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Evaluating the Benefits of Combined and Continuous
Fog-to-Cloud Architectures

W. Ramirez1, X. Masip-Bruin1, E. Marin-Tordera1, V. B. C Souza1, A. Jukan2, G-J.
Ren3, O. Gonzalez de Dios4

Abstract

The need to extend the features of Cloud computing to the edge of the network has fu-
eled the development of new computing architectures, such as Fog computing. When put
together, the combined and continuous use of fog and cloud computing, lays the foun-
dation for a new and highly heterogeneous computing ecosystem, making the most out
of both, cloud and fog. Incipient research efforts are devoted to propose a management
architecture to properly manage such combination of resources, such as the reference
architecture proposed by the OpenFog Consortium or the recent Fog-to-Cloud (F2C). In
this paper, we pay attention to such a combined ecosystem and particularly evaluate the
potential benefits of F2C in dynamic scenarios, considering computing resources mobility
and different traffic patterns. By means of extensive simulations we specifically study
the aspects of service response time, network bandwidth occupancy, power consumption
and service disruption probability. The results indicate that a combined fog-to-cloud
architecture brings significant performance benefits in comparison with the traditional
standalone Cloud, e.g., over 50% reduction in terms of power consumption.

1. Introduction

The Internet of Things (IoT) embraces a large set of heterogeneous devices, demand-
ing anywhere and anytime connectivity to run value-added services falling into distinct
emerging domains, such as Intelligent Transportation Systems, E-health, or Smart cities,
to name a few. Predictions available in [1] point out that near 26 billion of devices are
to be connected in 2020, collecting more than 1.6 zeta bytes of data.

In order to address the ever-increasing demand for computing and processing infor-
mation, Cloud computing is the major and widely adopted commodity [2], conceptually
supported by its massive storage and huge processing capabilities. However, Cloud com-
puting has shown limitations to meet the specific demands of IoT services requiring strict
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low latency, which can neither be overlooked in near-future IoT deployments, nor easily
addressed with current network transport technologies. This in turn, has led to further
innovations in the area of Cloud computing under the umbrella of Fog computing.

Fog computing leverages the capabilities of end devices –i.e., devices located at the
edge of the network–, such as smart vehicles, 5G mobile phones, or autonomous IoT
devices –e.g., smart sensors or wearables–, to enable service execution closer to IoT
users. In this way, it is possible to reduce the overall service response time –suitable for
real-time services–, reduce network congestion and energy consumption while addressing
some of the cloud security gaps [3]. Nevertheless, as a novel technology, some major
issues surround Fog computing, which if unaddressed may hinder its real deployment
and exploitation as well as limit its applicability. We consider two major challenges
to overcome: 1) the fog storage and processing capabilities are limited in comparison
with the cloud, and; 2) the resources volatility, inherent to the mobility and energy
constraints of fog devices, might cause undesired service disruptions. These challenges
may undoubtedly hinder the adoption of Fog computing by the potential users, be it
either traditional data center operators, ISPs or new actors such as smart city managers
or smart transportation clients. Authors in [4] survey main research challenges for Fog
Computing.

In order to take advantage of the benefits brought by Cloud and Fog, recent studies
positioned Fog computing as a complementary solution to the cloud. Two main works
may be highlighted, the Reference Architecture delivered by the OpenFog Consortium
[5] and the Fog-to-Cloud (F2C) proposal [6]. F2C envisions a hierarchical resources
architecture, consisting in a layered structure of heterogeneous Cloud and Fog resources
working in a collaborative model under a coordinated and orchestrated management.
The main aim of a F2C architecture is to efficiently provide enough capacity to execute
services while guaranteeing low service response time, reduced network load and better
energy efficiency.

In this paper we study the Dynamic Service Execution (DSE) problem in F2C scenar-
ios. The DSE problem is defined as: given a IoT service with random arrival and holding
times and with particular computing requirements, discover and allocate the computing
devices capable of meeting these requirements with the lowest cost resources. Indeed, the
combined and continuous use of fog and cloud resources tailored to support the particu-
lar service demands, makes service allocation on such a distributed, dynamic and highly
heterogeneous scenario a key challenge. Thus, the main rationale for this paper is three-
fold. First we describe the main components of a F2C envisioned architecture through
an illustrative example. Second, we put the focus on highlighting the benefits brought
by deploying a combined F2C architecture, in terms of service response time, network
bandwidth, energy consumption and disruption probability. Third, we also introduce two
basic, easy-to-deploy service allocation strategies. For the sake of realism, the evaluated
scenario considers fog device mobility to illustrate the dynamics and volatility associ-
ated with the overall fog computing capacity, also showing the impact rapid fog capacity
changes may have on service execution. To the best of our knowledge, this is the first
paper dealing with service allocation in dynamic F2C scenarios. We consider a dynamic
scenario where service requests arrive in a random manner, as well as Fog nodes have
mobility capabilities.

The rest of this paper is organized as follows. Section 2 introduces the concept
of combined fog-to-cloud. Section 3 revisits existing contributions related to services
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allocation with special focus on fog computing. Section 4 describes the model adopted
for the dynamic execution of services in combined F2C scenarios. Section 5 presents
simulation results related to the overall F2C architecture performance. Finally, section
6 concludes the paper.

2. Introducing the Fog-to-Cloud Architectural Concepts

This section is devoted to introduce the F2C management architecture as a potential
approach to manage the combined set of fog and cloud resources. We show its potential
benefits on an illustrative example and also discuss its main deployment challenges.

2.1. The Building Blocks
The F2C envisioned architecture is illustrated in Fig. 1. The whole architecture is

based on two main management domains, layers and areas. On one hand, a layer is
a set of devices with similar characteristics and features, such as processing capacity or
mobility pattern – three layers are considered in Fig. 1, Cloud, High Capacity Fog (HCF)
and Local Fog (LF). On the other hand, areas are a set of nearby logically and physically
connected resources within the same layer.

Indeed, as shown in Fig. 1, F2C is a hierarchical layered architecture where fog and
cloud resources are located in three distinct layers, “vertically” distributed according to
their computing capacity, vicinity to the edge of the network and the amount of resources
conforming the layer. For example, LF exhibits the closest proximity to the user, but
lower aggregate storage, network and processing capacity than HCF. Fig. 1 also depicts
the so-called Access Network, including the connectivity and devices on the user side to
allow users to access the required resources to run a service.

Each area in the F2C envisioned architecture features the so-called Service Controller
(SC), responsible for both gathering the data from the different IoT resources and main-
taining the state of the IoT resources within an area. The state information gathered
from SC members of the same layer is forwarded to the so-called Layer Controller (LC)
for its management. LCs are responsible for allocating and releasing computing resources
within a layer as well as for communicating with other LCs located at other F2C layers.
The state information collected by the LCs is used by the so-called Service Computation
Element (SCE) to provide service scheduling features. It must be remarked that an SCE
is located at all areas/layers (Fig. 1 shows only one SCE due to readability purposes).
Finally, when an SCE receives a service request, the SCE communicates to the LCs to
start the service allocation process.

The Cloud layer is formed by dedicated static servers with on-demand computing
features, such as processing and storage capabilities, accessible through the Internet
backbone, providing nearly unlimited resources. As previously mentioned, the higher
capacity is often provided at cloud assuming the cost of high access latency, whereas
the opposite is the fog. In the architecture illustrated in Fig. 1, the upper layers have
comparably, higher resource capacities, a longer service response time, as well as the
expected higher energy consumption. At the same time, due to the vicinity between the
access network and LF, workloads allocated within LF have lower service response time
in comparison with either HCF, or Cloud layers. A clear example of an HCF layer can
be set by aggregating resources in neighborhood fog areas, thus enabling a collaborative
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Figure 1: Example of an F2C topology.
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Figure 2: Example of service disruption: a) successful execution; b) disruption.

sharing with medium capacity and latency –e.g., vehicles in a parking lot sharing their
computing resources with the data center in the shopping mall.

2.2. The Context
Two inherent characteristics in the analysis of a combined and continuous F2C archi-

tecture, specifically linked to the F2C context and particularly impacting on its perfor-
mance, must be observed, namely mobility and power consumption. The first, mobility
of end-devices is a key issue highly impacting on resources volatility, hence with relevant
effects in the quality perceived by the user running the service. Since it seems rather
logical to assume that mobility grows as moving down on the F2C architecture, lower
layers are expected to show higher volatility than higher layers. Let us illustrate mobility
effects through a simple example, by considering a smart city scenario running a particu-
lar service S. We assume that, according to the resource allocation policy in use, service
S is to be executed at resources within fog layer X, consisting in one single area (Fog-X).
As shown in Fig. 2, Fog-X is formed by different devices, including a static traffic light
as well as distinct mobile nodes –such as, cars and buses. The volatility of the mobile
devices included in the depicted topology is undoubtedly assessing the fact that the total
Fog-X capacity will dynamically change over time according to the amount of nodes set-
ting Fog-X. For the sake of comprehension, control plane entities, such as SC and SCE
are not depicted in Fig. 2. Let us now assume the following: i) service S requires 3 units
of computing resources to be allocated depending on real-time resources availability; ii)
each individual device may only provide one resource slot, and; iii) the traffic light is
supposed to be the node providing the computing resources. In such a dynamic scenario,
a successful execution of a service relying on Fog-X capacity, will strongly depend on
the real-time resources availability. Fig. 2a depicts a scenario where 4 slots, provided by
three different cars and one bus, are available for service execution. Instead, Fig. 2b only
shows 2 available slots, –i.e., 2 cars have already left the fog area. Thus, assuming 3 slots
are required to execute service S, Fig. 2a stands for a successful execution, while Fig.
2b would not offer sufficient resources, hence turning into service disruption. Indeed, the
latter may also occur when the node executing a job of a service leaves the fog (such as
due to battery limitation, SLA policy, or similar).

3. Related Work on Service Allocation in Fog Computing

As introduced in Section 2, F2C, as a potential strategy leveraging a coordinated man-
agement of fog and cloud resources, is expected to fuel the deployment of novel services
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through distributing the service execution through different layers and resources. Focus-
ing on the service allocation arena, Section 2 also introduces the DSE problem, as a key
issue to be fixed. While service allocation has been largely studied in cloud computing,
in this section, we highlight the most recent contributions related to service allocation
in Fog computing – which is currently more subject to research than deployment –, that
may be certainly close to F2C.

As introduced above, unfortunately, to deliver on the promise of F2C architectures,
it must be remarked that the design and evaluation of service allocation schemes is
an issue not yet addressed. Among the research efforts in service allocation somehow
related to combined F2C scenarios, we can mention the studies available in [7] and [8].
Both studies discuss the allocation of services in Fog and Cloud, with the emphasis on
static service planning scenarios, that is the set of services to be allocated is known in
advance. Authors in [9] describe the so-called FUSION framework and its architectural
aspects regarding services orchestration and allocation in the fog (here fog is called “edge
clouds”). This work is focused on data collection only, where the resources of fog devices
are not shared with other fog nodes. This means that resources volatility or data quality
are not considered. At this point the reader should notice that service orchestration
refers to the actions required to determine both how the service is to be executed (for
example be it in parallel or sequential) and the spectrum of computing resources required
for the service execution. On the other hand, service allocation refers to the actions
concerning the selection of computing devices matching the constraints imposed by the
service orchestration and usually meeting policies in place, dealing with for example
costs, etc. Recall that the latter is where this paper contributes to.

The work in [10] introduces a prediction strategy for the pre-allocation of resources
in fog scenarios based on customer’s loyalty, measured by service relinquish probabilities.
This study focuses on scenarios where customers have intermittent connectivity, rather
than on mobility. The work available in [11] proposes a hierarchical 4-layer Fog computing
architecture for big data analysis, specifically in smart cities scenarios. Finally, on the
commercial side, just as recent solutions aimed at linking cloud and fog, we can mention
IBM Bluemix Local, that extends the Bluemix product by considering not only IBM
owned data-center premises, but also adding the data-center premises near the end-
user side [12], or the AWS Greengrass by Amazon, also benefitting from local devices
[13]. These notorious examples show the commercial appeal of combined cloud and fog
strategies.

It is worth noticing that previous works focus on a set of issues related to the ser-
vice allocation problem in either planning or single Fog scenarios. To the best of our
knowledge, this is the first work considering mobility in combined Fog and Cloud ar-
chitectures. This paper provides an architecture-level, though highly indicative, F2C
performance evaluation, aimed at showing the benefits of a combined management of
cloud and fog resources, in terms of service response time, power consumption, network
bandwidth and disruption probability, all considered key for an IT/Network operator
looking forward a real F2C-based architecture deployment.

It is important to remark that service disruption probability is an important perfor-
mance metric for evaluating the impact devices mobility brings to the accuracy of the
state information. Indeed, the vast and unstoppable population of potential Fog nodes
along with their heterogeneity in terms of technologies, is adding more complexity to
conduct a proper management of the state information. Therefore, novel updating poli-
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cies must be considered to gather accurate information about computing (from the edge
up to the cloud) node’s capabilities. These novel updating policies must target state
information accuracy without neglecting the potential impact of bandwidth and mem-
ory space of the networking components. Thus, an updating mechanism, deploying the
selected updates policies, will be responsible for disseminating the data and computing
features offered by a resource. To that end a proper dissemination strategy must be de-
signed to guarantee that the state information –available computing resources, including
for example processing, disk storage, etc., or other resources characteristics, including for
example energy constraints, switch on/off state, sleep mode, etc.– is suitably and accu-
rately distributed on the F2C network. In this way, the service computation element can
take accurate decisions concerning service allocation strategies. In this paper we do not
particularly deal with update policies or dissemination strategies. Thus, in this paper
neither the update policies nor the dissemination strategies are considered when analyz-
ing the service disruption probability, instead service disruption probability is evaluated
considering mobility patterns and fog nodes density.

4. Dynamic Service Execution in Combined Fog-to-Cloud Scenarios

In this section, we focus on the Dynamic Service Execution (DSE) problem in the par-
ticular F2C scenario, and then propose two basic service allocation strategies, later used
to evaluate the performance of an F2C architecture through four different parameters
(see section 5).

4.1. The DSE Context
For the sake of global understanding, Table I lists the set of symbols used in this

paper. The main rationale behind the DSE problem is to successfully execute a set
of randomly arriving service requests, all demanding a certain amount of computing
resources in the F2C system for a particular time. A service is defined as a computing
job that can be split into K tasks, all running either sequentially or in parallel at fog
or/and cloud premises. We assume a task requires a minimum of 1 resource (computing
capacity or slot) unit, 1u, be it CPU speed, memory or networking speed (see [14]). We
also assume that a service will be successfully executed (Xi = 1) only if all its computing
tasks (i.e., those the service is split into) are allocated either at cloud and/or fog layers,
such as Cloud, HCF or LF layers, as illustrated in Fig. 1. Equation (1) quantifies the
Success of Service Execution, where Wk,i,R defines whether a task k of service i is using
1u of (e.g., Cloud, HCF or LF in Fig. 1) layer r, and Ki is the amount of tasks required
by service i. It should be emphasized that tasks belonging to a same service do not need
to be always allocated at the same layer, which is the salient feature of F2C systems.

Xi =
∑

kεKi

∑

rεR

Wk,i,R

|Ki|
(1)

An F2C system increases the complexity of the DSE problem, since fog resources
–located at the edge of the network–, may be moving constantly. This mobility effect,
leads to computing capacity fluctuations, negatively impacting on the service execution.
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Table 1: List of Symbols and Terminology.

Symbols and Terminology Meaning

S Set of services or comput-
ing jobs.

Xi State of a service i: 1 exe-
cuted, 0 otherwise, i ∈ S.

u Resource unit.

Ki Number of tasks in service
i that may run in parallel.

Wk,i,r 1 if the task k of service i
is using a resource unit of
layer r, 0 otherwise, where
r ∈ R and k ∈ K.

R The set of F2C layers.

Li Service Response Time of
service i.

b Baseline power consump-
tion.

a Slope of load-dependent
power consumption.

4.2. The Proposed DSE Strategies
To analyze the performance based on the following four parameters, Service Re-

sponse Time, Power Consumption, Network Bandwidth Occupancy and Service Dis-
ruption Probability, we propose two simple heuristics for job allocation: First-Fit and
Random-Fit. In the First-Fit strategy, workloads are allocated with a Bottom-Up ap-
proach, hence when the bottom layer runs out of capacity, the next upper layer is consid-
ered for service allocation. A First-Fit approach prioritize the use of computing resources
in the LF layer. In this way, the service response time can be substantially reduced since
computing resources of the Cloud layer are reserved for services requiring its high capacity
resources.

On the other hand, in Random-Fit a layer is selected randomly for service allocation.
Indeed, Random-Fit does not prioritize any layer for service computation, i.e., all layers
have the same probability to be selected. In this way, Random-Fit is useful to find a
balance between service response time and service disruption.

The pseudo-code description of both First-Fit and Random-Fit is described in Algo-
rithm 1 and Algorithm 2 respectively.

5. Evaluation Performance

The main objective of this section is to clearly show the potential benefits brought
by jointly managing cloud and fog resources, through the deployment of a novel Fog-to-
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Algorithm 1 Overall Procedure of First-Fit.
Input: (service i)
Output: (Allocated/NoAllocated)

for each task j in Ki

if LF has enough capacity then
allocate task j in LF

else if LF does not have enough capacity, but HCF does then
allocate task j in HCF

else
allocate task j in Cloud

Algorithm 2 Overall Procedure of Random-Fit.
Input: (service i)
Output: (Allocated/NoAllocated)

for each task j in Ki

Obtain X=Set of layers with capacity > 0
while task j is not allocated and |X| > 0 do

Randomly select a layer r
if layer r has enough capacity to support task j then

allocate task j in r

Cloud management architecture enabling novel strategies, such as collaborative models
based on resources sharing or parallel service execution, to name a few. To that end,
in this paper, we propose to analyze the DSE performance in terms of four parameters,
namely Service Response Time, Power Consumption, Network Bandwidth Occupancy
and Service Disruption Probability. In the next paragraphs we describe each one of
them.

Since all tasks of a service are executed in a parallel and independent manner, we
define the Service Response Time (Li ) as the maximum latency among all its allocated
workloads, c.f., Equation (2).

Li = max (Lr ×Wk,i,R) (2)

Let Li be the sum of the transmission latency and the processing latency. The
transmission latency is defined as the round trip time required to obtain the information
required for the service execution. It is worth stopping here to highlight the difference
between the Service Response Time and the holding time. The Service Response Time
refers to the elapse time to first, process a task and second, send the response back to
the end user. Instead, the holding time is the time defining how long resources will be
reserved for a particular service. In fact, a task might be completed, but still resources
can be reserved for the exclusive use of a service. Therefore, a service will stop and its
reserved resources will be released only when its holding time expires.

It is well known that the cloud layer is located farther from the user (access network)
than fog layers, hence it typically exhibits higher transmission latency than any fog layer.
The processing latency on the other hand, refers to the time needed to execute a service,
which in turn depends on the processing capacities. While it is expected that a major
difference between processing time at cloud and fog layers exists, that difference is not
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expected to be large when comparing different fog devices. Let Li be expressed as shown
in Equation (2), where Lr is the transmission latency plus the processing latency of
resource r.

The Power Consumption parameter can be generally determined as the addition of
the energy consumed at fog and cloud premises. In this study, we only consider cloud
Power Consumption, due to the fact that it is a dominant factor compared to mobile
end-devices, and also because the power related consideration in the fog would require a
slightly different approach – to consider for example the fact that end-devices may refuse
the request for processing resources if their energy reserves are limited–, that is out of
the scope of this paper. Thus, Equation (3) shows the Power Consumption, where b is
the baseline power consumption (assumed to be 325W as per [15]), a is the slope of the
load-dependent Power Consumption (assumed to be 30.5 Joules per Gigabit), and x is
the traffic rate.

Power = b+ ax (3)

We also analyze the Network Bandwidth Occupancy, defined as the amount of traffic
related to computing services processed in the cloud. Thus, the analysis of this parameter
does not consider all traffic related to services executed at any fog layer. In fact, we pay
attention to the traffic processed at Cloud, since this is the one that is conveyed along
the backbone of ISPs –cloud’s traffic consumes a high amount of Internet bandwidth
which is a common concern among ISPs, since it can affect the Internet connectivity
performance of their clients. On the contrary, the traffic processed on the Fog layer is
usually conveyed on the access network. Hence, Internet bandwidth is not required. We
consider the Network Bandwidth Occupancy a useful metric for IT providers, to measure
the benefits brought by fog computing to reducing the network core traffic.

Finally, we define the Service Disruption Probability as the amount of disrupted
services (when being executed), due to the lack of resources. This parameter considers
the tasks that being allocated to a particular fog layer, the selected layer does not have
sufficient resources to support the tasks demands. Therefore, a service is disrupted if at
least one of the computing nodes assigned for service computation become unavailable
( i.e., it runs out of capacity or it moves out of the layer coverage area), and no other
computing node may be found in the same layer to execute the allocated tasks. For
instance, if a service is being executed using two LF nodes, it will only be disrupted
if during its execution the LF layer runs out of capacity. In addition, if a service is
being executed using a computing node (A) belonging to the LF layer, and a computing
node (B) belonging the HCF layer, this service will be disrupted if: i) node A becomes
unavailable and there is no other node in the LF layer available, or; ii) if the node B
becomes unavailable and there is no other node in the HCF layer available. In other
words, we only consider protection between the same layers. Finally, it is also worth
noticing the fact that we assume services running in the Cloud layer cannot be disrupted.

5.1. Evaluation Settings and Assumptions
In order to show the impact brought by considering the F2C envisioned architecture,

we evaluate the effects of distinct DSE strategies on the Service Response Time, Power
Consumption, Network Bandwidth Occupancy and Service Disruption Probability in
three distinct and incremental F2C scenarios: i) a conventional Cloud scenario; ii) a
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Cloud and a LF architecture, hereinafter referred to as F2C-1, and; iii) Cloud, LF and
HCF architecture, hereinafter referred to as F2C-2. The main objective of such a split
is to show the effects of adding layers (i.e., resources) on the delivered performance.

The simulation model used to validate and obtain the presented simulation results can
be found in [16]. The simulation model was built using the well known network simulation
tool Omnetpp [17]. Moreover, all plotted values have a 95% confidence interval not larger
than 0.5 of the plotted value.

The following assumptions apply to the adopted simulation model:

• A resource unit consumes 10 Mbits of networking bandwidth (independently of the
layer where the resource unit is allocated). Moreover, a workload requires one unit
(slot) of capacity (memory, storage, processing). It must be remarked that a slot
is consumed by a service while its holding time does not expire. The reader should
recall that the holding time refers to the time that a service will keep consuming
computing and networking resources, independently if a service’s task finishes its
execution.

• 90% of services requests are mice services. A mice service stands for a service that
consumes a minimum amount of slots and whose arrival and holding times are low
– web search is a common example of a mice service. The remaining 10% of the
services are elephant services. An elephant service requires a high amount of slots
(ten times more than a mice), and its holding time is also larger in comparison with
a mice service – video on demand and file transfer backup are common examples
of elephant services [18].

• Mice service requests arrive randomly with a Poisson distribution, with a mean
arrival time of 10 time slots. The holding time of a mice service follows a negative
exponential distribution of 10 time slots on average. A mice service requires an
average of two slot units, i.e., a mice service can be divided into 2 independent
tasks thus easing parallel execution.

• Elephant service requests arrive randomly following a Poisson distribution, with a
mean arrival time of 100 time slots. The holding time of an elephant service follows
a negative exponential distribution of 500 time slots on average. We assume that
an elephant service requires an average of 10 units of capacity.

• The LF layer consists of 10 mobile nodes. Each LF node has 2 units of capacity.
The policy for a mobile node to get in/get out out the LF, is random according to
a Poisson and negative exponential distribution respectively, with an average time
of 50 time slots.

• The HCF layer consists of 2 mobile nodes. Each HCF node has 20 units of capacity.
The policy for a mobile node to get in/get out the HCF is random according to a
Poisson and negative exponential distribution respectively, with an average time of
500 time slots.

• Lr values per slot for Cloud, HCF and LF layers are 10, 2 and 1 ms respectively.

It is worth remarking that the main rational driving the adoption of 10 LF nodes and 2
HCF nodes, for the local fog and the high capacity fog layer respectively, is to consider
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edge devices heterogeneity. As well as other related research studies, see [10, 19, 20],
we consider the fog layer closest to the edge of the network has the highest amount of
computing nodes with limited capacity. This capacity limitation is because Local Fog
devices are edge devices (e.g., mobile phone or smart sensors) that do not have high
computing capacity. In a similar manner, we consider that HCF nodes are commonly
desktop or mobile PC, which despite of not having a computing capacity similar to the
Cloud, they do have more capacity than LF nodes.

5.2. Threats to Validity
In the following lines we present extensive simulation results concerning the perfor-

mance of Cloud computing and two distinct F2C architectures, considering two heuristics
for service allocation. Four metrics are considered to evaluate the performance: the Ser-
vice Response Time, Power Consumption, Network Bandwidth Occupancy and Service
Disruption Probability.

To properly support the simulation results related to service response time, we con-
sider distinct LF and HCF settings in order to show how service requests are allocated at
the Cloud layer. Since the main goal of the service response time evaluation is to show
how Fog resources can reduce stress from the Cloud, in order to assure the validity of
this assessment, we plot the amount of services using Cloud computing resources versus
the population of HCF and LF nodes for F2C-2 and F2C-1 architectures respectively,
see Fig. 3 and Fig. 4. It is important to remark, that the last two evaluations do not
consider the random-fit heuristic, since its uniform random selection strategy makes no
significant variation to come up related to the service request distribution.

Based on the results show in Fig. 3 and Fig. 4 we can see that indeed, the use of
both LF and HF nodes reduce stress from the Cloud. However, the reduction degree is
limited by the amount of Fog nodes available as well as the issues related to service dis-
ruption caused by the overuse of Fog nodes, see the section concerning Service Disruption
Probability.

Another important performance metric is Service Disruption Probability, which mea-
sures the probability of a service being disrupted when the mobility of fog computing
nodes is considered. Based on the mobility pattern assumed, LF nodes move faster than
HCF nodes. Therefore, we clearly show in sub-section 5.6 that F2C-1 presents a higher
disruption probability than the other architectures evaluated. To assure the validity of
our simulation results, we evaluate the disruption probability of an F2C-2 architecture,
with different layer settings, specifically by increasing the amount of LF nodes avail-
able. In this way, we confirm our assumption stating that the intrinsic mobility of Fog
nodes can negatively affect the performance of F2C architectures. In short, the more
the LF nodes available, the better the Service Response TIme (typically the case in IoT
scenarios), although it can be counterproductive regarding service resilience.

5.3. Service Response Time
Fig. 5 shows the Service Response Time for the following architectures: Cloud (C),

F2C-1 (LF and Cloud, i.e., one Fog layer) and F2C-2 (LF, HCF and Cloud, i.e., two
Fog layers), considering the two proposed strategies for job allocation without Fog nodes
mobility capabilities, i.e., Random-Fit and First-Fit. As it can be observed, the conven-
tional Cloud scenario exhibits the highest Service Response Time. Indeed, services with
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Figure 3: Amount of services using Cloud resources vs LF nodes population.

all their tasks allocated at Cloud present a substantial impact on the Service Response
Time, mainly motivated by the long geographic distance between Cloud and the edge,
what unquestionably, negatively impacts on the time required to acquire the information
processed by the cloud layer. It is also worth mentioning that in a cloud scenario, the
Service Response Time is not affected by the heuristic used for jobs allocation. The sim-
ulation results obtained for F2C-1 show a significant reduction of the Service Response
Time in comparison with the conventional Cloud. This is motivated by the geographical
proximity between fog servers and the edge. However, the best results are obtained for
F2C-2. We clearly show in Fig. 5 that the simulation results for F2C-2 present the lowest
Service Response Time vs both F2C-1 and the Conventional Cloud. Indeed, this reduc-
tion is motivated by the use of an additional fog layer (HCF). In a deeper analysis we
may conclude that some of the jobss allocated to the Cloud layer in the F2C-1 scenario
(there are no resources enough at the LF layer) are now executed at the additional fog
layer, namely HCF –with a lower response time vs cloud–, so reducing the global Service
Response Time.

It is also worth analyzing the effects of the heuristic used for jobs allocation for each
individual F2C-1 and F2C-2 scenario. We may see that First-Fit has lower response time
in comparison with Random-Fit. This is mainly because First-Fit intends to allocate all
tasks close to the edge. Thus, First-Fit considers first the LF layer, and only in case of
lack of capacity in the LF layer, the HCF layer is considered, and finally the Cloud only
when HCF lacks of resources. However, Random-Fit selects in a random manner the
Cloud, HCF or LF layers for each task of a service. As shown in Fig. 5, this strategy
negatively impacts on the Service Response Time.

5.4. Load-Dependent Power Consumption
Fig. 6 shows the total Power Consumption for the three different scenarios, Cloud,

F2C-1 and F2C-2, also considering both Random Fit and First-Fit job allocation strate-
gies. It should be noted that the plotted graph stands only for the power consumed by
the Cloud. This is because, as said in the previous section, the power consumed by the
Fog (mainly formed by mobile devices) can be neglected in comparison with the Cloud
(in the current model we do not consider mini data centers as part of fog devices). Hence
the Power Consumption is directly aligned to the jobs allocated to the Cloud. As it
can be observed and also as expected, the conventional Cloud exhibits the highest total
power – notice that, similar to the analysis done for the Service Response Time in a
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Figure 4: Amount of services using Cloud resources vs HCF nodes population.
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Figure 5: Average Service Response Time.
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Figure 6: Total Power Consumed.
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Figure 7: Traffic Generated at the Network Core.

cloud scenario, the power is not affected by the heuristic used for job allocation. Sim-
ulation results for F2C-1 show a significant reduction of the total power in comparison
with the conventional Cloud, that is even improved when deploying the F2C scenario.
The final conclusion is that by adding a new fog layer we reduce the need to allocate
jobs at the cloud –reacting to a lack of resources at the LF layer–, hence reducing the
overall Power Consumption. Finally, notice that similar to the Service Response Time,
the First-Fit allocation strategy presents lower Power Consumption compared to the
Random-Fit strategy.

5.5. Network Bandwidth Occupancy
A conventional Cloud infrastructure is commonly reached out through the network

core of the Internet Service Providers (ISPs), that are responsible for providing the
network resources required to accommodate the traffic generated by the services executed
by cloud users. Recognized the fact that such traffic cannot be neglected –for instance the
traffic collected from thousands of sensors or the data obtained from a huge database–,
it turns out that this traffic may be large enough to significantly stress the ISPs network
core. In response, ISPs must re-dimension their networks to handle the traffic generated
by cloud users, which increases their CAPEX and OPEX. Fortunately, the advent of fog
opens the door to ISPs as a cost-efficient solution to reduce the traffic conveyed to their
network cores. In the following lines, we evaluate how efficient traffic offloading to the
edge may be in this regard.

Fig. 7 shows the Network Bandwidth Occupancy for both First-Fit and Random-
Fit strategies, considering the F2C-1 and F2C-2 scenarios –the Cloud scenario is not
considered since in this case all traffic has moved to the network core. It is worth
highlighting the reduction obtained with the introduction of the HCF layer (i.e., the
F2C-2 scenario). Indeed, the total traffic conveyed to the network core is 46.8% and 28.1
% for F2C-1 and F2C-2 architectures respectively, using Random-Fit. For a First-Fit
strategy, the total traffic generated at the network core is even lower, 14.6% and 10.5%
for F2C-1 and F2C-2 scenarios respectively. Based on the obtained results, we may
conclude that a Random-Fit strategy might be more appropriate to achieve a correct
balance between the network traffic conveyed at the network core, and the one conveyed
at the access domain (fog layer). An important aspect to be considered is the sharing
policy supporting the deployment of the intermediate fog layers. Indeed, some policies
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–similar to the traditional Service Level Agreement though much more dynamic–, must
be deployed to enable edge resources sharing. These policies will undoubtedly impact on
the overall performance. For example, we may with no doubt assess that an end user will
only share its resources as long as no degradation is produced in the perceived quality of
the services already running in his/her device. Also worth mentioning that such sharing
policies will be a key part of the novel collaborative model envisioned (similar to AirBnB,
etc.) with a relevant impact on the business model for Cloud and ISP providers. This
paper does not deal with such policies, leaving this analysis for future studies.

5.6. Service Disruption Probability
The Service Disruption Probability refers to the amount of disrupted services due to

the unavailability of resources caused by the intrinsic mobility of Fog nodes. The reader
should recall that the mobility of Fog nodes might cause that a node loses connection to
its access point, hence the fog node no longer being part of its Fog layer. This has a final
impact on the services running on the fog node.

To compute the disruption probability, we have adapted the Freeway mobility model
as the mobility pattern for the LF domain presented in [21]. To that end, we consider
a three lanes highway with 10 LF nodes. Every time a LF node exits a highway lane a
new node enters the highway with a mean Poisson arrival time of 6 time slots. We also
consider a lane length of 1 Km and nodes traveling the lanes with a speed range between
50 and 80 Km per hour. We also consider a parking lot model to model the mobility
pattern of the HCF layer [22], where cars in a parking lot form the HCF layer. Similar to
[22], we consider that HCF nodes arrive at a parking lot according to a Poisson process,
as well as an exponential distributed parking time with 15 and 60 time slots respectively.

Fig. 8 shows the Service Disruption Probability for both F2C-1 and F2C-2 scenarios
–we do not consider the Cloud scenario, since we assume Cloud resources are never
exhausted as well as cloud nodes are not moving. Notice that unlike the three parameters
evaluated so far, the benefits brought by F2C scenarios are not that significant when
analyzing the Service Disruption Probability. This is obviously motivated by the fact
that no disruption is expected when allocating jobs only at Cloud premises. The Service
Disruption Probability of F2C-2 is lower than F2C-1, whereas the performance of First-
Fit and Random Fit is very similar, hardly affecting the overall performance. This
is due to the fact that by adding a new fog layer we increase the chances to prevent
service disruption. Therefore, it can be concluded from the results shown in Fig. 8 that
increasing the F2C layered structure, by adding the so-called HCF layer, decreases the
Service Disruption Probability.

To assure the validity of the simulation results presented above, we evaluate the
disruption probability of an F2C-2 architecture by gradually increasing the amount of LF
nodes available. Based on the results show in Fig. 9 we confirm that the mobility of Fog
nodes can decrease the performance of F2C architectures and reduce the resilience of an
F2C-2 architecture regarding mobility. This is, more LF nodes available can (typically the
case in IoT scenarios) improve the Service Response Time, but can be counterproductive
regarding service resilience. Notice that the Disruption Probability for both First-Fit and
Random-Fit varies when the number of LF nodes is increased. Moreover, the Disruption
Probability does not mandatory increase with a larger number of LF nodes. This is
because the more the LF nodes, the more the chances to avoid Service Disruption (of a
service running on the LF layer) since more LF nodes become available. However, it can
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Figure 8: Disruption Probability.
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Figure 9: Disruption Probability of an F2C-2 architecture vs amount of LF-nodes.

be observed that there is a trend related to an increase in the Disruption Probability due
to an increase in the population of LF nodes. The lower and upper limits of this trend
do not fluctuate significantly as the number of LF nodes increases.

Based on the simulations presented in this section, the following lessons may be learnt.

• The use of both LF and HCF nodes decreases the Service Response Time as well
as the Network Bandwidth Occupancy and Power Consumption.

• The use of both LF and HCF nodes increases the probability of service to be dis-
rupted. Nevertheless, the lower and upper limits of the Service Disruption Proba-
bility do not fluctuate significantly as the number of fog nodes increases.

• The use of a first-fit heuristic for service allocation, which gives preference to Fog
allocation, is preferable in F2C scenarios.

• A layered F2C architecture is suitable for performance metrics, such as Service
Response Time, Network Bandwidth Occupancy and Power Consumption. Never-
theless, it is not suitable for reducing the Service Disruption Probability.

6. CONCLUSION

In this paper, we have evaluated the performance of Fog-to-Cloud (F2C) systems to
show the benefits of a management architecture putting together the different capacities
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brought by both devices at the edge and at the Cloud. To that end the paper focus on
the DSE problem, standing for the strategy to be defined for job allocation on such a
mobile, dynamic and heterogeneous scenario. We end up proposing two basic resource
allocation strategies, First-Fit and Random-Fit (not yet considering potential business
models and sharing policies to come), utilized for validation purposes.

The evaluation procedure consists in testing the performance of four key metrics,
Service Response Time, Power Consumption, Network Bandwidth Occupancy and Ser-
vice Disruption Probability on three different architectural scenarios, Cloud, F2C-1 and
F2C-2, all incremental in the set of layers (i.e., resources) to be considered. By means
of simulation results, we showed that Cloud and Fog computing systems can be used in
a highly complementary fashion to increase the overall performance. Indeed, building
a hierarchical and layered stack of resources enables the parallel execution of services
either in the cloud, fog or both fog and cloud at the same time.

As a future line of work, we plan to extend the presented evaluation model regard-
ing F2C by considering how key performance metrics impact on the potential business
models.
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