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Abstract

We study a dynamic video encoder that detects scene changes and tunes the
synthesis of Groups-of-Pictures accordingly. Such dynamic encoding can be
applied to infrastructures with restricted resources, like IoT facilities where
multimedia streams are of use. In such facilities the scarcity of resources
(energy, bandwidth, etc.) is a dominant solution design factor. In the do-
main of video capturing/transmission content-driven approaches should be
adopted to improve efficiency while maintaining quality at acceptable levels.
We propose a time-optimized decision making model that yields different
sizes of groups-of-pictures (frames) to meet the previously discussed objec-
tives i.e., transmit video sequences in acceptable quality with rational use
of the wireless resources. Our quantitative findings show that the propose
scheme performs quite efficiently while dispatching video sequences with dif-
ferent characteristics.

Keywords: Scene detection, Content-driven, Group-of-Pictures, Optimal
Stopping Theory

1. Introduction

1.1. Motivation

The use of multimedia applications has risen nowadays in diverse areas
like video-on-demand, distance learning, spatial monitoring etc. A special
category of wireless sensors networks, in which multimedia data such as voice,

Email addresses: kakiap@di.uoa.gr (K. Panagidi),
Christos.Anagnostopoulos@glasgow.ac.uk (C. Anagnostopoulos), shadj@di.uoa.gr
(S. Hadjiefthymiades)

Preprint submitted to Special Issue on Mobile Video in the 5G/IoT EraNovember 27, 2017



image and video are disseminated, is called Wireless Sensor Multimedia Net-
works (WSMNs) [I]. Currently, WSMNs are attracting significant attention
due to the variety of applications in which they can be applied such as traffic
congestion, environmental, habitat and patient monitoring and recording un-
usual events. One of the challenges of WSMNs is the lifetime of the network,
since the nodes are mostly battery-operated. Although providing better qual-
ity for images and videos is necessary, it shortens the network lifetime as the
energy sources are rapidly drained. One of the features, which is energy con-
suming in WSMNs, is multimedia streaming. Multimedia streaming is the
process of sending and delivering multimedia content to end users or to the
fixed infrastructure, where it will pass through further processing. Multi-
media streaming requires efficient compressing methods which minimize the
consuming power without harming the content of the distributed data.

The most popular standard for motion compensated video compression is
MPEG. Even though it was originally designed for digital storage media, its
capabilities have been increased to support a high spectrum of bit rates in or-
der to be used in streaming multimedia applications over the Internet or over
lossy wireless networks. Although in this paper we assess the performance of
our scheme using the MPEG-2 standard our technique is also applicable to
the MPEG-1 and 4 standards as well as the H.26* family of standards. This
wide applicability is based on the intra-frame calculations that we undertake
in order to throttle our decision making process. In this paragraph we briefly
present the broader MPEG video compression technique. A key feature of
MPEG is the ability to compress a video signal to a fraction of the original
size by coding only the differences between two sequential frames instead
of an entire frame. This compression method is called differential encod-
ing. MPEG uses three types of frames, i.e. I, P and B frames to implement
different compression methods and exploit inter-frame dependencies within
the video stream. Typically, the repeated sequence of I, P, and B frames is
known as Group of Pictures (GOP). Each GOP is characterized by a specific
number of I, P and B frames. I frame means an intra-coded frame and can be
treated as a standalone image. I frames are often used as a reference point to
a new scene or a big change to the already transmitted sequence of frames.
A P frame contains only predictive information. P frame is generated by
looking at the deltas between the present and the previous frame. B frames
are created by examining the differences between the previous and the next
reference frame, i.e. either I or P, in a sequence of frames. P and B frames do
not contain sufficient information to view the related video frame but they



have the advantage of requiring significantly less resources when stored or
transmitted. P and B frames can be decoded in the context of GOP. Ideally
a GOP should represent a similar continuous related scene. The encoders
mostly use fixed GOP size to encode video sequences. A fixed encoder can
operate with different size of GOPs but once a target size for the GOPs is se-
lected, the same size is applied to the whole coded sequence. Fixed encoders
are easy to implement but they prevent the encoding process to be adaptive
to changes in video sequences due to i) scene cuts (abrupt/gradually), ii)
changes of video capturing settings e.g. camera focus and iii) degradation of
frame quality based on transmission noise.

Challenge 1: Bandwidth is limited: Imagine a video from a surveillance
camera of a parking lot. Except from the movement of a car or a passenger
all the remaining scene remains static over times. It is expected that the
surveillance video demonstrates ”limited” activity thus frequent transmis-
sion of I frames is not needed, which in turn require network resources and
energy. In contrast a football match contains many scene changes because
the camera or the objects in the scene are constantly in movement, which
logically corresponds to frequent I frames. If scenes with small video content
variance, e.g. parking lot, are coded with the same GOP structure frequency
with high rate changing frames, e.g. football match, this would lead to a
considerable waste of network resources. Constant rate of I frame generation
from fixed encoders requires significantly more bandwidth than the actually
needed to support the considered multimedia applications.

Challenge 2: Video Streaming in ’accepted’ quality: Scene changes
can be divided into two categories: abrupt and gradual. The difference be-
tween abrupt and gradual scene changes lies in the number of frames needed
to conclude the change. If the change is contained only in one frame it is
defined as a abrupt scene change. Gradual scene change involves several
frames to complete the transition from one scene to another. Encoding pro-
cess is influenced by GOP structure because it is based on predictive coding
techniques along the temporal axis such as motion prediction and compen-
sation. If I-frames are created independently of scene changes then encoding
efficiency will suffer from severe error drifting on video transmission. Again
high-rate changing frames should be shorter than slow motion videos in order
to achieve better coding efficiency.

This paper is organized as follows. In Section 2 we present the preliminar-
ies needed for both GOP structure and OST formulation problem. In section
3 we present the scene Detection problem combined with the description of
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Figure 1: MPEG Encoder

our solution. Section 4 presents the experiments performed and the corre-
sponding discussion followed by the conclusions in section 5. Experiments
were conducted by using several types of slow and fast motion video samples
from a media library [2].

1.2. Preliminaries

1.2.1. Group-Of-Pictures structure

The main goal of the MPEG standard is to compress a video sequence to
a fraction of the original prior to transmission or storage. This is achieved
by transmitting the changes between frames, which are sampled at specific
time intervals, and not the whole sequence of frames. The basic processing
blocks in the encoder, shown in Figure 1, are Discrete Cosine Transform
(DCT) coefficient quantizer, run-length amplitude / variable length coder,
and block-based motion compensated prediction, using motion estimation.

Starting with the first frame of a Group-Of-Pictures (GOP), an I (intra-
coded) frame is created. The encoder can predict a target frame. This is
commonly referred to as a P (Predicted) frame, and it may also be predicted



from other P frames, although only in a forward-time manner. Each P frame
in a sequence is predicted from the frame immediately preceding it, whether
it is an I frame or a P frame. Note that, I frames are autonomously com-
pressed spatially with no reference to any other frame in the sequence. The
temporal prediction technique used in MPEG video is based on motion esti-
mation. The basic assumption of motion estimation is that, in most cases,
consecutive video frames will be similar except for changes induced by ob-
jects moving within the frames. In the trivial case of zero motion between
frames (and no other differences caused by noise), the encoder predicts the
current frame as a duplicate of the prediction frame. When this is done, the
only information necessary to transmit to the decoder becomes the syntac-
tic overhead, which is necessary to reconstruct the picture from the original
reference frame.

1.2.2. Optimal Stopping Theory

In our context we establish a content-driven and structure different GOP
size adaptive to changes. GOP size is provided by an optimal stopping rule
based on the principles of Optimal Stopping Theory (OST), which provides
the best time instance to maximize an expected pay off.

Specifically, let [F,, is defined as the o-algebra generated by the random
Y1,Ys, -+, Y, variables in a probability space (0, F, P). A stopping rule is a
random variable 7 with realization values in a set of natural numbers such
that {Tr =n € F,} forn = 1,2,... and P(T < o0) = 1. We denote with
M(n, N) the class of all stopping rules 7 in which P(n < 7 < N) = 1 for
any n = 1,2,.... The real-valued pay off function in OST is defined as the
mapping W : R — R being a Borel measurable function which values W (y)
interpret the pay off of a decision maker (encoder in our context) when it
stops the Markov chain (Y,,,F,,) at the state y € R.

Assume now that for a given state y and for a given stopping rule 7 the ex-
pectation E[W (Y, )|Y] = y| exists. Then the expected pay off E[W (Y;)|Y; =
y| corresponding to a chosen stopping rule 7 exists for all states y € R, which
refers to the value of the stopping problem. Based on the principles of opti-
mality the value Vy(y)of the optimal stopping problem is the supremum of
the expected pay off of all the stopping rules belonging to M(1, N), i.e.,

Vnly) = sup E[W(Y;)[Y1 =y, (1)

T€M(1,N)

where the supremum is taken for all stopping rules 7 € M(1, N) for which
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the expectation E[W (Y,)|Y: = y] exists for all y € R. Based on the optimal
value Vi (y), where the supremum in is attained, the optimal stopping
rule t* € M(1, N) satisfies the condition:

Vn(y) = E[W()Y1=y],Vy eR. (2)

It is clear that the optimal value Vi (y) is the maximum possible excepted
pay off to be obtained observing the random variables Y7, ..., Yy up to N-th
observation. Consider now that the expectations E[W (Y;)|Y; = y exist for
all y € R and, based on the principles of optimality, introduce the operator
Q over the pay off function W € R such that:

QW (y) = max{W(y), E[W(Y)[Y1 = y]}. (3)

Then, the optimal stopping rule ¢* which attains the optimal value in (2)) is
estimated by the Theorem 1:
Theorem 1 ([3]) Assume that W € R. Then:

o Vo(y)=Q"W(y),n=12,...;
L Vn(y) = maX{W(y%]E[anl(le)]}? where Vb(y) = W(y)
e The stopping rule ¢} evaluated as

ro= min{0 < k< n Ve (y) = W), (4)

n

refers to an optimal stopping rule in M(1,n). If E[|[W(Y})|] < oo, for
= 1,...,n, then the stopping rule ¢} in is optimal in the class
M(1,n).

2. Related Work & Contribution
2.1. Related Work

Scene change detection is the main criterion which defines GOP length
in many research approaches. Therefore we present below related works on
scene detection and adaptive GOP structuring. All the following approaches
are based on the following steps: authors extract some statistics from consec-
utive frames like color histograms or block differences and then compare this
information with a specific threshold. Especially in compressed videos we
can use several well studied indicators like discrete cosine transform (DCT)
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coefficients [4],[5], and block modes/types [6] and motion vectors [7],[§] and
[9].

Authors in [10] study the scene detection problem. The use of texture
variation indicators, like interframe variations combined with a parallel pro-
cessing method is proposed for video encoding with adaptive GOP struc-
ture. They detect both types of scene changes, i.e. gradual and abrupt
scene changes, at less computation effort and the creation of new GOP is
based on this detection. They also propose also balanced frame-level paral-
lel scheduling algorithms that first determine frame priority, followed by the
thread priority assignment. However this approach is mostly focused in the
parallelization of video processing and not on the implementation of more
sophisticated algorithms for scene detection. Scene detection can be based
on other approaches like the pixel-based method in [I1I].The differences be-
tween the pixel values of two sequential frames is measured and if this value
is higher than a specific threshold a change is detected. The disadvantage for
the pixel-based method is that it is sensitive to object motion in the scene.
Histogram comparison is proposed in [12] where the difference between his-
tograms of two sequential frames is computed in order to determine the scene
change. It should be mentioned that histograms are not sufficient informa-
tion for scene change detection as long as different scenes can have similar
histogram values. Scene change detection by using Markov Chain Monte
Carlo (MCMC) algorithm [13] and k-means clustering-based [14] approaches
also provide feasible solutions. The posterior probability calculation of the
MCMC algorithm is computed based on the data likelihood of the video and
it requires important computation effort. However statistical techniques, e.g.
pixel-based and block-based luminance difference approaches, involve lower
complexity than clustering-based approaches as shown in [15].

Adaptive GOP size is also a well-known problem in the related litera-
ture but most approaches follow intuitive processes. Dumitras and Haskell
[16] developed a frame type decision algorithm, which employs the motion
similarity information. Authors show that the optimal number of B frames
between reference frames must be between 0 and 2. In [I7] the author pro-
poses to place I frames to the positions of detected cuts during the process of
video encoding. Our model follows a different approach compared to these
research efforts. Mainly these methods compare two or more consecutive
frames and not by taking the advance of interframe result. This approach
requires a significant computational effort. In addition histograms and other
traditional methods based on statistics cannot be applied on real-time fast
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flow video in which changes can occur stochastically. Our model lets the
encoder decide the GOP size by autonomously determining the appropriate
time to conclude the GOP.

Methods derived from the optimal stopping theory have been applied
to information dissemination in ad-hoc networks. The data delivery mecha-
nisms in [I§] and [19]deal with the delivery of quality information to context-
aware applications in static and mobile ad-hoc networks respectively assum-
ing epidemic-based information dissemination schemes. The mechanism in
[18] is based on the probabilistic nature of the ”secretary problem” [3] and
the optimal online problem. In [20] authors make optimal stopping deci-
sions on the collection of contextual data from WSNs. Authors try to de-
termine the best time to switch from decision to learning phase of Principal
Component-based Context Compression (PC3) model while data inaccuracy
is taken into account. If data inaccuracy remains at low levels, then any
deterministic switching from compression to learning phase leads to unnec-
essary energy consumption. OST rules are applied between compression and
learning phases of the observations.

2.2. Contribution

We propose a model of dynamic encoder adaptive to changes in video se-
quences by dynamically adjusting GOP size based on an Optimal Stopping
Theory (OST) rule in order to transmit video sequences in an acceptable
quality with the simultaneous rational use of WSMN resources. More specif-
ically we report:

1. what it is defined as a scene change problem and quantify this event

2. the optimal stopping rule for the discussed problem and how it is ap-
plied

3. the performance evaluation of the proposed scheme.

L % 2 a0

Figure 2: GOP in the H.263 video flow



3. Time-optimized Grouping-of-Pictures

3.1. Rationale & Problem Formulation

A prediction scheme inside the encoder is used in order to foresee any
scene changes. In our case, it is assumed that each GOP structure can be
large and finite. Each next frame is encoded as a P frame at discrete time
step t € {1,...,n}. At time instance t = 1 an I frame F7 is constructed and
in ¢ = N the last frame Fp, is created. The main goal is to continue to add
P frames into the same GOP sequence, if and only if a scene change does
not occur. At this point we must quantify a scene change. Based on the
definition provided in [I0] let us consider a video frame Fg, coming inside
the encoder encoder at the checkpoint (1) of figure [Il A P frame Fp, is
encoded using the motion vectors between the previous reference frame and
the current frame Fi, inserted in the MPEG encoder and the output is an
encoded frame Fp, ¢, which mainly contains the differences betweenF, and
the previously I or P frame as shown in Figure 2l This bit-stream is sent to
the decoder. The decoder based on these differences creates the new frame
Fpe, exiting from checkpoint (6) in figure . The metric indicating a possible
scene change is defined as the sum of absolute differences [10] between the two
frames (SATD) F¢, and Fpe, where Fi?t is the pixel value at location (i, j)
of frame F¢, and I, and Hj, are the width and height of a frame, respectively:

Iy—1 Hp—1
SATD(Fe, Foc) = Y Y | = F (5)
=0 j=0

As a decision maker, we desire to get as close as possible to a given limit
in which a scene change occurs but the limit should not be exceeded. Given
the incoming values of SATD between the incoming and the outgoing frame,
i,e, checkpoints 1 and 6 from the encoder encoder in figure [, we would like
to find the closest distribution which fits the data. We used a distribution
comparison function which returns the fit of all valid parametric probability
distributions to the input data and plot the Probability Density Functions
(PDFs) to compare them graphically. In our case we can see the results of
the function in figure|3| In this work we will deal with the two most prevalent

distributions, i.e. gamma and normal distributions.

3.1.1. Gamma Distribution
Specifically, let us consider that Sy, S5s,---, S, be a sequence of sequen-
tially observed random variables having a gamma distribution I'(«, 5) where
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a, 3 > 0 and each corresponds to S, = SATD(F¢,, Fpc,) at time instance
(step) t = n:

Basaflefs,b’

s . B) = s (6)

The encoder observes the random sequence {Si,...,S,} and decides
whether to ‘stop’ or to ‘continue’. The encoder wants to pull as many frames
as possible. If the encoder decides to stop at the moment n, then it will gain
a real-valued pay off (y + > | S;), if the sum > 7 S, is not greater than a
specified threshold T. The threshold 7' corresponds to cumulative error when
a scene changes occurs. If the encoder passes the limit 7', then the gain is
zero. A given nonnegative real number y appearing in the above gain defi-
nition is another characteristic of the problem and may be interpreted as an
initial state of the process of observations. Formally, we consider a Markov
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chain (Y,,F,) forn=1,..., N with
i=1

with F,, being generated by the observations Si, 5s,...,5, and y > 0. We
define as pay off the real-valued function W(y) € R such that:

. — (?ﬁrZ?:lSi) 7ify+2?:1SiST
Wy, ) = { 0 , otherwise, (8)
with error tolerance threshold 7" > 0. The threshold 7" indicates the tolerance
of the encoder to delay the cumulative sum of the frame variations in light
of pulling as many fames as possible. However, the sum of those variations
is stochastic, thus, the encoder has to find an optimal rule for stopping the
surge of the random sum just before reaching its maximum tolerance value 7.
Based on the pay off W(Y,,) with initial state y > 0 and tolerance threshold
T, we define our optimal stopping time problem for the encoder:

Problem 1. Given observations of SATD values {51, ...,S,} and toler-
ance cumulative sums Y7 = y+51,Ys = y+51+Ss, ..., Y, = y+> 1, Sy, find
the optimal stopping time ¢* to maximize the expected pay off E[W (Y;+)|Y}]
where the pay off is defined in ().

3.2. Solution Fundamentals

Before proceeding with a solution of Problem 1, we refer to the Proposi-
tion 1 to analyze the expectation of the optimal value V,,(y).

Proposition 1. If there exists a real number t*, 0 < ¢t* < T such that
the conditions of Theorem 1 hold true, the optimal value V,,(y) is calculated

for y < t* as follows, where n = 2,..., N:
t*—y o0
Vi) = [ Visly 4 9f@ds [ Wiy +9)f(s)ds )
0 t*—y

with the initial condition Vi(y) = [ W (y + s)f(s)ds.
0

Proof: This derives immediately from the principle of optimality in The-
orem 1 by taking the expectation of the optimal value of V;,(y).
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Let us now provide a solution to Problem 1. We need first to find the
form of V,,(y) = Q"(y), n = 1,..., N. By definition of the operator Q, we
have for every y € (0,T:

OW(y) = max{W(y), EW(VL)]} = max{W(y). EIW(y + S)]}
= max{W(y), / W(y+5)f(s | . B)ds)

= max{W(y),Li(y)}

For y < T and given Proposition 1, the integral function I (y) = [ W (y+
0

s)f(s | a, B)ds is expressed as follows:

Li(y) = /Wy+8 ds =

T— 0
= /y+s ds—l—/()f()
0 T—y
= aga—1,-38
= /y+sﬁ ds
/ (a)
T—y
= /yﬁasa e ds+/ —ﬁaa 1 ds

- Fja) (3 (T )" (5T~ ))*(T(0) ~ (0, BT ~ y)))
T =) (BT — ) (Dl +1) — e+ 1, AT = y))10)

Figure 4] shows an exemplary graph of the pay off function W (y) and the
integral function I (y) for y < T.

It is easy to verify that for any given tolerance threshold 7' the functions
W and I have equal values at ¢; € (0,7 at which the function I; takes its
only maximum on the interval (0,7 because I,(y) > W(y) for y € (0,t)
and I, (y) < W(y) for y € (t1,T]. Then the value of ¢; is estimated by solving
the following equation:

12
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T—t1

I(t,) / W(t + ) f(s)ds = W(t), (11)

0

and depends on the probability density function f(s) and tolerance threshold
T. Given the pay off function in , we obtain ¢; by solving the equation:

T—t1
/ t1+9) ds = t, &
0
T—ty T—t1
t / f(s)ds + / sf(s)ds = t, <
0 0
(1= Fs(T —ty))
t = E <T-—t 12
Gl SIS<T-tl, (12
where Fg(x) = P(S < z) f f(s)ds is the cumulative probability function

of S and E[S|S < T — t4] IS the conditional expectation of S given that
S < T —t;. The optimal value function V; = QW is the maximum of the
two ones presented in Figurddl Based on the optimality in Theorem 1, one
step before the end of the observations the decision maker should continue
the observations if it is at any state y which is less than ¢; and should stop
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otherwise. Obviously the functions II;, W and V; are equal to 0 for arguments
greater than T

Given that I;(y) denotes the expectation E[V,,_1(y + S1)],n = 1--- N,
we provide Proposition 2 that holds true for any integral function I, (y),
n=1---N by induction.

Proposition 2. For any natural number n, for ¢; derived from (L1),
and for every T' > 0, > 0,5 > 0 the integral function I,(y) satisfies the
following conditions:

L L(y) > W(y) for y € (0,t1)

2. L(y) < W(y) for y € (t1,7T]

3. I,(y)=0fory>T

Proof. The conditions (1),(2) and (3) for n = 1 derive from Proposition

1. Now, let us assume that the conditions (1)—(3) hold for I, _;(y). Then, by
definition of V,,_1(y) and by induction assumption for y € (0,¢;) we obtain:

[e.e]

L(y) = /Wamy+@f@ws

0

= [t ases+ [ wraseas+ [0
E/WMMWW+/WWMMWﬂWPW@

Hence the condition (1) is satisfied. In addition, condition (2) is satisfied
when y € [t;,T) since we obtain that:

N

(e 9]

I.(y) = /Vn—l(y + 35)f(s)ds =

0

-y

Wy +s)f(s)ds =Ti(y) < W(y) (13)

o

The condition (3) is obvious, thus, the proof of Proposition 2 is completed.
It follows from Proposition 2 immediately that for n = 1,..., N, the
optimal values V,,(y) have the form:

Va(y) = L) 10,01 (y) + WI(Y) L1 (y), (14)

14



where the value of ¢; is provided in (11)). Based on this, we provide the
optimal stopping rule for the Problem 1:

Proposition 3. Given a sequence of SATD realizations Sy, ..., Sy with
probability density function f(s) and pay off function W(Y,,;y, T) defined in
(8) with cumulative sum Y;, = y + > | S;, the optimal stopping rule ¢* for
the Problem 1 with initial state y is given by:

k
t=minf0<k<N:Yi=y+ Y 8>t} (15)

=1

where t; is estimated in (11)).

Proof: The result follows directly from Theorem 1 and Proposition 2.

From Proposition 3, the optimal stopping rule model is interpreted as
follows: the encoder continues to observe, i.e. add P frames in the GOP
sequence, as long as the sum of the initial state y and the sum of already
observed values s; do not exceed the value t;. Hence, we have to compute the
threshold value t; which requires the estimation of the probability density
function f(s) given a tolerance threshold 7. In case that SATD follow the
gamma distribution I'(«, §), then the integral function I is directly provided
in and t; is obtained by solving the equation in ((11)).

Remark 1. It is worth mentioning that the optimal value Vi (y) of
Problem 1 is inductively calculated for y < ¢; from the recursive equation:

t1—y T—y
V= [ Vil rdst [ w9
0 li—y
where the initial condition is given by Vi(y) = I;(y) for any N > 0 and
n=23,...,N.

3.2.1. Normal Distribution

The normal distribution is investigated as the probability distribution
that fits the actual SATD values. However, error figures are limited to values
greater than zero. Let S ~ N(u,0?) follow a normal distribution and lie
within the interval S € [0,+00). Then, the random variable S conditioned
on the interval [0, 00) is described by the truncated probability function:

%6%(32#)2 ) 1
f(s|p,0,0,00) = 2 (®(00) = q)(o_—,i»?Wlth O(z) = 5(1 + 6Tf(x/\/§))(.16)

[
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By definition, ®(co) = 1 and, thus, the probability function is re-written as:

1 —1/s—p\2
f(s|p,0,0,00) = Varo(l (I)(__“))ez(a) (17)

According to the truncated normal distribution and Preposition 1 for y < T,

the integral function I (y) = [ W(y + s)f(s | p, o)ds is expressed as follows:
0

Ly) = / W(y + 5)f(s)ds =

T—y

—y ,
. i(s—u)z
= + s 2V e/ ds

O/(y ) Sro(l— B(=2))

] T—y T—y
=1 /s5—p\2 —1/s5—p\2
- (\/ZWJ(l—@(—“)))(/yGQ(U ds+/862(0 ds)
7 0 0

2
+ \/guerf(ﬁ) + 20(6% —e 22 1))
It is easy to verify that, for any given tolerance threshold T, the functions
W and I have equal values at ¢; € (0,7 at which the function I; takes its
only maximum on the interval (0, 7] because I;(y) > W (y) for y € (0,¢;) and
I(y) < W(y) for y € (t;,T]. Then, the optimal stopping rule ¢* is derived
from Proposition 3.

3.8. Complexity € Model Design Parameters

The complexity of the encoder for triggering the optimal stopping rule as
derived from Proposition 3 is based on the calculation of the current SATD
value. Specifically, the SATD value calculation requires O([, H},) time since
I, and Hj, are the width and height of a frame. The encoder then increases
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l Type | o | B | p | o [T]
Slow motion Video 16.50761 | 0.07891 | 0.9766 | 0.6694 | 45
Medium motion Video | 4.516779 | 2.99732 | 7.5131 | 2.2424 | 25
Fast motion 7.5712 | 6.96713 | 22.6879 | 4.7797 | 12

Table 1: « and B values for different types of video

the current summation Y,, at step n by the new S,, SATD value, which is
achieved in O(1). If this sum exceeds the optional threshold ¢; provided by
Proposition 3, then the encoder is triggered. Hence, the overall complexity
for the decision making requires O(1,,Hp,).

The design parameters of the problem are the following: the limit (thresh-
old tolerance) T' of the cumulative sum of inter-frame deviations, and «, and
[ fitted parameters of the Gamma distribution. Let us assume that the ini-
tial state y of the process equals to 0, i.e., after each triggering of the encoder,
and let us confine ourselves to this situation where the value of the problem
Vn(0) is positive, i.e., the decision maker (encoder) should make at least one
observation (receives at least one frame). Using sample videos from the Test
Media Library [2], we have tried to evaluate the design parameters of our
approach in different MPEG streams with different needs. For example, a
video containing only one shot of a waterfall from a stable camera reception
can be characterized as a slow motion video. In contrast, a sequence from a
football match can be considered as a fast motion video. A medium motion
vector can be defined as a man who is talking to the camera by moving his
head. For these three different examples of motion videos «, and 3 values of
the Gamma distribution were computed and presented in Table [1]

4. Performance Evaluation

4.1. Simulation setup

The simulation setup has as follows: we have used an MPEG-2 simulator.
This simulator is based on the work presented in [21]. MPEG-2 simulators is
enhanced with additional functions in order to support the creation of GOPs
with dynamic size based on an OST rule.

The performance metrics of the proposed encoder with dynamic grouping
of pictures of GOPs adapted to stream behavior are i) the produced error
of the encoding process and ii) the size of generated video stream in bits.
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Figure 5: «, 8 values of I' distribution for the set of videos used in our experiments

In this way we are trying to map the two challenges referred to Section 1
related to limited bandwidth and the ’quality’ of the derived video stream
with the experimental results. The metric related to the quality is SATD
shown in equation |5| and was measured between the control points (1) and
(6) as depicted in MPEG encoder at figure [l The dynamic grouping of
pictures method is compared with a classic fixed-length version of an MPEG-
2 encoder which creates a GOP with one I frame and then adds a constant
number of P frames e.g. IPPPPPPPPPP. In our case the length of P frames
is equal to 10. The pool of videos is downloaded from [2]. Every video was
examined in a sequential stream of 100 frames. A short description of the
videos follows to illustrate the dynamic character of streams:

1. bridge-far: a slow motion video showing a bridge from remote;

2. waterfall: a slow motion video with the constant recording of a water-
fall;

3. hall-objects: a fast motion video from a camera in an office corridor.
At some point two people walk in;

4. highway: a shooting of a vacant highway recorded by a camera in a car
- medium motion video;

5. foreman: a person talking to camera - medium motion video;
. football: a fast motion video from a football match;

D

7. container: a fixed camera showing the course of a tanker - fast motion
video;
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For each of these videos a, 8, p and o values are presented in figure
Bl The presented values are generated by a single GOP with one I frame
and an ”infinite” number of P frames. A single GOP of a video stream can
provide us with a holistic overview of the SATD of frames. The approach
that we follow in order to configure o, 3, p and o values is the following.
A pool of twenty different kind of videos was analyzed and the mean values
of the aforementioned parameters were extracted. These mean values are
the initial apean, Bmean, fmean and omean values when the encoder starts to
operate, i.e. t = 0. The OST rule for the first incoming frames is based on
these initial values. User can select gamma or normal functionality for im-
plementing the dynamic encoding module. We use the abbreviation DGPE
describing the dynamic grouping of pictures encoder for the gamma distri-
bution and NDGPE describing the normal distribution. The time when the
first GOP concludes, o and 3 or p and o values are re-calculated fitting in
the cumulative SATD of the already processed video stream, i.e. GOP=1.

4.2. Discussion of Simulation results

The results of the simulations are described below. The classic encoder
(CE) created 10 fixed length GOPs. The number of GOPS created by DGPE
and NDGPE are depicted in table[2] In the same table we compare the total
size transmitted for each video (inbits) from the CE and DGPE encoders.
We can notice that in slow motion videos the GOP size is extended in order
to avoid unnecessary transmissions of I frames. For example in the waterfall
video the number of GOPs is reduced to 2 and 3 per 60 frames in DGPE and
DGPE respectively. In contrast in fast motion video the GOPs created are
increased while the size of the generated bitstream stays belows the generated
bitstream of CE in average. It can be noticed that the volume transmitted
in most of the cases from dynamic encoder is smaller than classic encoder.
This is expected as fixed encoders are not content-driven and lead to waste of
bits and resources. By comparing the dynamic encoders, we may notice that
DGPE is more "sensitive” in fast-motion videos by capturing more scene
changes than DGPE while DGPE shows tolerance to the medium motion
videos.

In addition, through figures [6] [7 [§] and [0] we provide a comparison
overview of SATD measured between CE and DGPE. In figure [f] it is ob-
served that the error values coming from CE are higher than the dynamic
encoders DGPE and NDGPE. The median value of SATD corresponds to
107.4 for CE. The median value of DGPE is 27.56 and 23.52 of NDGPE.
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[ Video | DGPEg,p, | NDGPEg,p, | DGPEs,.. | CEs... | NDGPEs,., |

bridge 8 7 832477 876182 841583
waterfall 2 3 1499705 | 1642998 1500144
hall 9 15 1019986 | 1032109 1098023
container 15 11 2158422 | 2017824 2084643
foreman 6 9 2705621 | 2819314 2847462
football 27 13 6608428 | 6510336 6288473

Table 2: Size of bitstreams transmitted in network

SATD

Figure 6: SATD between classic approach and OST- football video

T
——CE
——DGPE

——NDGPE

The fewer GOPs created by truncated normal encoder also corresponds to a
reduction of 4% in the total transmitted volume of bits as shown in table 2
In figure[7, DGPE has the best video stream performance. The error remains
close to the zero values. The first GOP is based on initial mean values of «
and 3 and the next GOPs are based on the refitting of the design values to
the incoming data distribution. NGOE needs time to fit p and o values to
the slow motion video distribution. The mean and std values of the output
error are the following: DGPE{0.0394,0.2177} and NDGPE{0.1625,0.2934}.

From the results in figures [§ and [J] the encoder which uses normal distri-
bution to compute t* performs better than the other assessed encoders. We
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Figure 7: SATD between classic approach and OST - waterfall video
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Figure 8: SATD between classic approach and OST - bridge video

can notice that NDGPE needs more time to be adaptive to the changes of
the incoming distribution but then SATD error values generated between the
frames in the GOP created correspond to small values. For example at hall
video the error values after the first 30 frames are quite low when compared
with DGPE and CE methods

From the description above, it shown that the dynamic encoders perform
better than the fixed length encoder. The notion of adoption to video content
is important as I frames are depended on scene changes and thus the encoding
efficiency suffers from the error drifting on video transmission. The NDGPE
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Figure 9: SATD between classic approach and OST - hall video

shows better performance but a number of training incoming frames are
required to fit the data distribution. If video streaming is quite short then
the gamma-based encoder DGPE is the better candidate.

5. Conclusions and Future Work

In this paper, we focus on content-based MPEG encoder and propose an
OST decision rule for the conclusion of GOP and the transmission of intra-
coded frames. Dynamic encoding applied to infrastructures with restricted
resources, like IoT camera networks, is needed in order to support media-
rich applications in such infrastructures. Limited bandwidth and battery
lifetime require nowadays content-driven transmission rates and processing
of the video sequences. One major contribution of this paper is the adapta-
tion to video changes; I frames are created when scene changes are detected
which leads to significant resource savings while retaining equal quality lev-
els. Our encoder can be applied to facilities with restricted resources like
WSMNs in order to transmit video sequences in an acceptable quality. The
aim is twofold: to create different size of GOPs adaptive to the transmitted
video streams and to try to save resources with a small SATD error. Exper-
iments show that the GOP size was extended in order to avoid unnecessary
transmissions. We observe that the stream volume transmitted in most of
the cases is smaller than the CE created bitstream which justifies that fixed
encoders which are not content-driven lead to waste of network resources.
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The encoder focuses on the transmitted video content and, thus, the values
of SATD stay lower than the classic approach. Our future agenda includes
the expansion of our study toward the inclusion of bidirectional (B) frames
in the OST controlled video stream. B frames are created by examining
the difference between the previous and the next reference frame and this
surely imposes changes in the OST strategy applied for the GOP inclusion.
However B frames require less resources when stored or transmitted and this
can further lead to savings on the resources employed for video transmission.
Additionally, the combined assessment of spatiotemporal differences within
and among frames of the video sequence is a significant challenge that we
intend to address in our future work.
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