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Abstract—In this survey, we discuss the role of energy in the
design of future mobile networks and, in particular, we advocate
and elaborate on the use of energy harvesting (EH) hardware
as a means to decrease the environmental footprint of 5G
technology. To take full advantage of the harvested (renewable)
energy, while still meeting the quality of service required by
dense 5G deployments, suitable management techniques are here
reviewed, highlighting the open issues that are still to be solved
to provide eco-friendly and cost-effective mobile architectures.
Several solutions have recently been proposed to tackle capacity,
coverage and efficiency problems, including: C-RAN, Software
Defined Networking (SDN) and fog computing, among others.
However, these are not explicitly tailored to increase the energy
efficiency of networks featuring renewable energy sources, and
have the following limitations: (i) their energy savings are in
many cases still insufficient and (ii) they do not consider network
elements possessing energy harvesting capabilities. In this paper,
we systematically review existing energy sustainable paradigms and
methods to address points (i) and (ii), discussing how these can be
exploited to obtain highly efficient, energy self-sufficient and high
capacity networks. Several open issues have emerged from our
review, ranging from the need for accurate energy, transmission
and consumption models, to the lack of accurate data traffic
profiles, to the use of power transfer, energy cooperation and
energy trading techniques. These challenges are here discussed
along with some research directions to follow for achieving
sustainable 5G systems.

Index Terms—Mobile Networks, Energy Sustainability, Renew-
able Energy, Energy Trading, Energy Cooperation, Smart Grid,
Wireless Power Transfer.

I. INTRODUCTION

We live in the digital era. Dematerialization is becoming

a reality, humans and machines alike are globally connected

through the Internet. ITU estimated that 750 million house-

holds are online and that there exist almost as many mobile

subscribers as people in the world (around 6.8 billions) [1].

The trend is of a further increase in the traffic demand,

in the number of offered and connected devices, especially

mobile. The forecast in [2] is of an annual traffic growth

rate of 53%, for the mobile traffic alone. This new era is

undoubtedly opening up new possibilities for individuals as

well as new opportunities for businesses and organizations.

However, the massive use of ICT is also increasing the level

of energy consumed by the telecommunication infrastructure

and its footprint on the environment. In a report of 2013,

the Digital Power Group [3] has calculated that 10% of the

worldwide electricity generation is due to the ICT industry,

which surpasses of more than 50% that of the avionic one.

The report also highlights that the ICT energy consumption

Compound Annual Growth Rate is of around 10%. In fact,

forecasts for 2030 are that 51% of the electricity consumption

and 23% of the carbon footprint by human activity will be

due to ICT [4]. Hence, any future development in the ICT

technology and in its infrastructure has definitely to cope with

their environmental sustainability.

Besides such increment in the demand, the ICT industry has

to solve an economical problem, since operators’ Average Rev-

enue Per Unit (ARPU) is decreasing every year. The case of

Vodafone Germany is particularly striking: its ARPU has been

shrinking annually by 6% on average in the period 2000-2009

[5]. One of the reasons of this is the annual increase of the

OPerational EXpenditure (OPEX) of its network. Energy has

been dominating these costs: it has been calculated that the

energy bill equals the cost of the personnel required to run

and maintain the network, for a western Europe company in

2007 [5]. Considering the rise in the energy price during the

last few years, we conclude that energy saving is key for the

economical sustainability of ICT.

In this survey, we discuss the crucial role of energy in

the design of future networks, paying special attention to

mobile networks, which are growing the most, among all ICT

sectors, in terms of number of subscribers, traffic demand, con-

nected devices and offered services [2]. Several survey papers,

e.g., [6], [7], have recently appeared on these subjects, offering

a thorough review of existing techniques and open issues.

Nevertheless, existing solutions still have the following limi-

tations: their energy savings are still insufficient and most of

the research is still in a preliminary stage, they do not discuss

the integration of energy harvesting capabilities into future

networks and, in turn, energy self-sustainability is marginally

addressed. The aim of the present survey is to fill these

gaps, especially focusing and elaborating on the use of energy

harvesting technology (including renewables) as a means to

decrease the environmental footprint and OPEX of future

mobile networks. We advocate that environmental energy can

be scavenged through dedicated harvesting hardware, so as

to power mobile system elements like base stations, mobile

terminals and sensors. New network design paradigms, along

with scenarios for future mobile networks and suitable network

http://arxiv.org/abs/1801.07551v1


management techniques are also introduced, by reviewing the

present literature and highlighting the open issues that are

still to be solved to provide eco-friendly and cost-effective

mobile networks. So, this survey approaches the existing

literature from a different angle, aiming at energy harvesting

and self-sufficient systems and, based on this take, trying to

make some order in the different algorithms and concepts that

were proposed so far, while identifying missing functionalities

and discussing possible ways forward.

The paper is organized as follows. In Section II, we in-

troduce the envisaged scenarios for future sustainable mobile

networks, and elucidate the main objectives of this survey.

The different sources of energy consumption are classified in

Section III. Energy efficiency techniques, for both end-devices

and network nodes, are reviewed in Section IV. In Section V,

we analyze the possibility of wirelessly transferring energy

to end-devices. New network design paradigms, called energy

cooperation and energy trading, are respectively described in

Sections VI and VII. There, it is shown that network nodes

can collaborate for energy self-sustainability and even trade

some energy with the electrical grid to make profit. Our final

remarks are given in Section VIII.

II. THE BIG PICTURE

In this section, we present our reference scenario and de-

sign principles for future sustainable mobile communications

systems, often referred to as 5G, which constitute the basis

for our discussion in the rest of the paper.

Current trends anticipate that 5G mobile networks will be

composed of ultra dense deployments of heterogeneous Base

Stations (BSs) [8], where BSs using different transmission

powers coexist to provide the 1000x network capacity increase

that is required by 2020. Accordingly, the traditional macro

cell layer will be complemented or replaced with multiple

overlapping tiers of smaller cells, which extend the system

capacity, thanks to a higher spatial reuse and to a better

spectral efficiency. Despite such benefits, researchers have

already identified new issues raised by an ultra dense scenario,

such as: user association and mobility management, interfer-

ence management and mitigation, macro cell offloading, and

energy saving [9]. Also, 5G subscribers will be equipped

with a large and diverse set of devices and BSs may need

to support high-rate mobile equipment (such as smartphones

and laptops) [10] as well as a huge number of low-rate devices

(such as environmental or wearable sensors) [11], as envisaged

by the Internet of Things (IoT) paradigm. This makes new gen-

eration networks challenging to operate, control and monitor.

Moreover, such systems are also very demanding in terms of

energy consumption from the power grid, due to their high

capacity requirements. Different architectural designs have

been proposed for next generation mobile networks including:

1) Cloud-RAN (C-RAN) [12] and [13], 2) Software Defined

Networks (SDN) [14], 3) Network Function Virtualization

(NFV) [15] and 4) Fog Computing [16] and [17]. All these

proposals rely on the cloud principle of sharing storage and

computing resources. Moreover, they enable control and data

plane decoupling and entail a pure software implementation

of network functions, which may be opportunistically placed

in different network elements.

Such architectural proposals offer higher flexibility and

scalability to operate, control and monitor new generation

networks, however, a big effort is still necessary to reduce

their energy demand. In fact, they are not specifically designed

to reduce the energy consumption of 5G networks and to

potentially make them energy self-sufficient. Based on the

literature reviewed in this survey, we acknowledge that there

are studies that try to improve the energy efficiency of these

designs. The surveys [6], [7] offer a comprehensive review

of these methods together, including as list of open issues to

be addressed. Nevertheless, we have identified the following

limitations of existing schemes: (i) their energy savings are still

insufficient and most of the research is still in a preliminary

stage, (ii) they do not involve energy harvesting capabilities

and energy self-sustainability. In this paper, we go beyond

energy efficiency and provide a thorough review of existing

energy sustainable paradigms and methods to address points

(i) and (ii) to obtain (nearly) energy self-sufficient and high

capacity networks. Towards this end, we advocate gathering

environmental energy through dedicated harvesting hardware

to supply 5G system elements (BSs, mobile devices, sensors,

etc.). This translates into OPEX savings and into a reduction

of the environmental footprint of ICT. The CAPital EXpense

(CAPEX) can also be reduced [18] through the adoption of

BSs with a small form-factor, as these require smaller energy

amounts to be operated and this lessens the requirements in

terms of harvesting and energy storage capabilities.

Fig. 1 illustrates our reference scenario, which includes

base stations, mobile devices, sensors, energy harvesters and

energy storage devices. Small cells are utilized to increase the

system capacity, energy harvesters and energy storage devices

ensure energy sustainability, while a range of technologies,

methods and procedures including cell zooming, sleep modes

and cyberforaging help reduce the energy consumption of

network elements (energy efficient techniques in the figure).

Energy cooperation, trading and transfer are utilized to balance

the energy reserve across base stations and devices.

Energy harvesting technology will entail a higher man-

agement complexity. In fact, environmental energy, such as

solar and wind, is inherently erratic and intermittent, which

may cause a fluctuating energy inflow and produce service

outage. A proper control of how the energy is drained and

balanced across network elements is therefore necessary for

a self-sustainable network design. The flexibility introduced

by the cloud principles into the 5G architecture will defi-

nitely support the design of optimal strategies for network

energy management. Moreover, sustainable design of 5G

systems shall rely on a set of procedures enabling energy

efficient communication, such as cell sleeping and zoom-

ing, Device-to-Device (D2D) communication, cyberforaging

and energy-aware communication hardware design. System

self-sustainability may also benefit from other techniques such

as wireless energy transfer (to prolong the battery life of
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Fig. 1. Diagram illustrating the main elements of future sustainable 5G networks. Small cells are utilized to increase the system capacity, energy harvester and
energy storage devices ensure energy sustainability, while a range of technologies including cell zooming, cloud and fog computing help reduce the energy
consumption of network elements. Energy cooperation, trading and transfer are accounted to balance the energy reserve across base stations and devices.

end-user devices), energy cooperation (to efficiently exchange

the harvested energy among BSs) and even energy trading (to

sell/buy some of the energy to/from the power grid). These

methods are detailed in Sections IV, V, VI and VII. In each

of these sections, we first review the most relevant techniques

from the literature to then discuss open issues and provide

suggestions for future research.

At last, we remark that energy storage devices will play a

key role in the design of sustainable mobile networks. In the

rest of this survey, and mainly in Sections V, VI and VII,

different uses of the accumulated energy are discussed. As

identified in [19], the energy gathered from ambient sources

can be utilized for: (i) improving power grid optimization in

bulk power production, (ii) balancing the power system opera-

tions in the presence of intermittent renewable generation, (iii)

helping to defer capital-intensive upgrades in the transmission

and distribution grids and (iv) providing ancillary services to

power grid operations. These points are much better addressed

and optimized when energy storage is deployed.

III. ENERGY CONSUMPTION OF NETWORK ELEMENTS

Before delving into the description of the techniques to

make the network energy efficient and self-sufficient, next

we review the main achievements in power consumption

measurement and models for base stations and end-devices.

A. Base stations

5G base stations can be classified into two main groups,

depending on transmission power and coverage range.

1) Macro BS: with transmission power of about 40W for

devices with bandwidth of 20MHz and 80W for LTE-A

devices with 40MHz [20]. Their communication range

reaches up to a few kilometers and they are usually

installed in building rooftops.

2) Small BS: with transmission power ranging between

0.05W and 6W. They can be further classified into

micro, pico and femto BSs. Micro and pico BSs cover

small to medium areas with dense traffic (hotspots) such

as shopping malls, residential areas, hotels, or train sta-

tions. The typical range of a micro/pico BS spans from a

few hundred meters up to one kilometer. Femto cells are

designed to serve smaller areas such as private homes

or indoor spaces. The range of femto cells is typically

only a few meters and they are generally wired to a

private cable broadband connection or to a home digital

subscriber line [21]. Small cells can be installed in street

furniture like lampposts or traffic lights due to their small

form factor.

The power consumption at full system load of the different

types of BSs can range from about 6W for a femto BS to

1 kW for a macro BS [22], [23], [24]. Typically, this power



consumption is modeled as the sum of a static value and a

dynamic and load-dependent value [25], [26]:

PBS =

{

NTRX · (P0 + αPout), 0 < Pout ≤ Pmax

NTRX · Psleep, Pout = 0
(1)

where NTRX is the number of transmit/receive chains, P0 is

the BS power consumption at zero Radio Frequency (RF)

output power, α is the slope of the load dependent power

consumption curve, Pout is the load-dependent part of the RF

output power and Pmax is the value of Pout at maximum load.

Table I specifies the load dependencies of the different BS

types [22]. The power consumed by a macro BS increases

much more with the traffic load than that of a small BS. This is

due to the high consuming power amplifier that macro BSs use

to cover wide areas, whereas small cells need amplifier designs

for much lower coverage and, consequently, lower energy

consumption figures. Remarkably, P0 represents a significant

part of the total energy consumed by any BS and, due to this,

researchers have investigated the use of sleep modes during

low traffic periods. Moreover, it is expected that P0 and Psleep

of new sites will be reduced by about 8% on average thanks

to recent technological advances [24], thus further decreasing

the BS energy cost during low traffic periods.

TABLE I
POWER MODEL PARAMETERS (FROM [22])

BS type NTRX Pmax[W] P0[W] α Psleep[W]
Macro 6 40.0 130.0 4.7 75.0
RRH 6 20.0 84.0 2.8 56.0
Micro 2 6.3 56.0 2.6 39.0
Pico 2 0.13 6.8 4.0 4.3
Femto 2 0.05 4.8 8.0 2.9

In Fig. 2, we compare the energy drained by the various

parts of macro and small BSs. According to [22], the power

amplifier of a macro BS dominates the total power consump-

tion. For small BSs, the baseband processor has a higher

impact. Gathering the baseband units of different BSs in a

centralized pool, as done in C-RAN systems, may reduce the

network energy consumption.

B. End devices

5G end-device are classified into two main categories:

(i) mobile phones for human-type communications and (ii)

sensors for machine-type communications.

Smartphones integrate functionalities such as voice com-

munications, Short Message Service (SMS), emailing, Web

browsing and audio/video streaming and playback. These

functionalities have a big impact on the battery life. The main

hardware components of a smartphone are: the display (i.e.,

LCD panel, backlight, touchscreen and graphics subsystem),

the radio module, the CPU, the RAM, the flash memory, the

GPS and the audio module. The impact of each of these

components on the overall energy consumption depends on

the operating mode. When no application is active, we can

distinguish between two possible states: suspended and idle.

In the suspended state the application processor is idle, the
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Fig. 2. Comparison of base station energy consumption figures [22].

display is off and the communications processor remains active

in background to receive calls or messages. In this case, the

component draining the highest amount of energy is the radio

module. The idle state is similar to the suspended state but

the display is on and the graphics subsystem becomes the

most energy demanding element. Instead, when an application

actively uses the device, the amount of energy drained by the

different components highly depends on the usage scenario.

For example, during a phone call the most energy draining

component is the radio module, whereas, if a video is being

played out, it is the display that consumes the most. In

Table II, the average power consumption figures (excluding

the backlight) for three different smartphones are shown [27].

From these results we note that the minimum amount of

power is used up when the smartphone is in the suspended

state. Moreover, besides being application dependent, the

total energy consumption also (and strongly) depends on

the specific vendor. In Table III, the variation of the power

consumption due to the brightness level is provided for one

of the smartphones of Table II. In particular, the backlight can

increase the consumption from 15mW to more than 1000mW
depending on the application in use. Further details can be

found in [27].



TABLE II
POWER CONSUMPTION OF SMARTPHONE HARDWARE COMPONENTS,

FROM [27].

Power consumption (mW)
Type of activity Freerunner G1 N1

Suspended 103.2 26.6 24.9
Idle 333.7 161.2 333.9
Phone call 1135.4 822.4 746.8
Email (cell) 690.7 599.4 -
Email (WiFi) 505.6 349.2 -
Web (cell) 500.0 430.4 538.0
Web (WiFi) 430.4 270.6 412.2
Network (cell) 929.7 1016.4 825.9
Network (WiFi) 1053.7 1355.8 884.1
Video 558.8 568.3 526.3
Audio 419.0 459.7 322.4

TABLE III
POWER CONSUMPTION FIGURES FOR THE N1 SMARTPHONE FROM [27].

Type of activity Min power (mW) Max power (mW)

Idle 38.0 257.3
Phone call 16.7 112.9
Web 164.2 1111.7
Video 15.1 102.0

A power consumption model for the radio module is pro-

posed in [28] for the first generation of LTE. It considers the

receive/transmit power levels, the uplink/downlink data rate,

and the Radio Resource Control (RRC) mode. The authors

observe that the uplink transmit power and the downlink data

rate are the factors that affect the most the overall power

consumption, while the contributions due to the uplink data

rate and to the downlink receive power are small. A more

detailed model is proposed in [29], where the impact of the cell

bandwidth and of the Discontinuous Reception (DRX) mode,

introduced with the second generation of LTE to enable radio

sleep modes, are also considered. In this study, it is concluded

that the power consumption of the LTE radio module increases

of about three times when going from a bandwidth of 10MHz
to 15MHz. Furthermore, two sleep modes are available: a

light sleep mode consuming 0.57 W and a deep sleep mode

consuming 29 mW. The measurements provided by the authors

show that sleep modes allow reducing the power consumption

from 1/1.8 (light sleep mode) to 1/35 (deep sleep mode)

with respect to that in the idle-state (radio active with no data

reception).

The second class of terminals are the sensor nodes, which

are usually composed of different elements such as the

micro-controller, the sensor, the transceiver, the memory, the

interface, the DC-DC converter and the battery [30]. Their

power consumption is strictly related to the type of com-

ponents and to the specific sensing application. Basically, a

sensor executes two main tasks: collecting measurements from

the environment and transmitting data. During each of these

a number of components operates in active mode. The energy

consumption of a task depends on the power consumed by

the active components and on the duration of the task. For

the sake of illustration, we consider the example in [30],

whose measurements are shown in Table IV. The sensor

node is equipped with a controller, temperature, humidity and

barometric pressure sensors, an ambient light sensor and a

Bluetooth radio transceiver. Other components such as the

DC/DC converter or the battery are not shown in the table. This

sensor node consumes from a minimum of 0.09mA, when

all the components are inactive, to a maximum of 14mA,

when all the components are active. The most energy hungry

component is the radio transceiver.

C. Main outcomes

Base station power consumption models are based on the

assumption that hardware and software have been jointly

designed and implemented. However, this fact does not longer

hold true for future mobile networks based on software virtu-

alization. In that case, measurements indicating the CPU usage

by different (virtualized) BS functions shall be performed

considering the right hardware, which may differ for each

function according to the actual execution point (e.g., in the

cloud or at the network edge).

Power consumption models for smartphones shall as well

be improved. Current models are mainly based on old (2G

and 3G) mobile networks. A new analysis and experimental

measurements would be needed to evaluate the evolution of the

hardware components as well as of the new software features

offered by new generation smartphones. The availability of the

circuit schematics is key to define a power consumption model

for the hardware components, but this information is seldom

provided by the phone vendors (a notable exception is offered

by OpenMoko [31]).

From our literature analysis, we see that different brands

have totally different power requirements. Hence, mobile

phones from different manufacturers shall be examined and

ranked according to their energy consumption figures. Also,

the energy expenditure of smartphones strongly depends on

the owner’s usage pattern, which shall be determined to define

accurate energy consumption models.

Few works in the literature study the power consumption

of sensor devices. New measurements would be needed to

develop accurate sensor models. Furthermore, those models

should include a detailed analysis of the microcontroller

consumption, considering important features like interrupt

handling and DMA operations.

As a final remark, we have also identified a lack of research

papers on battery and energy storage models for end-devices

and BSs, which are key to a proper design of future sustainable

mobile networks.

IV. ENERGY EFFICIENCY TECHNIQUES

Next, we concentrate on the techniques to reduce the energy

consumption of the mobile system as a whole. Energy Effi-

ciency (EE) is the fundamental brick of any sustainable design

and defines the key methods that are to be either enhanced or

brought forward when integrating energy harvesting sources.

We refer to EE as a set of functions/methods conceived to

reduce the energy requirement for a given level of service.



TABLE IV
WSN NODE POWER CONSUMPTION FIGURES FROM [30].

Component Active mode Inactive mode

Controller (SAML21) 0.3515mA 0.0060mA (standby) – 0.1968mA (Idle)
Temp./Hum./Press. sensor (BME280) 0.468mA 0.0005mA (standby)
Ambient light sensor (BH1715) 0.190mA 0.0010mA (powerdown)
Bluetooth TRX (BLE112) 13mA 0.0809mA

EE can be quantified by the ratio between the amount of data

successfully delivered (in bit/s) and the total energy spent in

such transmission (in Wh or J).

Several surveys have been written to discuss on the energy

efficiency of the mobile system. Sources of inefficiencies

in the network are described in [32], where some potential

improvements are also suggested. The authors of [7] provide

an extensive description of energy-aware mechanisms at each

protocol layer of the communication stack, including energy

efficient hardware design principles. In this section, instead,

we only concentrate on the energy efficient techniques at the

network and end-user side, which can enable an intelligent

use of the harvested ambient energy and support the system

self-sustainability.

A. Network energy efficiency

The EE techniques that are exploited to decrease the energy

footprint of BSs fall under two categories: 1) sleep modes, to

selectively switch off some of the radio units (according to

the traffic profile) and 2) cell zooming, to adapt the coverage

range of BSs to cover areas where BSs are asleep and

perform load balancing. These techniques are analyzed in the

following.

1) Sleep modes: cellular networks are dimensioned to support

traffic peaks, i.e., the number of BSs deployed in a given area

should be able to provide the required Quality of Service

(QoS) to the mobile subscribers during the highest load

conditions. However, during off-peak periods the network

may be underutilized, which leads to an inefficient use of

spectrum resources and to an excessive energy consumption

(note that the energy drained during low traffic periods is non-

negligible due to the high values of P0 in Eq. (1)). For these

reasons, sleep modes have been proposed to dynamically turn

off some of the BSs when the traffic load is low. This has

been extensively studied in the literature, considering different

problem formulations [33]. As BSs cannot serve any traffic

when asleep, it is important to properly tune the enter/exit

time of sleep modes to avoid service outage. Moreover, when

a BS is switched on/off, there is an incurred energy cost that

should not be ignored. This is tackled in [34] by considering

BSs state transitions over time in the optimization problem,

such that the overall BSs switching energy cost is minimized.

The authors of [35] propose centralized and distributed clus-

tering algorithms to cluster those BSs exhibiting similar traffic

profiles over time. Upon forming the clusters, an optimization

problem is formulated to minimize their power consumption.

Optimal strategies are found by brute force, since the solution

space is rather small and its complete exploration is still

doable. A similar approach is presented in [36] where a

dynamic switching on/off mechanism locally groups BSs into

clusters based on location and traffic load. The optimization

problem is formulated as a non-cooperative game aiming at

minimizing the BS energy consumption and the time required

to serve their traffic load. Simulation results show energy costs

and load reductions while also provide insights of when and

how the cluster-based coordination is beneficial.

User QoS is added to the optimization problem in [37].

In this case, as the problem to solve is NP-hard, the authors

propose a suboptimal, iterative and low-complexity solution.

The same approach is used in [38], [39], [40], [41], playing

with the trade-off between energy consumption and QoS. The

Quality of Experience (QoE) is included in [42], where a

dynamic programming switching algorithm is put forward. The

user QoE is utilized in place of standard network measures

such as delay and throughput. Other parameters that have been

considered are the channel outage probability (also referred to

as coverage probability), i.e., the probability of guaranteeing

the service to the users located in the worst positions (e.g.,

at the cell edge) and the BS state stability parameter, i.e.,

the number of on/sleep state transitions. For instance, a set

of BS switching patterns engineered to provide full network

coverage at all times, while avoiding channel outage, is

presented in [43]. The coverage probability, along with power

consumption and energy efficiency metrics, are derived using

stochastic geometry in [44], [45], [46]. A similar approach

is considered in [47], where closed-form expressions of cov-

erage probability and average user load are attained through

stochastic geometry. Optimal resource allocation schemes are

proposed to minimize power consumption and maximize cov-

erage probability in a Heterogeneous Network (HetNet), and

are validated numerically. According to the BS state stability

concept, a bi-objective optimization problem is formulated

in [48] and solved with two algorithms: (i) near optimal but

not scalable, and (i) with low complexity, based on particle

swarm optimization. The QoE is also affected by the UE

positions according to the channel propagation phenomena. To

this respect, in [49] the selection of the BSs to be switched

off is taken in order to provoke less impact to the UEs’ QoE

according to their distance to the handed off BSs.

In order to support sleep modes, neighboring cells must

be capable of serving the traffic in off areas. To achieve

this, proper user association strategies are required. In a

scenario where sleeping techniques are not applied, each

user is associated with the BS that provides the best Signal



to Interference plus Noise Ratio (SINR). However, when

BSs can go to sleep, user association is more complex and

requires traffic prediction as well as very fast decision-making.

Otherwise, users may suffer a deterioration of their QoS. A

framework to characterize the performance (outage probability

and spectral efficiency) of cellular systems with sleeping

techniques and user association rules is proposed in [50].

In this paper, the authors devise a user association scheme

where a user selects its serving BS considering the maximum

expected channel access probability. This strategy is compared

against the traditional maximum SINR-based user association

approach and is found superior in terms of spectral efficiency

when the traffic load is inhomogeneous. User association

mechanisms that maximize energy efficiency in the presence of

sleep modes are addressed in [51]. There, a downlink HetNet

scenario is considered, where the energy efficiency is defined

as the ratio between the network throughput and the total

energy consumption. Since this leads to a highly complex

integer optimization problem, the authors propose a Quantum

particle swarm optimization algorithm to obtain a suboptimal

solution. Moreover, a problem that jointly considers energy

cost and flow-level performance, such as file transfer delay,

is formulated in [52]. This formulation is decomposed into

two subproblems: user association and BS operation. For the

user association, an optimal policy is derived, also devising

a distributed implementation. For the BS operation, some

low-complexity algorithms are proposed.

Mobile network operators (MNOs) cooperation is exploited

in [53] where a switching off strategy is implemented through

a roaming cost based on user association to offload traffic and

eventually defines the operational state of the BSs. Similarly,

in [54] the switch on/off problem for clusters of BSs has

been modeled with a non-cooperative game with complete

information algorithm. The game is played by the MNOs

for estimating the switching-off probabilities that reduce their

expected financial cost when roaming the traffic. The proposed

scheme improves both the network energy efficiency and

the cost. Results also provide understandings on the MNOs

behavior as function of the roaming cost. An auction-based

switching off solution has been proposed in [55] where the

macro BSs owned by different MNOs can offload traffic to

third party small BSs. A multi-objective auction framework

has been used to opportunistically utilize the small BSs.

The proposed solution considers different bidding strategies

representing different levels of tolerance respect to the QoE

that the MNOs want to provide to their UEs. Simulation

results show improvements for throughput, energy efficiency

and cost savings, providing also guidelines concerning the

behaviors that the MNOs should follow in the auction. Fi-

nally, cooperation between MNOs in a C-RAN architecture is

analyzed in [56]. The authors propose a novel scheme based

on coalitional game theory to identify the potential room for

cooperation among MNOs that provide service to the same

area. Simulation results show that for the operators it is always

more convenient collaborating, with profit gains ranging above

98% when compared to the stand-alone case.

2) Cell zooming: this method is also known as cell breathing,

it is complementary to the above user association techniques

and has been introduced to fill the coverage gaps that may

occur as BSs go to sleep. It amounts to adjusting the cell

size according to traffic conditions, leading to several benefits:

(i) load balancing is achieved by transferring traffic from

highly to lightly congested BSs, (ii) energy saving through

sleeping strategies, (iii) user battery life and throughput en-

hancements [57]. To compute the right cell size, cell zooming

adaptively adjust the transmit powers, antenna tilt angles, or

height of active BSs. There exists a large number of works

that apply this approach to achieve energy savings in cellular

networks. For instance, a cell zooming scheme, to be used

in two-tier cellular networks with macro and small cells,

is put forward in [58]. The considered formulation entails

a Capacitated Facility Location Problem (CFLP), which is

known to be NP-hard. Hence, the authors provide a practical

implementation allowing BSs to be smartly switched on/off

and filling coverage holes zooming in and out the active BSs.

Further, centralized and distributed cell zooming algorithms

are proposed in [59], where a cell zooming server, which can

be either implemented in a centralized or distributed fashion,

controls the zooming procedure by setting its parameters based

on traffic load distribution, user requirements, and Channel

State Information (CSI). The same server-based solution can

be found in [57]. A different approach is proposed in [60],

where the authors design a BS switching mechanism based on

a power control algorithm that is built upon non-cooperative

game theory. A closed-form expression cell zooming factor

is defined in [61], where an adaptive cell zooming scheme is

devised to achieve the optimal user association. Then, a cell

sleeping strategy is further applied to turn off light traffic load

cells for energy saving. In general, most zooming scenarios

entail a computationally intractable formulation, so affordable

solutions based on iterative algorithms or heuristics abound in

the literature, see, e.g., [62], [63].

Remarkably, cell zooming entails an increase in the transmit

power of the active BSs, which leads to a higher energy

expenditure for the BSs that are on. However, when used in

combination with sleeping strategies, this leads to additional

energy savings. Some researchers are oriented towards the

study of sleeping schemes in conjunction with cooperative

communication strategies for distributed antennas, also re-

ferred to as Coordinated Multi Point (CoMP). This technique

increases spectral efficiency and cell coverage without entail-

ing a higher BS transmit power and reducing the co-channel

interference. The authors of [64] prove the effectiveness of

this approach in terms of energy and capacity efficiency when

sleep modes are combined with downlink CoMP. Despite these

advantages, their results also reveal that imperfect downlink

channel estimations and an incorrect CoMP setup can lead

to energy inefficiency. A stochastic geometry analysis is pre-

sented in [45] to evaluate the energy efficiency performance of

joint sleeping and CoMP in HetNets. The authors of this paper

compare the coverage probability and the energy efficiency in

scenarios with and without CoMP. Their results demonstrate



Fig. 3. Energy efficiency techniques reviewed in this section.

that the combined use of CoMP and BS sleeping techniques

can improve the energy efficiency and increase the coverage

probability when compared with the sole use of sleep modes.

B. End-devices

In the previous generation of cellular networks, mobile

devices were used to make phone calls, the communicating

peers were assumed to be far from one to another and

mobile networks were designed with the premise of having

full control at the infrastructure and mobile side. However,

today’s scenario has radically changed: data sharing between

geographically close users does represent a reality, and devices

are smarter and more powerful in terms of computation and

memory. In this context, in 5G networks D2D communication

can be exploited to increase network performance and decrease

power consumption [65], [10]. The ability of two users to

communicate directly reduces the number of wireless hops to

one, thus increasing spectral efficiency (due to the reduced

path loss), reducing latencies and limiting network signaling.

Furthermore, this operation requires a smaller transmit power,

since the receiving device is likely to be closer than the nearest

BS.

Another important point to consider is that mobile devices

have limited battery duration and require to be recharged often.

As discussed in Section II, one of the reasons for this is

due to computational expensive tasks that are executed by

mobile applications. Hence, enabling smartphones to offload

their highly energy-demanding operations to nearby network

servers [66] is a viable solution to prolong their battery life.

This strategy is known in the literature as computational

offloading [67] or cyberforaging [68]. Cloud computing can be

also exploited to support cyberforaging through different kinds

of resources, such as infrastructures, platforms and software.

The software executed by mobile devices is usually subdivided

into modules. This makes it possible to only offload some

specific modules to the remote servers. Cyberforaging can be

static or dynamic. In the first case, the mobile device decides

which modules to offload at the beginning of the software

execution. In the second case, this decision is made at runtime

according to the CPU load. The decision to offload a module

is made taking into account the following aspects: (i) the

number of operations to be executed, (ii) the time needed to

offload, (iii) the required input. Moreover, the mobile device

radio module influences offloading decisions by providing

information on the power required to transmit the module to

the external server and on the expected latency (i.e., the sum

of the time taken to transmit the module to the server, the time

the server spends executing the program, and the time required

to send the results back to the mobile device). Network

BS densification can potentially support cyberforaging by

reducing the distance between mobile devices and small cells.

In the case of sensor nodes, the energy storage capacity is

even more limited due to their very small form factor. The

batteries represent the bottleneck for the lifetime of a wireless

sensor network and for this reason energy efficient algorithms

are key to prolong the system life-cycle. The literature on this

topic is vast and has been mainly focused on the definition of

energy efficient medium access control and routing protocols.

For a detailed state-of-the-art on this topic, the reader is

referred to [69].

C. Main outcomes

Figure 3 summarizes the energy efficiency techniques re-

viewed in this section. The main findings are the following:

1) Grouping BSs with similar traffic patters through clus-

tering techniques provide valuable results when applied

to BS sleep modes.

2) Stochastic geometry has been vastly used to analyze the

EE performance in switching on/off strategies.

3) BS sleeping solutions shall be combined with other

techniques such as user association, cell zooming and

CoMP to ensure satisfactory network performance.

4) MNOs cooperation has been exploited through game

theory and auction-based approaches with promising

outcomes.

5) More powerful devices allow D2D communications en-

hancing the network performance and saving energy.

6) Cyberforaging together with cloud computing prolong

the end-user battery life through computational tasks

offloading.

Sleeping techniques have been widely investigated for cel-

lular networks, but there are still some open problems to be

solved. In the review of the literature we noticed that the

traffic models are usually over-simplified, considering uniform

traffic distributions and arrival patterns in all cells at all times.

However, actual network traffic is dynamic and undergoes

spatial and temporal fluctuations [22] due to the movement

of UEs. Hence, accurate mobility models should be inferred

from real data, and used to investigate the performance of sleep

modes and cell zooming. Moreover, BS switching operations

are usually modeled without considering activation frequency

and time. Although the most recent BSs have been conceived

for frequently entering sleep modes, most of the BSs that are

still in use today were designed foreseeing only occasional

switch on and off operations, as otherwise the failure rate

of some of their parts would be too high [70]. Besides, fast

switching operations can lead to a ping-pong effect, which
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occurs when the service is handed over from one cell to an-

other, but is quickly handed back to the original cell increasing

control messages to the core network, leading to an increased

energy consumption and to a decreased user QoS [71]. This is

more severe when there is a non-negligible BS activation time,

as resources may be deactivated due to a temporary decrease

in the load, and cannot be rapidly reactivated in response to a

sudden increase of the same [72]. These aspects are to be taken

into account to avoid service outage in real world scenarios.

In the case of D2D communications, research challenges

mainly concern the management of interference and the anal-

ysis of the involved parameters and tradeoffs. Transmission

powers should be regulated to avoid interference with cellular

communications (in case of inband D2D) or with other systems

(in case of outband D2D). Furthermore, accurate channel in-

formation is essential to efficiently perform resource/power al-

location and interference management. Since the introduction

of D2D will increase the amount of channels that the devices

need to estimate, the tradeoff between CSI accuracy and the

resulting overhead should be analyzed. Other open issues

concern the design of energy efficient D2D protocols. As an

example, the search for devices in close proximity is an energy

expensive operation and the frequency at which this operation

is performed highly affects the UE’s power consumption. This

involves an inherent tradeoff between detection performance

and energy consumption.

Finally, the introduction of cyberforaging will lead to an in-

crease in the uplink traffic. The corresponding downlink/uplink

traffic statistics will differ from what we have today and will

require a different partitioning (including dynamic allocation)

of the capacity for the two channels.

V. WIRELESS POWER TRANSFER

In the following, we analyze wireless power transfer tech-

niques. In the literature, this technology has been studied from

different perspectives:

1) Wireless Energy Transfer (WET): concentrating on the

energy transfer from BSs to UEs (downlink);

2) Simultaneous Wireless Information and Power Trans-

fer (SWIPT): where both energy and information are

transferred in downlink;

3) Wireless Powered Communication Network (WPCN):

where energy is transferred in downlink, while informa-

tion is transferred in uplink.

In the following subsections, the main outcomes of these

research efforts are discussed in some detail.

A. Wireless Energy Transfer

First, we consider the case of a transmitter that wirelessly

transfers energy to multiple receivers. In general, (power)

senders and receivers are equipped with multiple antennas and

the transmitted signal is modulated. The energy harvesting

module at the receiving end is based on a rectifying circuit

that is composed of a diode and a low pass filter. This circuit

converts the received RF signal into a DC one.

According to [73], the harvested energy per unit time is

proportional to the received RF power. To improve it, one

can increase the number of antennas at both transmitter and

receiver, allowing a higher (combined) antenna gain. This solu-

tion, referred to as energy beamforming, effectively steers the

transmit power towards a specific direction, with a subsequent

improvement in the energy transfer efficiency. Furthermore,

the width of the energy beam can be narrowed by increasing

the number of antennas.

When considering the simultaneous charge of multiple en-

ergy receivers, a beamforming approach can lead to a near-far

problem, where the users close to the transmitter receive more

energy than those located further away. Furthermore, the use

of beamforming requires an accurate knowledge of the channel

state at the transmitter, but in many cases energy transmitters

are simple devices, which do not possess signal processing

capabilities. Including such capabilities comes at the cost of

an increase in the device energy consumption and in its pro-

cessing time. The acquisition of the Channel State Information

(CSI) is investigated in [74], where the channel reciprocity is

exploited to design an efficient channel acquisition method

for a point-to-point Multi-Input Multi-Output (MIMO) WET

system. In this paper, the antenna weights are set through a

training phase, which is formulated as an optimization problem

for the case of uncorrelated fading channels. Optimal solutions

are derived for the special cases of MIMO Rayleigh and MISO

Rician fading channels, with the aim of maximizing the net

harvested energy at the energy receiver.

B. Simultaneous Wireless Information and Power Transfer

The SWIPT technique aims at transmitting energy and

information through the same waveform, considering the fact

that information signals also carry energy that can be harvested

by an energy receiver.

Generally, information detection (ID) and energy harvesting

(EH) receivers have different power sensitivities (−10dBm for

EH, −60 dBm for ID, according to [73]). This means that to



work properly, EH receivers should be closer to the transmitter

than ID receivers.

Since the design of the waveforms has a major impact

on the performance of simultaneous energy and information

transfer, a tradeoff between energy transmission and infor-

mation transmission efficiencies has to be found. As for the

energy transmission, the objective corresponds to maximizing

the power transferred to the end user, whereas, for the infor-

mation transmission, it is the transmission rate that has to be

maximized. In the literature, this tradeoff is explored through

the definition of Rate-Energy (R-E) regions, which contain all

the feasible rate (bit/s/Hz) and energy (J/s) pairs under a

maximum transmit power budget. For any given technique, the

optimal tradeoff between energy and information transfer rates

is provided by the boundary of the corresponding R-E region,

and depends on the receiver structure. An ideal receiver, that

jointly decodes information and harvests energy from the same

signal, using the full signal power for both tasks, is physically

infeasible. Thus, the following practical receiver designs are

proposed [73]:

1) Time switching: the transmitter sends data (ID) and

energy (EH) using disjoint time slots. Within each time

slot, the transmission can be optimized depending on its

content (energy or information). The receiver, periodi-

cally switches between harvesting energy and decoding

information.

2) Power splitting: the transmitter sends a single waveform

to carry energy and information. The receiver splits the

received signal into two streams: one stream with power

ratio 0 ≤ ρ ≤ 1 is used for energy harvesting, the

other, with power ratio 1 − ρ, is used to decode the

data message.

3) Integrated receiver: the received signal is at first

converted into DC current and then split into two

streams. This solution allows using a passive rectifier

for RF-to-baseband conversion, which entails a lower

energy usage when compared to the active mixer that

is required by the information decoder of the previous

technique.

4) Antenna switching: this solution can be used when the

receiver is equipped with multiple antennas. In this

case, the receiver can use a number of antennas for

energy harvesting and the remaining ones for informa-

tion decoding. This simple solution reduces the hardware

complexity at the receiver side, as it only needs to

synchronize a switch.

In [75], a MIMO wireless broadcast system is investigated.

In the considered setup, there are three nodes, one trans-

mitter, one energy harvesting receiver and another receiver

that decodes information. The cases of (i) disjoint and (ii)

co-located receivers are explored. In the first case, the two

receivers see two different channels, while, in the second, they

experience the same channel. For the MIMO link between the

transmitter and the energy harvesting receiver, the amount of

energy harvested is maximized through beamforming. For the
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MIMO link between the transmitter and the data decoder, the

transmission rate is maximized through spatial multiplexing.

The R-E region is computed to assess the optimal broad-

casting policy in the case of simultaneous wireless power

and information transfer. In scenario (i), where the receivers

are disjoint, the beamforming strategy is demonstrated to be

optimal when considering MISO links (between the transmitter

and the EH/ID receivers). It is also shown that increasing the

correlation between the two channels widens the R-E region,

proving that an increase in the antenna correlation is beneficial.

In scenario (ii), where the two receivers are co-located, the

optimal strategy is spatial multiplexing.

An improvement is proposed by [76], where the robust

beamforming problem in a MIMO SWIPT wireless broadcast-

ing system is investigated under the assumption of imperfect

channel state information at the transmitter. The objective is

to maximize the worst-case harvested energy for the energy

receiver, while guaranteeing that the information transmission

rate is above a given threshold, for all the possible channel

realizations. This amounts to a non-convex problem, which is

relaxed into a semi-definite programming formulation that can

be solved efficiently. Simulation results show that neglecting

the CSI in the system design leads to frequent violations of

the target information rate.

The multi-user system case is investigated in [77], where

a setup with two users and a receiver is considered. The first

considerations are made on a scenario comprising a standard

multiple access channel under the constraint that the energy re-

ceived by the decoder is large enough. It is demonstrated that,



as the required energy at the decoder increases, time-sharing

is necessary to achieve optimal performance. This indicates

the need for additional coordination between the two users.

In a second scenario, a multi-hop channel is considered,

where the relay is assumed to be capable of harvesting the

energy received from the transmitter to forward packets to the

receiver. It is shown that for small SNRs in the second hop, it

is desirable to maximize the energy transfer to the relay, while

for sufficiently large SNRs in the second hop, it is optimal to

maximize the information transfer to the relay. This means

that the transmitter needs to adjust its transmission strategy

according to the quality of the second link, with a subsequent

need for further coordination.

A scenario with relay nodes is also considered in [78],

where the performance limits of a two-hop multi-antenna

amplify-and-forward relay system are investigated. The em-

ployment of wireless energy harvesting in dense networks

has been studied in [79]. Sensors are supplied by batteries

and can harvest energy from neighbor packet transmissions.

Two communication scenarios are considered: i) direct, where

the sensors exchange messages directly, and ii) cooperative,

where randomly deployed relays assist the message exchange.

Simulation results indicate that the direct communication sce-

nario presents better communication performance in randomly

deployed dense network, whereas the cooperative scenario

is superior in terms of network lifetime, providing higher

harvested power. However, the wireless energy harvesting

is not able to provide enough power to counterbalance the

consumed energy in realistic scenarios, mainly due to the the

path loss and the RF-to-DC conversion. A solution to this

problem is represented by the deployment of dedicated power

transmitters of power beacons (PB) as done in [80], where a

wireless powered sensor network with battery-less devices is

considered. The authors provides results about the connectivity

of the sensor network considering different routing mechanism

(i.e, unicast, broadcast) and fading conditions.

C. Wireless Powered Communication Network

In this scenario, an Access Point (AP) transmits energy

to multiple wireless devices. These devices use the harvested

energy to transmit information in the uplink channel. Consid-

ering a transmission block of duration T , during a first phase

of duration τ0T (0 < τ0 < 1), the wireless devices harvest

energy, while in the second phase, of duration (1− τ0)T , they

use the harvested energy to transmit information back to the

AP. This protocol is termed harvest-then-transmit.

A typical issue of WPCNs is defined as doubly-near-far

problem and it is quite similar to the near-far problem that

was discussed in Section V-A. In this case, a device placed

further away from the AP harvests less energy than a closer

device, due to the higher signal attenuation experienced by the

former. For the same reason, it requires a smaller amount of

power to transmit data to the AP.

A solution to this problem is proposed in [81], where the

cooperation among users is exploited in a two-user WPCN.

The AP and the users are equipped with a single antenna.

The user with the best channel, both for the EH downlink and

the information transmission, uses part of its allocated uplink

time and harvested energy to relay information. Simulation

results show that this approach leads to improvements in the

throughput and in the user fairness.

In [82], a scenario with a multi-antenna AP and a number of

single-antenna users is considered. The minimum throughput

among all users is maximized (max-min allocation problem)

by a joint design of the downlink-uplink time allocation,

the downlink energy beamforming, the uplink transmit power

allocation, and the receive beamforming, while guaranteeing

fairness. An optimal two-stage algorithm is proposed and

two suboptimal designs, exploiting zero-forcing based receive

beamforming, are also proposed. Numerical results show that

the performance of suboptimal approaches is close to the

optimal one when the distance from the AP is small, while

the performance gap increases as this distance gets larger.

Moreover, the max-min throughput is shown to increase sig-

nificantly with the number of active antennas at the AP.

The same scenario, with a multi-antenna AP and multiple

single-antenna users, is considered in [83]. In this paper,

the transmission time frame includes a slot for the channel

estimation in the uplink. The users at first consume a fraction

of the harvested energy to send pilots in the uplink. Then,

the AP estimates the uplink channels and obtains the down-

link channel gains exploiting channel reciprocity. Hence, the

scheme follows the classic steps of the harvest-then-transmit

protocol we described above. Even though a perfect CSI at

the transmitter is not available, a more accurate CSI is shown

to contribute to a higher energy transfer efficiency and to lead

to a higher uplink information rate.

D. State-of-the-art of RF and microwave energy conversion

efficiencies

This subsection discusses the efficiencies of state-of-the-art

energy harvesting devices, according to [84]. The contributions

on this research field have been made essentially by two

communities, focusing on space-based solar power harvesting

and Radio-Frequency IDentification (RFID) systems. The first

community deals with energy conversion at long distances

and high powers, while the second with ultra-low power

applications.

In Fig. 6, the state-of-the-art efficiencies from [84] are

shown. Specifically, the input power is plotted versus the

energy receiver efficiency for different energy transmission

frequencies, in the 900MHz, 2.4GHz and 5.8GHz bands.

Efficiencies of applications working in bands above 5.8GHz
are also shown.

Observing the curve for the 900MHz band, we see that

these systems are typically designed to work with low input

levels. This is motivated by the fact that the research on

Ultra High Frequency (UHF) energy harvesters have been

engineered for RFID applications. Since RFID applications

are designed to work in multipath environments, the available

energy levels at the receiver are low.
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Other studies consider wireless power transfer applications

operating at microwave frequencies. Working in these bands

permits the use of smaller antennas, thus reducing the required

antenna aperture and making antenna beam steering easier.

In particular, the availability of the unlicensed 5.8GHz band

has led researchers to focus on it. From Fig. 6, we see that

most of the microwave frequency applications discussed in the

literature, operate at high power levels. This is motivated by

the fact that these works consider space-based solar power or

pure WPT applications, which typically deal with high powers.

From this graph we see that as the transmitting power

increases, the efficiency of energy harvesting devices increases

too, whereas it decreases with an increasing frequency. This

last fact can be motivated by the higher circuitry parasitic

losses encountered at microwave frequencies.

E. Main outcomes

The main findings of this section are described as follow:

1) The wireless transmission of energy has been studied in

the literature considering different architectures, namely

WET, SWIPT and WPCN.

2) The energy transmission efficiency depends on the dis-

tance between transmitter and receiver. Therefore, far

users receive less energy and, in the case of WPCN, they

are those that need it more to communicate. Cooperation

schemes are a good solution to solve this problem.

3) Rate-Energy regions are used to find the optimal trade-

off between energy transmission and information rate in

SWIPT.

4) Different design for simultaneous transmission of infor-

mation and power have been studied: time switching,

power splitting, integrated receiver and antenna switch-

ing.

Future information and energy networks are likely to operate

on overlapping portions of the spectrum, due its scarcity.

For this reason, there is a need to manage the interference

that will be dominated by the transmission of energy. It is

also necessary to investigate scenarios with multiple users

and, specifically, new ways of mitigating the interference,

such as opportunistic WET with spectrum sensing and en-

ergy/information schedulers. In particular, when considering

energy transmission, harmful interference can be turned into

useful harvested energy. Hence, the problem of mitigating

interference while facilitating energy transfer, must be ad-

dressed.

The described literature analyses static scenarios, but nodes

can also be mobile. In this case, the transmission of energy and

information becomes time-variant, thus requiring dynamic and

adaptive resource allocation policies. Further investigation is

necessary to characterize the trade-off between transmit power

and distance from the receiver in mobile settings.

When considering the wireless transmission of energy, the

intensity of microwaves can become a problem in some

areas, especially when using massive MIMO and beamforming

technologies. In particular, the power radiated by wireless de-

vices must always satisfy the Equivalent Isotropically Radiated

Power (EIRP) limitations dictated by existing regulations. To

solve this problem, systems based on the concept of distributed

antennas can be exploited. In this way, we have an omnidi-

rectional and weak radiation for each antenna. The combined

effect of this radiation is destructive everywhere, except for the

desired location, where it is constructive. This solution should

be further investigated taking into account the increased power

consumption due to the use of multiple antennas. In particular,

the trade-off between the energy harvesting efficiency and the

power consumption should be analyzed.

Finally, we underline that current studies are mainly theoret-

ical and the achievable throughput performance for practical

wireless information and energy transmission systems shall be

assessed. These studies should test the use of new technologies

like mmWave, massive MIMO and distributed antenna arrays.

As we already discussed, the sensitivity of the receivers is

a fundamental aspect to consider in the analysis of SWIPT

schemes. Actually, the low sensitivity of energy receivers

represents a problem, leading to situations where a device can

only decode information without harvesting energy, with the

consequent degradation of the SWIPT performance. For this

reason, it is necessary to improve the energy receiver circuits

in terms of hardware and design.

Overall, considering (i) the energy consumption sources

from Section III, (ii) the energy efficiency of WPT receivers,

(iii) the limited transmission powers due to regulations and

especially to (iv) wireless channel losses, WPT is not deemed

an effective technology to provide energy to mobile devices,

as also discussed in [85]. Transfer efficiencies are in fact very

small (often smaller than 10−4) even when beamforming is

exploited.

VI. ENERGY COOPERATION

We now consider a scenario where the BSs are supplied by

energy harvesters and storage devices (rechargeable batteries)



and may be disconnected from the power grid (off-grid). There,

cooperation strategies can be conceived to make them quasi

self-sustainable, i.e., to operate mostly relying on the harvested

(and stored) energy.

In this context, geographical diversity shall be exploited to

mitigate the well-known temporal and spatial variability in the

energy harvesting process, especially when using renewable

sources such as the wind. This aspect is partially investigated

in [86], where a network made of two BSs equipped with

energy harvesters and some limited energy storage capability is

considered. The authors propose an offline linear programming

algorithm, which limits the power drained from the power grid

when the energy profiles are deterministic. Furthermore, an

online algorithm is put forward for a more realistic scenario

where they are stochastic and not known a priori. As expected,

the best results are achieved when the harvested energy profiles

at the two BSs are sufficiently uncorrelated. In fact, if the

amount of energy harvested is highly correlated, we have a

problem when the energy inflow is little, as this concurrently

occurs at both BSs. When the correlation is low, it is instead

very likely that one BS will experience an abundant energy

inflow when the other one is in a low energy state. The former

BS could then transfer some of its energy to the latter. The

performance gap between the two algorithms in [86] is small,

reaching the minimum value for anti-correlated energy pro-

files. We observe that a low correlation in the energy profiles

can be more easily reached by using different renewable types,

for example solar and wind, where the latter may be very

useful to mitigate the shortage of energy from solar panels

during the night.

In the following, two cooperation types are considered:

1) Energy sharing: in this case, BSs are interconnected

with electric wires, forming a sort of microgrid that

provides mechanisms to exchange the harvested energy

among the BSs. In Fig. 7 two deployment scenarios are

depicted: direct connections among BSs (Fig. 7a) and BSs

connected through an aggregator (Fig. 7b).

2) Communication cooperation: BSs are not intercon-

nected via electric cables and their cooperation involves

mechanisms to support the radio communication such

as power control, bandwidth control, sleep modes and

traffic offloading. In this case, high-capacity mmWave

backhaul connections [87] can be exploited to facilitate

the deployment of drop-and-play devices, such as small

cells. The scenario is depicted in Fig. 8.

A. Energy sharing

Energy sharing among BSs is investigated in [88] through

the analysis of several basic multiuser network structures,

namely, (i) an additive Gaussian two-hop relay channel with

one-way energy transfer from the source to the relay node,

(ii) a Gaussian two-way channel with one-way energy transfer

and (iii) a two-user Gaussian multiple access channel with

one-way energy transfer. A two-dimensional and directional

water-filling algorithm is devised to control the harvested

energy flows in both time and space (among users), with the

(a) Energy sharing through a microgrid

AGGREGATOR

GRID

(b) Energy sharing through a microgrid with an
aggregator

Fig. 7. Energy sharing scenarios

ZZZ

Fig. 8. Communication cooperation scenario

objective of maximizing the system throughput for all the

considered network configurations. The allocation algorithm

is offline, relies on a priori information, i.e., the amount of

energy harvested by sources and relays, and assumes unlimited

data and energy buffers. However, these assumptions are

unrealistic.

A very interesting energy sharing framework is presented

in [89], where the concept of the Energy Packet Network

(EPN) is introduced. In an EPN, discrete units of energy,

termed energy packets, can be exchanged among network

elements or acquired from the environment through harvesting

hardware. Accordingly, the harvested energy can be modeled

as a packet arrival process, the energy storage as a packet

queue and the energy consumption process as a queue of



loads, i.e., one or more servers. These three components of the

EPN are interconnected thanks to power switches. Electronic

systems of this type, named power packet systems, have

been recently experimented with. In some approaches [90]

the packet takes the form of a pulse of current with fixed

voltage and duration. Each energy packet is equipped with

an encoded header, containing the information about the

destination identity (i.e., its address), which is used to route

the energy packet through the EPN.

The cost of deploying the micro-grid infrastructure that

would be required by an EPN can be high. In [88], [91], the

use of wireless energy transfer is considered as a means to

avoid the installation cost of electric cables. However, such

technology has a low energy transfer efficiency nowadays,

see [84], [85].

A solution to reduce the costs of deploying electrical con-

nections between BSs, is presented in [92], where a new entity

named aggregator is introduced, as shown in Fig. 7(b). The

aggregator is in charge of mediating between the grid operator

and a group of BSs to redistribute the energy flows. In [93],

the authors propose an algorithm that tries to jointly optimize

the transmit power allocations and the transferred energy, so

as to maximize the sum-rate throughput for all the users.

This joint communication and energy cooperation problem is

proven to be convex. Numerical simulation shows that this

approach achieves better performance than no cooperation

or cooperation through communication in terms of average

sum-rate.

Infrastructure sharing may be exploited to reduce power

consumption by fairly distributing the harvested energy by the

MNOs [94]. The problem to capture the energy interactions

among MNOs is stated as a bankruptcy game. The authors

focus on the fairness among operators to further motivate

cooperation. The results show that all cooperative MNOs could

be provided with 6 - 7 hours of operation during non-solar

hours, regardless the traffic demand. Furthermore, MNOs buy

grid energy at similar percentages when no green energy is

available.

B. Communication cooperation

The micro-grid deployment cost (i.e., the EPN installation

cost) is one of the main aspects that motivate the introduction

of this second cooperation mode. In this case, each BS has

an energy harvester and may have a storage unit (battery),

but it is not connected with the other BSs via electric cables

and, in turn, cannot directly exchange energy with them, as

shown in Fig. 8. This approach eliminates the CAPEX related

to the deployment of the micro-grid infrastructure (e.g., wires,

converters and controllers). However, it may require harvesters

and storage units with higher capacity, to achieve a certain

QoS. Ongoing research aims at finding the optimal size of

harvesting devices and batteries to sustain the traffic demand

through the available energy budget. In particular, methods that

allow the BSs to cooperatively optimize the network energy

usage are proposed.

In [95], the fraction of time during which a BS cannot

satisfy the traffic demand, due to energy scarcity is defined

as outage. The authors compute the size of harvesters and

batteries as a function of the outage probability. A photovoltaic

panel is considered as the harvester and the size-outage region

is obtained for different geographical locations. The authors

conclude that full network self-sustainability may be feasible

in locations with high solar irradiation, considering the cost

and dimension of the energy harvesting hardware (panels and

batteries). In [96], the authors define a system model of a

K-tier heterogeneous cellular network, where BSs indepen-

dently switch off when their energy reserve is insufficient. The

authors determine the availability region, i.e., the uncertainty

in BS availability due to the finite battery capacity and to

the inherent randomness in the energy harvesting process.

This provides a fundamental characterization of the conditions

under which standalone BSs provide the same performance as

BSs relying on traditional energy sources. The introduction of

sleeping capabilities in some BSs in order to reduce the size

of their harvesting and storage devices is explored in [97]. In

this paper, sleep modes are enabled for 50% of the BSs, when

the traffic is below 50% of its peak. Although simple, this

scheme allows reductions in the power consumption from 10%

to 40%, depending on the sleep policy, and to reduction in the

size of batteries and photovoltaic panels. However, the impact

of sleep modes on the user QoS is not assessed. In [98], an

optimization problem that seeks to minimize delay and power

consumption by turning off small BSs is investigated. The

proposed algorithm is online and is based on the so called ski

rental framework. Each agent operates autonomously at each

small cell and without having any a priori information about

future energy arrivals. The algorithm is compared against a

greedy scheme that uses sleep modes when the battery level

is below a fixed threshold. It is shown that the proposed

solution outperforms the greedy approach in terms of power

consumption and network cost. The performance is evaluated

assuming that energy arrivals are Poisson. This assumption is

however unrealistic in most energy harvesting scenarios, as

demonstrated in [99], where a stochastic Markov process has

been derived for solar energy harvesting systems.

In [100], a two-tier urban cellular network is considered,

where macro BSs are powered by the power grid and energy

harvesting small cells are deployed for capacity extension. The

authors propose a centralized optimal direct load control of the

small cells based on dynamic programming. The optimization

problem is represented using Graph Theory and the problem

is stated as a Shortest Path search. The same scenario is

considered in [101], where the authors propose an algorithm

based on a multi-agent reinforcement learning that controls the

energy spent according to the energy harvesting inflow and the

traffic demand. Each node independently decides as to whether

entering a sleep mode or serving the users within coverage.

This algorithm is also shown to outperform a greedy scheme.

C. Main outcomes

The main findings of this section are described as follows:



1) Energy cooperation between BSs give better results

when exploiting different types of RESs and geograph-

ical diversity.

2) Energy sharing possibilities are limited by the cost

of deploying a microgrid of BSs. Some architectural

solutions have been provided. In particular, the most

feasible is represented by the use of an aggregator.

However, EPNs represent an interesting challenge for

future energy sharing deployments.

3) Cooperation between BSs avoids the deployment of

a microgrid. The dimension of energy harvesting and

storage devices depends on the system outage constraints

and on the deployment site.

4) BSs sleeping represents one of the most promising

cooperation strategies.

Energy cooperation is a recent and open field of research.

Moreover, the definition of cooperation methods is crucial

in case of energy self-sustainability. A key aspect is the

characterization of the network load that is still not precisely

captured by current analyse as already described in Section

IV-C. We also underline the lack of performance assessments

for the user perceived quality in the presence of energy

cooperation mechanisms.

The harvesting process is usually characterized by very

intensive power generation periods, interleaved with periods

where the energy harvested is scarce of even absent. In the

case of solar energy, for example, the generated power depends

(among other things) on the season of the year. Since the

system is designed for the worst case (e.g., winter months),

the imbalance in the power generation across a full year may

lead to an excess of energy during high power periods, which

may be poorly handled. Investigations on an efficient use of

the energy surplus shall be carried out to avoid this. The

impact of energy storage devices still has to be investigated.

In such a case, the adoption of energy storage leads to a

higher CAPEX and the trade-off between installation cost and

network performance would also have to be assessed, taking

into consideration the payback period.

Most of the work cited in this section solves offline opti-

mization problems assuming a full knowledge of energy and

load patterns. This is useful as a feasibility study and to obtain

performance bounds, but it is still far from the design of

a practical solution. In the literature, we see an increasing

interest in learning and distributed approaches for the design

of online algorithms. However, these control methods are not

yet mapped into the proposed 5G architecture. Concepts like

network softwarization and virtualization should be included

in their design and their performance should be evaluated

considering real traffic (user demand) and energy harvesting

traces. Moreover, all the algorithms that have been published

so far entail a zero delay when a BS transitions between active

and sleep states.

Finally, a new research field is represented by the design

of EPNs. There, energy packets would represent a flexible

and convenient method to route energy when and where

needed. However, the design of power switches, as well as

the definition of proper energy routing protocols, are still open

research directions.

VII. ENERGY TRADING

In this section, we discuss a scenario where the 5G network

trades energy with the Smart Grid (SG). In a SG communi-

cations is provided across energy producers and consumers.

Energy can be bought from the main power distribution

network, but also from distributed users, if equipped with

some energy harvester. Finally, these users can even sell

their surplus energy, injecting it into the SG. A user may

then concurrently act as an energy consumer and producer

(often termed prosumer for short). In the scenario that we

envision here, a BS with energy harvesting capability can

be considered a prosumer of the SG. Next, we analyze the

possible interactions that may occur between the BSs of

a cellular network and the SG, by reviewing the existing

literature and discussing open challenges.

A. A review of energy trading in Smart Grids

The energy supply system consists of energy retailers and

consumers. The retailers offer a source-dependent energy price

that varies over time. Consumers choose one or more retailers

to buy energy from, depending on market prices.

The SG infrastructure is dimensioned to meet the peak

energy demand and to avoid blackouts. This leads to an

underutilization of the resources during off-peak periods. Fur-

thermore, an increase in the peak demand requires investments

in the distribution network and, possibly, in the power plants.

For these reasons, grid operators are pushing the consumers

to reduce their demand (the SG load) during peak hours

(through dynamic pricing and economic incentives) or to shift

their load to off-peak hours. The activities that target (i)

reshaping the consumer’s demand profile to make it match

the power supply, (ii) eliminating blackouts, and (iii) reducing

the operational costs and the carbon footprint are referred to as

Demand-Side Management (DSM) in the literature. A practical

way of achieving them is through Demand Response (DR),

i.e., the energy provider issues some offers (incentives, etc.)

over time and the users “respond” to these by adapting their

behavior. Some researchers and practitioners use DSM and DR

interchangeably [102], although DR can be seen as a way to

implement DSM policies.

A real-time pricing scheme is presented in [103] to reduce

the peak-to-average load ratio. The system is composed of

several consumers and a single retailer. Each user reacts to

the prices announced by the retailer and maximizes its payoff,

which is the difference between its quality-of-usage and the

cost of the energy bought from the retailer. The retailer designs

realtime prices in response to the forecast user reactions to

maximize its own payoff.

Game theory, and specifically Stackelberg games, has been

widely used to find distributed solutions for dynamic pricing

problems. This type of game models the behavior of two

agents, one of them being the leader (having the first move

advantage) and the other one being the follower, who plays



a best response strategy to maximize his own utility. In

energy trading scenarios, the retailer is usually the leader

and sets energy prices according to market needs in an

attempt to spur the participation of users, while also trying

to maximize its own revenue [19]. A similar approach is

presented in [104], where the authors propose a decision

model for a retailer, who plays the role of an intermediary

agent between a wholesale energy market and end-consumers.

The response of the consumers with respect to the retailer

price follows a two-stage Stackelberg game, while the market

price uncertainty is modeled by a robust linear optimization

model. The problem is reformulated as a mixed integer linear

program and solved heuristically. A non-cooperative energy

supply game is formulated in [105] to capture the competitive

market within a multiple-supplier micro-grid. The authors of

this paper propose an iterative algorithm to find the Nash

equilibrium of the energy supply game and another one to form

coalitions between micro-grids. Their results show that the

pricing mechanism reduces the electricity imbalance inside the

micro-grid and that the profit made by choosing to cooperate

is higher than that made operating independently.

Collaborative schemes among consumers, designed to re-

duce the energy cost, are explored in [106]. There, two

optimization problems are formulated with the goal of mini-

mizing the peak-to-average ratio and the system energy cost.

These problems are solved in a distributed manner through

a scheduling algorithm based on game theory. Moreover, to

encourage users to behave in a desired way (i.e., to minimize

the energy cost) the authors propose a smart pricing tariff such

that the interactions among the users automatically lead to

an optimal aggregate load profile. Cooperation is also inves-

tigated in [107] for the case of urban buildings composing a

micro-grid. The problem of deciding the optimal capacities of

the harvesting equipment as well as of determining the optimal

daily power operation plan is formulated as a mixed integer

linear program. The objective function is optimized based on

the Nash bargain method to enable equally distributed savings

among the participants. Results show that power exchanges

affect the required equipment size and viceversa. Furthermore,

energy exchanges enhance the system self-sufficiency and

reduce carbon emissions.

In [108], the social-welfare, defined as the difference be-

tween the total demand, the total cost experienced by all

the generators and the wastage cost caused by transmission

losses, is maximized through a distributed demand and re-

sponse algorithm. The problem is formulated using convex

optimization and solved in a distributed fashion applying the

Lagrange-Newton method. In the computation of the optimal

solution, each node (consumer or supplier) exchanges rounds

of messages with its neighboring nodes. Although simulation

results verify the correctness of the distributed algorithm, the

computation rate and the entailed communication load are

rather high. DSM is also a viable approach to control the

temporal separation between energy generation and demand.

In fact, load shifting allows demand flexibility without com-

promising the QoS [109]. This flexibility can be achieved

thanks to energy storage devices, which can be used to

accumulate renewable energy and use it when needed.

B. Cellular networks meet SG

The interaction between cellular networks and the SG can

be implemented in two different ways: 1) the SG is the only

energy supplier and 2) the energy harvesting BSs and the SG

are the energy suppliers.

1) The SG is the only energy supplier: in this scenario,

several retailers operate within the SG to serve the consumers.

An example of this can be found in [110], where a power

allocation scheme, formulated as a non-cooperative game,

is put forward to increase the network energy efficiency.

Retailers offer different prices to the BSs and a multi-agent

Q-learning scheme is proposed for the game to reach the

optimal transmission power configuration. Along the same

lines, in [111] a cognitive HetNet only powered by the SG is

considered. In this paper, the authors formulate the problems

of: (i) electricity price decision, (ii) energy-efficient power

allocation and (iii) interference management, which are jointly

and iteratively solved as a three-level Stackelberg game.

In [112], a DSM framework for cellular networks powered

by multiple energy suppliers is proposed. The system model

comprises a set of cellular operators, characterized by the

QoS offered to their subscribers, and powered by a common

pool of energy suppliers, characterized by energy prices and

pollutant emission levels. Closed-form expressions for the

amount of energy provided by each supplier to the operators

are derived using stochastic geometry, accounting for user

QoS, energy cost and carbon emissions.

2) The suppliers are the SG and the energy harvesting

BSs: in this second scenario, BSs have energy harvesting

capabilities, and act as prosumers of the SG, see Fig. 9.

Different scenarios can be envisioned. For example, in [113]

mobile operators are responsible for supplying power to their

BSs. Each network operator has to procure energy from

several SG retailers. The procurement decision is affected by

two factors: the unitary price of energy and a penalty term

depending on the amount of pollutant emissions from the

energy source. Moreover, BSs are prosumers, i.e., they can

procure energy from their own RESs, which are free of charge

for the network operator. Using a two-level Stackelberg game,

the authors of [113] formulate and find the optimal solution for

an optimization problem that seeks to maximize the operator

profit, as well as to reduce the emission of pollutants. We

remark that, besides this centralized decision-making model,

where the network operator decides the energy retailer for

each of BSs, there are distributed scenarios where BSs are

themselves responsible for carrying out the acquisition of

energy in a distributed manner, choosing the most appropriate

retailer according to their energy status, i.e., on their current

energy income and reserve.

An adaptive power management for wireless BSs is studied

in [114]. Here, each BS is a prosumer equipped with a solar
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Fig. 9. Diagram illustrating the two ways of interaction between mobile
networks and the smart grid.

panel and an energy storage unit, but is also plugged into

the electrical grid. Due to the random nature of renewable

generation, power prices and traffic load, the authors formulate

a multi-stage stochastic optimization problem. This problem

is then framed as a linear program and solved using standard

tools. Energy management strategies are presented in [115],

[116]. In these works, the authors also elaborate on the use of

storage devices. In [115], simulations results show that a cost

reduction can be attained through a higher battery capacity,

but a greater cost reduction is possible by increasing the

number of BSs. In [116], the authors get a critical battery

capacity level above which no further cost reduction can be

achieved. According to the authors, these results can be used

as guidelines in the design of storage systems for BSs in a

SG environment. Auctioning is explored in [117], where a

double auction trading algorithm is proposed to incentivize

BSs with extra harvested energy to share their energy surplus

with BSs with a lower energy reserve. Auction mechanisms

are the key elements of many applications in wholesale and

retail electric power markets. Similar to traditional auction

rules, the main goal of distributed energy trading is to find

the lowest-cost match between the supply and the demand,

so as to maximize the economic efficiency [19]. BS energy

storage is studied in [118]. Batteries must operate within a

guard range to avoid a rapid decrease of their performance

(i.e., typically between the 20% and 90% of their capacity).

The authors propose a fuzzy Q-Learning small cell energy

controller to simultaneously minimize the electricity bought

from the SG and enhance the life span of the storage device.

Finally, a hybrid energy sharing framework is proposed

in [119], where a combination of physical power lines and

energy trading with other BSs using smart grid is used.

Algorithms for physical power lines deployment between BSs

are designed based on the renewable energy availability. An

energy management framework is also formulated to optimally

determine the quantities of electricity and renewable energy to

be procured and exchanged among BSs, respectively. Results

demonstrate considerable reduction in average energy cost

thanks to the hybrid energy sharing scheme.

C. Main outcomes

The main findings of this section are described as follows:

1) Collaborative schemes and energy cooperation among

consumers in smart grids are effective techniques to

reduce energy costs, while increasing network efficiency.

Specifically, game theory and auctioning schemes have

been widely investigated within DSM strategies, provid-

ing valuable outcomes for energy trading. Stackelberg

games are the most popular approach.

2) The use of BSs with energy harvesting capabilities opens

new scenarios in the smart grid market, where green

network operators could trade their harvested energy

with the SG.

3) Some initial papers dealing with the interaction be-

tween SGs and green network operators (managing

BS with energy harvesting capabilities) have recently

appeared. Initial results, for selected network scenarios,

look promising. In particular, energy resources can be

optimally allocated (and traded between BSs and the

SG) to obtain monetary cost reductions and a higher

energy efficiency for the BS network.

A few open issues are now identified. The basic scenario

studied in the reviewed literature involves a single retailer

(the SG), which offers hourly energy prices to the final

consumers, i.e., the BSs. The energy price depends on the

cost of production and on the expected demand. In this

scenario, decision-making solutions shall be addressed to find

the best energy-purchasing policies for the BSs taking into

account: (i) current and forecast renewable energy income, (ii)

current and forecast traffic load and (iii) the future evolution

of the energy prices. In addition, the presence of energy

storage devices makes the problem more involved, allowing

the storage of energy for later use, when the market conditions

are unfavorable. There is a vast literature on dynamic pricing

and price forecast, but this is mostly limited to the smart grid

domain, whereas the integration of prices, energy and load

forecast for the control of BSs, when these act as prosumers

within a SG, is still unexplored.



Further, existing papers study network scenarios where

the BSs can harvest energy, use it locally (to serve their

own mobile users) or purchase it from the SG. Few studies

additionally consider BSs as possible energy sources, and

allow them to sell energy to the SG retailer. However, more

complex scenarios are possible, where BSs interact and are

endowed with the capability of exchanging energy among

themselves (using their local energy storage). According to this

new paradigm, BSs can sell(buy) energy to(from) other BSs

in the mobile network, besides using it locally or selling it to

the main SG retailer. This amounts to green mobile networks,

where BSs can self-organize and cooperate toward the overall

reduction of the energy that the mobile network drains from

the SG, reducing the carbon footprint of ICT.

Finally, stochastic optimization and adaptive control tools,

involving, e.g., model predictive control, shall be considered

to handle the integration of energy harvesting capabilities in

mobile networks where BSs can be considered as prosumers

of the SG. Better load models (accurately tracking the spatio-

temporal traits of mobile traffic) are needed, along with

lightweight and flexible tools for pattern analysis and predic-

tion, to be integrated into foresighted optimization techniques.

Within these settings, micro-economic models should also

be investigated when consumers (BSs) aim at maximizing

their utility (e.g., combining energy, monetary cost and served

traffic), subject to their monetary budget constraints; while SG

retailers aim at maximizing their profit.

VIII. CONCLUSIONS

In this survey, we have elaborated on the use of energy

harvesting hardware as a means to decrease the environmental

footprint of 5G technology. To take full advantage of the

harvested (renewable) energy, while still meeting the qual-

ity of service required by dense 5G deployments, suitable

management techniques have been reviewed, highlighting the

open issues that are still to be solved to provide eco-friendly

and cost-effective mobile networks. While several techniques

have recently been proposed to tackle capacity, coverage

and efficiency problems, including: C-RAN, software defined

networking and fog computing, these are deemed insufficient

and do not generally consider network elements possessing

renewable energy harvesting capabilities. From the analysis

that we have carried out in this survey, we have identified

several open issues that range from the need for accurate

energy, transmission and consumption models, to the lack

of accurate data traffic profiles (from real mobility traces),

to the use of power transfer, energy cooperation and energy

trading techniques. Specifically, current wireless transfer tech-

niques are deemed inadequate to provide energy balancing

across network elements, mainly due to their very small

transfer efficiencies. Energy cooperation techniques look very

promising and should be better addressed, including energy

harvesting and traffic dynamics. In this respect, energy packet

networks are envisaged to be an interesting solution to be

further explored for energy transfer among network nodes.

Energy trading is finally assessed, looking at renewable mobile

networks as part of electricity grids and at their network

elements as possible prosumers. In a near future, in fact,

energy may also be sold to electricity providers or utilities.

Dedicated market rules shall be identified to this end.
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[5] A. Fehske, J. Malmodin, G. Biczók, G. Fettweis, The Global Footprint
of Mobile Communications: The Ecological and Economic Perspective,
IEEE Communications Magazine, issue on Green Communications
49 (8) (2011) 55–62. doi:10.1109/MCOM.2011.5978416.

[6] S. Buzzi, C. L. I, T. E. Klein, H. V. Poor, C. Yang, A. Zappone, A Sur-
vey of Energy-Efficient Techniques for 5G Networks and Challenges
Ahead, IEEE Journal on Selected Areas in Communications 34 (4)
(2016) 697–709. doi:10.1109/JSAC.2016.2550338.

[7] R. Mahapatra, Y. Nijsure, G. Kaddoum, N. U. Hassan, C. Yuen, Energy
Efficiency Tradeoff Mechanism Towards Wireless Green Communica-
tion: A Survey, IEEE Communications Surveys & Tutorials 18 (1)
(2016) 686–705. doi:10.1109/COMST.2015.2490540.
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