
Efficient Virtual Network Function Placement
Strategies for Cloud Radio Access Networks

Deval BhamareҰ, Aiman ErbadҰ, Raj Jainφ, Maede Zolanvariφ, Mohammed SamakaҰ

ҰDepartment of Computer Science and Engineering, Qatar University, Doha, Qatar
φDepartment of Computer Science and Engineering, Washington University in Saint Louis, USA

devalb@qu.edu.qa, aerbad@qu.edu.qa, jain@wustl.edu, maede.zolanvari@wustl.edu, samaka.m@qu.edu.qa

Abstract—The new generation of 5G mobile services place
stringent requirements for cellular network operators in terms of
latency and costs. The latest trend in radio access networks
(RANs) is to pool the baseband units (BBUs) of multiple radio
base stations and to install them in a centralized infrastructure,
such as a cloud, for statistical multiplexing gains. The technology
is known as Cloud Radio Access Network (CRAN). Since cloud
computing is gaining significant traction and virtualized data
centers are becoming popular as a cost-effective infrastructure in
the telecommunication industry, CRAN is being heralded as a
candidate technology to meet the expectations of radio access
networks for 5G. In CRANs, low energy base stations (BSs) are
deployed over a small geographical location and are connected to
a cloud via finite capacity backhaul links. Baseband processing
unit (BBU) functions are implemented on the virtual machines
(VMs) in the cloud over commodity hardware. Such functions,
built in software, are termed as virtual functions (VFs). The
optimized placement of VFs is necessary to reduce the total
delays and minimize the overall costs to operate CRANs. Our
study considers the problem of optimal VF placement over
distributed virtual resources spread across multiple clouds,
creating a centralized BBU cloud. We propose a combinatorial
optimization model and the use of two heuristic approaches,
which are, branch-and-bound (BnB) and simulated annealing
(SA) for the proposed optimal placement. In addition, we propose
enhancements to the standard BnB heuristic and compare the
results with standard BnB and SA approaches. The proposed
enhancements improve the quality of the solution in terms of
latency and cost as well as reduce the execution complexity
significantly. We also determine the optimal number of clouds,
which need to be deployed so that the total links delays, as well as
the service migration delays, are minimized, while the total cloud
deployment cost is within the acceptable limits.

Index Terms—Cloud Radio Access Network; Network Function
Virtualization; Software Defined Networking; Virtual Network
Function Placement.

I. INTRODUCTION

Recently, because of the explosion in the number of mobile
devices, demand for new online services and consequently the
data traffic has grown rapidly. With the proliferation of mobile
technology, there has been a burst in the traffic originating
from IoT devices, video on demand (VoD), online gaming,
healthcare, and many other applications. Millions of new
sensing devices and online services exchanging data have
significantly contributed to this trend. It is expected that the
volume of mobile data will be 1000X higher than today, and
the number of connected devices will be between 10X to 100X
by 2020 [3]. According to Wireless World Research Forum

(WWRF), the number of connected wireless devices is
expected to be 100 billion by 2025 [2]. The unprecedented
growth in online services, mobile devices, as well as the data
has exerted tremendous pressure on the cellular network
operators to provide the connectivity to their end-users while
maintaining the quality of service (QoS).

To accommodate this growth, network operators have to
deploy more and more base stations to offload traffic from
congested cells. Increasing the number of base stations to meet
the growing user demand increases the capital expenditure
(CAPEX) and operational expenditure (OPEX) for cellular
network operators. More specifically, CAPEX increases as
base stations are the most expensive components of a wireless
network infrastructure, while OPEX increases as cell sites
demand a considerable amount of power and resources to
operate. However, revenues for the operators are still flat [1].
The aforementioned problem will be aggravated by the
introduction of 5G networks. 5G networks will incorporate
different types of heterogeneous traffic and 5G operators will
be confronted with the major challenge to support a number of
diverse vertical industry applications in order to expand the
wireless market. Table 1 provides a summary of typical
examples of such services, which illustrate the wide diversity
of their associated requirements.

TABLE 1. NETWORK SERVICES AND DEMANDS
Case Application Requirements
Broadband access in
dense areas

Events, games, etc. High traffic volume,
ms latency

Mobile users Trains, vehicles,
drones

Connectivity at high
speed

Massive IoT Sensors, smart
devices, wearables

Low power, around 1
million connections
per km2

Time sensitive Health, smart grid,
etc.

Redundancy, ms
latency

A novel mobile network architecture that minimizes the
operational cost for network operators while accommodating
such increasing heterogeneous user demands and satisfying the
QoS has become a necessity. Cellular operators have started to
experiment with novel networking paradigms, new ways to
leverage existing equipment in new deployments, and more
flexible resource planning and network managing tools. Cloud
radio access network (CRAN) is a novel mobile network
architecture, which has the potential to meet the above-
mentioned challenges. It is based on a concept proposed by Lin
et al. [8], which allows cellular network operators to share the

eprint
Computer Communications, Volume 127, May 2018, pp. 50-60

network as well as the computational resources to balance the
workload over a low-cost platform. In the CRAN, baseband
processing is centralized as a virtualized baseband processing
unit (BBU) pool, shared among several sites as well as
operators. The idea is to virtualize BBU pools using
Infrastructure as a Service (IaaS) model offered by cloud
service providers. Various collaborating operators may deploy
the commodity hardware at different sites, forming various
cloud sites, on which the BBU functions may be collocated [5].
Resource sharing along with virtualization promotes flexible
control, low cost, efficient resource usage, and support for
diversified applications. In addition, communication among
co-located BBUs has a lower latency, guaranteeing the QoS.
Sharing of resources also results in an increased throughput by
means of the statistical multiplexing gains [7, 49]. Suggested
CRAN architecture is shown in Fig. 1.

Fig. 1: Novel CRAN architecture for mobile networks.

As depicted in Fig. 1, all baseband signal processing
(BBU) functions (including physical, MAC and network
layers), which require most of the processing resources have
been relocated from the cell site to distant locations, i.e., the
clouds. On a cell site, RRH is still responsible for
transreceiving radio signal, amplification of signal power and
other functions [5]. In real-time scenarios, cellular network
operators need to start multiple instances of the BBU services
depending on the client demands or the workload. Operators
confront the problem of optimally placing the service
instances, considering the user demand density across multiple
regions. The delays to the end-users depend on the RRH to
cloud allocation as well as the service placement over the
resource pool. A non-optimal allocation may result in
unacceptable delays, violating the QoS and costs, hampering
the advantages of the novel CRAN architecture. Hence,
efficient algorithms are required to map the BBU service
requirements to the available virtual resources and to minimize
the end-to-end delays to the end users. The proposed
algorithms are also expected to reduce the total cost of
deployment to cellular network operators.

Researchers have considered the optimization problem in
the context of CRANs already; with the focus on optimizing

the resources, total energy or power [21, 48]. Latency,
however, is equally important and faces stringent constraints in
radio networks. A significant amount of work has been done in
the literature for service placement considering the parameters
such as latency, cost, QoS and others, especially from the
context of the core telecom networks [11, 15, 27, 32-40]. The
requirements of the CRAN networks, on the contrary, are
significantly different compared with those of the core
telecom networks [5, 21]. For example, diversified traffic on
5G networks (as explained in table 1). Also, BBU functions
involve huge traffic volumes and have stringent latency
requirements, in the order of a few hundreds of microseconds
[5, 21, 24]. This demands high network link capacities. For
example, high-definition (HD) video provided by the
application service providers (ASP), such as YouTube
requires a minimum of 3−4 Mbps of link capacity to satisfy
the quality of service (QoS) demands [4]. Considering such
stringent service level agreements (SLAs), there is a need to
revisit the service placement problem from the perspective of
CRANs.

In this work, we propose a scheme for optimal placement
of virtual functions (VFs) in multi-cloud environments for
CRANs. The proposed schemes in this work, allocate service
demands at base stations in the form of VFs to the virtual
machines (VMs) to minimize the response time or latency to
the clients, satisfying the cost constraint, the capacity
constraints and the placement constraint (due to SLAs,
explained later). We have formulated the optimization model to
deploy workflows of the VFs and assign service requests at
base-stations to meet the service demands. We model the
problem as a combinatorial optimization problem. Since the
optimization model cannot solve the real-time problems within
acceptable time limits due to its computational complexity, we
propose a set of heuristic approaches for large networks. In this
work, we implement an enhanced version of the two common
approaches in the literature, which are: (1) Branch-and-bound
(BnB) and (2) Simulated annealing (SA). The enhancement
reduces the execution complexity of the BnB heuristic so that
the allocation is faster. The proposed enhancements also
improve the quality of the solution significantly. We compare
the results of the standard BnB and SA schemes with the
enhanced approaches to demonstrate these claims. Our aim was
to develop a faster solution which can meet the latency
requirements of the CRANs [8], while the performance (here,
in terms of cost and latency) is not far from the optimal. Also,
with the heuristic implementation, we calculate the optimal
number of clouds, which need to be deployed so that the total
links delays, as well as the service migration delays, are
minimized, while the total cloud deployment cost is within the
acceptable limits.

The rest of the paper is organized as follows. In section II,
we discuss the related work in the context of the CRANs and
discuss our contributions in more depth. In section III, we
formulate an optimization model for the VFs placement over
multiple-clouds. In section IV, we discuss the proposed
heuristic approaches, and in section V, we present and discuss

the results. Finally, we conclude the paper. A list of acronyms
used in the paper is given in Table 8 at the end.

II. RELATED WORK AND CONTRIBUTIONS

As mentioned by Checko et al. [4] and Lin et al. [8], the
evolution of the CRAN, network operators may experience the
following benefits:
(1) Reduced cost: Since computing resources are aggregated at
a centralized location, deployment as well as maintenance cost
for separate base-stations can be saved.
(2) Increased energy efficiency: Power consumption and load
congestion can be reduced by dynamically allocating the
resources and allocating the services over the shared pool,
energy efficiency may be improved significantly.
(3) Improved spectrum utilization: CRANs enable sharing of
channel state information on each base station-mobile station
link, traffic data, and control information of mobile services
among cooperating base stations, resulting in an improved
spectrum utilization [5, 9].
(4) Improved resource utilization: Since computers and other
resources are shared, overall resource utilization can also be
significantly improved.
(5) Scalability: An RRH site can be easily deployed or
undeployed as per the need, without worrying about the
installation of the whole base-station. Such new sites can be
multiplexed with the existing centralized BBUs [5, 47].

Considering the benefits of the CRAN architecture,
researchers have already started to investigate these challenges
associated with this novel platform. For example, Hadzialic et
al. present an overview of all known techniques to realize a
CRAN network [14]. Wu et al. [7] present a novel logical
structure of CRAN that consists of a physical plane, a control
plane as well as a service plane and emphasizes the advantages
of the CRAN architecture. The authors propose a coordinated
user scheduling algorithm and a parallel optimum pre-coding
scheme using cloud computing platforms. Dario et al. [16]
introduce the concept of RANaaS (Radio Access Network-as-
a-Service) as a flexible architecture based on the centralized
processing. Checko et al. [5] provide a technology review for
this novel platform, focusing on its advantages. Going a step
further, Qian et al. [1] propose a super-base station based
centralized approach for 5G networks. The authors also
acknowledge the advantages of the CRAN architecture in their
work. Navid [8] investigates three critical issues for the
cloudification of the current radio access networks. The author
analyzes resource, latency, and capacity requirements for the
baseband processing units. Liu et al. in [13] demonstrate that
energy efficiency of large-scale small cell networks is higher
compared to massive multiple-input multiple-output (MIMO)
systems. Mikhail et al. [50] discuss cooperative radio resource
management approaches in heterogeneous CRANs. Park et al.
[51] have focused on massive MIMO perspective and related
operations for the partially centralized CRANs.

Peng et al. [21] discuss recent advancements in the field of
CRANs. They also provide a survey of technological features
and the core principles of the heterogeneous CRANs in [20, 24,

45]. Rost et al. [25] provide an overview of the cloud
technologies for 5G radio access networks and discuss the
advantages of CRANs. Pang and Zhang discuss the recent
advances in the field of fog radio access networks [47]. A
significant amount of work in the literature concerns the
virtualization of core telecom as well as network functions
using software-defined networking (SDN) and virtualization.
Our previous work [3] has considered the placement problem
from the perspective of service function chaining (SFC) of
application layer as well as network layer services. Virtual
function or virtual machine placement problem has been
considered widely in the literature.

Various optimization models for resource allocation in
radio networks, as well as core networks, have been proposed
along with the heuristic approaches. For example, optimal
energy-efficient power allocation schemes for radio networks
by Weng et al. [28]. Sigwele et al. [48] have proposed energy-
efficient CRANs by cloud-based workload consolidation for
5G networks. A virtual machine placement problem in micro-
cells while implementing SLA constraints has been considered
in [12]. In [50] authors propose the novel caching scheme to
solve the problem of congestion in backhaul links. Park et al.
[51] propose a joint optimization scheme to tackle the problem
of maximizing the delivery rate in fog RANs. Virtual machine
placement and service placement have been studied in the
literature as well. For example, works presented in [29-40]. A
multi-cloud virtual function distributed strategies for dynamic
NFV platform has been proposed in our previous work [15].

Besides academia, cellular network operators have
extensively studied CRAN architecture as well, such as
Alcatel-Lucent [17], Huawei [18], Nokia Siemens Networks
[19], China Mobile Research Institute [6] and many others.
Given the importance of CRANs and their stringent latency
requirements, we argue that it is mandatory to implement
sophisticated algorithms for automated service delivery in the
context of multi-cloud based RANs to fully leverage the
distributed computing opportunities on the Internet. In this
work, we aim to achieve the following objectives to address the
service placement problems in the context of CRANs:
(1) We solve the problem of automated and optimal service

placement for the multi-cloud domain in the context of
CRANs.

(2) We propose the optimization model to minimize the
overall latency while placing the BBU services over the
centralized cloud and satisfying the cost as well as
resource constrains.

(3) We also implement enhanced versions of the two
common heuristics in the literature, which are: (i)
Branch-and-bound (BnB) and (ii) Simulated annealing
(SA). The enhancement reduces the execution complexity
of the BnB heuristic with the improved solution quality.

(4) Finally with the heuristic implementation, we calculate
the optimal number of clouds, which need to be deployed
so that the total links delays, as well as the service
migration delays, are minimized, while total cloud
deployment cost is within the acceptable limits. We also

validate our results using the results from NS3 for a
similar setup.

In the next section, we propose our optimization model for
the deployment of BBU virtual functions over the available
clouds and a set of virtual machines, so that the total end-to-
end delays for all the services are minimized while satisfying
the cost and capacity constraints.

III. OPTIMAL DISTRIBUTION OF BBU SERVICES

In this section, we set up the problem of minimizing the
overall response time in a multi-cloud RAN (CRAN) scenario
as a combinatorial optimization problem. For typical batch-
processing cloud computing applications, delay ranging in the
tens of milliseconds is acceptable, for CRANs the expected
delay should be less than 0.5 milliseconds [5]. This stringent
delay requirement mandates the transport networks to not only
support high bandwidth and be cost efficient but also to
support strict latency and jitter requirements. Hence, the goal
of the optimization model presented is to minimize the
response time or latency to the services, while satisfying other
constraints such as the cost, placement, and capacity
constraints.

We have formulated the optimization model to deploy the
workflows using the virtual network functions (VNFs) and
assign client requests to these workflows to meet the service
demands. A service request is nothing but a resource request
vector by the individual VNF that comprise the workflow. We
introduce a 3D model for service requirements and VM
capacities that are necessary for multi-cloud RAN scenario,
that is, CPU, storage, and network capacity. For more detailed
discussion on the workflows, their characteristics and service
requests, readers are requested to refer to our previous works
such as [14, 52].

In our model, link delays among base stations and the
cloud are considered because such delays are of significant
importance in cellular networks. We formulate the problem as
an integer linear programming (ILP) optimization. The list of
variables used in the ILP is given in Table 2. Let G = {V, E} be
a graph to represent the network in consideration, where V is a
set of nodes representing the base stations and cloud nodes in
the network and E is set of the edges such that E ⊆ V×V. To
reduce the computational complexity of the optimization
model, we compute the path between every pair of the nodes
in the topology in advance, mapping paths to the links. The
mappings are stored in the set ξ. The total number of sites that
can be selected for deployment of the clouds is given as an
input to the optimization model and depends on the cost
threshold, that is, Γ.

TABLE 2

PARAMETERS FOR INTEGER LINEAR PROGRAM (ILP)
Type Symbol Definition

Indices

i, j, k Iterators for nodes in the topology
such that i, 𝑗𝑗,𝑘𝑘 ∈ |V|

l Iterator for virtual machines that l ∈
L

m Iterator for service instances such
that m ∈ M

p Iterator for the paths such that p ∈ P

Input
Constants

V Set of nodes in the topology
 𝜓𝜓𝑗𝑗 The arrival rate of packets at jth

node (Poisson distribution).
Ұ𝑗𝑗 The processing rate at jth node

(Poisson distribution)
𝐶𝐶𝑗𝑗 Computational delay at the jth cloud.

Clouds are modeled using an
M/M/1 model.

𝜆𝜆𝑖𝑖𝑗𝑗 The arrival rate of packets on the
path (i, j).

𝜇𝜇𝑖𝑖𝑗𝑗 Processing rate of packets on the
path (i,j) (deterministic)

𝛵𝛵𝑖𝑖𝑗𝑗 Total delay on (i, j)th link/path to
transmit one byte. Link queues are
modeled using an M/D/1 model.

𝐵𝐵𝑖𝑖𝑗𝑗 The bandwidth of the link between
the ith and jth node. Value is 0 if no
direct link between i and j

𝐾𝐾𝑗𝑗 The capacity vector of the jth node
(3D vector).

𝜅𝜅𝑙𝑙 The capacity vector of lth VM (3D
vector).

𝛿𝛿𝑙𝑙 Demand vector for lth VM (3D
vector).

𝛥𝛥𝑖𝑖 Demand vector for ith BS per byte
of traffic (3D vector). Value is 0 if
the ith node is a cloud node.

𝑊𝑊𝑖𝑖 Traffic generated by ith BS in a
number of packets. Value is 0 if the
ith node is a cloud node. Each
packet size is assumed to be 500B.

𝑆𝑆𝑖𝑖𝑙𝑙 A 2-dimensional 𝑀𝑀 × |𝑉𝑉| matrix.
Value is 1 if lth function can be
placed at ith cloud location based on
the SLAs, otherwise 0.

𝛹𝛹𝑚𝑚 The delay constraint for service m,
such that SLAs are met.

Variables

𝐼𝐼𝑗𝑗𝑚𝑚𝑙𝑙 Instance matrix indicating number
of instances of lth VM which are
installed on jth node for mth service
request.

𝐴𝐴𝑖𝑖𝑗𝑗𝑚𝑚 Allocation matrix. Value is one if ith
node (BS node) is assigned to jth
node (cloud node) for mth service
request otherwise 0

We assume that the set of base stations (BSs) and
clouds are disjoint sets. Each cloud site i has zero value
for 𝑊𝑊𝑖𝑖, that is, no request flows are getting generated in
clouds and only base stations can generate such flows.
Similarly, each BS site i has zero value of 𝐾𝐾𝑖𝑖, that is,
user sites do not have any processing capacities. A
vector matrix K represents the capacities of the cloud
sites, with each element of the matrix being a triplet Ki
= [K1

i, K2
i, K3

i] is the capacity of cloud i. As mentioned
earlier, we are referring to a 3D vector to represent the

capacity, that is, CPU, Storage and, Network Capacity.
Let W be the matrix to represent the volume of traffic
originating from the BS sites, that is, Wi is the traffic
getting generated at BS node i. 𝐾𝐾𝑖𝑖 = 0 and Wi > 0
indicates that the site i is a base station site. However,
𝐾𝐾𝑖𝑖 = 0 and Wi = 0 indicate that the node is just a routing
node. We assume that service requirements are directly
mapped to virtual machines (VMs) for their
installations. For simplicity, the mapping is assumed
one-to-one, hence, we may be using both the terms
interchangeably. 𝜅𝜅𝑙𝑙 is the vector representing capacity
required for the lth VM. Let 𝛿𝛿𝑙𝑙 be the demand vector of
lth VM and 𝛥𝛥𝑖𝑖 be the demand vector for the ith client. For
the cloud node 𝛥𝛥𝑖𝑖 = 0.

It may be noted that more than one instance of a VM may
be deployed at any deployment site depending on the
processing capacity of the VM and total traffic demand getting
generated at the site. Let 𝐼𝐼𝑗𝑗𝑙𝑙 be the instance matrix representing
how many instances of a VM l need to be deployed at site j.
Let A be an allocation matrix such that 𝐴𝐴𝑖𝑖𝑗𝑗

𝑙𝑙 = 1 if a BS node i is
assigned to the cloud at node j. Note that 𝐴𝐴𝑖𝑖𝑖𝑖𝑙𝑙 = 1 means node i
has been assigned a client request. In other words, l instance
has been deployed on a cloud at node i. If N is the number of
the total nodes and L is the total number of VFs to be
deployed, then A can be given as:

A=�
𝐴𝐴111 … 𝐴𝐴1𝑁𝑁1
… … …
𝐴𝐴𝑁𝑁11 … 𝐴𝐴𝑁𝑁𝑁𝑁1

� … �
𝐴𝐴11𝐿𝐿 … 𝐴𝐴1𝑁𝑁𝐿𝐿
… … …
𝐴𝐴𝑁𝑁1𝐿𝐿 … 𝐴𝐴𝑁𝑁𝑁𝑁𝐿𝐿

� ,∀ 𝐴𝐴𝑖𝑖𝑗𝑗𝑙𝑙 ∈ (0, 1) (1)

As mentioned earlier, the computing systems are modeled
as M/M/1 queues. Similarly, the links are modeled as M/D/1
queues with large buffers, up to 1 GB. The delays in the links
are as given in Equation (2). We note that 𝜆𝜆𝑖𝑖𝑗𝑗, which is the
link load, is a function of total flows passing through the link
(i, j). Also, 𝜓𝜓𝑗𝑗 is the arrival rate of packets and Ұ𝑗𝑗 is the
process rate of packets at the jth cloud.

𝐶𝐶𝑙𝑙 = 1/(1- 𝜓𝜓𝑙𝑙/Ұ𝑙𝑙)

𝛵𝛵𝑖𝑖𝑗𝑗 = 1
2𝜇𝜇𝑖𝑖𝑖𝑖

×
2−(𝜆𝜆𝑖𝑖𝑖𝑖/𝜇𝜇𝑖𝑖𝑖𝑖)

1−(𝜆𝜆𝑖𝑖𝑖𝑖/𝜇𝜇𝑖𝑖𝑖𝑖)
 (2)

Constraints: We now discuss the constraints of the
optimization model:

1. Cloud capacity: The maximum number of instances of a
VM, which may be deployed in a given cloud, is bounded
by the capacity of that particular cloud and demands of the
VM. In other words, the summation of the demands of all
VMs installed in a cloud j should be less than or equal to the
capacity of the cloud j.

��𝐼𝐼𝑗𝑗𝑚𝑚𝑙𝑙 × 𝛿𝛿𝑙𝑙

𝐿𝐿

𝑙𝑙=1

𝑀𝑀

𝑚𝑚=1

 ≤ 𝛫𝛫𝑗𝑗 ∀ 𝑗𝑗 ∈ |𝑉𝑉|,𝑚𝑚 ∈ 𝑀𝑀 (3)

2. VM Capacity: The minimum number of VMs that need to
be deployed on a particular cloud for a particular service is
bounded by a fraction of the total client traffic from all the
sites assigned to that particular cloud. It means that the sum
of the demands of BSs assigned to a particular service m at a
particular site j should be less than or equal to the total
capacity of all instances of that particular VM l at site j.

�𝐴𝐴𝑖𝑖𝑗𝑗𝑚𝑚 × 𝛥𝛥𝑖𝑖 × 𝑊𝑊𝑖𝑖

|𝑉𝑉|

𝑖𝑖=1

 ≤ 𝐼𝐼𝑗𝑗𝑚𝑚𝑙𝑙 × 𝜅𝜅𝑙𝑙 ,∀ 𝑗𝑗 ∈ |𝑉𝑉|,𝑚𝑚 ∈ 𝑀𝑀 (4)

3. Link Delays: This constraint models the total path loads as a
function of total traffic passing through the path between
node pair (i, j). 𝜆𝜆𝑖𝑖𝑗𝑗 is the total load across the path between
(i, j), and is a function of total flows passing through the
path between (i, j). Please note that, to reduce the
complexity of the model further, paths are pre-calculated.
Generally, the backhaul links between the BS and the first
cloud (or the first routing element) are very high capacity
links [46]. This is because the cellular network providers lay
such links and the first cloud is generally close to the base
station. However, the links between the clouds are generally
laid by ISPs and have comparatively lower capacities. Such
inter-cloud links may become bottlenecks. Hence, we
consider only such links and ignore the links between the
BSs and the first cloud. 𝜆𝜆𝑖𝑖𝑗𝑗 may be given as shown in
Equation 5.

We modify the term 𝜆𝜆𝑖𝑖𝑗𝑗 for this equation to 𝜆𝜆𝑖𝑖𝑗𝑗
𝑝𝑝 to

indicate the delays on the end-to-end path between node
pair (i, j). For the sake of clarity, we replace the term i with
the term 𝑖𝑖′ to indicate that the first node on the specified
path is not the ith BS, however, it is the first routing element
or the first cloud. Also, term 𝐴𝐴𝑖𝑖𝑗𝑗𝑚𝑚 in the equation makes sure
that ith BS is allocated to cloud j for service request m. Term
Ajj
m validates the integrity constraint, that is, node j is a

cloud. 𝜉𝜉𝑖𝑖𝑗𝑗
𝑝𝑝 = 1 indicates that the path p has been chosen for

the communication between the end nodes (i, j),

𝜆𝜆𝑖𝑖′𝑗𝑗
𝑝𝑝 = � � 𝜉𝜉𝑖𝑖′𝑗𝑗

𝑝𝑝 × 𝑊𝑊𝑖𝑖 × (𝐴𝐴𝑖𝑖𝑗𝑗𝑚𝑚 × 𝐴𝐴𝑗𝑗𝑗𝑗𝑚𝑚),
m ε 𝑀𝑀 i ε |V|

∀ 𝑖𝑖′ 𝑗𝑗 ∈ |𝑉𝑉| (5)

4. Queuing Constraints: For the queuing systems to be stable,
following two constraints need to be satisfied. That is,
processing rate should be greater than or equal to the arrival
rate, at both, links as well as clouds.

𝜆𝜆𝑖𝑖𝑗𝑗 ≤ 𝜇𝜇𝑖𝑖𝑗𝑗 and 𝜓𝜓𝑗𝑗 ≤ Ұ𝑗𝑗 ∀ i, j ∈ |V| (6)

5. Cost Threshold: The total cost of deployment, Γ, is an input
for our ILP. Γ varies from Γmin to Γmax. Γmin generally is 1.
However, we allow the possibility of starting with another
feasible number. The cost associated with a single cloud is
proportional to the total resources installed at that site. We
iterate through the matrix A to count cloud sites and find the
cost to make sure that the total cost is less than or equal to
Γ.

��𝐴𝐴𝑖𝑖𝑖𝑖𝑚𝑚 × 𝐼𝐼𝑖𝑖𝑚𝑚𝑙𝑙
|𝑉𝑉|

𝑖𝑖=1

𝑀𝑀

𝑚𝑚=1

≤ 𝛤𝛤 (7)

6. SLAs for Response Time: Depending on the service type,

the scheduler at BBUs may want to limit per-packet delays
for its various service request. This also avoids starvation of
a particular traffic flow due to limited resources. This
constraint depends on the final optimization function for
total delays. Let ϴ𝑖𝑖𝑚𝑚 be the total delay for the mth service at
the ith BS. The constraint can be modeled as follows [15].

𝛳𝛳𝑖𝑖𝑚𝑚 ≤ 𝛹𝛹𝑚𝑚 ,∀ 𝑚𝑚 ∈ 𝑀𝑀, i ∈|V| (8)

7. Integrity Constraint: As mentioned earlier, we assume that
the set of users and clouds are disjoint sets. Hence, we need
to make sure that the user requests are forwarded to cloud
nodes only (and not to the other client nodes). It is ensured
with the help of the following constraint:
𝐴𝐴𝑖𝑖𝑗𝑗𝑙𝑙 ≤ 𝐴𝐴𝑖𝑖𝑖𝑖𝑙𝑙 , ∀ i, j ∈ |V|, 𝑙𝑙 ∈ 𝐿𝐿 (9)

Optimization Function: We seek to minimize the total
response time to the base stations in the network. Delays are
divided into two categories: transmission delays associated
with links and computational delays associated with the
clouds. Then we multiply the term with the transmission delay
between nodes i and j as well as the computational delay at
node j (𝛵𝛵𝑖𝑖𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶𝑗𝑗, respectively). We formulate the
optimization function as follows.

Minimize:
� � � 𝐴𝐴𝑖𝑖𝑗𝑗𝑚𝑚 × 𝐴𝐴𝑗𝑗𝑗𝑗𝑚𝑚 (𝛵𝛵𝑖𝑖𝑗𝑗 + 𝐶𝐶𝑗𝑗)

j ε |V| i ε |V|m ε𝑀𝑀

 (10)

Linearization of ILP: We formulate an optimization function
as shown in (10) above. However, we notice a non-linearity in
the equation due to the multiplication of 𝐴𝐴𝑖𝑖𝑗𝑗𝑚𝑚 and 𝐴𝐴𝑗𝑗𝑗𝑗𝑚𝑚. To
remove the non-linearity, we introduce another variable 𝛷𝛷𝑖𝑖𝑗𝑗

𝑙𝑙
such that [10, 15]:
𝛷𝛷𝑖𝑖𝑗𝑗
𝑙𝑙 = 1 iff 𝐴𝐴𝑖𝑖𝑗𝑗𝑚𝑚 and 𝐴𝐴𝑗𝑗𝑗𝑗𝑚𝑚 = 1, otherwise 0 (11)

satisfying the constraints below:
𝛷𝛷𝑖𝑖𝑗𝑗
𝑙𝑙 ≤ 𝐴𝐴𝑖𝑖𝑗𝑗𝑚𝑚 and 𝛷𝛷𝑖𝑖𝑗𝑗

𝑙𝑙 ≤ 𝐴𝐴𝑗𝑗𝑗𝑗𝑚𝑚 (12)
𝛷𝛷𝑖𝑖𝑗𝑗
𝑙𝑙 ≥ 𝐴𝐴𝑖𝑖𝑗𝑗𝑚𝑚 + 𝐴𝐴𝑗𝑗𝑗𝑗𝑚𝑚 ― 1 (13)

The optimization function may be re-written as:
� � � 𝛷𝛷𝑖𝑖𝑗𝑗

𝑚𝑚 (𝛵𝛵𝑖𝑖𝑗𝑗 + 𝐶𝐶𝑗𝑗)
j ε |V|i ε |V|𝑚𝑚 ε 𝑀𝑀

 (14)

The computational complexity of the optimization model is
very high. We note that A is a 3-dimensional matrix. Due to
the term 𝐴𝐴𝑖𝑖𝑗𝑗𝑚𝑚 × 𝐴𝐴𝑗𝑗𝑗𝑗𝑚𝑚, the total complexity of the ILP is
O(V4M2), where V is the total number of user nodes and M is
the total number of service requests. As M << V, the
complexity may be written as O(V4), which is still very high.

Due to this high computational complexity, application of this
optimization may be restricted to small data sets. Hence, we
propose heuristic approaches in the next section to solve real
time problem for a large number of users. In particular, we
implement and compare branch-and-bound (BnB), with and
without suggested enhancements as well as simulated
annealing (SA) with a different number of iterations.

IV. PROPOSED HEURISTIC SOLUTION

In Section III, we proposed an optimization model for the
placement of the BBU services (or VFs), which are deployed
over the VMs, across multiple clouds. In CRANs, a single
network operator may have a set of services (VFs) to be
deployed, and every VF has specific requirements such as
computational power, storage capacity, and network
bandwidth capacities. Each VM may host a specific set of VFs
depending on its computational, storage and network
capabilities as well as other constraints such as delays.

Locating an optimal cloud and a VM from a given pool to
minimize the number of VMs so that all the instances of the
VFs can be satisfied is an NP-complete problem. It can be
reduced to the “Set Cover” problem in polynomial time. The
optimization problem has extremely high time complexity,
and, hence, it cannot be used to solve larger real-time
problems. In this section, we describe a set of heuristic
approaches for this twofold problem of mapping the service
requests to VFs and VF deployment on the preselected VMs
across multiple clouds. We introduce a 3D model for service
requirements and VM capacities that are necessary for multi-
cloud RAN scenario, that is, CPU, storage, and network
capacity. Vector matrix C represents the capacities of the VMs
in a vector format with Ci = [C1

i, C2
i, C3

i] being the capacity of
VM i. Each VF in a service workflow demands some
minimum network infrastructure to be able to communicate
across the clouds with other VF with a given set of SLAs to be
met.

Branch and bound approach and a simulated annealing
approach are the two important heuristics proposed in the
literature to solve the combinatorial optimization problem. In
this work, we consider these two approaches for our
implementation. We implement an enhanced version of the
branch and bound approach, as explained later in the section.
The enhancement has been provided regarding the time
complexity of the BnB heuristic, so that the allocation is faster,
while the quality of the solution is significantly improved. We
compare the results of the standard BnB and SA schemes with
the enhanced approaches to demonstrate the statements above.
We have aimed to develop a quicker solution to minimize the
total response time to the base stations in the network of the
RANs [8], while the performance (here, cost) is not far from
the optimal. All the heuristics start with the static case, that is,
service requests are known in advance. Then, heuristics
continue with the dynamic case to handle service requests as
they arrive. Below we explain our proposed approaches for
allocation of the VFs to the VMs on the selected cloud.

Branch and Bound Approach: We provide an improvisation
to the standard branch and bound approach by sorting the data
structures, which store the cloud as well as VM capacities in
advance. We sort the lists in ascending as well as descending
order of the remaining capacities, as explained later in this
sub-section. We name the modified approaches as a branch
and bound-sorted descending (BnB-SD) and branch and
bound-sorted ascending (BnB-SA), respectively. We
implement the basic branch-and-bound approach as well and
observe significant improvement in the solution quality as
well as the overall execution time, as demonstrated in the next
section. The branch and bound approach begins with
generating the branches for the possible solution from the start
position. BnB algorithm searches the complete solution space
for a given problem for the best solution. However, the
explicit enumeration is normally not feasible due to the
exponentially increasing number of potential solutions. The
unexplored subspaces are represented as nodes in a
dynamically generated search tree, which initially contains
only the root. Each iteration of BnB algorithm processes one
such node. The iteration has three main components: (1)
selection of the node to process, (2) bound calculation, and (3)
branching. We limit the search space by sequentially iterating
through the possible deployment options using the data sets.

We maintain two separate lists of the available cloud
nodes and a list of available VMs in each cloud. We sort the
datasets in advance to further reduce the execution time and
improve the solution quality. For each BS, there is a separate
list for k-shortest paths to each cloud are calculated in
advance. For each path, remaining link capacities and total
delays from the respective BS to the clouds are calculated and
stored. The lists are sorted as well, in ascending order of the
total delays. The first cloud in the list, which satisfies the
latency and capacity requirements, is selected for deployment.
After allocation, the remaining cloud and link capacities for
that path are updated accordingly. Each cloud also has its own
list of the VMs deployed on it, which is sorted based on the
remaining capacities of the VMs. Again, the first VM, which
satisfies the capacity requirements, is considered for
deployment. We implement three versions of the BnB
approach, as mentioned earlier. Algorithmic steps for the
proposed approach are given in Table 3.

TABLE 3. STEPS OF BNB(SA & SD) HEURISTIC
APPROACHES

1. Iterate through the service requests
2. Select the request sequentially (or select the first arrived

service).
3. LC: List for the available cloud node configurations
4. LVM: List for already installed VM instances with the

remaining capacities.
5. LC Sort ascending(BnB-SA) or descending (BnB-SD)

LVM Sort ascending (BnB-SA), descending (BnB-SD)
6. M(i × k): matrix, for total i clouds in the topology and k-

shortest paths for each cloud.
7. The rows are sorted which can be treated as a list

separately and is denoted as Li
j where i is the cloud and j

is the BS index.
8. For each (BS j)

 for each (node i)
 Li

j Sort(Mi)
9. M is updated periodically as per the traffic conditions in

the network.
𝑀𝑀𝑖𝑖𝑗𝑗 = 1

2𝜇𝜇𝑖𝑖𝑖𝑖
×

2−(𝜆𝜆𝑖𝑖𝑖𝑖/𝜇𝜇𝑖𝑖𝑖𝑖)

1−(𝜆𝜆𝑖𝑖𝑖𝑖/𝜇𝜇𝑖𝑖𝑖𝑖)

10. The first cloud in the sorted list of the BS Li
j,

which meets the latency and capacity requirements, is
selected.

11. After allocation, paths and the lists are updated.
Remaining bandwidth between node i and j is updated as:
(Bij)R = Bij – (Δmn

i × Wij)
(Note that superscript R indicate the remaining capacities
and n indicates the network demand of the service
request).

12. The first VM instance in the sorted list Lc
v of the

selected cloud, which meets the capacity requirements to
accommodate the request is chosen for deployment.
Remaining VM capacities are updated as:
(𝜅𝜅𝑙𝑙)R = 𝜅𝜅𝑙𝑙 – (Δm

i × Wij)
13. If no such VM is found, the new VM instance is

launched, and lists are updated. The remaining cloud
capacities are updated as:
(Kj)R = Kj - δl

14. After the service completion, VM resource are freed
and remaining VM capacities are updated as follows:

(𝜅𝜅𝑙𝑙)R = 𝜅𝜅𝑙𝑙 + (Δm
i × Wij)

Simulated Annealing: Simulated annealing is a probabilistic
technique to approximate the global minimum solution.
Optimization of a solution involves evaluating the neighbors,
which is a random process. In this case, the solution is
accepted if all the latency and capacity constraints are within
the acceptable range, with probability one. Selecting the
number of iterations is an important step and may affect the
solution quality significantly. In this work, we select two
extreme numbers of replications and observe the
improvements in the solution quality against the execution
complexity. Steps of the SA approach are given in table 4.

TABLE 4. STEPS OF SA HEURISTIC APPROACH.
1. Iterates through the service request and select the

request sequentially or selects the first arrived
service).

2. LC: List for the available cloud node configurations
3. LVM: List for already installed VM instances with the

remaining capacities.
4. For each (BS j)

 For each (node i)
 Li

j Sort(Mi)
5. 𝑀𝑀𝑖𝑖𝑗𝑗 = 1

2𝜇𝜇𝑖𝑖𝑖𝑖
×

2−(𝜆𝜆𝑖𝑖𝑖𝑖/𝜇𝜇𝑖𝑖𝑖𝑖)

1−(𝜆𝜆𝑖𝑖𝑖𝑖/𝜇𝜇𝑖𝑖𝑖𝑖)

6. A selection process is initiated, and a random solution
is selected from the available candidate solutions.

7. The selection process is repeated Ұ times, and the best
solution is selected, such that,

Shorter runs Ұ = �𝑎𝑎𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑙𝑙 𝑛𝑛𝑛𝑛𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟𝑡𝑡𝑟𝑟 5⁄
Longer runs Ұ = �𝑎𝑎𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑙𝑙 𝑛𝑛𝑛𝑛𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟𝑡𝑡𝑟𝑟

8. Remaining bandwidth between node i and j is updated
as follows:

(Bij)R = Bij – (Δmn
i × Wij)

9. The candidate solution, which meet the capacity
requirements to accommodate the request, is chosen
for deployment. Remaining VM capacities are
updated as follows:

(𝜅𝜅𝑙𝑙)R = 𝜅𝜅𝑙𝑙 – (Δm
i × Wij)

10. The selection process is repeated Ұ times, and the best
solution is selected.

11. If no such VM is found, the new VM instance is
launched, and lists are updated. The remaining cloud
capacities are updated as follows:

(Kj) R = Kj - δl
12. After the service completion, VM resource are freed

and remaining VM capacities are updated as follows:
(𝜅𝜅𝑙𝑙)R = 𝜅𝜅𝑙𝑙 + (Δm

i × Wij)

While considering the requirements for a particular VF, we
allow it to run on a VM even if a VM cannot satisfy its
complete CPU and Network requirements but instead can
satisfy some percentage of it. This might degrade the VF
performance, but it might perform the task if degradation is
within allowed limit, rather than simply denying the VF
request. However, the storage requirements need to be
satisfied completely for a VF to be started. It may be justified
since a network operator may prefer a service to be a bit
slower rather than not running at all if allowed by the SLAs.
We have assumed the percentage degradation level to be 20%
(i.e., λ = 0.2), though this parameter is configurable and
depends on the end-user demands or service level agreements.
We repeat the above steps for each heuristic until all the
services of a given network operator are deployed. This
procedure is repeated for all network operators.

To conclude the analysis, we now analyze the time
complexity of the proposed heuristics. As mentioned earlier,
for modified BnB approach, we maintain two separate lists,
one for the VMs and another for the clouds. The lists are
sorted in (either ascending or descending) order of the total
capacities and remaining capacities respectively. This can be
done with standard sorting algorithms in time complexity of
O[(V+C)×logV] where V is the number of VMs and C is the
total number of clouds in the system [20]. Generally V >> C
and hence for brevity, we will be considering the terms
containing V only. To find a match for the incoming service-
requests (or VFs) binary search is implemented to fasten the
search since the lists are already sorted as per the capacities.
Binary search can be performed in time complexity of O(log
V) [20]. If M is the total number of the service requests, the
total complexity of the proposed heuristic sums up to O
(V×logV) + O (M×logV). This can be written as
O((M+V)×logV). If we assume sets M and V have
approximately the same size, the final complexity is O
(2M×logM) or O (M×logM), where M is the problem size.
Without sorting, the simple BnB approach has a time

complexity of O (M×V) or simply O (M2). We also observe
that the time complexity of the SA approach depends on the
number of iterations or the randomization factor. If Ұ is the
number of iterations, then the total delays can be given as
O(MV×Ұ), or simply O(M2×Ұ). If Ұ is small compared to the
input size, the time complexity is of the order O(M2).
However, if the value of Ұ is comparable in the problem size,
then the complexity of the SA approach rises to O(M3).

In the next section, we describe our experimental setup and
the results obtained to evaluate the performance of the
proposed heuristics.

V. RESULTS AND ANALYSIS

In this section, we first explain the experimental setup and
then discuss the results obtained to demonstrate the superiority
of the enhanced BnB approaches.

V.I Experimental Setup: For the experimental setup, we have
considered a closed-loop system. Each request from a base
station is assumed to be a set of 1000 data packets. For this set
of packets or one request, a single reply is sent back from the
cloud to the base station as an acknowledgment for the request
completion. The next request is sent only after the reply to the
previous one has been received. Every BS sends a predefined
amount of data for every service, selected randomly from a
predefined set. Depending on the desired rate of transmission,
the base station sends data at a specific rate. For example, if
the kth request has 10 GB of data to send, then that particular
BS will generate 107 packets of 1024 bytes each. Also, we
consider link delays and computational delays in our model.
As indicated earlier, the link queues are modeled as M/D/1
(single server/Poisson arrival/deterministic service times) and
server queues as M/M/1 (single server/Poisson
arrival/exponential service times) based on the statistical
analysis [3, 14]. We vary the number of available clouds and
observe the variations in the total delays as the number of
clouds increase. Total delay on (i, j)th link/path to transmit one
byte can be given as:

𝛤𝛤𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙= ∑ 1
 2𝜇𝜇𝑥𝑥

× 2−(𝜆𝜆𝑥𝑥/𝜇𝜇𝑥𝑥)
1−(𝜆𝜆𝑥𝑥/𝜇𝜇𝑥𝑥)

𝐿𝐿
𝑥𝑥=1

Similarly, computational delays at jth cloud can be given as:

𝐶𝐶𝑗𝑗 = 1/(1- 𝜓𝜓𝑗𝑗/Ұ𝑗𝑗).

We generate sample CRAN topology as shown in Fig. 2. We
vary the number of BS and the number of clouds as per the
specified parameters. As shown in the figure, there are 50 BS,
connected to five clouds with aggregation and core routers.

Fig. 2: Sample topology considered for heuristic implementation.

We now explain the experimental parameters we assumed

for the execution of the heuristics so that the BBU
requirements are closely matched. We carry out the
experiments until the total number of requests reaches 10K,
displayed along the X-axis on the graphs. BBU service
requirements have been taken from [5] and have been mapped
to the available VM configurations. For example, generally, BS
functionality may be divided into the four categories such as
physical layer, Lower MAC layer, Upper MAC layer, and
Network Layer functionality. The functional division and their
resource requirements for 10 Gbps traffic are given in table 5.
Please note that these requirements may vary in the real-time
scenarios.

TABLE 5. BS FUNCTIONALITY DIVISION.
Functionality vCPUs NW (Gbps)
Physical 2 5
MAC-Lower 4 2
MAC-Upper 6 1.5
NW 8 0.5

VM configurations and costs in these experiments have

been taken from Amazon EC2 [44]. A sample table for the
available VM configurations and their costs is given in Table 6.
Inter-service arrival times have bene assumed to be
exponentially distributed [3, 15].

TABLE 6. SAMPLE VK CONFIGURATIONS TAKEN FROM [4].

Model vCPUs Memory
(GB)

NW
(Gbps)

Cost
($/HR)

2×Large 8 61 5 0.532
4×Large 16 122 10 1.064
8×Large 32 244 10 2.128
16×Large 64 488 20 6.669
32×Large 128 1952 20 13.338

V.II Results and Discussion: We now discuss the quality of
the solution obtained with the proposed heuristics and compare
their performances. As shown in Fig. 3, simulated annealing
(SA) with small number of iterations takes the least time to
complete, which is expected. For shorter runs, we performed
�𝑎𝑎𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑙𝑙 𝑛𝑛𝑛𝑛𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟𝑡𝑡𝑟𝑟/5 iterations. For longer runs we
performed up to �𝑎𝑎𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑙𝑙 𝑛𝑛𝑛𝑛𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟𝑡𝑡𝑟𝑟 iterations,
which are in accordance with the input size. . SA with longer
runs takes significantly larger time to complete the execution.
The subsequent graphs discussed the improvement in the
solution quality with the increase in the runs. As observed, all
the three BnB approaches take approximately similar time,
which lay in between the two SA extremes. For example, BnB
approaches take approximately 17,000 milliseconds to
complete the runs for around 8,000 requests. SA–shorter takes
5,000 ms while the SA–longer takes more than 30,000 ms for
the same number of service requests.

In the next graph, we compare the heuristics based on the
number of the satisfied service requests, with limited resources
installed on the clouds. We classify the resources as fixed
resources and flexible resources (such as VMs), which may be
deployed in the clouds. However, there is an upper limit on the
total resources which can be deployed (we have assumed the
upper limit to be 50,000 in terms of the normalized resource
numbers). As seen from Fig. 4, with the given total resources,
BnB-SA performs the best with no request drop until around
8,400 requests. The maximum service drop is 2,000 at 10,000
service requests. That is, with the given resources, BnB-SA
could accommodate as many as 8,000 requests, which is the
highest. SA approaches performed the worst with drops
starting at 5,400 requests for small runs and drops starting at
5,600 requests for long runs. However, it is still far below the
best. For BnB-SD and BnB normal approach, the numbers are
7,000 and 6,500, respectively.

Fig. 3: Execution time comparison.

In Fig. 5, we have plotted the graphs for service migration

instances, which occur when already deployed services are re-
adjusted in order to accommodate the new incoming service
requests. More service migration instances mean more re-
adjustments and eventually more delays to the responses.
Hence, we seek to minimize these migration instances. Again,
BnB-SA performs the best, with only 600 maximum migration

instances under the heaviest load. BnB-SD on the contrary
resulted in 1200 migrations. As observed in Fig. 6, BnB-SA
also has the lowest overall delays. Delays gradually increase
for SA-shorter, BnB, BnB-SD and then SA-longer. Since BnB-
SA has the lowest service migration instances and intermediate
execution time, it has the lowest total delays as well.

Fig. 4: Unsatisfied number of user requests.

Fig. 5: Service migration instances.

Fig. 6: Total end-to-end delays.

Next, we measure the total resources needed to
accommodate all incoming service requests, while there is an

upper limit on the total resources, which can be deployed, as
explained earlier. BnB-SA again performs the best as seen
from Fig. 7, where, the maximum limit is reached when the
service requests reach up to 8,400. Since the resource
utilization is optimal for BnB-SA, the cost is also minimized
for BnB-SA, as shown in Fig. 8.

Fig. 7: Total resources required.

Fig. 8: Total cost of deployment.

TABLE 8. AVERAGE HOPS AS CLOUD NUMBERS VARY.

The superior performance of BnB-SA may be attributed to
the fact that in this approach, we are sorting the resource lists in
the ascending order of the remaining capacities. It is equivalent
to the consolidated approach and as expected, utilizes lowest
resources, while satisfying highest service requests. Also, it
results in the least number of service instance migrations, as
fragmentation of the resources is the least in the consolidated
approach. Hence, total end-to-end delays are also smallest with
BnB-SA. We also have observed the effect of the total number
of clouds deployed in the system as far as overall delays are
considered. We argue that it is important to find out the optimal
number of clouds for a given topology, since deploying a cloud
node incurs significant costs to the cellular service providers.
However, a larger number of clouds means proximity of BSs to
the clouds, and hence the smaller number of hops and
eventually lower delays. On the contrary, it also means more
fragmented resources among the clouds (or clouds have

smaller capacities) and eventually more service migration
instances. Thus, it becomes imperative to find out the optimal
number of the clouds to be deployed.

To achieve this, we introduce the delays associated with
service migrations, since more fragmented resources mean
more relocations. We assume that the average traffic entering
per link in the system, with the existing traffic makes the
average load per link up to 12 Gbps, which is a general
morning peak traffic load [41]. If the average backhaul traffic
capacity is assumed to be 20 Gbps, the traffic load comes up to
60%. We find out the average number of hops for a BS to reach
the cloud, based on these topologies. Table 7 shows our
findings. The complete system has been simulated using
Network Simulator 3 (NS3) with the drop-tail queuing system.
Numbers of service migration instances are obtained from the
heuristic results. Service migration delays are calculated by a
simple formula given in [42] as:
Total Migration Time ≤ Overheads + [(5 × VM Size − 1 ∗ page)
/Link Speed]

TABLE 7. NO. OF HOPS AGAINST NO. OF CLOUDS.
No. of
Clouds BS/Cloud

Avg. no. of
hops

1 60 6
2 30 5
3 20 4
4 15 3
5 12 3
6 10 2
7 9 2
8 8 2
9 7 1

10 6 1
11 5 1
12 5 1
13 5 1
14 4 1
15 4 1

Here, “page” is the smallest unit of the data transfer during

service migration. Overheads include time to prepare for
migrations as well as time for the stop-and-copy stages. VM
size is the capacity of the virtual machine on which the service,
which is being migrated, is running. For more details about the
VM migration details, readers may refer to the works in [42,
43]. Total delays are obtained by adding the link delays as well
as the service migration delays. The aim is to find the optimal
number of the clouds to be installed during the setup so that the
total delays are minimized with the smallest number of clouds
deployed. This ensures optimum costs of deployment to the
cellular operators as well as minimum total delays.

We plotted the graphs of link delays, service migration
delays and total delays in Fig. 9. We used the BnB-SA
approach (since it performs the best) for this. Note that as the
number of clouds increases, link delays decrease, since the
average number of hops decrease as shown in Table 7;

however, service migration delays increase, with more
fragmentation of the resources. From Fig. 9, we conclude that,
for 60 BS and 6000 total service requests, at 60% traffic load,
the optimal number of clouds would be 6, since the total delays
are minimum at that point.

We also obtained the results using NS3 for a similar setup.
We plotted the graph of the total delays obtained using the
BnB-SA approach and NS3 in Fig. 10 to validate the heuristic
results. Note that the simulation results validate the results
obtained using heuristic runs since both results overlap with
95% confidence interval. We also plot the graphs for the same
at different traffic loads as shown in Fig. 11. Results
demonstrate that the optimal number of clouds to be deployed
vary as the traffic load varies. For 60 BS and 6000 total service
requests, at 60% traffic load, an ideal number of clouds would
be 6, however, for the same number of BS and service
demands, the number is 12 at 80% traffic load. This may be
attributed to the fact that as the traffic load increases, an
increase in the number of clouds significantly reduces the link
delays. Such delays are significantly higher compared to the
service migration delays at higher traffic loads.

Fig. 9: Optimal number of clouds for minimum total delays.

Fig. 10: Variation in delays with cloud numbers.

From the presented results, it is observed that, with the

proposed enhancements to BnB approach (BnB-SA), we
obtained not only better time complexity, but also improved
performance in terms of total delays, total resources utilized

and total costs. For the SA, with the smaller number of
iterations, time complexity can be reduced significantly.
However, the performance is much degraded as compared to
the proposed BnB-SA. We also obtained the optimal number of
clouds, which needs to be deployed so that the total links
delays, as well as the service migration delays, are optimized
for the given size of the problem.

Fig. 11: Optimal cloud numbers at various traffic loads.

The presented solution in this work, however, rely solely on
the reactive approach. That is, the placement decisions are
made after the service demand request arrives. Making a
placement decision and executing that decision may incur
significant delays. For example, instantiating some VM as a
particular cloud location based on the placement decision may
take some time ranging from some seconds to a few minutes.
These delays can violate the SLAs. The solution to the problem
is a “proactive approach”, such as predicting the service
demands in advance and have some set of VMs ready at the
desired location based on the predictions. Various approaches
such as deep learning and machine learning may be used to
predict the service demands and proactively preparing
placement scheme in advance for the quick response and better
utilization of the resources. Also, VMs running in a cloud by
using hypervisor technologies available today may incur
significant latencies, in the order of micro seconds. Hence,
industry and academia are proposing use of micro-services [52]
to replace VMs for lesser response time. Future work may
include incorporation of micro-services to deploy the service
requests in CRANs, instead of virtual machines.

VI. CONCLUSIONS

In this work, we have addressed the problem of service
placement in Cloud Radio Access Networks (CRANs), which
is a novel networking paradigm to address the challenges in 5G
networks. We argued that to leverage the advantage of this
networking paradigm, an efficient service placement scheme is
mandatory to meet the stringent latency requirements. We
proposed a combinatorial optimization problem to achieve the
goal while satisfying other constraints such as cost and
capacity constraints.

In addition, we proposed the use of the standard heuristic
approaches to solve the larger problems in real time scenarios,
which are, branch-and-bound and simulated annealing. We also
proposed enhancements to the BnB approach, by sorting the
capacity lists in advance. The enhancements reduced the
computational complexity resulting in faster deployments of
the BBUs and quicker responses to the users. Our goal has
been to minimize the total end-to-end delays, while the
capacity and cost constraints are met. We demonstrated that
one of the proposed enhancements, BnB-SA, performs the best.
The computational complexity of the proposed schemes is of
the order O(MlogM). However, that of the near-optimal
scheme is of the order O(M2), which is a significant
improvement, especially for the CRANs. Using the
simulations, we validated the performance improvements by
the proposed BnB-SA scheme. We also compared the
performance of the proposed schemes against simulated
annealing to prove its superiority and observe significant
improvements in the solution quality.

With the heuristic implementation, we calculated the
optimal number of clouds, which need to be deployed so that
the total links delays, as well as the service migration delays,
are minimized, while total cloud deployment cost is within the
acceptable limits. We also validated our results using the
results from NS3 for a similar setup. Future work includes
incorporating the proactive approach with the proposed
solutions. Various approaches such as deep learning and
machine learning may be used to predict the service demands
and proactively preparing placement scheme in advance for
quick response and better utilization of the resources.

ACKNOWLEDGMENT
This publication was made possible by the NPRP award

[NPRP 8-634-1-131] from the Qatar National Research Fund
(a member of The Qatar Foundation) and NSF Grant CNS-
1718929. The statements made herein are solely the
responsibility of the author[s].

REFERENCES
[1] M. Qian, Y. Wang, Y. Zhou, L. Tian, J. Shi, “A super base

station based centralized network architecture for 5G mobile
communication systems,” Digital Communications and
Networks, 1(2), 2015, pp. 152-159.
 L. Sørensen, K. Skouby, D. Dietterle, A. Jhunjhunwala, X. Fu,
X. Wang, “User scenarios 2020: a worldwide wireless future,”
Wireless world research forum (Wwrf) Outlook, vol. 4, July
2009,
http://www.wwrf.ch/files/wwrf/content/files/publications/outloo
k/Outlook4.pdf, accessed on 12/14/2017.

[2] D. Bhamare, R. Jain, M. Samaka, G. Vaszkun, A. Erbad,
“Multi-Cloud Distribution of Virtual Functions and Dynamic
Service Deployment: OpenADN Perspective,” IEEE
International Conference on Cloud Engineering, 2015.

[3] E. Bastug, J. Guénégo, M. Debbah, "Proactive small cell
networks," IEEE Telecommunications (ICT), 20th International
Conference on, May 2013, pp. 1-5.

[4] A. Checko, C. Henrik, Y. Ying, L. Scolari, G. Kardaras, M.
Berger, L. Dittmann, “Cloud RAN for mobile networks—A

technology overview,” IEEE Communications surveys &
tutorials, 17(1), 2015, pp. 405-426.

[5] “C-RAN: The Road Towards Green RAN,” China Mobile
Research Institute, Tech. Rep., October 2011.

[6] W. Jun, Z. Zhang, Y. Hong, Y. Wen, “Cloud radio access
network (C-RAN): a primer,” IEEE Network 29, no. 1, 2015,
pp. 35-41.

[7] N. Navid, “Processing radio access network functions in the
cloud: Critical issues and modeling,” Proceedings of the 6th
International Workshop on Mobile Cloud Computing and
Services, ACM, 2015.

[8] Y. Lin, L. Shao, Z. Zhu, Q. Wang, R. Sabhikhi, “Wireless
network cloud: Architecture and system requirements,” IBM
Journal of Research and Development, 2010.

[9] D. Bhamare, A. Gumaste, M. Krishnamoorthy, N. Dayama, “On
the Backbone VLAN Identifier (BVID) Allocation in 802.1 Qay
Provider Backbone Bridged—Traffic Engineered
Networks,” IEEE Transactions on Network and Service
Management, 11(2), 2014, pp. 172-187.

[10] Y. Awano, S. Kuribayashi, “A joint multiple resource allocation
method for cloud computing environments with different QoS to
users at multiple locations,” IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing (PACRIM),
2013, pp. 1-5.

[11] F. Pires, B. Baran, “Multi-objective Virtual Machine Placement
with Service Level Agreement: A Memetic Algorithm
Approach,” IEEE/ACM 6th International Conference on Utility
and Cloud Computing (UCC), 2013, pp. 203-210.

[12] W. Liu, S. Han, C. Yang, and C. Sun, “Massive MIMO or Small
Cell Network: Who is More Energy Efficient?” in Wireless
Communications and Networking Conference Workshops
(WCNCW), IEEE, 2013, pp. 24–29.

[13] M. Hadzialic, B. Dosenovic, M. Dzaferagic, J. Musovic,
“Cloud-RAN: Innovative radio access network architecture,”
InELMAR, IEEE, 55th International Symposium, 2013, pp.
115-120.

[14] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, A. Chan,
“Optimal Virtual Network Function Placement and Resource
Allocation in Multi-Cloud Service Function Chaining
Architecture,” Computer Communications, 2017. DOI:
10.1016/j.comcom.2017.02.011

[15] S. Dario et al., “RAN as a service: Challenges of designing a
flexible RAN architecture in a cloud-based heterogeneous
mobile network,” Future Network and Mobile Summit
(FutureNetworkSummit), IEEE, 2013, pp. 1-8.

[16] J. Segel, “lightRadio Portfolio: White Paper 3,” Alcatel-Lucent
Bell Labs, Tech. Rep., 2011.

[17] Huawei, “Cloud RAN Introduction. The 4th CJK International
Workshop Technology Evolution and Spectrum,” Sep. 2011.

[18] H. Guan, T. Kolding, P. Merz, “Discovery of Cloud-RAN,”
Nokia Siemens Networks, Tech. Rep., April 2010.

[19] V. Estivill-Castro, D. Wood, “A survey of adaptive sorting
algorithms,” ACM Computing Surveys (CSUR), 24(4), 1992,
pp. 441-476.

[20] M. Peng, Y. Sun, X. Li, Z. Mao, C. Wang, C, “Recent advances
in cloud radio access networks: System architectures, key
techniques, and open issues,” IEEE Communications Surveys &
Tutorials, 18(3), 2016, pp. 2282-2308.

[21] M. Peng, H. Xiang, Y. Cheng, S. Yan, H. Poor, “Inter-tier
interference suppression in heterogeneous cloud radio access
networks,” IEEE Access, Dec. 2015.

[22] D. Sabella et al., “RAN as a service: Challenges of designing a
flexible RAN architecture in a cloud-based heterogeneous
mobile network,” in Proc. FutureNetwork Summit, pp. 1-8, Jul.
2013.

[23] S. Vassilaras et al., “The Algorithmic Aspects of Network
Slicing,” IEEE Communications Magazine 55(8), 2017, pp. 112-
119.

[24] M. Peng, Y. Li, J. Jiang, J. li, C. Wang, “Heterogeneous cloud
radio access networks: A new perspective for enhancing spectral
and energy efficiencies,” IEEE Wireless Communications 21(6),
2014, pp. 126-135.

[25] P. Rost, et al., “Cloud technologies for flexible 5G radio access
networks,” IEEE Communications Magazine 52(5), 2014, pp.
68-76.

[26] Y. Zhang, Y. Wang, B. Fan, “SDN Based Optimal User
Cooperation and Energy Efficient Resource Allocation in Cloud
Assisted Heterogeneous Networks,” IEEE Access, 5, 2017, pp.
1469-1481.

[27] Y. Wang, W. Xu, K. Yang, and J. Lin, “Optimal energy-
efficient power allocation for OFDM-cognitive radio networks,”
IEEE Commun. Lett., 16(9), Sep. 2012, pp. 1420–1423.

[28] R. Kanagavelu, et al. “Virtual machine placement with two-path
traffic routing for reduced congestion in data center networks,”
Computer Communications, 53, 2014, pp.1-12.

[29] J. Francisco, R. Pedro, “On reliable controller placements in
Software-Defined Networks,” Computer Communications, 2015

[30] K. Mills, J. Filliben, C. Dabrowski, “Comparing VM-placement
algorithms for on-demand clouds,” IEEE Third International
Conference on Cloud Computing Technology and Science
(CloudCom), Nov. 2011, pp.91-98.

[31] J. Simarro, R. Moreno-Vozmediano, R. Montero, I. Llorente,
“Dynamic placement of virtual machines for cost optimization
in multi-cloud environments,” in High-Performance Computing
and Simulation (HPCS), 2011 International Conference on,
2011, pp.1-7.

[32] P. Wang, J. Lan, X. Zhang, Y. Hu, S. Chen, “Dynamic function
composition for network service chain: Model and
optimization,” Computer Networks, 92, 2015, p.408-418.

[33] J. Gutierrez-Garcia, A. Ramirez-Nafarrate, "Collaborative
Agents for Distributed Load Management in Cloud Data Centers
Using Live Migration of Virtual Machines," in IEEE
Transactions on Services Computing, vol. 8, no. 6, Nov.-Dec.
2015, pp. 916-929.

[34] M. Bouet, J. Leguay, T. Combe, V. Conan, “Cost-based
placement of vDPI functions in NFV infrastructures,”
International Journal of Network Management 25.6, 2015,
p.490-506.

[35] J. Simarro, R. Moreno-Vozmediano, R. Montero, I. Llorente,
“Dynamic placement of virtual machines for cost optimization
in multi-cloud environments,” HPCS, 2011, pp.1-7.

[36] M. Luizelli, L. Bays, L. Buriol, M. Barcellos, L. Gaspary,
“Piecing together the NFV provisioning puzzle: Efficient
placement and chaining of virtual network functions,”
IFIP/IEEE, 2015.

[37] D. Bhamare, M. Krishnamoorthy, A. Gumaste, “Models and
algorithms for centralized control planes to optimize control

traffic overhead,” Computer Communications, 70, 2015, pp. 68-
78.

[38] M. Yoshida, W. Shen, T. Kawabata, K. Minato, W. Imajuku,
“MORSA: A multi-objective resource scheduling algorithm for
NFV infrastructure,” in Network Operations and Management
Symposium (APNOMS), 2014 16th Asia-Pacific, Sept 2014, pp.
1-6.

[39] H. Goudarzi, M. Pedram, “Multi-dimensional SLA-Based
Resource Allocation for Multi-tier Cloud Computing Systems,”
IEEE International Conference on Cloud Computing (CLOUD),
July 2011, pp. 324-331.

[40] CISCO Traffic analysis. Online:
https://www.cisco.com/c/en/us/td/docs/ios/solutions_docs/voip_
solutions/TA_ISD.html#wp1028371, Accessed on: 8/21/2017.

[41] S. Akoush, R. Sohan, A. Rice, A. Moore, A. Hopper,
“Predicting the performance of virtual machine migration,”
IEEE International Symposium on Modeling, Analysis &
Simulation of Computer and Telecommunication Systems
(MASCOTS), 2010, pp. 37-46.

[42] C. Chen, J. Cao, “Prediction-based optimization of live virtual
machine migration,” IFIP International Conference on Network
and Parallel Computing, Sept. 2014, pp. 347-356.
Amazon EC2 Virtual Function Instances:
http://aws.amazon.com/ec2/instance-types/, Accessed on:
8/20/2017

[43] Y. Mo, M. Peng, H. Xiang, Y. Sun, X. Ji, “Resource Allocation
in Cloud Radio Access Networks With Device-to-Device
Communications,” IEEE Access, 5, 2017, pp. 1250-1262.

[44] B. Dai, W. Yu, “Sparse beamforming and user-centric clustering
for the downlink cloud radio access network,” IEEE Access, 2,
2014, 1326-1339.

[45] M. Peng, K. Zhang, “Recent advances in fog radio access
networks: Performance analysis and radio resource
allocation,” IEEE Access, 4, 2016, pp. 5003-5009.

[46] T. Sigwele, A. Alam, P. Pillai, Y. Hu, “Energy-efficient cloud
radio access networks by cloud based workload consolidation
for 5G,” Journal of Network and Computer Applications, vol.
78, 2017, pp. 1-8.

[47] R. Zhou, X. Yin, Z. Li, C. Wu, “Virtualized resource sharing in
cloud radio access networks: An auction approach. Computer
Communications,” vol. 114, 2017, pp. 22-35.

[48] G. Mikhail et al., “Cooperative radio resource management in
heterogeneous cloud radio access networks,” IEEE Access, 3,
2015, pp. 397-406.

[49] S. Park, H. Lee, C. Chae, S. Bahk, “Massive MIMO operation in
partially centralized cloud radio access networks,” Computer
Networks, vol. 115, 2017, pp. 54-64.

[50] Y. Ugur, H. Zohaib, S. Aydin, “Cloud radio access networks
with coded caching,” In Smart Antennas (WSA 2016);
Proceedings of the 20th International ITG Workshop on, VDE,
2016, pp. 1-5.

[51] S. Park, S. Osvaldo, S. Shlomo, “Joint optimization of cloud and
edge processing for fog radio access networks,” IEEE
Transactions on Wireless Communications 15, no. 11, 2016, pp.
7621-7632.

[52] D. Bhamare M. Samaka, A. Erbad, R. Jain, L. Gupta, A. Chan,
“Multi-Objective Scheduling of Micro-Services for Optimal
Service Function Chains,” IEEE International Conference on
communications , May 2017, pp. 1-6.

TABLE 8
LIST OF ACRONYMS

Acronym Description
ASP Application service provider
BBU Baseband unit
BnB Branch and bound
BnB-SA BnB-sorted ascending
BnB-SD BnB-sorted descending
BS Base station
CAPEX Capital expenditures
CRAN Cloud radio access network
FFT Fast Fourier Transform
IaaS Infrastructure as a service
ILP Integer Linear Program
IoT Internet of things
ISP Internet service provider
MAC Media access control
MAC-L MAC lower layer
MAC-U MAC upper layer
MIMO Massive multiple-input multiple-output
ms milliseconds
NFV Network function virtualization
NS3 Network simulator 3
NW Network
OPEX Operational expenses
PHY Physical
QoS Quality of service
RAN Radio access network
RANaas Radio Access Network-as-a-Service
RRH Remote radio head
SA Simulated Annealing
SDN Software-defined networking
SFC Service Function Chaining
SLA Service level agreement
VF Virtual function
VM Virtual machine

	I. Introduction
	II. Related Work and Contributions
	III. Optimal Distribution of BBU Services
	IV. Proposed Heuristic Solution
	V. Results and Analysis
	VI. Conclusions
	Acknowledgment
	References

