a set of rank vectors and

finding consensus is known as rank aggregation prob-

lem [1, 10]. The problem is studied extensively and

proposed solutions are subject to the definitions of what

properties the consensus should have. For our appli-

cation, we employ two of the proposed solutions, the

Borda count [3] and the Plurality method [10].

The Borda count is a score-based method. Each can-

didate’s (server’s) score is the sum of the rank values as-

signed by every voter (client). Once all votes are counted,

the candidates are reordered from the lowest to the high-

est rank and the lowest rank candidate is the winner. The

nice property of Borda count is that a Spearman Footrule

optimal solution can be computed in polynomial time

[10] and therefore it sets a fair consensus ranking for

our ps-dist metric.

The Plurality method is another voting scheme where

the candidates are simply ordered by the number of rank

values they are assigned to. For instance, a candidate

with the most rank 1 assignment is ranked 1, similarly,

a candidate with the most rank 2 assignment is ranked 2

and so on. By definition, this method sets a fair consen-

sus for our g-dist metric.

To test how good the representatives are, we first com-

pute the consensus vector (by both the Borda count and

the Plural Method separately). Then, we compute the

ps-dist (g-dist) between the consensus and all clients in

its cluster, and compute their average. Next, we select a

12

Table 1: Statistics for 10 large clusters of Day-1.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Size of cluster (C) 102 102 102 85 64 52 48 35 26 18

Avg. RSD (C) 59.73 398.36 16.99 167.31 108.27 83.88 93.51 42.65 31.42 88.39

Countries FR CH DE DE FR,ES,IT,BE FR DE DE DE,IT FR,DE

num. unique ASes 23 6 10 16 17 1 7 4 5 2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ps−dist (RS clustering)

ps
−

di
st

 (
C

ou
nt

ry
 c

lu
st

er
in

g)

← x = y

FR
DE
ES
IT
CH
BE

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.85

0.9

0.95

1

g−dist (RS clustering)

g−
di

st
 (

C
ou

nt
ry

 c
lu

st
er

in
g)

← x = yFR
DE
ES
IT
CH
BE

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

distance (RS clustering)

di
st

an
ce

 (
A

S
 c

lu
st

er
in

g)

← x = y

avg. ps−dist
avg. g−dist

(a) (b) (c)

Figure 16: Day-1: Comparing RS-CLUSTERING with clustering by country for (a) ps-dist (b) g-dist. (c) Comparing

RS-CLUSTERING with clustering by AS for ps-dist and g-dist.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ps−dist (RS clustering)

ps
−

di
st

 (
C

ou
nt

ry
 c

lu
st

er
in

g)

← x = y

FR
DE
ES
IT
CH
BE

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.85

0.9

0.95

1

g−dist (RS clustering)

g−
di

st
 (

C
ou

nt
ry

 c
lu

st
er

in
g)

← x = yFR
DE
ES
IT
CH
BE

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

distance (RS clustering)

di
st

an
ce

 (
A

S
 c

lu
st

er
in

g)

← x = y

avg. ps−dist
avg. g−dist

(a) (b) (c)

Figure 17: Day-2: Comparing RS-CLUSTERING with clustering by country for (a) ps-dist (b) g-dist. (c) Comparing

RS-CLUSTERING with clustering by AS for ps-dist and g-dist.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

← x = y

consensus

re
pr

es
en

ta
tiv

e

ps−dist
g−dist

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

← x = y

consensus

re
pr

es
en

ta
tiv

e

ps−dist
g−dist

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

← x = y

consensus

re
pr

es
en

ta
tiv

e

ps−dist
g−dist

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

← x = y

consensus

re
pr

es
en

ta
tiv

e

ps−dist
g−dist

(a) Day-1 (b) Day-2 (c) Day-1 (d) Day-2

Figure 18: The comparison of the average distances between (Borda count) consensus vector and all clients in the

cluster with the average distances between representative client and all clients in the same cluster. The representative

client is selected at random (a-b) from all clients in the cluster, (c-d) from the pivot prefix.

13

representative for the cluster and we compute the ps-dist

(g-dist) between the representative and all clients in its

cluster, and compute their average.

Figure 18 compares the consensus chosen by the Borda

count with the representatives chosen (a-b) at random

from the set of all clients in the cluster, and (c-d) at ran-

dom from the clients that belong to the pivot (center)

prefix of each cluster. Each point in the figure repre-

sents one cluster and the x and y axis are the average

distances as described above. We also plot x = y line

for comparison, i.e. if the cluster is close to the line then

it means that the representative client performs as good

as the consensus ranking. The figure shows that most

of the clients are very close to the line. The represen-

tative client performs slightly better for ps-dist. This

is expected by the definition of the Borda count and its

property of having an spearman foot rule optimal solu-

tion.

Figure 19 is generated exactly the same as described

above but the consensus is chosen by the Plural method.

The figure shows that again, most of the clients are very

close to the x = y line. The representative clients per-

form better for g-dist compared to the Borda count case.

This is intuitive by the definition of the Plural method

which simply orders the servers by the number of rank

values they are assigned to. In other words, it tends to

agree with the exact rankings of the majority for each

position.

Next we investigate how large the latency can get for

a client due to clustering. We compute the latency dif-

ference for each client in a given cluster as follows. For

a given cluster, let Tj be the top-1 server with respect to

the cluster’s representative client. Then, for any other

client in the cluster, say Xi, we compute how much the

latency to Xi increases if Tj is assigned to Xi instead of its

top-1 server. Figure 20 shows the distribution of such la-

tency for all clients in the clusters. The figure shows that

selecting representatives both random from the clients

in the pivot prefix or any client in the cluster results in

small latency difference for the rest of the clients. In

fact, selecting representative at random from all clients

slightly outperforms selecting from the pivot for Day-1.

This is expected since the pivot prefix is not necessarily

the largest one. In conclusion, we show that choosing

a client at random from a cluster represents the other

clients in the same cluster successfully and reduce the

scale of the ranking task.

8. RELATED WORK

Grouping IP addresses has been of interest to vari-

ous studies. [20] and [2] propose that IPs that are nu-

merically close to each other to be grouped together.

[20] clusters web client IPs by mapping them into their

longest matching BGP prefixes so that the IPs within a

given cluster is under the same administrative domain.

[2] assumes that IPs that are numerically close to each

other show similar features (e.g. latency). Based on

this assumption this work partitions a subnet as a su-

pervised learning task so that in each subpartition the

feature at interest is minimized. This work does not con-

sider BGP routing information which already provides a

natural grouping. [4] proposes grouping end-user IPs by

their /24 prefixes in the case of end-user mapping. Un-

like our work, in [20, 2, 4], the level of aggregation is

limited to the prefix level or below and the state of the

inter domain routing in the Internet is not considered.

Clustering IP addresses by their geographic locations

is another way to partition the address space. However,

[16] and [28] show that identifying the geolocation of an

IP block accurately is hard. They claim that most geolo-

cation tools are only reliable at the country level. More-

over, even in the case where geolocation based grouping

is possible, it does not generate the desired clustering re-

sults we discuss in this paper, i.e. geographic closeness

does neither infer topological closeness [14] nor low la-

tency between servers and clients [21].

[19] proposes the RSD metric and the Pivot cluster-

ing to group prefixes according to the BGP path infor-

mation. This work focuses more on the basic proper-

ties of the metric and shows how to uncover the factors

that drive ASes to choose their interodomain next hops.

However, unlike our work, this work does not study the

goodness of clusters in terms of the path performances

experienced by the clients in each cluster or how sim-

ilarly the clients in a given cluster orders some set of

servers.

In addition, the correlation between the routing dy-

namics and end-to-end path performance is widely stud-

ied. The findings in these studies suggest that we use

a routing-aware clustering. [30] shows the routing and

latency relation by comparing the default routing paths

with alternate paths. [22] studies that the stability of

paths between ISPs effect path performance. [33] shows

that packet loss is significantly increased by the routing

changes. [25] and [13] show that routing instabilities

(e.g. routing loops and failures) can disrupt end to end

connectivity.

Incorporating routing information into server redirec-

tion problem in CDNs is studied by [26, 27]. These

works suggest that collaboration between CDNs and ISPs

will be beneficial for mapping end-users to higher per-

forming CDN servers. To that end, similar to our work,

they also utilise what can be inferred from routing choices.

However, notice that, the problem of server redirection

studied in [26, 27] is different than the server ranking

problem that we study in this paper. Our goal is not

finding a best server mapping for end-users. Instead, our

goal is grouping end-users such that within each group

14

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

← x = y

consensus

re
pr

es
en

ta
tiv

e

ps−dist
g−dist

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

← x = y

consensus

re
pr

es
en

ta
tiv

e

ps−dist
g−dist

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

← x = y

consensus

re
pr

es
en

ta
tiv

e

ps−dist
g−dist

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

← x = y

consensus

re
pr

es
en

ta
tiv

e

ps−dist
g−dist

(a) Day-1 (b) Day-2 (c) Day-1 (d) Day-2

Figure 19: The comparison of the average distances between (Plural method) consensus vector and all clients in the

cluster with the average distances between representative client and all clients in the same cluster. The representative

client is selected at random (a-b) from all clients in the cluster, (c-d) from the pivot prefix.

0.001 0.01 0.1 1 10 100 1000
0

0.2

0.4

0.6

0.8

1

latency difference (ms)

C
D

F

Pivot
Random

0.001 0.01 0.1 1 10 100 1000
0

0.2

0.4

0.6

0.8

1

latency difference (ms)

C
D

F

Pivot
Random

(a) Day-1 (b) Day-2

Figure 20: The distribution of latency differences due to assigning top-1 server of the representative

the order of best to worst performing servers are almost

the same. In that respect, our work is complementary to

[26, 27].

9. DISCUSSION

The RS-CLUSTERING has properties which makes it

desirable for our clustering problem.

First, it is a lightweight algorithm. Notice that both

computing pairwise RSD values and running Pivot al-

gorithm is in O(n2) where n is the number of prefixes.

It is possible to reduce the run time of both jobs by pre-

grouping the prefixes by some coarse grain geographic

regions (e.g. their continents or even countries as we

discussed in Section 6.2). For instance, it is very likely

that for two clients from two different continents, nei-

ther their server choices nor the RSD of their prefixes

will be close. Therefore, one can compute RSD and run

the Pivot separately for each coarse geographic area.

Second, RS-CLUSTERING is a network-aware method

that can capture the dynamicity of the Internet, yet it is

relatively stable. [29] shows that small fraction of pre-

fixes are responsible for most route changes and these

are the ones that receive comparatively little traffic,

whereas BGP is stable for popular destination prefixes.

Moreover, [5] studies the temporal aspects of RSD and

show that on any given day, approximately 1% of the

next-hop decisions made in the Internet change. The

change goes up to 10% in a month. This shows that the

clusters generated by RSD are valid for at least a day

(possibly longer).

Third, RS-CLUSTERING provides flexibility for ad-

justing the number of clusters as we discuss in Section 6.2.

The choice of τ in Pivot effects the number of the clus-

ters generated. In this paper, we set τ empirically.

Fourth, the only input that RS-CLUSTERING requires

is the set of BGP paths. Notice that RS-CLUSTERING

does neither rely on the knowledge of the underlying

topology nor the latency on the paths.

Fifth, in our experiments we show that RS-CLUSTERING

reduces the problem by 90% for a region in Europe. We

note that for other regions in the world, the percentage

of reduction may vary based on how diverse the Internet

paths in those regions. Remember that by definition of

RSD the more ASes make similar next hop choices to a

set of destination prefixes, the smaller their RSD values.

The smaller the RSD values are, the more prefixes can

be grouped together and the more the scale of the prob-

lem is reduced. Within a given region, one reason that

ASes make similar next hop choices is because the next

hop options are limited in the first place. In other words,

in regions where path diversity is less, we expect to rep-

resent prefixes with only a few clusters and therefore

reduce the problem significantly. In our study, we pick

a region in Europe where the path diversity is relatively

15

rich compared to the other parts of the world. Therefore,

we believe that the gain from RS-CLUSTERING will be

more than 90% in other regions.

One direction for further analysis is the change in

ps-dist and g-dist within RS clusters over time. We be-

lieve that such study can have various applications. For

instance, one can identify the problematic clients/prefixes

by observing the unexpected changes in the server rank-

ings within an RS cluster.

10. CONCLUSION

In this paper, we introduce a framework to partition

the Internet address space. Our goal is to scale the num-

ber of paths to be monitored between a CDN’s servers

and its clients. That is we aim to find a partitioning

of clients such that in each partition the latencies from

servers to the clients in the partition are ordered simi-

larly. To achieve this goal, we first introduce two metrics

(ps-dist and g-dist) that measures the similarity between

two rank vectors even in the case of vectors are known

only partially. Second, we show that for any given two

clients, as the number of ASes in the Internet that pre-

fer the same next hops to route to them increase, their

server ranking similarity increase. Having shown the ef-

fect of inter domain routing on the server preferences of

clients, we employ routing-aware clustering algorithm.

We evaluate the goodness of the clusters by using our

metrics ps-dist and g-dist and show that we obtain com-

pact clusters. Finally, we show that one can successfully

scale the task of server ranking by measuring a client at

random from each cluster.

11. ACKNOWLEDGEMENTS

We thank Marcelo Torres, Fangfei Chen, Nick Shect-

man, Kc Ng, Liang Guo, and Arthur Berger from Aka-

mai Technologies for their feedback and insightful dis-

cussions. We also thank the anonymous referees for

their reviews.

12. REFERENCES
[1] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating

inconsistent information: Ranking and clustering. J. ACM,

55(5):23:1–23:27, November 2008.

[2] Robert Beverly and Karen Sollins. An internet protocol address

clustering algorithm. In Proceedings of the Third Conference on

Tackling Computer Systems Problems with Machine Learning

Techniques, SysML’08, pages 5–5, Berkeley, CA, USA, 2008.

USENIX Association.

[3] Jean C. de Borda. Mèmoire sur les èlections au scrutin. 1781.

[4] Fangfei Chen, Ramesh K. Sitaraman, and Marcelo Torres.

End-user mapping: Next generation request routing for content

delivery. In Proceedings of the 2015 ACM Conference on

Special Interest Group on Data Communication, SIGCOMM

’15, pages 167–181, New York, NY, USA, 2015. ACM.

[5] Giovanni Comarela, Gonca Gürsun, and Mark Crovella.

Studying interdomain routing over long timescales. In

Proceedings of the Internet Measurement Conference (IMC),

Barcelona, Spain, October 2013.

[6] P. Diaconis. Group representations in probability and statistics.,

volume 11 of IMS Lecture Notes-Monograph Series. Institute of

Mathematical Statistics, 1988.

[7] John Dilley, Bruce Maggs, Jay Parikh, Harald Prokop, Ramesh

Sitaraman, and Bill Weihl. Globally distributed content delivery.

IEEE Internet Computing, 6(5):50–58, September 2002.

[8] Google Public DNS.

https://developers.google.com/speed/public-dns/.

[9] Open DNS. https://www.opendns.com.

[10] Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar.

Rank aggregation methods for the web. In Proceedings of the

10th International Conference on World Wide Web, WWW ’01,

pages 613–622, New York, NY, USA, 2001. ACM.

[11] Akamai EdgeScape.

http://www.akamai.com/dl/brochures/edgescape.pdf.

[12] Ronald Fagin, Ravi Kumar, and D. Sivakumar. Comparing top k

lists. In Proceedings of the Fourteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA ’03, pages 28–36,

Philadelphia, PA, USA, 2003. Society for Industrial and

Applied Mathematics.

[13] Nick Feamster, David G Andersen, Hari Balakrishnan, and

M Frans Kaashoek. Measuring the effects of internet path faults

on reactive routing. In ACM SIGMETRICS Performance

Evaluation Review, volume 31, pages 126–137. ACM, 2003.

[14] Michael Freedman, Mythili Vutukuru, Nick Feamster, and Hari

Balakrishnan. Geographic Locality of IP Prefixes. In Internet

Measurement Conference (IMC) 2005, Berkeley, CA, October

2005.

[15] Aristides Gionis, Heikki Mannila, and Panayiotis Tsaparas.

Clustering aggregation. Transactions on Knowledge Discovery

from Data, 1(1), 2007.

[16] Bamba Gueye, Steve Uhlig, and Serge Fdida. Investigating the

imprecision of ip block-based geolocation. In Proceedings of

the 8th International Conference on Passive and Active

Network Measurement, PAM’07, pages 237–240, Berlin,

Heidelberg, 2007. Springer-Verlag.

[17] Gonca Gürsun. Inferring hidden features in the internet. In PhD

Thesis, Boston University, 2013.

[18] Gonca Gürsun. Routing-aware partitioning of the internet

address space for server ranking in cdns. Technical report,

Ozyegin University, 2015.

[19] Gonca Gürsun, Natali Ruchansky, Evimaria Terzi, and Mark

Crovella. Routing state distance: A path-based metric for

network analysis. In Proceedings of the 2012 ACM Conference

on Internet Measurement Conference, IMC ’12, pages 239–252,

New York, NY, USA, 2012. ACM.

[20] Balachander Krishnamurthy and Jia Wang. On network-aware

clustering of web clients. In Proceedings of the Conference on

Applications, Technologies, Architectures, and Protocols for

Computer Communication, SIGCOMM ’00, pages 97–110,

New York, NY, USA, 2000. ACM.

[21] Rupa Krishnan, Harsha V. Madhyastha, Sridhar Srinivasan,

Sushant Jain, Arvind Krishnamurthy, Thomas Anderson, and

Jie Gao. Moving beyond end-to-end path information to

optimize cdn performance. In Proceedings of the 9th ACM

SIGCOMM Conference on Internet Measurement Conference,

IMC ’09, pages 190–201, New York, NY, USA, 2009. ACM.

[22] Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam

Jahanian. Delayed internet routing convergence. In Proceedings

of the Conference on Applications, Technologies, Architectures,

and Protocols for Computer Communication, SIGCOMM ’00,

pages 175–187, New York, NY, USA, 2000. ACM.

[23] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. The

akamai network: A platform for high-performance internet

applications. SIGOPS Oper. Syst. Rev., 44(3):2–19, August

2010.

[24] The Akamai State of the Internet Report.

http://www.akamai.com/stateoftheinternet.

[25] Vern Paxson. End-to-end routing behavior in the internet. In

Conference Proceedings on Applications, Technologies,

16

Architectures, and Protocols for Computer Communications,

SIGCOMM ’96, pages 25–38, New York, NY, USA, 1996.

ACM.

[26] Ingmar Poese, Benjamin Frank, Bernhard Ager, Georgios

Smaragdakis, Steve Uhlig, and Anja Feldmann. Improving

Content Delivery with PaDIS. IEEE Internet Computing,

16(3):46–52, May-June 2012.

[27] Ingmar Poese, Benjamin Frank, Georgios Smaragdakis, Steve

Uhlig, Anja Feldmann, and Bruce Maggs. Enabling

content-aware traffic engineering. SIGCOMM Comput.

Commun. Rev., 42(5):21–28, September 2012.

[28] Ingmar Poese, Steve Uhlig, Mohamed Ali Kaafar, Benoit

Donnet, and Bamba Gueye. Ip geolocation databases:

Unreliable? SIGCOMM Comput. Commun. Rev., 41(2):53–56,

April 2011.

[29] Jennifer Rexford, Jia Wang, Zhen Xiao, and Yin Zhang. Bgp

routing stability of popular destinations. In Proceedings of the

2Nd ACM SIGCOMM Workshop on Internet Measurment, IMW

’02, pages 197–202, New York, NY, USA, 2002. ACM.

[30] Stefan Savage, Andy Collins, Eric Hoffman, John Snell, and

Thomas Anderson. The end-to-end effects of internet path

selection. In Proceedings of the Conference on Applications,

Technologies, Architectures, and Protocols for Computer

Communication, SIGCOMM ’99, pages 289–299, New York,

NY, USA, 1999. ACM.

[31] Florian Streibelt, Jan Böttger, Nikolaos Chatzis, Georgios

Smaragdakis, and Anja Feldmann. Exploring edns-client-subnet

adopters in your free time. In Proceedings of the 2013

Conference on Internet Measurement Conference, IMC ’13,

pages 305–312, New York, NY, USA, 2013. ACM.

[32] Visualizing the Internet.

http://www.akamai.com/html/technology/

visualizing_akamai.html.

[33] Feng Wang, Zhuoqing Morley Mao, Jia Wang, Lixin Gao, and

Randy Bush. A measurement study on the impact of routing

events on end-to-end internet path performance. SIGCOMM

Comput. Commun. Rev., 36(4):375–386, August 2006.

17

	1 Introduction
	2 Background
	2.1 Ranking Server Regions
	2.2 Goals and Challenges

	3 Evaluation Metrics
	3.1 Partial Spearman's Footrule Distance
	3.2 Geometric Distance

	4 Datasets
	5 BGP Prefixes as Pre-Clusters
	6 Routing-Aware Clustering
	6.1 Correlation Between Routing State and Server Ranking
	6.2 Clustering by Routing Similarity
	6.3 RS-Clustering vs. clustering by AS and Geography

	7 Finding Representative Clients
	8 Related Work
	9 Discussion
	10 Conclusion
	11 Acknowledgements
	12 References

