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Abstract—The new generation of 5G mobile services place 
stringent requirements for cellular network operators in terms of 
latency and costs. The latest trend in radio access networks 
(RANs) is to pool the baseband units (BBUs) of multiple radio 
base stations and to install them in a centralized infrastructure, 
such as a cloud, for statistical multiplexing gains. The technology 
is known as Cloud Radio Access Network (CRAN). Since cloud 
computing is gaining significant traction and virtualized data 
centers are becoming popular as a cost-effective infrastructure in 
the telecommunication industry, CRAN is being heralded as a 
candidate technology to meet the expectations of radio access 
networks for 5G. In CRANs, low energy base stations (BSs) are 
deployed over a small geographical location and are connected to 
a cloud via finite capacity backhaul links. Baseband processing 
unit (BBU) functions are implemented on the virtual machines 
(VMs) in the cloud over commodity hardware. Such functions, 
built in software, are termed as virtual functions (VFs). The 
optimized placement of VFs is necessary to reduce the total 
delays and minimize the overall costs to operate CRANs. Our 
study considers the problem of optimal VF placement over 
distributed virtual resources spread across multiple clouds, 
creating a centralized BBU cloud. We propose a combinatorial 
optimization model and the use of two heuristic approaches, 
which are, branch-and-bound (BnB) and simulated annealing 
(SA) for the proposed optimal placement. In addition, we propose 
enhancements to the standard BnB heuristic and compare the 
results with standard BnB and SA approaches.  The proposed 
enhancements improve the quality of the solution in terms of 
latency and cost as well as reduce the execution complexity 
significantly. We also determine the optimal number of clouds, 
which need to be deployed so that the total links delays, as well as 
the service migration delays, are minimized, while the total cloud 
deployment cost is within the acceptable limits. 

Index Terms—Cloud Radio Access Network; Network Function 
Virtualization; Software Defined Networking; Virtual Network 
Function Placement. 

I. INTRODUCTION 

Recently, because of the explosion in the number of mobile 
devices, demand for new online services and consequently the 
data traffic has grown rapidly. With the proliferation of mobile 
technology, there has been a burst in the traffic originating 
from IoT devices, video on demand (VoD), online gaming, 
healthcare, and many other applications. Millions of new 
sensing devices and online services exchanging data have 
significantly contributed to this trend. It is expected that the 
volume of mobile data will be 1000X higher than today, and 
the number of connected devices will be between 10X to 100X 
by 2020 [3]. According to Wireless World Research Forum 

(WWRF), the number of connected wireless devices is 
expected to be 100 billion by 2025 [2].  The unprecedented 
growth in online services, mobile devices, as well as the data 
has exerted tremendous pressure on the cellular network 
operators to provide the connectivity to their end-users while 
maintaining the quality of service (QoS).  

To accommodate this growth, network operators have to 
deploy more and more base stations to offload traffic from 
congested cells. Increasing the number of base stations to meet 
the growing user demand increases the capital expenditure 
(CAPEX) and operational expenditure (OPEX) for cellular 
network operators. More specifically, CAPEX increases as 
base stations are the most expensive components of a wireless 
network infrastructure, while OPEX increases as cell sites 
demand a considerable amount of power and resources to 
operate. However, revenues for the operators are still flat [1]. 
The aforementioned problem will be aggravated by the 
introduction of 5G networks. 5G networks will incorporate 
different types of heterogeneous traffic and 5G operators will 
be confronted with the major challenge to support a number of 
diverse vertical industry applications in order to expand the 
wireless market. Table 1 provides a summary of typical 
examples of such services, which illustrate the wide diversity 
of their associated requirements. 

TABLE 1. NETWORK SERVICES AND DEMANDS 
Case Application Requirements 
Broadband access in 
dense areas 

Events, games, etc. High traffic volume, 
ms latency  

Mobile users Trains, vehicles, 
drones 

Connectivity at high 
speed 

Massive IoT Sensors, smart 
devices, wearables 

Low power, around 1 
million connections 
per km2  

Time sensitive Health, smart grid, 
etc.  

Redundancy, ms 
latency 

A novel mobile network architecture that minimizes the 
operational cost for network operators while accommodating 
such increasing heterogeneous user demands and satisfying the 
QoS has become a necessity. Cellular operators have started to 
experiment with novel networking paradigms, new ways to 
leverage existing equipment in new deployments, and more 
flexible resource planning and network managing tools. Cloud 
radio access network (CRAN) is a novel mobile network 
architecture, which has the potential to meet the above-
mentioned challenges. It is based on a concept proposed by Lin 
et al. [8], which allows cellular network operators to share the 
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network as well as the computational resources to balance the 
workload over a low-cost platform. In the CRAN, baseband 
processing is centralized as a virtualized baseband processing 
unit (BBU) pool, shared among several sites as well as 
operators. The idea is to virtualize BBU pools using 
Infrastructure as a Service (IaaS) model offered by cloud 
service providers. Various collaborating operators may deploy 
the commodity hardware at different sites, forming various 
cloud sites, on which the BBU functions may be collocated [5]. 
Resource sharing along with virtualization promotes flexible 
control, low cost, efficient resource usage, and support for 
diversified applications. In addition, communication among 
co-located BBUs has a lower latency, guaranteeing the QoS. 
Sharing of resources also results in an increased throughput by 
means of the statistical multiplexing gains [7, 49]. Suggested 
CRAN architecture is shown in Fig. 1. 

Fig. 1: Novel CRAN architecture for mobile networks. 

As depicted in Fig. 1, all baseband signal processing 
(BBU) functions (including physical, MAC and network 
layers), which require most of the processing resources have 
been relocated from the cell site to distant locations, i.e., the 
clouds. On a cell site, RRH is still responsible for 
transreceiving radio signal, amplification of signal power and 
other functions [5]. In real-time scenarios, cellular network 
operators need to start multiple instances of the BBU services 
depending on the client demands or the workload. Operators 
confront the problem of optimally placing the service 
instances, considering the user demand density across multiple 
regions. The delays to the end-users depend on the RRH to 
cloud allocation as well as the service placement over the 
resource pool. A non-optimal allocation may result in 
unacceptable delays, violating the QoS and costs, hampering 
the advantages of the novel CRAN architecture. Hence, 
efficient algorithms are required to map the BBU service 
requirements to the available virtual resources and to minimize 
the end-to-end delays to the end users. The proposed 
algorithms are also expected to reduce the total cost of 
deployment to cellular network operators. 

Researchers have considered the optimization problem in 
the context of CRANs already; with the focus on optimizing 

the resources, total energy or power [21, 48]. Latency, 
however, is equally important and faces stringent constraints in 
radio networks. A significant amount of work has been done in 
the literature for service placement considering the parameters 
such as latency, cost, QoS and others, especially from the 
context of the core telecom networks [11, 15, 27, 32-40]. The 
requirements of the CRAN networks, on the contrary, are 
significantly different compared with those of the core 
telecom networks [5, 21]. For example, diversified traffic on 
5G networks (as explained in table 1). Also, BBU functions 
involve huge traffic volumes and have stringent latency 
requirements, in the order of a few hundreds of microseconds 
[5, 21, 24]. This demands high network link capacities. For 
example, high-definition (HD) video provided by the 
application service providers (ASP), such as YouTube 
requires a minimum of 3−4 Mbps of link capacity to satisfy 
the quality of service (QoS) demands [4]. Considering such 
stringent service level agreements (SLAs), there is a need to 
revisit the service placement problem from the perspective of 
CRANs. 

In this work, we propose a scheme for optimal placement 
of virtual functions (VFs) in multi-cloud environments for 
CRANs. The proposed schemes in this work, allocate service 
demands at base stations in the form of VFs to the virtual 
machines (VMs) to minimize the response time or latency to 
the clients, satisfying the cost constraint, the capacity 
constraints and the placement constraint (due to SLAs, 
explained later). We have formulated the optimization model to 
deploy workflows of the VFs and assign service requests at 
base-stations to meet the service demands. We model the 
problem as a combinatorial optimization problem. Since the 
optimization model cannot solve the real-time problems within 
acceptable time limits due to its computational complexity, we 
propose a set of heuristic approaches for large networks. In this 
work, we implement an enhanced version of the two common 
approaches in the literature, which are: (1) Branch-and-bound 
(BnB) and (2) Simulated annealing (SA). The enhancement 
reduces the execution complexity of the BnB heuristic so that 
the allocation is faster. The proposed enhancements also 
improve the quality of the solution significantly. We compare 
the results of the standard BnB and SA schemes with the 
enhanced approaches to demonstrate these claims. Our aim was 
to develop a faster solution which can meet the latency 
requirements of the CRANs [8], while the performance (here, 
in terms of cost and latency) is not far from the optimal. Also, 
with the heuristic implementation, we calculate the optimal 
number of clouds, which need to be deployed so that the total 
links delays, as well as the service migration delays, are 
minimized, while the total cloud deployment cost is within the 
acceptable limits.  

The rest of the paper is organized as follows. In section II, 
we  discuss the related work in the context of the CRANs and 
discuss our contributions in more depth. In section III, we 
formulate an optimization model for the VFs placement over 
multiple-clouds. In section IV, we discuss the proposed 
heuristic approaches, and in section V, we present and discuss 



the results. Finally, we conclude the paper. A list of acronyms 
used in the paper is given in Table 8 at the end. 

II. RELATED WORK AND CONTRIBUTIONS 

As mentioned by Checko et al. [4] and Lin et al. [8], the 
evolution of the CRAN, network operators may experience the 
following benefits: 
(1) Reduced cost: Since computing resources are aggregated at 
a centralized location, deployment as well as maintenance cost 
for separate base-stations can be saved. 
(2) Increased energy efficiency: Power consumption and load 
congestion can be reduced by dynamically allocating the 
resources and allocating the services over the shared pool, 
energy efficiency may be improved significantly. 
(3) Improved spectrum utilization: CRANs enable sharing of 
channel state information on each base station-mobile station 
link, traffic data, and control information of mobile services 
among cooperating base stations, resulting in an improved 
spectrum utilization [5, 9]. 
(4) Improved resource utilization: Since computers and other 
resources are shared, overall resource utilization can also be 
significantly improved. 
(5) Scalability: An RRH site can be easily deployed or 
undeployed as per the need, without worrying about the 
installation of the whole base-station. Such new sites can be 
multiplexed with the existing centralized BBUs [5, 47]. 

Considering the benefits of the CRAN architecture, 
researchers have already started to investigate these challenges 
associated with this novel platform. For example, Hadzialic et 
al. present an overview of all known techniques to realize a 
CRAN network [14]. Wu et al. [7] present a novel logical 
structure of CRAN that consists of a physical plane, a control 
plane as well as a service plane and emphasizes the advantages 
of the CRAN architecture. The authors propose a coordinated 
user scheduling algorithm and a parallel optimum pre-coding 
scheme using cloud computing platforms. Dario et al. [16] 
introduce the concept of RANaaS (Radio Access Network-as-
a-Service) as a flexible architecture based on the centralized 
processing. Checko et al. [5] provide a technology review for 
this novel platform, focusing on its advantages. Going a step 
further, Qian et al. [1] propose a super-base station based 
centralized approach for 5G networks. The authors also 
acknowledge the advantages of the CRAN architecture in their 
work. Navid [8] investigates three critical issues for the 
cloudification of the current radio access networks. The author 
analyzes resource, latency, and capacity requirements for the 
baseband processing units. Liu et al. in [13] demonstrate that 
energy efficiency of large-scale small cell networks is higher 
compared to massive multiple-input multiple-output (MIMO) 
systems. Mikhail et al. [50] discuss cooperative radio resource 
management approaches in heterogeneous CRANs. Park et al. 
[51] have focused on massive MIMO perspective and related 
operations for the partially centralized CRANs. 

Peng et al. [21] discuss recent advancements in the field of 
CRANs. They also provide a survey of technological features 
and the core principles of the heterogeneous CRANs in [20, 24, 

45]. Rost et al. [25] provide an overview of the cloud 
technologies for 5G radio access networks and discuss the 
advantages of CRANs. Pang and Zhang discuss the recent 
advances in the field of fog radio access networks [47]. A 
significant amount of work in the literature concerns the 
virtualization of core telecom as well as network functions 
using software-defined networking (SDN) and virtualization. 
Our previous work [3] has considered the placement problem 
from the perspective of service function chaining (SFC) of 
application layer as well as network layer services. Virtual 
function or virtual machine placement problem has been 
considered widely in the literature.  

Various optimization models for resource allocation in 
radio networks, as well as core networks, have been proposed 
along with the heuristic approaches. For example, optimal 
energy-efficient power allocation schemes for radio networks 
by Weng et al. [28]. Sigwele et al. [48] have proposed energy-
efficient CRANs by cloud-based workload consolidation for 
5G networks. A virtual machine placement problem in micro-
cells while implementing SLA constraints has been considered 
in [12]. In [50] authors propose the novel caching scheme to 
solve the problem of congestion in backhaul links. Park et al. 
[51] propose a joint optimization scheme to tackle the problem 
of maximizing the delivery rate in fog RANs. Virtual machine 
placement and service placement have been studied in the 
literature as well. For example, works presented in [29-40]. A 
multi-cloud virtual function distributed strategies for dynamic 
NFV platform has been proposed in our previous work [15].  

Besides academia, cellular network operators have 
extensively studied CRAN architecture as well, such as 
Alcatel-Lucent [17], Huawei [18], Nokia Siemens Networks 
[19], China Mobile Research Institute [6] and many others. 
Given the importance of CRANs and their stringent latency 
requirements, we argue that it is mandatory to implement 
sophisticated algorithms for automated service delivery in the 
context of multi-cloud based RANs to fully leverage the 
distributed computing opportunities on the Internet. In this 
work, we aim to achieve the following objectives to address the 
service placement problems in the context of CRANs: 
(1) We solve the problem of automated and optimal service 

placement for the multi-cloud domain in the context of 
CRANs. 

(2) We propose the optimization model to minimize the 
overall latency while placing the BBU services over the 
centralized cloud and satisfying the cost as well as 
resource constrains. 

(3) We also implement enhanced versions of the two 
common heuristics in the literature, which are: (i) 
Branch-and-bound (BnB) and (ii) Simulated annealing 
(SA). The enhancement reduces the execution complexity 
of the BnB heuristic with the improved solution quality. 

(4) Finally with the heuristic implementation, we calculate 
the optimal number of clouds, which need to be deployed 
so that the total links delays, as well as the service 
migration delays, are minimized, while total cloud 
deployment cost is within the acceptable limits. We also 



validate our results using the results from NS3 for a 
similar setup. 

In the next section, we propose our optimization model for 
the deployment of BBU virtual functions over the available 
clouds and a set of virtual machines, so that the total end-to-
end delays for all the services are minimized while satisfying 
the cost and capacity constraints. 

 
III. OPTIMAL DISTRIBUTION OF BBU SERVICES 

 
In this section, we set up the problem of minimizing the 
overall response time in a multi-cloud RAN (CRAN) scenario 
as a combinatorial optimization problem. For typical batch-
processing cloud computing applications, delay ranging in the 
tens of milliseconds is acceptable, for CRANs the expected 
delay should be less than 0.5 milliseconds [5]. This stringent 
delay requirement mandates the transport networks to not only 
support high bandwidth and be cost efficient but also to 
support strict latency and jitter requirements. Hence, the goal 
of the optimization model presented is to minimize the 
response time or latency to the services, while satisfying other 
constraints such as the cost, placement, and capacity 
constraints.  

We have formulated the optimization model to deploy the 
workflows using the virtual network functions (VNFs) and 
assign client requests to these workflows to meet the service 
demands. A service request is nothing but a resource request 
vector by the individual VNF that comprise the workflow. We 
introduce a 3D model for service requirements and VM 
capacities that are necessary for multi-cloud RAN scenario, 
that is, CPU, storage, and network capacity. For more detailed 
discussion on the workflows, their characteristics and service 
requests, readers are requested to refer to our previous works 
such as [14, 52].  

In our model, link delays among base stations and the 
cloud are considered because such delays are of significant 
importance in cellular networks. We formulate the problem as 
an integer linear programming (ILP) optimization. The list of 
variables used in the ILP is given in Table 2. Let G = {V, E} be 
a graph to represent the network in consideration, where V is a 
set of nodes representing the base stations and cloud nodes in 
the network and E is set of the edges such that E ⊆ V×V. To 
reduce the computational complexity of the optimization 
model, we compute the path between every pair of the nodes 
in the topology in advance, mapping paths to the links. The 
mappings are stored in the set ξ. The total number of sites that 
can be selected for deployment of the clouds is given as an 
input to the optimization model and depends on the cost 
threshold, that is, Γ.  

 
TABLE 2 

PARAMETERS FOR INTEGER LINEAR PROGRAM (ILP) 
Type Symbol Definition 

Indices 

i, j, k Iterators for nodes in the topology 
such that i, 𝑗𝑗,𝑘𝑘 ∈ |V| 

l Iterator for virtual machines that l ∈ 
L 

m Iterator for service instances such 
that m ∈ M 

p Iterator for the paths such that p ∈ P 

Input 
Constants 

V Set of nodes in the topology 
 𝜓𝜓𝑗𝑗   The arrival rate of packets at jth 

node (Poisson distribution). 
Ұ𝑗𝑗 The processing rate at jth node 

(Poisson distribution) 
𝐶𝐶𝑗𝑗  Computational delay at the jth cloud. 

Clouds are modeled using an 
M/M/1 model.  

𝜆𝜆𝑖𝑖𝑗𝑗 The arrival rate of packets on the 
path (i, j). 

𝜇𝜇𝑖𝑖𝑗𝑗 Processing rate of packets on the 
path (i,j) (deterministic) 

𝛵𝛵𝑖𝑖𝑗𝑗 Total delay on (i, j)th link/path to 
transmit one byte. Link queues are 
modeled using an M/D/1 model.  

𝐵𝐵𝑖𝑖𝑗𝑗 The bandwidth of the link between 
the ith and jth node. Value is 0 if no 
direct link between i and j 

𝐾𝐾𝑗𝑗 The capacity vector of the jth node 
(3D vector).  

𝜅𝜅𝑙𝑙 The capacity vector of lth VM (3D 
vector).  

𝛿𝛿𝑙𝑙 Demand vector for lth VM (3D 
vector).  

𝛥𝛥𝑖𝑖  Demand vector for ith BS per byte 
of traffic (3D vector). Value is 0 if 
the ith node is a cloud node. 

𝑊𝑊𝑖𝑖  Traffic generated by ith BS in a 
number of packets. Value is 0 if the 
ith node is a cloud node. Each 
packet size is assumed to be 500B. 

𝑆𝑆𝑖𝑖𝑙𝑙 A 2-dimensional 𝑀𝑀 ×  |𝑉𝑉| matrix. 
Value is 1 if lth function can be 
placed at ith cloud location based on 
the SLAs, otherwise 0. 

𝛹𝛹𝑚𝑚  The delay constraint for service m, 
such that SLAs are met. 

Variables 

𝐼𝐼𝑗𝑗𝑚𝑚𝑙𝑙  Instance  matrix indicating number 
of instances of lth VM which are 
installed on jth node for mth service 
request. 

𝐴𝐴𝑖𝑖𝑗𝑗𝑚𝑚 Allocation matrix. Value is one if ith 
node (BS node) is assigned to jth 
node (cloud node) for mth service 
request otherwise 0 

We assume that the set of base stations (BSs) and 
clouds are disjoint sets. Each cloud site i has zero value 
for 𝑊𝑊𝑖𝑖, that is, no request flows are getting generated in 
clouds and only base stations can generate such flows. 
Similarly, each BS site i has zero value of 𝐾𝐾𝑖𝑖, that is, 
user sites do not have any processing capacities. A 
vector matrix K represents the capacities of the cloud 
sites, with each element of the matrix being a triplet Ki 
= [K1

i, K2
i, K3

i] is the capacity of cloud i. As mentioned 
earlier, we are referring to a 3D vector to represent the 



capacity, that is, CPU, Storage and, Network Capacity. 
Let W be the matrix to represent the volume of traffic 
originating from the BS sites, that is, Wi is the traffic 
getting generated at BS node i. 𝐾𝐾𝑖𝑖  = 0 and Wi > 0 
indicates that the site i is a base station site. However, 
𝐾𝐾𝑖𝑖  = 0 and Wi = 0 indicate that the node is just a routing 
node. We assume that service requirements are directly 
mapped to virtual machines (VMs) for their 
installations. For simplicity, the mapping is assumed 
one-to-one, hence, we may be using both the terms 
interchangeably. 𝜅𝜅𝑙𝑙  is the vector representing capacity 
required for the lth VM. Let 𝛿𝛿𝑙𝑙 be the demand vector of 
lth VM and 𝛥𝛥𝑖𝑖  be the demand vector for the ith client. For 
the cloud node 𝛥𝛥𝑖𝑖  = 0. 

It may be noted that more than one instance of a VM may 
be deployed at any deployment site depending on the 
processing capacity of the VM and total traffic demand getting 
generated at the site. Let 𝐼𝐼𝑗𝑗𝑙𝑙 be the instance matrix representing 
how many instances of a VM l need to be deployed at site j. 
Let A be an allocation matrix such that 𝐴𝐴𝑖𝑖𝑗𝑗 

𝑙𝑙 = 1 if a BS node i is 
assigned to the cloud at node j. Note that 𝐴𝐴𝑖𝑖𝑖𝑖𝑙𝑙  = 1 means node i 
has been assigned a client request. In other words, l instance 
has been deployed on a cloud at node i. If N is the number of 
the total nodes and L is the total number of VFs to be 
deployed, then A can be given as: 

A=�
𝐴𝐴111 … 𝐴𝐴1𝑁𝑁1
… … …
𝐴𝐴𝑁𝑁11 … 𝐴𝐴𝑁𝑁𝑁𝑁1

�  … �
𝐴𝐴11𝐿𝐿 … 𝐴𝐴1𝑁𝑁𝐿𝐿
… … …
𝐴𝐴𝑁𝑁1𝐿𝐿 … 𝐴𝐴𝑁𝑁𝑁𝑁𝐿𝐿

� ,∀ 𝐴𝐴𝑖𝑖𝑗𝑗𝑙𝑙 ∈ (0, 1)     (1) 

As mentioned earlier, the computing systems are modeled 
as M/M/1 queues. Similarly, the links are modeled as M/D/1 
queues with large buffers, up to 1 GB. The delays in the links 
are as given in Equation (2). We note that 𝜆𝜆𝑖𝑖𝑗𝑗, which is the 
link load, is a function of total flows passing through the link 
(i, j). Also,  𝜓𝜓𝑗𝑗  is the arrival rate of packets and Ұ𝑗𝑗 is the 
process rate of packets at the jth cloud. 

𝐶𝐶𝑙𝑙  = 1/(1- 𝜓𝜓𝑙𝑙/Ұ𝑙𝑙) 

𝛵𝛵𝑖𝑖𝑗𝑗  = 1
2𝜇𝜇𝑖𝑖𝑖𝑖 

× 
2−(𝜆𝜆𝑖𝑖𝑖𝑖/𝜇𝜇𝑖𝑖𝑖𝑖) 

1−(𝜆𝜆𝑖𝑖𝑖𝑖/𝜇𝜇𝑖𝑖𝑖𝑖)
  (2) 

Constraints: We now discuss the constraints of the 
optimization model: 

1. Cloud capacity: The maximum number of instances of a
VM, which may be deployed in a given cloud, is bounded
by the capacity of that particular cloud and demands of the
VM. In other words, the summation of the demands of all
VMs installed in a cloud j should be less than or equal to the
capacity of the cloud j.

��𝐼𝐼𝑗𝑗𝑚𝑚𝑙𝑙  ×  𝛿𝛿𝑙𝑙

𝐿𝐿

𝑙𝑙=1

𝑀𝑀

𝑚𝑚=1

 ≤  𝛫𝛫𝑗𝑗  ∀ 𝑗𝑗 ∈  |𝑉𝑉|,𝑚𝑚 ∈ 𝑀𝑀  (3) 

2. VM Capacity: The minimum number of VMs that need to
be deployed on a particular cloud for a particular service is
bounded by a fraction of the total client traffic from all the
sites assigned to that particular cloud. It means that the sum
of the demands of BSs assigned to a particular service m at a
particular site j should be less than or equal to the total
capacity of all instances of that particular VM l at site j.

�𝐴𝐴𝑖𝑖𝑗𝑗𝑚𝑚 ×  𝛥𝛥𝑖𝑖 ×  𝑊𝑊𝑖𝑖

|𝑉𝑉|

𝑖𝑖=1

 ≤  𝐼𝐼𝑗𝑗𝑚𝑚𝑙𝑙 × 𝜅𝜅𝑙𝑙 ,∀ 𝑗𝑗 ∈  |𝑉𝑉|,𝑚𝑚 ∈  𝑀𝑀  (4) 

3. Link Delays: This constraint models the total path loads as a
function of total traffic passing through the path between
node pair (i, j). 𝜆𝜆𝑖𝑖𝑗𝑗  is the total load across the path between
(i, j), and is a function of total flows passing through the
path between (i, j). Please note that, to reduce the
complexity of the model further, paths are pre-calculated.
Generally, the backhaul links between the BS and the first
cloud (or the first routing element) are very high capacity
links [46]. This is because the cellular network providers lay
such links and the first cloud is generally close to the base
station. However, the links between the clouds are generally
laid by ISPs and have comparatively lower capacities. Such
inter-cloud links may become bottlenecks. Hence, we
consider only such links and ignore the links between the
BSs and the first cloud. 𝜆𝜆𝑖𝑖𝑗𝑗 may be given as shown in
Equation 5.

We modify the term 𝜆𝜆𝑖𝑖𝑗𝑗 for this equation to 𝜆𝜆𝑖𝑖𝑗𝑗
𝑝𝑝  to 

indicate the delays on the end-to-end path between node 
pair (i, j). For the sake of clarity, we replace the term i with 
the term 𝑖𝑖′ to indicate that the first node on the specified 
path is not the ith BS, however, it is the first routing element 
or the first cloud. Also, term 𝐴𝐴𝑖𝑖𝑗𝑗𝑚𝑚 in the equation makes sure 
that ith BS is allocated to cloud j for service request m. Term 
Ajj
m validates the integrity constraint, that is, node j is a 

cloud. 𝜉𝜉𝑖𝑖𝑗𝑗
𝑝𝑝  = 1 indicates that the path p has been chosen for 

the communication between the end nodes (i, j), 

𝜆𝜆𝑖𝑖′𝑗𝑗
𝑝𝑝 = � � 𝜉𝜉𝑖𝑖′𝑗𝑗

𝑝𝑝 × 𝑊𝑊𝑖𝑖 × (𝐴𝐴𝑖𝑖𝑗𝑗𝑚𝑚 × 𝐴𝐴𝑗𝑗𝑗𝑗𝑚𝑚),  
m ε 𝑀𝑀 i ε |V|

∀ 𝑖𝑖′ 𝑗𝑗 ∈ |𝑉𝑉|        (5) 

4. Queuing Constraints: For the queuing systems to be stable,
following two constraints need to be satisfied. That is,
processing rate should be greater than or equal to the arrival
rate, at both, links as well as clouds.

𝜆𝜆𝑖𝑖𝑗𝑗  ≤ 𝜇𝜇𝑖𝑖𝑗𝑗 and  𝜓𝜓𝑗𝑗 ≤ Ұ𝑗𝑗  ∀ i, j ∈ |V|  (6) 

5. Cost Threshold: The total cost of deployment, Γ, is an input
for our ILP. Γ varies from Γmin to Γmax. Γmin generally is 1.
However, we allow the possibility of starting with another
feasible number. The cost associated with a single cloud is
proportional to the total resources installed at that site. We
iterate through the matrix A to count cloud sites and find the
cost to make sure that the total cost is less than or equal to
Γ.



��𝐴𝐴𝑖𝑖𝑖𝑖𝑚𝑚  ×  𝐼𝐼𝑖𝑖𝑚𝑚𝑙𝑙  
|𝑉𝑉|

𝑖𝑖=1

𝑀𝑀

𝑚𝑚=1

≤  𝛤𝛤                                                           (7) 

 
6. SLAs for Response Time: Depending on the service type, 

the scheduler at BBUs may want to limit per-packet delays 
for its various service request. This also avoids starvation of 
a particular traffic flow due to limited resources. This 
constraint depends on the final optimization function for 
total delays. Let ϴ𝑖𝑖𝑚𝑚  be the total delay for the mth service at 
the ith BS. The constraint can be modeled as follows [15]. 
 
𝛳𝛳𝑖𝑖𝑚𝑚  ≤  𝛹𝛹𝑚𝑚  ,∀ 𝑚𝑚 ∈ 𝑀𝑀, i ∈|V|                                         (8) 
 

7. Integrity Constraint: As mentioned earlier, we assume that 
the set of users and clouds are disjoint sets. Hence, we need 
to make sure that the user requests are forwarded to cloud 
nodes only (and not to the other client nodes). It is ensured 
with the help of the following constraint: 
𝐴𝐴𝑖𝑖𝑗𝑗𝑙𝑙  ≤ 𝐴𝐴𝑖𝑖𝑖𝑖𝑙𝑙 , ∀ i,  j ∈ |V|, 𝑙𝑙 ∈ 𝐿𝐿                         (9) 

 
Optimization Function: We seek to minimize the total 
response time to the base stations in the network. Delays are 
divided into two categories: transmission delays associated 
with links and computational delays associated with the 
clouds. Then we multiply the term with the transmission delay 
between nodes i and j as well as the computational delay at 
node j (𝛵𝛵𝑖𝑖𝑗𝑗  𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶𝑗𝑗, respectively). We formulate the 
optimization function as follows. 

 
Minimize: 
� � � 𝐴𝐴𝑖𝑖𝑗𝑗𝑚𝑚 ×  𝐴𝐴𝑗𝑗𝑗𝑗𝑚𝑚 (𝛵𝛵𝑖𝑖𝑗𝑗 +  𝐶𝐶𝑗𝑗)

j ε |V| i ε |V|m ε𝑀𝑀

                                    (10) 

       
Linearization of ILP: We formulate an optimization function 
as shown in (10) above. However, we notice a non-linearity in 
the equation due to the multiplication of 𝐴𝐴𝑖𝑖𝑗𝑗𝑚𝑚 and 𝐴𝐴𝑗𝑗𝑗𝑗𝑚𝑚. To 
remove the non-linearity, we introduce another variable 𝛷𝛷𝑖𝑖𝑗𝑗

𝑙𝑙  
such that [10, 15]: 
𝛷𝛷𝑖𝑖𝑗𝑗
𝑙𝑙 = 1 iff 𝐴𝐴𝑖𝑖𝑗𝑗𝑚𝑚 and 𝐴𝐴𝑗𝑗𝑗𝑗𝑚𝑚 = 1, otherwise 0     (11) 

 
satisfying the constraints below: 
𝛷𝛷𝑖𝑖𝑗𝑗
𝑙𝑙  ≤  𝐴𝐴𝑖𝑖𝑗𝑗𝑚𝑚 and 𝛷𝛷𝑖𝑖𝑗𝑗

𝑙𝑙  ≤  𝐴𝐴𝑗𝑗𝑗𝑗𝑚𝑚                                 (12) 
𝛷𝛷𝑖𝑖𝑗𝑗
𝑙𝑙  ≥  𝐴𝐴𝑖𝑖𝑗𝑗𝑚𝑚 +  𝐴𝐴𝑗𝑗𝑗𝑗𝑚𝑚 ― 1                                   (13) 

 
The optimization function may be re-written as: 
� � �  𝛷𝛷𝑖𝑖𝑗𝑗

𝑚𝑚 (𝛵𝛵𝑖𝑖𝑗𝑗 + 𝐶𝐶𝑗𝑗)
j ε |V|i ε |V|𝑚𝑚 ε 𝑀𝑀

                                         (14) 

 
The computational complexity of the optimization model is 
very high. We note that A is a 3-dimensional matrix. Due to 
the term 𝐴𝐴𝑖𝑖𝑗𝑗𝑚𝑚 ×  𝐴𝐴𝑗𝑗𝑗𝑗𝑚𝑚, the total complexity of the ILP is 
O(V4M2), where V is the total number of user nodes and M is 
the total number of service requests. As M << V, the 
complexity may be written as O(V4), which is still very high. 

Due to this high computational complexity, application of this 
optimization may be restricted to small data sets. Hence, we 
propose heuristic approaches in the next section to solve real 
time problem for a large number of users. In particular, we 
implement and compare branch-and-bound (BnB), with and 
without suggested enhancements as well as simulated 
annealing (SA) with a different number of iterations. 
 

IV. PROPOSED HEURISTIC SOLUTION 
 

In Section III, we proposed an optimization model for the 
placement of the BBU services (or VFs), which are deployed 
over the VMs, across multiple clouds. In CRANs, a single 
network operator may have a set of services (VFs) to be 
deployed, and every VF has specific requirements such as 
computational power, storage capacity, and network 
bandwidth capacities. Each VM may host a specific set of VFs 
depending on its computational, storage and network 
capabilities as well as other constraints such as delays. 

Locating an optimal cloud and a VM from a given pool to 
minimize the number of VMs so that all the instances of the 
VFs can be satisfied is an NP-complete problem. It can be 
reduced to the “Set Cover” problem in polynomial time. The 
optimization problem has extremely high time complexity, 
and, hence, it cannot be used to solve larger real-time 
problems. In this section, we describe a set of heuristic 
approaches for this twofold problem of mapping the service 
requests to VFs and VF deployment on the preselected VMs 
across multiple clouds. We introduce a 3D model for service 
requirements and VM capacities that are necessary for multi-
cloud RAN scenario, that is, CPU, storage, and network 
capacity. Vector matrix C represents the capacities of the VMs 
in a vector format with Ci = [C1

i, C2
i, C3

i] being the capacity of 
VM i. Each VF in a service workflow demands some 
minimum network infrastructure to be able to communicate 
across the clouds with other VF with a given set of SLAs to be 
met. 

Branch and bound approach and a simulated annealing 
approach are the two important heuristics proposed in the 
literature to solve the combinatorial optimization problem. In 
this work, we consider these two approaches for our 
implementation. We implement an enhanced version of the 
branch and bound approach, as explained later in the section. 
The enhancement has been provided regarding the time 
complexity of the BnB heuristic, so that the allocation is faster, 
while the quality of the solution is significantly improved. We 
compare the results of the standard BnB and SA schemes with 
the enhanced approaches to demonstrate the statements above. 
We have aimed to develop a quicker solution to minimize the 
total response time to the base stations in the network of the 
RANs [8], while the performance (here, cost) is not far from 
the optimal. All the heuristics start with the static case, that is, 
service requests are known in advance. Then, heuristics 
continue with the dynamic case to handle service requests as 
they arrive. Below we explain our proposed approaches for 
allocation of the VFs to the VMs on the selected cloud. 

 



Branch and Bound Approach: We provide an improvisation 
to the standard branch and bound approach by sorting the data 
structures, which store the cloud as well as VM capacities in 
advance. We sort the lists in ascending as well as descending 
order of the remaining capacities, as explained later in this 
sub-section. We name the modified approaches as a branch 
and bound-sorted descending (BnB-SD) and branch and 
bound-sorted ascending (BnB-SA), respectively. We 
implement the basic branch-and-bound approach as well and 
observe significant improvement in the solution quality as 
well as the overall execution time, as demonstrated in the next 
section. The branch and bound approach begins with 
generating the branches for the possible solution from the start 
position. BnB algorithm searches the complete solution space 
for a given problem for the best solution. However, the 
explicit enumeration is normally not feasible due to the 
exponentially increasing number of potential solutions. The 
unexplored subspaces are represented as nodes in a 
dynamically generated search tree, which initially contains 
only the root. Each iteration of BnB algorithm processes one 
such node. The iteration has three main components: (1) 
selection of the node to process, (2) bound calculation, and (3) 
branching. We limit the search space by sequentially iterating 
through the possible deployment options using the data sets.  

We maintain two separate lists of the available cloud 
nodes and a list of available VMs in each cloud. We sort the 
datasets in advance to further reduce the execution time and 
improve the solution quality. For each BS, there is a separate 
list for k-shortest paths to each cloud are calculated in 
advance. For each path, remaining link capacities and total 
delays from the respective BS to the clouds are calculated and 
stored. The lists are sorted as well, in ascending order of the 
total delays. The first cloud in the list, which satisfies the 
latency and capacity requirements, is selected for deployment. 
After allocation, the remaining cloud and link capacities for 
that path are updated accordingly. Each cloud also has its own 
list of the VMs deployed on it, which is sorted based on the 
remaining capacities of the VMs. Again, the first VM, which 
satisfies the capacity requirements, is considered for 
deployment. We implement three versions of the BnB 
approach, as mentioned earlier. Algorithmic steps for the 
proposed approach are given in Table 3. 

TABLE 3. STEPS OF BNB(SA & SD) HEURISTIC
APPROACHES

1. Iterate through the service requests
2. Select the request sequentially (or select the first arrived

service).
3. LC: List for the available cloud node configurations
4. LVM: List for already installed VM instances with the

remaining capacities.
5. LC  Sort ascending(BnB-SA) or descending (BnB-SD)

LVM  Sort ascending (BnB-SA), descending (BnB-SD)
6. M(i × k): matrix, for total i clouds in the topology and k-

shortest paths for each cloud.
7. The rows are sorted which can be treated as a list

separately and is denoted as Li
j where i is the cloud and j

is the BS index. 
8. For each (BS j)

  for each (node i) 
   Li

j  Sort(Mi) 
9. M is updated periodically as per the traffic conditions in

the network.
𝑀𝑀𝑖𝑖𝑗𝑗  = 1

2𝜇𝜇𝑖𝑖𝑖𝑖 
× 

2−(𝜆𝜆𝑖𝑖𝑖𝑖/𝜇𝜇𝑖𝑖𝑖𝑖) 

1−(𝜆𝜆𝑖𝑖𝑖𝑖/𝜇𝜇𝑖𝑖𝑖𝑖)
 

10. The first cloud in the sorted list of the BS Li
j,

which meets the latency and capacity requirements, is 
selected. 

11. After allocation, paths and the lists are updated.
Remaining bandwidth between node i and j is updated as: 
(Bij)R = Bij – ( Δmn

i × Wij) 
(Note that superscript R indicate the remaining capacities 
and n indicates the network demand of the service 
request). 

12. The first VM instance in the sorted list Lc
v of the

selected cloud, which meets the capacity requirements to 
accommodate the request is chosen for deployment. 
Remaining VM capacities are updated as: 
(𝜅𝜅𝑙𝑙)R = 𝜅𝜅𝑙𝑙 – ( Δm

i × Wij) 
13. If no such VM is found, the new VM instance is

launched, and lists are updated. The remaining cloud 
capacities are updated as: 
(Kj)R = Kj - δl 

14. After the service completion, VM resource are freed
and remaining VM capacities are updated as follows:

(𝜅𝜅𝑙𝑙)R = 𝜅𝜅𝑙𝑙 + ( Δm
i × Wij) 

Simulated Annealing: Simulated annealing is a probabilistic 
technique to approximate the global minimum solution. 
Optimization of a solution involves evaluating the neighbors, 
which is a random process. In this case, the solution is 
accepted if all the latency and capacity constraints are within 
the acceptable range, with probability one. Selecting the 
number of iterations is an important step and may affect the 
solution quality significantly. In this work, we select two 
extreme numbers of replications and observe the 
improvements in the solution quality against the execution 
complexity. Steps of the SA approach are given in table 4. 

TABLE 4. STEPS OF SA HEURISTIC APPROACH. 
1. Iterates through the service request and select the

request sequentially or selects the first arrived
service).

2. LC: List for the available cloud node configurations
3. LVM: List for already installed VM instances with the

remaining capacities.
4. For each (BS j)

          For each (node i) 
         Li

j  Sort(Mi) 
5. 𝑀𝑀𝑖𝑖𝑗𝑗  = 1

2𝜇𝜇𝑖𝑖𝑖𝑖 
× 

2−(𝜆𝜆𝑖𝑖𝑖𝑖/𝜇𝜇𝑖𝑖𝑖𝑖) 

1−(𝜆𝜆𝑖𝑖𝑖𝑖/𝜇𝜇𝑖𝑖𝑖𝑖)
 

6. A selection process is initiated, and a random solution
is selected from the available candidate solutions.

7. The selection process is repeated Ұ times, and the best
solution is selected, such that,



Shorter runs Ұ = �𝑎𝑎𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑙𝑙 𝑛𝑛𝑛𝑛𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟𝑡𝑡𝑟𝑟 5⁄  
Longer runs Ұ = �𝑎𝑎𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑙𝑙 𝑛𝑛𝑛𝑛𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟𝑡𝑡𝑟𝑟 

8. Remaining bandwidth between node i and j is updated
as follows: 

(Bij)R = Bij – ( Δmn
i × Wij) 

9. The candidate solution, which meet the capacity
requirements to accommodate the request, is chosen 
for deployment. Remaining VM capacities are 
updated as follows: 

(𝜅𝜅𝑙𝑙)R = 𝜅𝜅𝑙𝑙 – (Δm
i × Wij) 

10. The selection process is repeated Ұ times, and the best
solution is selected. 

11. If no such VM is found, the new VM instance is
launched, and lists are updated. The remaining cloud 
capacities are updated as follows: 

(Kj) R = Kj - δl
12. After the service completion, VM resource are freed

and remaining VM capacities are updated as follows: 
(𝜅𝜅𝑙𝑙)R = 𝜅𝜅𝑙𝑙 + ( Δm

i × Wij) 

While considering the requirements for a particular VF, we 
allow it to run on a VM even if a VM cannot satisfy its 
complete CPU and Network requirements but instead can 
satisfy some percentage of it. This might degrade the VF 
performance, but it might perform the task if degradation is 
within allowed limit, rather than simply denying the VF 
request. However, the storage requirements need to be 
satisfied completely for a VF to be started. It may be justified 
since a network operator may prefer a service to be a bit 
slower rather than not running at all if allowed by the SLAs. 
We have assumed the percentage degradation level to be 20% 
(i.e., λ = 0.2), though this parameter is configurable and 
depends on the end-user demands or service level agreements. 
We repeat the above steps for each heuristic until all the 
services of a given network operator are deployed. This 
procedure is repeated for all network operators. 

To conclude the analysis, we now analyze the time 
complexity of the proposed heuristics. As mentioned earlier, 
for modified BnB approach, we maintain two separate lists, 
one for the VMs and another for the clouds. The lists are 
sorted in (either ascending or descending) order of the total 
capacities and remaining capacities respectively. This can be 
done with standard sorting algorithms in time complexity of 
O[(V+C)×logV] where V is the number of VMs and C is the 
total number of clouds in the system [20]. Generally V >> C 
and hence for brevity, we will be considering the terms 
containing V only. To find a match for the incoming service-
requests (or VFs) binary search is implemented to fasten the 
search since the lists are already sorted as per the capacities. 
Binary search can be performed in time complexity of O(log 
V) [20]. If M is the total number of the service requests, the
total complexity of the proposed heuristic sums up to O 
(V×logV) + O (M×logV). This can be written as 
O((M+V)×logV). If we assume sets M and V have 
approximately the same size, the final complexity is O 
(2M×logM) or O (M×logM), where M is the problem size. 
Without sorting, the simple BnB approach has a time 

complexity of O (M×V) or simply O (M2). We also observe 
that the time complexity of the SA approach depends on the 
number of iterations or the randomization factor. If Ұ is the 
number of iterations, then the total delays can be given as 
O(MV×Ұ), or simply O(M2×Ұ). If Ұ is small compared to the 
input size, the time complexity is of the order O(M2). 
However, if the value of Ұ is comparable in the problem size, 
then the complexity of the SA approach rises to O(M3). 

In the next section, we describe our experimental setup and 
the results obtained to evaluate the performance of the 
proposed heuristics. 

V. RESULTS AND ANALYSIS 

In this section, we first explain the experimental setup and 
then discuss the results obtained to demonstrate the superiority 
of the enhanced BnB approaches.  

V.I Experimental Setup: For the experimental setup, we have 
considered a closed-loop system. Each request from a base 
station is assumed to be a set of 1000 data packets. For this set 
of packets or one request, a single reply is sent back from the 
cloud to the base station as an acknowledgment for the request 
completion. The next request is sent only after the reply to the 
previous one has been received. Every BS sends a predefined 
amount of data for every service, selected randomly from a 
predefined set. Depending on the desired rate of transmission, 
the base station sends data at a specific rate. For example, if 
the kth request has 10 GB of data to send, then that particular 
BS will generate 107 packets of 1024 bytes each. Also, we 
consider link delays and computational delays in our model. 
As indicated earlier, the link queues are modeled as M/D/1 
(single server/Poisson arrival/deterministic service times) and 
server queues as M/M/1 (single server/Poisson 
arrival/exponential service times) based on the statistical 
analysis [3, 14]. We vary the number of available clouds and 
observe the variations in the total delays as the number of 
clouds increase. Total delay on (i, j)th link/path to transmit one 
byte can be given as: 

𝛤𝛤𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙= ∑ 1
 2𝜇𝜇𝑥𝑥

× 2−(𝜆𝜆𝑥𝑥/𝜇𝜇𝑥𝑥)
1−(𝜆𝜆𝑥𝑥/𝜇𝜇𝑥𝑥)

𝐿𝐿
𝑥𝑥=1

Similarly, computational delays at jth cloud can be given as: 

𝐶𝐶𝑗𝑗  = 1/(1- 𝜓𝜓𝑗𝑗/Ұ𝑗𝑗). 

We generate sample CRAN topology as shown in Fig. 2. We 
vary the number of BS and the number of clouds as per the 
specified parameters. As shown in the figure, there are 50 BS, 
connected to five clouds with aggregation and core routers. 



 
Fig. 2: Sample topology considered for heuristic implementation. 

 
We now explain the experimental parameters we assumed 

for the execution of the heuristics so that the BBU 
requirements are closely matched. We carry out the 
experiments until the total number of requests reaches 10K, 
displayed along the X-axis on the graphs. BBU service 
requirements have been taken from [5] and have been mapped 
to the available VM configurations. For example, generally, BS 
functionality may be divided into the four categories such as 
physical layer, Lower MAC layer, Upper MAC layer, and 
Network Layer functionality. The functional division and their 
resource requirements for 10 Gbps traffic are given in table 5. 
Please note that these requirements may vary in the real-time 
scenarios. 

TABLE 5. BS FUNCTIONALITY DIVISION.  
Functionality vCPUs NW (Gbps) 
Physical 2 5 
MAC-Lower 4 2 
MAC-Upper 6 1.5 
NW 8 0.5 
 
VM configurations and costs in these experiments have 

been taken from Amazon EC2 [44]. A sample table for the 
available VM configurations and their costs is given in Table 6. 
Inter-service arrival times have bene assumed to be 
exponentially distributed [3, 15]. 

 
TABLE 6. SAMPLE VK CONFIGURATIONS TAKEN FROM [4]. 

Model vCPUs Memory 
(GB) 

NW 
(Gbps) 

Cost 
($/HR) 

2×Large 8 61 5 0.532 
4×Large 16 122 10 1.064 
8×Large 32 244 10 2.128 
16×Large 64 488 20 6.669 
32×Large 128 1952 20 13.338 

 

V.II Results and Discussion: We now discuss the quality of 
the solution obtained with the proposed heuristics and compare 
their performances. As shown in Fig. 3, simulated annealing 
(SA) with small number of iterations takes the least time to 
complete, which is expected. For shorter runs, we performed 
�𝑎𝑎𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑙𝑙 𝑛𝑛𝑛𝑛𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟𝑡𝑡𝑟𝑟/5 iterations. For longer runs we 
performed up to �𝑎𝑎𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑙𝑙 𝑛𝑛𝑛𝑛𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟𝑡𝑡𝑟𝑟 iterations, 
which are in accordance with the input size. . SA with longer 
runs takes significantly larger time to complete the execution. 
The subsequent graphs discussed the improvement in the 
solution quality with the increase in the runs. As observed, all 
the three BnB approaches take approximately similar time, 
which lay in between the two SA extremes. For example, BnB 
approaches take approximately 17,000 milliseconds to 
complete the runs for around 8,000 requests. SA–shorter takes 
5,000 ms while the SA–longer takes more than 30,000 ms for 
the same number of service requests. 

In the next graph, we compare the heuristics based on the 
number of the satisfied service requests, with limited resources 
installed on the clouds. We classify the resources as fixed 
resources and flexible resources (such as VMs), which may be 
deployed in the clouds. However, there is an upper limit on the 
total resources which can be deployed (we have assumed the 
upper limit to be 50,000 in terms of the normalized resource 
numbers). As seen from Fig. 4, with the given total resources, 
BnB-SA performs the best with no request drop until around 
8,400 requests. The maximum service drop is 2,000 at 10,000 
service requests. That is, with the given resources, BnB-SA 
could accommodate as many as 8,000 requests, which is the 
highest. SA approaches performed the worst with drops 
starting at 5,400 requests for small runs and drops starting at 
5,600 requests for long runs. However, it is still far below the 
best. For BnB-SD and BnB normal approach, the numbers are 
7,000 and 6,500, respectively. 

 

 
Fig. 3: Execution time comparison. 

 
In Fig. 5, we have plotted the graphs for service migration 

instances, which occur when already deployed services are re-
adjusted in order to accommodate the new incoming service 
requests. More service migration instances mean more re-
adjustments and eventually more delays to the responses. 
Hence, we seek to minimize these migration instances. Again, 
BnB-SA performs the best, with only 600 maximum migration 



instances under the heaviest load. BnB-SD on the contrary 
resulted in 1200 migrations. As observed in Fig. 6, BnB-SA 
also has the lowest overall delays. Delays gradually increase 
for SA-shorter, BnB, BnB-SD and then SA-longer. Since BnB-
SA has the lowest service migration instances and intermediate 
execution time, it has the lowest total delays as well. 

Fig. 4: Unsatisfied number of user requests. 

Fig. 5: Service migration instances. 

Fig. 6: Total end-to-end delays. 

Next, we measure the total resources needed to 
accommodate all incoming service requests, while there is an 

upper limit on the total resources, which can be deployed, as 
explained earlier. BnB-SA again performs the best as seen 
from Fig. 7, where, the maximum limit is reached when the 
service requests reach up to 8,400. Since the resource 
utilization is optimal for BnB-SA, the cost is also minimized 
for BnB-SA, as shown in Fig. 8. 

Fig. 7: Total resources required. 

Fig. 8: Total cost of deployment. 

TABLE 8. AVERAGE HOPS AS CLOUD NUMBERS VARY. 

The superior performance of BnB-SA may be attributed to 
the fact that in this approach, we are sorting the resource lists in 
the ascending order of the remaining capacities. It is equivalent 
to the consolidated approach and as expected, utilizes lowest 
resources, while satisfying highest service requests. Also, it 
results in the least number of service instance migrations, as 
fragmentation of the resources is the least in the consolidated 
approach. Hence, total end-to-end delays are also smallest with 
BnB-SA. We also have observed the effect of the total number 
of clouds deployed in the system as far as overall delays are 
considered. We argue that it is important to find out the optimal 
number of clouds for a given topology, since deploying a cloud 
node incurs significant costs to the cellular service providers. 
However, a larger number of clouds means proximity of BSs to 
the clouds, and hence the smaller number of hops and 
eventually lower delays. On the contrary, it also means more 
fragmented resources among the clouds (or clouds have 



smaller capacities) and eventually more service migration 
instances. Thus, it becomes imperative to find out the optimal 
number of the clouds to be deployed. 

To achieve this, we introduce the delays associated with 
service migrations, since more fragmented resources mean 
more relocations. We assume that the average traffic entering 
per link in the system, with the existing traffic makes the 
average load per link up to 12 Gbps, which is a general 
morning peak traffic load [41]. If the average backhaul traffic 
capacity is assumed to be 20 Gbps, the traffic load comes up to 
60%. We find out the average number of hops for a BS to reach 
the cloud, based on these topologies. Table 7 shows our 
findings. The complete system has been simulated using 
Network Simulator 3  (NS3) with the drop-tail queuing system. 
Numbers of service migration instances are obtained from the 
heuristic results. Service migration delays are calculated by a 
simple formula given in [42] as: 
Total Migration Time ≤ Overheads + [(5 × VM Size − 1 ∗ page) 
/Link Speed] 

TABLE 7. NO. OF HOPS AGAINST NO. OF CLOUDS. 
No. of 
Clouds BS/Cloud

Avg. no. of 
hops 

1 60 6
2 30 5
3 20 4
4 15 3
5 12 3
6 10 2
7 9 2
8 8 2
9 7 1

10 6 1
11 5 1
12 5 1
13 5 1
14 4 1
15 4 1  

 
Here, “page” is the smallest unit of the data transfer during 

service migration. Overheads include time to prepare for 
migrations as well as time for the stop-and-copy stages. VM 
size is the capacity of the virtual machine on which the service, 
which is being migrated, is running. For more details about the 
VM migration details, readers may refer to the works in [42, 
43]. Total delays are obtained by adding the link delays as well 
as the service migration delays. The aim is to find the optimal 
number of the clouds to be installed during the setup so that the 
total delays are minimized with the smallest number of clouds 
deployed. This ensures optimum costs of deployment to the 
cellular operators as well as minimum total delays. 

We plotted the graphs of link delays, service migration 
delays and total delays in Fig. 9. We used the BnB-SA 
approach (since it performs the best) for this. Note that as the 
number of clouds increases, link delays decrease, since the 
average number of hops decrease as shown in Table 7; 

however, service migration delays increase, with more 
fragmentation of the resources. From Fig. 9, we conclude that, 
for 60 BS and 6000 total service requests, at 60% traffic load, 
the optimal number of clouds would be 6, since the total delays 
are minimum at that point. 

We also obtained the results using NS3 for a similar setup. 
We plotted the graph of the total delays obtained using the 
BnB-SA approach and NS3 in Fig. 10 to validate the heuristic 
results. Note that the simulation results validate the results 
obtained using heuristic runs since both results overlap with 
95% confidence interval. We also plot the graphs for the same 
at different traffic loads as shown in Fig. 11. Results 
demonstrate that the optimal number of clouds to be deployed 
vary as the traffic load varies. For 60 BS and 6000 total service 
requests, at 60% traffic load, an ideal number of clouds would 
be 6, however, for the same number of BS and service 
demands, the number is 12 at 80% traffic load. This may be 
attributed to the fact that as the traffic load increases, an 
increase in the number of clouds significantly reduces the link 
delays.  Such delays are significantly higher compared to the 
service migration delays at higher traffic loads. 

 

 
Fig. 9: Optimal number of clouds for minimum total delays. 

 

 
Fig. 10: Variation in delays with cloud numbers. 

 
From the presented results, it is observed that, with the 

proposed enhancements to BnB approach (BnB-SA), we 
obtained not only better time complexity, but also improved 
performance in terms of total delays, total resources utilized 



and total costs. For the SA, with the smaller number of 
iterations, time complexity can be reduced significantly. 
However, the performance is much degraded as compared to 
the proposed BnB-SA. We also obtained the optimal number of 
clouds, which needs to be deployed so that the total links 
delays, as well as the service migration delays, are optimized 
for the given size of the problem. 

Fig. 11: Optimal cloud numbers at various traffic loads. 

The presented solution in this work, however, rely solely on 
the reactive approach. That is, the placement decisions are 
made after the service demand request arrives. Making a 
placement decision and executing that decision may incur 
significant delays. For example, instantiating some VM as a 
particular cloud location based on the placement decision may 
take some time ranging from some seconds to a few minutes. 
These delays can violate the SLAs. The solution to the problem 
is a “proactive approach”, such as predicting the service 
demands in advance and have some set of VMs ready at the 
desired location based on the predictions. Various approaches 
such as deep learning and machine learning may be used to 
predict the service demands and proactively preparing 
placement scheme in advance for the quick response and better 
utilization of the resources. Also, VMs running in a cloud by 
using hypervisor technologies available today may incur 
significant latencies, in the order of micro seconds. Hence, 
industry and academia are proposing use of micro-services [52] 
to replace VMs for lesser response time. Future work may 
include incorporation of micro-services to deploy the service 
requests in CRANs, instead of virtual machines. 

VI. CONCLUSIONS

In this work, we have addressed the problem of service 
placement in Cloud Radio Access Networks (CRANs), which 
is a novel networking paradigm to address the challenges in 5G 
networks. We argued that to leverage the advantage of this 
networking paradigm, an efficient service placement scheme is 
mandatory to meet the stringent latency requirements. We 
proposed a combinatorial optimization problem to achieve the 
goal while satisfying other constraints such as cost and 
capacity constraints. 

In addition, we proposed the use of the standard heuristic 
approaches to solve the larger problems in real time scenarios, 
which are, branch-and-bound and simulated annealing. We also 
proposed enhancements to the BnB approach, by sorting the 
capacity lists in advance. The enhancements reduced the 
computational complexity resulting in faster deployments of 
the BBUs and quicker responses to the users. Our goal has 
been to minimize the total end-to-end delays, while the 
capacity and cost constraints are met. We demonstrated that 
one of the proposed enhancements, BnB-SA, performs the best. 
The computational complexity of the proposed schemes is of 
the order O(MlogM). However, that of the near-optimal 
scheme is of the order O(M2), which is a significant 
improvement, especially for the CRANs. Using the 
simulations, we validated the performance improvements by 
the proposed BnB-SA scheme. We also compared the 
performance of the proposed schemes against simulated 
annealing to prove its superiority and observe significant 
improvements in the solution quality. 

With the heuristic implementation, we calculated the 
optimal number of clouds, which need to be deployed so that 
the total links delays, as well as the service migration delays, 
are minimized, while total cloud deployment cost is within the 
acceptable limits. We also validated our results using the 
results from NS3 for a similar setup. Future work includes 
incorporating the proactive approach with the proposed 
solutions. Various approaches such as deep learning and 
machine learning may be used to predict the service demands 
and proactively preparing placement scheme in advance for 
quick response and better utilization of the resources. 
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TABLE 8 
LIST OF ACRONYMS 

Acronym Description 
ASP Application service provider 
BBU Baseband unit 
BnB Branch and bound 
BnB-SA BnB-sorted ascending 
BnB-SD BnB-sorted descending 
BS Base station 
CAPEX Capital expenditures 
CRAN Cloud radio access network 
FFT Fast Fourier Transform 
IaaS Infrastructure as a service 
ILP Integer Linear Program 
IoT Internet of things 
ISP Internet service provider 
MAC Media access control 
MAC-L MAC lower layer 
MAC-U MAC upper layer 
MIMO Massive multiple-input multiple-output 
ms milliseconds 
NFV Network function virtualization 
NS3 Network simulator 3 
NW Network 
OPEX Operational expenses 
PHY Physical 
QoS Quality of service 
RAN Radio access network 
RANaas Radio Access Network-as-a-Service 
RRH Remote radio head 
SA Simulated Annealing 
SDN Software-defined networking 
SFC Service Function Chaining 
SLA Service level agreement 
VF Virtual function 
VM Virtual machine 
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