
Cross-layer access control in publish/subscribe middleware over
software-defined networks
Yang Zhang a,∗, Huiyu Zhou b, Jun-liang Chen a

a State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
b Department of Informatics, University of Leicester, United Kingdom

A R T I C L E I N F O

Keywords:
SDN
Publish/subscribe
Access control
Security

A B S T R A C T

When technologies of software-defined networks (SDNs) provide a chance to improve the quality of service
(QoS) of publish/subscribe middlewares, new chances are also arising for adversaries to attack the networks
and the middlewares. We here propose a cross-layer access control solution to protect the publish/subscribe
middleware over SDNs. Applications over a publish/subscribe middleware interact by an indirect, anonymous
and multicast event communication paradigm, where we hope that the applications, the middleware, and the
underlying network collaborate to realize the access control of reading/writing events. The key issue is how
to use the flow matching capability of SDN switches to efficiently and securely enforce complex authorization
policies that include multiple conjunction and disjunction structures. It is required to resist against the collusion
attacks of SDN controllers and subscribers when the middleware/network is partially delegated to enforce the
authorization policies of publishers. In our cross-layer solution, a policy representation method is presented
to encode authorization policies into flow entries with high data compression and security, and a two-party
computation method is presented to carry out secret sharing for defeating malicious SDN controllers and
subscribers. Finally, our solution is evaluated to show its effectiveness.

1. Introduction

In Internet of Things (IoT) applications, publish/subscribe middle-
wares are needed to build a communication infrastructure for multiple
consumers to access real-time and coherent sensor data, and software-
defined networks (SDN) can be used to address the difficult issue of
improving the quality of service for delivering events [1]. That is, in the
existing publish/subscribe middlewares over traditional networks [2–
4], a detour to brokers is required for matching events against the stored
filters as well as additional communication processing, while, in the
ones over SDNs, standards like OpenFlow [5] define the interfaces to
directly install and change flow tables on SDN switches for direct and
controllable event matching and forwarding.

The GridStat project [6] showed the importance of SDN technolo-
gies for the publish/subscribe middleware in IoT scenarios, where it
developed a publish/subscribe-based communication infrastructure for
smart grids, a subscriber can express to the infrastructure its interest
in data measured by phasor measurement units, and the infrastructure
can deliver to the subscriber in time all events matching the expressed
interest. In the project, network routers were specially designed for
realizing the QoS for event deliveries. But this special design limited
its applications. In SDN networks, this limitation can be significantly
reduced by the user-programmability of the underlying routers and
switches.

Although SDN technologies provide chances to construct more ef-
ficient publish/subscribe middlewares as an IoT communication fab-
ric, the openness and programmability of SDN networks also provide
chances for adversaries to corrupt SDN controllers, forge flow tables, and
exploit the vulnerability of northbound and southbound interfaces [7–
10]. On the contrary, the SDN programmability also gives a new way
to implement network/application security. How to protect a pub-
lish/subscribe middleware over SDNs thus becomes important and ex-
plorable. In this paper, we focus on the access control of reading/writing
its events.

For the access control of events in a publish/subscribe middleware,
the subscribers do not directly obtain events from the publishers, and
the publishers cannot directly reject the subscribers to access to their
events. Thus anonymous, indirect, and multicast communications bring
up challenges for a publisher to control the access to its published events.

In the work of [11] and the publish/subscribe security standard
proposed by OMG [12], the publish/subscribe middleware together with
their clients (publishers and subscribers) was organized into multiple
topic domains over the traditional networks. In each domain, they
had their own security management servers and home brokers. Clients
delegated their authorization functions to the home brokers and the
target domain’s security management servers. Although it addressed

Auth
ors

 ve
rsi

on

http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2018.11.001&domain=pdf

Fig. 1. Roadmap.

the access control issue in publish/subscribe middlewares, such over-
delegation in some degree violated the security requirements of clients
controlling their events’ accessing [13,14]. In the work of [13,15], event
encryption-based schemes were proposed to avoid the delegation of ac-
cess control. Such over-user-controlled schemes however lost scalability
and efficiency [11,12].

In our work, we also adopt the access control framework having
multiple topic domains, but we do not require the clients to completely
delegate their access control functions to the brokers and the target
domain servers. That is to say, we adopt a cross-layer approach to ac-
complish the access control, where SDN controllers are used to manage
some security tokens for securely encoding authorization policies into
flow tables, SDN switches enforce the policies by their flow matching
capabilities, and publishers and subscribers still control authentication,
authorization, and their credential disseminations.

In the above discussion, the major challenge is to high-compressed
securely encode complex authorization policies (e.g. including multiple
conjunction and disjunction structures) into flow tables, and use the
flow matching capability to efficiently enforce authorization policies,
when we try to provide access control in a publish/subscribe middle-
ware over SDN networks. The enforcement of authorization policies in
the traditional publish/subscribe brokers (powerful servers) cannot be
directly carried out in SDN networks, because SDN switches have no
capabilities to process high-level languages and complex data structures,
and the policy enforcement on SDN controllers will evidently delay
event forwarding with losing the advantages of SDNs in building
publish/subscribe middlewares, i.e., detouring routing paths and heavily
burdening SDN controllers. It requires using a little flow table space and
a limited part of event headers to carry out the access control.

The roadmap of our incrementality method, illustrated in Fig. 1, is
to design an access control solution against a powerful adversary by
incrementally increasing the adversary’s attacking capabilities, where
the SDN network is decomposed into multiple partitions with each
partition as a publish/subscribe node (or as a network node in different
contexts), each controller is in charge of one partition with multiple
SDN switches, a global administrator manages all local SDN controllers,
and the accessing layer is deployed on clients for their locally read-
ing/writing events in the publish/subscribe middleware. In this paper,
our contributions are below.
(1) A global administrator of the SDN network carries out a topology
construction for different event topics, which restricts unauthorized
publish/subscribe nodes to visit the events, i.e., the events being dis-
seminated among authorized nodes as far as possible. In this policy-
driven topology construction scheme, a publish/subscribe node may be
authorized for one event topic while it also may be unauthorized for the
other event topic. The constructed topology for all the event topics is
to maximize the number of common nodes among these corresponding
event streams. This policy-driven topology will enhance the flow-table-
based policy enforcement at the global network layer rather than on
individual nodes connected to the subscribers. The event routing for
one topic can also be rapidly computed over the unified topology for all
the event topics [16–18].

(2) The matching capabilities of flow tables of SDN switches are used to
realize the matching between an authorization policy and subscribers’
attributes, where the policy has strong expressiveness (e.g. including
attribute conjunction structures, attribute disjunction structures, and
their mixtures), and SDN controllers securely encode these structures
into a matching field of flow entries with high data compression. A two-
party computation scheme is proposed to get a sharing secret for en-
coding, which forms a framework to resist against the collusion attacks
of SDN controllers and subscribers. These two schemes together with
the topology construction scheme compose a cross-layer access control
solution for the publish/subscribe middleware over SDN networks.
(3) A policy representation method is presented to build the cornerstone
for the above solution, which represents an authorization policy having
complex structures by a non-structure plain bit string, and is also proved
to be secure.

The remainder of this paper is structured as follows. Section 2
describes the related work. Section 3 describes the preliminaries. In
Section 4, the policy-driven topology construction scheme is described.
In Section 5, the access control based on the matching capabilities of
flow tables of SDN switches is described. In Section 6, we present the
performance evaluation of our solution. Finally, conclusions are given
in Section 7.

2. Related work

There are several famous topic-based publish/subscribe systems,
e.g., SCRIBE [19], Bayeux [20], TERA [21], Corona [22] and NICE [23].
These systems are often established based on an overlay topology
over underlying traditional networks, and underlying routers cannot be
controlled and scheduled by users such that their QoS and security is
scanty in IoT scenarios.

Recent SDN technologies provide a high potential to improve the
quality of services of publish/subscribe middlewares. The approaches
shown in [24–28] presented examples of publish/subscribe middlewares
over SDNs. They discussed event filtering and routing over SDNs,
but the access control requirements of these middlewares were not
comprehensively explored.

The security problems in publish/subscribe middlewares involve
participant privacy [29–32], event confidentiality [12,13,15], and ac-
cess control [11–13,15]. The work of [32] tried to protect subscription
privacy in a publish/subscribe system. The problem of protecting publi-
cation privacy was considered in the work reported in [14,29,31]. They
did not consider supporting access control capabilities.

Based on CP-ABE (Ciphertext-Policy Attribute-based Encryption)
[33], the work of [15] presented an access control scheme for events
delivery in a brokerless publish/subscribe system. In the scheme, events
were encrypted by a symmetric encryption operation and the symmetric
key was encrypted by CP-ABE. The work of [13] combined an attribute-
based encryption scheme and a multi-user searchable data encryption
scheme to construct an access control solution for publish/subscribe
middlewares, where brokers matched subscriptions without knowing
the encrypted sensitive data. The DDS security standard [12] defines
an access control framework DDS-AC for publish/subscribe systems,
where a publisher is allowed to set up topic domains, and domain
servers are delegated to take in charge of authorization. In our work,
we also adopt this multiple-domains framework, but publishers do not
need to delegate their authentication and authorization to the domain
servers. That is to say, only authorization enforcement is undertaken
by the publish/subscribe middleware, and others are controlled by the
publishers. In addition, how to use the matching capabilities of SDN
switches to realize the enactment of authorization policies was not
considered in these existing work.

In [7–10], the security problems of SDN network were discussed,
including corrupting SDN controllers, forging flow tables, and exploiting
the vulnerability of northbound and southbound interfaces. But they did
not provide a full-fledged security mechanism to directly protect the

Auth
ors

 ve
rsi

on

Fig. 2. Our publish/subscribe middleware over SDNs.

publish/subscribe middleware over SDNs. In our work, the controller
encodes the policies and subscribers’ attributes into the flow tables when
the authorization policies are modified; and the SDN switches enforce
authorization by flow table matching.

The work of [34–36] presented some access control methods for SDN
networks, but they only focused on protecting SDN controllers and flow
tables rather than on enforcing authorization policies in SDN switches
for publish/subscribe middlewares. The work of [37] also advocated
using SDN switches to enforce security policies, and proposed a guar-
anteed update scheme of security policies to install transferred policies
into multiple SDN switches. The work of [38] adopted the idea of [37],
and addressed the issue of detecting policy conflicts and resolving the
conflicts in SDN networks. In our work, we believe that the encoding of
security policies is more important than only deploying them on SDN
switches because it can largely reduce the size of policies and provide
the security guarantee for transferring authorization policies into flow
entries.

3. Preliminaries

3.1. Publish/subscribe middleware over SDNs

In our publish/subscribe middleware [28], illustrated in Fig. 2, the
SDN network is partitioned into multiple partitions (a partition is also
called a broker, a node or a cluster). Each cluster is managed by a
local controller as an interconnected network zone, which consists of
a set of SDN-configurable switches and clients. A pair of border SDN
switches connects two neighboring clusters. We follow the topic-based
subscription model [16,17,19], i.e., an event being composed of a topic
name and a set of attribute–value pairs. Multiple topics form a topic tree.

In Fig. 2, our middleware consists of three layers:
(1) There is a global administrator to manage all the local controllers

to form a three-layer architecture: global administrator, clusters network-
ing, and local accessing layers. The global administrator runs on a server
to create and store event topic trees, event schemes, security policies,
settings configuring, and performance strategies. The key function is to
construct a topology for event streams in the middleware.

(2) In the clusters networking layer, SDN controllers maintain the
clusters, update the link states, advertise subscriptions, compute event
routes, and install flow tables on SDN switches. SDN switches forward
event flows by the installed flow tables. The key function of controllers
is to store authorization credentials and encode policies and attributes
into flow entries on SDN switches.

(3) The local accessing layer runs on clients including publishers and
subscribers, which provides the clients local interfaces to read and write
events, i.e., locally accessing to the publish/subscribe middleware.

Each flow can define any content used to match against the event
header fields, such as VLAN tags or IP address [39,40]. In this paper, we

assume that the publish/subscribe middleware will manage flows with
their matching fields corresponding to IP-Multicast addresses [28]. An
IPv6 destination address is used to encode the topic name, event priority,
and authorization policy, illustrated in Fig. 3. How to encode topic trees
can be referred to our previous work [28].

If the IP destination address of events is not matched against the
policy field of the flow entries, the events will be discarded; otherwise
the events are forwarded to the switch’s specific ports that an authorized
subscriber/node is connected to.

In this paper, we only assume that our underlying SDN network
is semi-honest, honestly executing given protocols but arbitrarily leaking
sensitive information in the protocols, without assuming a special secure
SDN.

3.2. Attribute-based policy representation

In this paper, we adopt an attribute-based access control model [41],
because peer-to-peer attribute matching is appropriate for the pub-
lish/subscribe middleware with decoupling interaction paradigms. An
authorization policy for events is made based on attributes. We then
use an access tree to represent an attribute-based authorization policy
and define what attributes satisfy the policies.
Access Structure. Let {𝑆1, 𝑆2, … , 𝑆𝑛} be a set of subjects. A collection
𝛬 ⊆ 2{𝑆1 , 𝑆2 , …, 𝑆𝑛} is monotone, when, for any two sets 𝐵, 𝐶, 𝐵 ∈ 𝛬, 𝐵 ⊆ 𝐶
results in 𝐶 ∈ 𝛬. A monotone access structure 𝛺 will be a monotone
collection of non-empty subsets in 𝛬 ⊆ 2{𝑆1 , 𝑆2 , …, 𝑆𝑛}. The sets belonging to
𝛺 will be called the authorized sets, and the sets that are not in 𝛺 will be
called the unauthorized sets.
Access Tree. We assume 𝑇 is an AND/OR tree which is an access structure.
Each non-leaf node of 𝑇 will be a threshold gate that is specified by a
threshold value and its children. The number of the children of a node
𝑥 is denoted by 𝑛𝑢𝑚𝑥, and the threshold value is denoted by 𝑘𝑥 with
0 < 𝑘𝑥 ≤ 𝑛𝑢𝑚𝑥. If 𝑘𝑥 = 1, then the threshold gate is an OR gate. If
𝑘𝑥 = 𝑛𝑢𝑚𝑥, then the threshold gate is an AND gate. Each leaf node of 𝑇
will be specified by an attribute and a threshold value 𝑘𝑥 = 1.

The parent of node 𝑥 in 𝑇 will be denoted by 𝑝𝑎𝑟𝑒𝑛𝑡(𝑥), and its
attribute will be denoted by 𝑎𝑡𝑡𝑟(𝑥) if it is a leaf node. All the children
of a node can be ordered, and the order number of 𝑥 will be denoted by
𝑖𝑛𝑑𝑒𝑥(𝑥).
Satisfying an access tree. We assume that 𝑇 is an AND/OR tree with a
root 𝑟. 𝑇𝑥 is a sub-tree of 𝑇 rooted at 𝑥. When a set of attributes 𝛾 will
satisfy the access tree 𝑇𝑥, it will be denoted by 𝑇𝑥(𝛾) = 1. For a leaf node 𝑥
of 𝑇 , 𝑇𝑥(𝛾) = 1 when 𝑎𝑡𝑡𝑟(𝑥) ∈ 𝛾. For a non-leaf node 𝑥 of 𝑇 , 𝑇𝑥(𝛾) = 1
when its at least 𝑘𝑥 children will return 1 during the evaluation on whether
𝑇𝑥′ (𝛾) = 1 for its each child 𝑥′.

In order to encode an authorization policy into a secret policy
representation, i.e., one non-structure plain bit string, we model this policy
representation scheme: making an authorization policy by an access
tree, i.e., an initialization algorithm; issuing authorization credentials
according to the users’ attributes and the access tree, i.e., an authorization
algorithm; generating a secret policy representation, i.e., an algorithm
generating the representation; and reconstructing the secret policy rep-
resentation by the users’ authorization credentials, i.e., an algorithm
reconstructing the representation; where the policy matching means that
the policy representation reconstructed by the users is equal to the policy
representation from the issuer, i.e., being authorized.

Definition 1 (Attribute-based Policy Representation Model: AP2M).

1. Setup. For the universe attributes 𝜇 = {1, 2,… , 𝑛}, the algorithm
generates a private scheme parameter 𝑝𝑟𝑃𝑎𝑟 and a public param-
eter 𝑝𝑏𝑃𝑎𝑟.

2. Initialization. For an event topic 𝑡𝑝, the publisher 𝑖 generates
an access tree 𝑇𝑖,𝑡𝑝 as the authorization policy, and the scheme
parameters, where an actual secret 𝛼𝑖,𝑡𝑝 is also generated with
respect to the access tree.

Auth
ors

 ve
rsi

on

Fig. 3. IPv6 destination address embedding topic name and policy.

3. Authorization. Given a user’s attributes 𝛾, the publisher 𝑖 gener-
ates a set of authorization credentials 𝑐𝑟𝑒𝑆, if 𝛾 satisfies 𝑇𝑖,𝑡𝑝. 𝑐𝑟𝑒𝑆
can be split to two parts: one for topic, the other for the user.

4. GeneratingRepresentation. Given the access tree 𝑇𝑖,𝑡𝑝 and a
time period, the publisher 𝑖 chooses a random number, and
generates a secret policy representation 𝑑𝐶𝑟𝑒 and a public param-
eter 𝑝𝑎𝑟 with respect to the presentation, called a representation
parameter.

5. ReconstructingRepresentation. Given the public parameter
𝑝𝑏𝑃𝑎𝑟 and the presentation parameter 𝑝𝑎𝑟, users can reconstruct
the secret policy representation 𝑑𝐶𝑟𝑒 according to their autho-
rization credentials 𝑐𝑟𝑒𝑆.

Definition 2 (Selective Attribute Set Security Game [41]).
Init. The adversary chooses the set of attributes, 𝛾, that he will be
challenged on.
Setup. The challenger invokes the Setup algorithm in Definition 1 to
generate public parameters sent to the adversary.
Phase 1. The adversary launches queries for secrets for access structures
that 𝛾 does not belong to.
Challenge. The adversary will submit two time periods 𝑚0, 𝑚1. The
challenger will flip a coin 𝑏, and then uses 𝑚𝑏 with 𝛾. The policy
representation will be given to the adversary.
Phase 2. The adversary launches queries for secrets for access structures
that 𝛾 does not belong to.
Guess. The adversary will guess 𝑏 and return a bit.

4. Policy-driven publish/subscribe topology for multiple topics

The work of [16] reported a method to construct the overlay
topology for multiple topics in a publish/subscribe middleware. The
constructed topology is trustful for publishers to disseminate confi-
dential information. The topology construction of publish/subscribe
middlewares over SDNs, however, has different requirements for access
control, as follows:

(1) From the perspective of the physical topology of SDN net-
works, sensitive events may be disseminated through the pub-
lish/subscribe nodes which do not have rights to read them [16–
18,42], although they pass through the trusted nodes in an
overlay topology. It is desirable that, from all the perspectives,
the number of the unauthorized nodes be minimal in a con-
structed topology that connects together all the subscribers and
publishers.

(2) One node may cross multiple event streams with different au-
thorizations: authorized in some streams but unauthorized in the
others. How to use extra nodes outside all the streams to form
connected sub-graphs is important. A criterion is to maximize
common node numbers among streams without violating any
policy. Anyway, the event routing cost should also be minimized.

4.1. Problem statement

We try to construct a connected topology that unauthorized nodes
are excluded so that events are disseminated without being visited by
adversaries. In addition, the event delivery cost is also minimal on the
constructed topology. We then formally define it.

We assume that 𝐺 = (𝑉 , 𝐸) is an undirected graph representing
the SDN network, where 𝑉 = {𝑣𝑖|1 ≤ 𝑖 ≤ 𝑛} is considered as the set of
𝑛 nodes, and 𝐸 = {𝑒𝑗 |1 ≤ 𝑗 ≤ 𝑚} is considered as the set of 𝑚 communi-
cation links connecting them. Let 𝑐𝑗 be the communication cost of link
𝑒𝑗 .

Assume there exist 𝑟 event streams for 𝑟 topics that are subscribed by
some of the nodes in 𝑉 . We use 𝑊 = {𝑤𝑘|1 ≤ 𝑘 ≤ 𝑟} to denote the set
of 𝑟 event streams. Let 𝑆𝑘 be the set of the publisher nodes that publish
𝑤𝑘 and 𝐷𝑘 for the set of nodes that subscribe the event stream 𝑤𝑘. We
use |𝑆𝑘| and |𝐷𝑘| to denote the cardinality of 𝑆𝑘 and 𝐷𝑘, respectively,
where |𝑆𝑘| ≥ 1, |𝐷𝑘| ≥ 1, 1 ≤ 𝑘 ≤ 𝑟. Let 𝛿𝑘 = (𝑤𝑘, 𝑆𝑘, 𝐷𝑘) denote as
the multicast of 𝑤𝑘, and 𝑐𝑜𝑠𝑡(𝛿𝑘) as the total communication cost of the
multicast.

Definition 3 (AC-TC-SDN). The construction problem of a connected
topology for topics to satisfy access control requirements in a pub-
lish/subscribe middleware over SDN networks, called AC-TC-SDN, is
defined as follows:

Given a SDN network 𝐺 = (𝑉 , 𝐸), a set of event streams 𝑊 =
{𝑤𝑘|1 ≤ 𝑘 ≤ 𝑟} with multicasts 𝛿𝑘 = (𝑤𝑘, 𝑆𝑘, 𝐷𝑘), 1 ≤ 𝑘 ≤ 𝑟, the goal of
AC-TC-SDN is to find a series of connected sub-graphs (or one sub-graph)
𝐹𝑘 = (𝑉𝑘 = {𝑣𝑘,𝑖|1 ≤ 𝑖 ≤ 𝑛𝑘}, 𝐸𝑘 = {𝑒𝑘,𝑗 |1 ≤ 𝑗 ≤ 𝑚𝑘}), 1 ≤ 𝑘 ≤ 𝑟 with 𝑐𝑘,𝑖
denoting the cost of a link 𝑒𝑘,𝑖 ∈ 𝐸𝑘, for each multicast 𝛿𝑘, such that:

(1) minimize(|
⋃𝑟

𝑘=1(𝑉𝑘 − 𝑆𝑘 ∪𝐷𝑘)|);
(2) minimize(

∑𝑟
𝑘=1 cost(𝐹𝑘)|cost(𝐹𝑘) =

∑𝑚𝑘
𝑗=1 𝑐𝑘,𝑗).

The problem of AC-TC-SDN is to minimize the node number out of all
the event stream multicasts, and the connection cost of the constructed
topology.

Theorem 1. AC-TC-SDN is NP-hard.

Proof. For the goal: minimize(|
⋃𝑟

𝑘=1(𝑉𝑘 − 𝑆𝑘 ∪𝐷𝑘)|), we can assign each
link by the same cost such as 1, in the event stream 𝛿𝑘, when the link
is not (𝑣𝑘,𝑖, 𝑣𝑘,𝑗), 𝑣𝑘,𝑖, 𝑣𝑘,𝑗 ∈ (𝑆𝑘 ∪𝐷𝑘), and the cost on other links is less
than 1∕(|𝑉 | − 1).

Then, finding the minimal number of nodes outside of (𝑆𝑘 ∪ 𝐷𝑘) to
connect all the nodes in (𝑆𝑘 ∪𝐷𝑘) is equal to finding a Steiner tree [43]
for (𝑆𝑘 ∪𝐷𝑘) in 𝐺.

According to [44,45], the Steiner tree problem is NP-hard. Then AC-
TCO-SDN is NP-hard when multiple Steiner trees should be found in
𝐺 with maximizing their common parts. In addition, minimizing the
communication cost further complicates the computation.

4.2. Solving AC-TC-SDN

From the perspective of the physical topology of SDN networks,
SDN network nodes are classified into three groups: authorized nodes,
unauthorized nodes, and non-determinative nodes. An event stream
𝛿𝑘 = (𝑤𝑘, 𝑆𝑘, 𝐷𝑘) also represents the authorization for event topic 𝑡𝑜𝑝𝑖𝑐𝑘,
i.e., all the nodes in 𝐷𝑘 having rights to read events with 𝑡𝑜𝑝𝑖𝑐𝑘, published by
𝑆𝑘. For all the nodes that have no rights to read events with 𝑡𝑜𝑝𝑖𝑐𝑘, we use
𝑉 (𝑆𝑘) to denote the node set. 𝑉 (𝑠), 𝑠 ∈ 𝑉 indicates the nodes that have
no rights to read the events published by the node 𝑠. 𝑉 −(𝑆𝑘∪𝐷𝑘)−𝑉 (𝑆𝑘)
indicates the non-determinative node set that is not explicitly authorized
or unauthorized. A non-determinative node can be used as an extra node
to connect 𝑆𝑘, 𝐷𝑘.

Auth
ors

 ve
rsi

on

In order to reduce extra nodes in a multicast tree for the event
stream, the links between the non-publishers and the non-subscribers
are attached by a large cost, such as the production of the maximal cost
on all the edges and the maximal length of the paths in the graph. In
this case, the shortest path will be computed by preferentially selecting
the links between the publishers and subscribers.

For the SDN network 𝐺 = (𝑉 , 𝐸), the maximal link cost is de-
noted by 𝑐𝑚𝑎𝑥 and the maximal length of paths is denoted by 𝑙𝑒𝑛𝑚𝑎𝑥
such as |𝑉 | − 1. For the event stream 𝛿𝑘 = (𝑤𝑘, 𝑆𝑘, 𝐷𝑘), we then
compute the shortest paths between nodes in 𝑆𝑘 ∪𝐷𝑘, where 𝐷[𝑠, 𝑑]
is used to denote the cost of the path from a node 𝑠 to 𝑑. The cost
𝐷[𝑣𝑖, 𝑣𝑗] from a node 𝑣𝑖 ∈ 𝑉 to another node 𝑣𝑗 ∈ 𝑉 is initialized-
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝐺, 𝑆𝑘, 𝐷𝑘, {𝐷[𝑣𝑖, 𝑣𝑗]|𝑣𝑖, 𝑣𝑗 ∈ 𝑉 }):

𝐷[𝑣𝑖, 𝑣𝑗] =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑐𝑖,𝑗 , ∃𝑒𝑖𝑗 , 𝑣𝑖, 𝑣𝑗 ∈ (𝑆𝑘 ∪𝐷𝑘)

𝑐𝑖,𝑗 ← 𝑙𝑒𝑛𝑚𝑎𝑥 ∗ 𝑐𝑚𝑎𝑥 + 𝑐𝑖,𝑗 ,∃𝑒𝑖𝑗 ,

(𝑣𝑖 ∉ (𝑆𝑘 ∪𝐷𝑘) 𝑜𝑟 𝑣𝑗 ∉ (𝑆𝑘 ∪𝐷𝑘))

0, 𝑖𝑓 𝑖 = 𝑗

∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

After the shortest paths between 𝑆 and 𝐷 have been computed with
links between nodes in 𝑆 ∪𝐷 being preferentially selected whilst unau-
thorized nodes being excluded, the fast algorithm for Steiner trees [46]
can be used to compute the expected topology, as in Algorithm 2.

Event routing paths can be rapidly built on the constructed topology
such as extracting one event stream tree from the multicast forest.
The constructed topology will maximize the number of common nodes
among all the event streams besides adding extra nodes.

This topology construction scheme is carried out on the global
server/administrator of SDNs, which costs at most the time of
O(|

∑𝑟
𝑘=1 𝑆𝑘 ∪𝐷𝑘| |𝑉 |

2). The communication optimization of our method
can be discussed based on the fast algorithm shown in [46].

To avoid the over-usage of one link, some integer programming
algorithms [47] can be used to compute the shortest path, i.e., revising
Line 5 in Algorithm 1.

5. Access control based on SDNs’ matching capabilities

Subscribers receive events from the publish/subscribe middleware,
and do not directly access to the publishers. A publisher does not
know who reads its published events. The access control of the events
published by the publishers will be anonymous and indirect. In our
solution, the publishers will produce authorization policies and issue
authorization credentials to the subscribers; and the middleware will
decide whether or not it delivers the events to the subscribers according
to the publisher’s authorization policies, i.e., enforcing the authorization.
Accesses to the middleware resources such as registering to the network
will be managed by the middleware, which can be combined with the
one of reading/writing events, and is not further discussed in this paper.

Our flow matching based access control consists of two schemes:
policy matching and resisting against collusion attacks. In the policy
matching scheme, the matching between authorization policies and
users’ attributes is assumed by the matching between the flow entries in
SDN switches and event headers, i.e., the users’ attributes corresponding
to flow entries in the SDN switches connected to the users. In the scheme of
resisting against collusions, a two-party secret sharing is carried out to
secretly encode authorization policies into the flow entries for defeating
malicious SDN controllers and subscribers.

Each subscriber is connected to its local switch and controller, which
are treated as the home broker of delivering events, regarding the local
SDN controller as a home controller, and the SDN switch as a home switch.

5.1. Policy matching by flow tables

The policy matching scheme is illustrated in Fig. 4, and the involved
notations are listed in Table 1. A subscriber 𝑗 registers to its home
controller in order to access to the resources of the publish/subscribe
middleware, and authenticates to a publisher 𝑖 to obtain authorization
credentials to read events with topic 𝑡𝑝. The controller stores these
authorization credentials of 𝑗, issued by the publisher 𝑖. The controller
can use these authorization credentials and public parameters from the
publisher 𝑖 to compute the secret policy representation, encoded into the
policy field of flow entries shown in Fig. 3 as users.

Auth
ors

 ve
rsi

on

Fig. 4. Policy matching.

Table 1
Notations.

Notation Meaning Notation Meaning

𝛼𝑖,𝑡𝑝 Secret value for 𝑡𝑝 𝑐𝑟𝑒𝑆 Authorization credentials
𝑇𝑖,𝑡𝑝 An access tree for 𝑡𝑝 𝑑𝐶𝑟𝑒 Secret policy representation
𝛾 Subscriber attributes 𝑝𝑎𝑟 Public parameter of 𝑑𝐶𝑟𝑒
ℎ𝑎𝑠ℎ Hash function 𝑚𝑎𝑠𝑘 The mask of matching field

Fig. 4 includes two stages: authorization stage and policy enforce-
ment stage. At the authorization stage, a subscriber 𝑗 requests the
publisher to authorize reading events with topic 𝑡𝑝. For the event topic 𝑡𝑝
attached by an access tree 𝑇𝑖,𝑡𝑝, the publisher 𝑖 invokes the Initialization
algorithm in AP𝟐M (shown in Section 3) to initialize parameters and
contexts. When it gives authorization to the subscriber 𝑗 according to
𝑗’s attributes 𝛾, the publisher 𝑖 invokes the Authorization algorithm in
AP𝟐M to issue authorization credentials to 𝑗: 𝑐𝑟𝑒𝑆, which are stored in
the home controller of 𝑗.

At the policy enforcement stage, the publisher 𝑖 invokes the Generat-
ingRepresentation algorithm in AP𝟐M, which outputs the secret policy
representation 𝑑𝐶𝑟𝑒 for this new time period, and the representation
parameter 𝑝𝑎𝑟 with respect to 𝑑𝐶𝑟𝑒. The publisher 𝑖 will publish 𝑝𝑎𝑟,
which is stored and used by the home controller of 𝑗 to compute
the secret policy representation 𝑑𝐶𝑟𝑒. That is to say, the publisher 𝑖
directly generates 𝑑𝐶𝑟𝑒, and the home controller of 𝑗 computes the
same 𝑑𝐶𝑟𝑒 according to the authorization credentials 𝑐𝑟𝑒𝑆 and the
public parameter 𝑝𝑎𝑟. The ‘‘secret’’ word in the term of secret policy
representation means that the policy representation 𝑑𝐶𝑟𝑒 is only known
by the publisher 𝑖 and the home controller of 𝑗 (we further protect
the policy representation in the next section to resist against malicious
controllers).

The controller will update the mask of the policy matching field in
the flow entries of the home SDN switch (shown in Fig. 3) according
to Algorithm 4. The mask update of the flow entries is periodically
performed, while the events are published on demand. When it publishes
an event with topic 𝑡𝑝, the publisher 𝑖 invokes Algorithm 3 to compute
the policy matching field in the event header. Statement 1 indicates
that the home SDN switch can correctly deliver events with topic 𝑡𝑝 to
the subscriber 𝑗 if the attributes of 𝑗 satisfy the access tree of 𝑖, i.e.,𝑗
having been authorized.

Statement 1. If the policy matching field 𝑓𝑒𝑝 in the flow entry and
the last policy matching field 𝑝𝑚𝑓 ′ in the event headers are ones (such
as ‘‘1111111111’’) in the first period, then the events can be matched
against the flow entry for an authorized subscriber.

Proof. In the first period, the masked policy matching field in the flow
entry is 𝑓𝑒𝑝⊗𝑚𝑎𝑠𝑘 = ℎ𝑎𝑠ℎ(𝑑𝐶𝑟𝑒), and the policy matching field in event
headers is 𝑝𝑚𝑓 ′ ⊗ 𝑡𝑚𝑝 = ℎ𝑎𝑠ℎ(𝑑𝐶𝑟𝑒). That is to say, they are matched.
In addition, 𝑓𝑒𝑝 and 𝑝𝑚𝑓 ′ are updated with 𝑓𝑒𝑝 = 𝑚𝑎𝑠𝑘 = ℎ𝑎𝑠ℎ(𝑑𝐶𝑟𝑒)
and 𝑝𝑚𝑓 ′ = 𝑡𝑚𝑝 = ℎ𝑎𝑠ℎ(𝑑𝐶𝑟𝑒), i.e., 𝑓𝑒𝑝 = 𝑝𝑚𝑓 ′.

In other periods, they are matched if ReconstructingRepresenta-
tion in AP𝟐M can correctly compute the secret policy representation,
where 𝑝𝑚𝑓 ′ ⊗ 𝑡𝑚𝑝 = 𝑝𝑚𝑓 ′ ⊗ ℎ𝑎𝑠ℎ(𝑑𝐶𝑟𝑒), 𝑚𝑎𝑠𝑘 ⊗ 𝑓𝑒𝑝 = ℎ𝑎𝑠ℎ(𝑑𝐶𝑟𝑒) ⊗
𝑓𝑒𝑝, and 𝑓𝑒𝑝 = 𝑝𝑚𝑓 ′, i.e., the masked policy matching field in the flow
entry is equal to the policy matching field in the event headers.

Auth
ors

 ve
rsi

on

Fig. 5. The part A of protocol 𝛯.

5.2. Resisting against collusion attacks

The publisher may not completely trust the publish/subscribe mid-
dleware and the SDN network, and does not give all the authorization
credentials to controllers, i.e., against the malicious controllers. In addi-
tion, it may also expect to resist against eavesdropping events. That is,
we should enhance the above scheme, and the enhanced scheme will
work together with a confidentiality mechanism to provide the end-to-
end encryption of events.

In order to enhance the above scheme, we split authorization
credentials into two parts: one part corresponding to a topic and the
other part corresponding to a subscriber. The former is still stored at
the home controllers, which can be used to compute one part of the
secret policy representation. The latter is stored at the accessing layer
of the subscriber, i.e., being transparent to subscribers, which can be
used to compute the other part of the secret policy representation. The
subscriber and its home controller can collaborate to compute the policy
matching field in SDN switches without disclosing the secret policy
representation.

For achieving the above objectives, we use a two-party protocol
between a subscriber (including its accessing layer for cryptographic
operations) and its home controller to secretly compute the policy
matching field. We adopt a homomorphic encryption scheme as the
basic confidentiality mechanism [48–50], and a homomorphic hash
function [51–54] is used as the two-party computation operation. The
two-party computation protocol 𝛯 of a secret is illustrated in Figs. 5–6,
which includes a part 𝐴 shown in Fig. 5, and the other part 𝐵 shown in
Fig. 6.

In the protocol 𝛯, the home controller computes its part 𝑑𝐶𝑟𝑒.𝑡𝑝 of
the secret policy representation according to its stored authorization
credentials (𝑐𝑟𝑒𝑆.{𝐷𝑥}) and the public parameter 𝑝𝑎𝑟. 𝑑𝐶𝑟𝑒.𝑡𝑝 is then
encrypted: 𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑑𝐶𝑟𝑒.𝑡𝑝) under the public key of the publisher, and
𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑑𝐶𝑟𝑒.𝑡𝑝) is sent to the subscriber’s accessing layer.

The subscriber’s accessing layer computes its part 𝑑𝐶𝑟𝑒.𝑠𝑢𝑏𝑐𝑟𝑖𝑏𝑒𝑟 of
the secret policy representation according to its stored authorization
credentials (𝑐𝑟𝑒𝑆.{𝐷′

𝑦}) and the public parameter 𝑝𝑎𝑟. 𝑑𝐶𝑟𝑒.𝑠𝑢𝑏𝑐𝑟𝑖𝑏𝑒𝑟
is hashed: ℎ𝑎𝑠ℎ(𝑑𝐶𝑟𝑒.𝑠𝑢𝑏𝑐𝑟𝑖𝑏𝑒𝑟), and ℎ𝑎𝑠ℎ(𝑑𝐶𝑟𝑒.𝑠𝑢𝑏𝑐𝑟𝑖𝑏𝑒𝑟) is sent to the
home controller.

There are two equations in the protocol:

𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑑𝐶𝑟𝑒) = 𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑑𝐶𝑟𝑒.𝑡𝑝) ⋅ 𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑑𝐶𝑟𝑒.𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟)

𝑎𝑛𝑑 ℎ𝑎𝑠ℎ(𝑑𝐶𝑟𝑒) = ℎ𝑎𝑠ℎ(𝑑𝐶𝑟𝑒.𝑡𝑝) ⋅ ℎ𝑎𝑠ℎ(𝑑𝐶𝑟𝑒.𝑠𝑢𝑏𝑐𝑟𝑖𝑏𝑒𝑟).

In the above two-party computation protocol, there is an implicit
authentication channel, which is underlying to identify the controller
and the subscriber. When it is encrypted or hashed, the policy represen-
tation is not disclosed to the subscriber’s accessing layer and the home
controller.

Given this secret sharing mechanism provided by the two-party
protocol, we can enhance the policy matching scheme in the above
section to resist against collusions and to provide confidentiality. It is
illustrated in Fig. 7.

Fig. 6. The part B of protocol 𝛯.

In Fig. 7, authorization credentials are split into two parts during the
authorization stage. The two-party protocol is carried out periodically,
which provides one secret policy representation in one period. During
the enforcement stage, the publisher embeds the secret policy represen-
tation 𝑑𝐶𝑟𝑒 into the event’s ciphertext 𝑐 = 𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑒) by homomorphic
addition, i.e., 𝑐 = 𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑒 + 𝑑𝐶𝑟𝑒), where 𝑒𝑛𝑐𝑟𝑦𝑝𝑡() is a homomorphic
encryption function.

The local accessing layer of the publish/subscriber middleware
carries out the homomorphic operations to remove the embedded
secret policy representation by its stored 𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑑𝐶𝑟𝑒) with ciphertext
converting. That is, 𝑐′ = 𝑐 − 𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑑𝐶𝑟𝑒) = 𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑒 + 𝑑𝐶𝑟𝑒) −
𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑑𝐶𝑟𝑒) = 𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑒). 𝑐′ is delivered to the subscriber.

The subscriber uses its private key to decrypt 𝑐′ to recover the event
𝑒. The policy matching between the event header and the flow entries
is carried out as in the policy matching scheme in the above section.

Although there are similarities between ours and that of [50], the
differences are:
(1) The access tree in our method provides more expressiveness for
authorization policies and their matching, while the work of [50]
only allowed linear policy structure, i.e., attribute conjunctions without
disjunctions and their mixtures.
(2) The access control functions in our method are separated from
the encryption scheme with the ability to integrate them together on
demand (e.g. flow-based authorization enforcement on switches work-
ing with independent encryption on clients in Fig. 7), which provides
flexibility for deploying security mechanisms.
(3) The policy matching in our method is carried out by SDN switches,
i.e., making matching between flow entries and event headers as the policy
matching.
(4) The key difference is that our solution can resist against the
collusions of the corrupted subscribers and home brokers, i.e., unable
to get events sent to uncorrupted subscribers by using the colluded
credentials.

5.3. Policy representation scheme

The work of [41] presented an attribute-based encryption scheme ℜ
by access trees, but it cannot be directly used in our work because the
policy representation scheme has different requirements:

(1) It should support splitting authorization credentials and secret
sharing (discussed in Section 5.2), which is not considered and
supported by ℜ.

(2) It is not desired that the publish/subscribe middleware always
carry out expensive encryption operations on each event for
enforcing authorization, and the matching capabilities of SDN
switches be used to efficiently match authorization policies
against the subscribers’ attributes. That is, we should represent
a complex authorization policy as a short bit string in the flow
tables and event headers, which is not computed for each event
but periodically or policy-change-driven.

Auth
ors

 ve
rsi

on

Fig. 7. Access control solution.

Fig. 8. Extra nodes for different node degrees.

Fig. 9. Unauthorized node affection at different publisher/subscriber percent 𝑚∕𝑛 and different node degrees.

(3) When event confidentiality is needed, it is desired that any
encryption schemes be combined with the policy representation
scheme, and encryption operations be carried out by the clients.

The complete description of the attribute-based policy represen-
tation scheme 𝛱 is presented in Appendix 1. In Definition 4, as a
comparison and for comprehensibility, we describe our scheme 𝛱 over
parts of the encryption scheme ℜ shown in [41] (Section 4.2 in [41]),
where there are four algorithms in ℜ: Setup, KeyGeneration, Encryption,
and Decryption.

Let 𝐺1, 𝐺2 be two multiplicative cyclic groups with prime order 𝑝. Let
𝑔 be one generator of 𝐺1 and 𝑒̇ be a bilinear map, 𝑒̇∶ 𝐺1 ×𝐺1 → 𝐺2. We
define the Lagrange coefficient 𝛥s,𝑆 for 𝑠 ∈ 𝑍𝑝 and the set 𝑆 of elements
in 𝑍𝑝 [41]: 𝛥𝑠,𝑆 (𝑐) =

∏

𝑡∈𝑆,𝑡≠𝑠
𝑐−𝑡
𝑠−𝑡 .

Definition 4 (Attribute-based Policy Representation Scheme 𝛱).

1. Setup. For the universe attributes 𝜇 = {1, 2,… , 𝑛}, the algorithm
randomly chooses a number 𝑙𝑠 ∈ 𝑍𝑝 for each 𝑠 ∈ 𝜇. The algorithm

Setup in ℜ can be invoked to generate public parameters 𝑝𝑏𝑃𝑎𝑟
𝐿1 = 𝑔𝑙1 , 𝐿2 = 𝑔𝑙2 , … , 𝐿𝑛 = 𝑔𝑙𝑛 ,𝑌 = 𝑒̇(𝑔, 𝑔); with private parame-
ters 𝑝𝑟𝑃𝑎𝑟 𝑙1, … , 𝑙𝑛.

2. Initialization. For an event topic 𝑡𝑝, the publisher 𝑖 makes an access
tree 𝑇𝑖,𝑡𝑝, and prepares a secret random value 𝛼𝑖,𝑡𝑝 for the root node
of 𝑇𝑖,𝑡𝑝, i.e., the secret 𝛼𝑖,𝑡𝑝 corresponding to 𝑇𝑖,𝑡𝑝 as the secret base
of policy presentation.

3. Authorization. Given a user 𝑗’s attributes 𝛾, the publisher 𝑖 will
make another access tree 𝑇𝑖,𝑡𝑝,𝑗 for 𝑗 (i.e., 𝛾 satisfying 𝑇𝑖,𝑡𝑝,𝑗),
generate a secret random value 𝛽𝑖,𝑡𝑝,𝑗 , and prepare 𝛼𝑖,𝑡𝑝𝛽𝑖,𝑡𝑝,𝑗 for
the root node of 𝑇𝑖,𝑡𝑝,𝑗 .
(a) The publisher 𝑖 invokes the KeyGeneration algorithm in ℜwith
𝛾 and 𝑇𝑖,𝑡𝑝,𝑗 as the input, which outputs 𝐷′

𝑦 = 𝑔𝑞𝑦(0)∕𝑙𝑠 for each leaf
node 𝑦 in the tree 𝑇𝑖,𝑡𝑝,𝑗 .
(b) The publisher 𝑖 invokes the KeyGeneration algorithm in ℜ
with 𝛾 and 𝑇𝑖,𝑡𝑝 as the input, which outputs 𝐷𝑥 = 𝑔(𝑞𝑥(0)−𝑞𝑥(0)𝛽𝑖,𝑡𝑝,𝑗)∕𝑙𝑠
for 𝑇𝑖,𝑡𝑝’s leaf node 𝑥 with the node attribute in 𝛾.
Then, 𝑐𝑟𝑒𝑆 = {{𝐷𝑥}, {𝐷′

𝑦}}.

Auth
ors

 ve
rsi

on

Fig. 10. Delay and loss rate at different event publishing speeds.

Fig. 11. Deployment environment.

4. GeneratingRepresentation. Given the access tree 𝑇𝑖,𝑡𝑝 and a time
period, the publisher 𝑖 chooses a random number 𝑟 for this period,
and partially invokes the Encryption algorithm ℜ only to compute
𝑐′𝑘 = (𝐿𝑘)𝑟 = 𝑔𝑟𝑙𝑘 for each leaf in 𝑇𝑖,𝑡𝑝 without encrypting messages.
The publisher 𝑖 obtains the public parameter set 𝑝𝑎𝑟 = {𝑐′𝑘} of
secret policy representation, which is published. The secret policy
representation is 𝑑𝐶𝑟𝑒 = 𝑒̇(𝑔, 𝑔)𝑟𝛼𝑖,𝑡𝑝 = 𝑌 𝑟𝛼𝑖,𝑡𝑝 , which is not directly
published.

5. ReconstructingRepresentation. When the public parameter 𝑝𝑏𝑃𝑎𝑟,
representation parameter 𝑝𝑎𝑟, and authorization credentials
𝑐𝑟𝑒𝑆 = {{𝐷𝑥}, {𝐷′

𝑦}} are given, the secret policy representation
can be computed as follows:

(a) When the 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛𝑁𝑜𝑑𝑒 function in the Decryption al-
gorithm of ℜ is invoked with {𝐷𝑥}, 𝑇𝑖,𝑡𝑝, and 𝑝𝑎𝑟 as input,
𝑅𝑇 _𝑇𝑖,𝑡𝑝(𝑟𝑜𝑜𝑡) = 𝑌 𝛼𝑖,𝑡𝑝𝑟−𝛼𝑖,𝑡𝑝𝛽𝑖,𝑡𝑝,𝑗 𝑟 is output.

(b) When the 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛𝑁𝑜𝑑𝑒 function in the Decryption algo-
rithm of ℜ is invoked with {𝐷′

𝑦}, 𝑇𝑖,𝑡𝑝,𝑗 , and 𝑝𝑎𝑟 as input,
𝑅𝑇 _𝑇𝑖,𝑡𝑝,𝑗 (𝑟𝑜𝑜𝑡) = 𝑌 𝛼𝑖,𝑡𝑝𝛽𝑖,𝑡𝑝,𝑗 𝑟 is output.

(c) The secret policy representation is then computed: 𝑅𝑇 =
𝑅𝑇 _𝑇𝑖,𝑡𝑝(𝑟𝑜𝑜𝑡) ⋅ 𝑅𝑇 _𝑇𝑖,𝑡𝑝,𝑗 (𝑟𝑜𝑜𝑡) = 𝑌 𝑟𝛼𝑖,𝑡𝑝 .

The differences between our scheme 𝛱 and the encryption scheme
ℜ reported in [41] are as follows:

(1) Private keys. In ℜ, there is one set of private keys corresponding
to the user’s attributes, while, in 𝛱 , there are two sets of private
keys: one corresponding to a publisher’s topic issued to SDN
controllers, and the other corresponding to the subscriber issued
to the subscriber itself. This results in secret sharing in 𝛱 , i.e.,
computing the sharing secret 𝑌 𝑟𝛼𝑖,𝑡𝑝 .

(2) Ciphertexts. In 𝛱 ,GeneratingRepresentation and Reconstructin-
gRepresentation together output a special ciphetext 𝑐 =
(𝛾, {𝑐𝑖 = 𝐿𝑟

𝑖}𝑖∈𝛾 , 𝑌̇ 𝑟−𝑟𝛽𝑖,𝑡𝑝,𝑗 𝑜𝑟 𝑌̇ 𝑟𝛽𝑖,𝑡𝑝,𝑗), where 𝑟 is a random number
for the current time period, {𝑐𝑖 = 𝐿𝑟

𝑖} is computed and published
by the publisher (using GeneratingRepresentation), the third
element in 𝑐 can be 𝑌̇ 𝑟−𝑟𝛽𝑖,𝑡𝑝,𝑗 computed by SDN controllers (using
ReconstructingRepresentation) or 𝑌̇ 𝑟𝛽𝑖,𝑡𝑝,𝑗 computed by the sub-
scriber (using ReconstructingRepresentation), and 𝑌̇ 𝑟 = 𝑌 𝑟𝛼𝑖,𝑡𝑝 is
a sharing secret between the controller and subscriber. In ℜ, the
output ciphertext is 𝑐 = (𝛾, 𝑐′ = 𝑚𝑌̇ 𝑟, {𝑐𝑖 = 𝐿𝑟

𝑖}𝑖∈𝛾), while in 𝛱 no
actual message 𝑚 is encrypted.

5.4. Security analysis

The policy representation scheme 𝛱 is the cornerstone of our access
control solution, and we prove that it is secure.

Theorem 2. If the policy representation scheme 𝛱 is not Attribute-based
Selective-Set secure, then the security of the encryption scheme ℜ is broken.

Proof. A simulator uses the adversary of scheme 𝛱 as an inner
algorithm InA, and simulates the adversary of ℜ to break the security
of ℜ. It acts as the challenger of 𝛱 to prepare for InA the parameters
and keys of 𝛱 such as the secret random value 𝛽𝑖,𝑡𝑝,𝑗 (a security game
defined in Definition 2).

For the challenging of InA, the simulator submits two equal length
messages 𝑚0 and 𝑚1 to the challenger of ℜ. When the challenger of ℜ
returns a ciphertext 𝑐 = (𝛾, 𝑐′ = 𝑚𝑏𝑌̇ 𝑟, {𝑐𝑖 = 𝐿𝑟

𝑖}𝑖∈𝛾), with 𝑌̇ = 𝑒̇(𝑔, 𝑔)𝛼𝑖,𝑡𝑝 ,
the simulator uses its inner algorithm InA to guess. The simulator
computes and guesses below.

(1) It randomly selects a bit 𝑏′(𝑏𝑒𝑖𝑛𝑔 0 𝑜𝑟 1)

(2)
𝑐′′ = (𝑐′∕(𝑐′)𝛽𝑖,𝑡𝑝,𝑗)(𝑚𝑏′)

𝛽𝑖,𝑡𝑝,𝑗−1

= (𝑚𝑏𝑌̇ 𝑟∕(𝑚
𝛽𝑖,𝑡𝑝,𝑗
𝑏 𝑌̇ 𝑠𝛽𝑖,𝑡𝑝,𝑗))(𝑚𝑏′)

𝛽𝑖,𝑡𝑝,𝑗−1

= 𝑌̇ 𝑟−𝑟𝛽𝑖,𝑡𝑝,𝑗 (𝑚
1−𝛽𝑖,𝑡𝑝,𝑗
𝑏 𝑚

𝛽𝑖,𝑡𝑝,𝑗−1
𝑏′)

(3) It sends (𝛾, {𝑐𝑖}𝑖∈𝛾 , 𝑐′′) to InA.
After InA guesses 𝑏, the simulator may answer as follows:

(1) A: If 𝑏′ = 𝑏 by InA, then the simulator answers 𝑏 with the
advantage 𝜀 by definition, i.e., having the probability 1∕2 + 𝜀.

(2) B: If 𝑏′ ≠ 𝑏 by InA, the simulator can randomly make a guess,
and the probability is 1∕2.

Note, the simulator randomly guesses the bit 𝑏′, and the probability
Pr[𝑏′ = 𝑏] = 1∕2,Pr[𝑏′ ≠ 𝑏] = 1∕2.

9

Auth
ors

 ve
rsi

on

Table 2
Gain of topology construction against unauthorized nodes.

Unauthorized node ratio 10% 20% 30% 40% 50% 70%
Case a in Fig. 9 0.806 1.52 2.31 2.67 3.84 6.14
Case b in Fig. 9 1.04 1.92 3.75 3.57 3.57 8.33

The simulator breaks the security of ℜ with the probability:

Pr[𝑏′ = 𝑏] Pr[𝐴|𝑏′ = 𝑏] + Pr[𝑏′ ≠ 𝑏] Pr[𝐵|𝑏′ ≠ 𝑏]
= 1

2 (
1
2 + 𝜀) + 1

2
1
2 = 1

2 + 𝜀
2 .

That is, when InA has the advantage 𝜀 to break the security of 𝛱 ,
the simulator has an advantage 𝜀∕2 to break the security of ℜ.

There are two groups of collusion attacks on our solution. The first
group of collusion attacks is that the home controller colludes with its
corrupted subscribers to compute the ciphertext of the policy represen-
tations for other event topics that only non-corrupted subscribers have
rights to access to. The second group of collusion attacks is that the home
controller and its corrupted subscribers collect possible authorization
credentials to compute the policy representations for other event topics.

Our solution resists against these collusions due to:

(1) A home controller has a part of authorization credentials. When
colluding with the corrupted subscriber 𝑗, it can produce the
ciphertext and the hash of the policy representation for the topic
that 𝑗 has rights to access to. When another subscriber 𝑗′ is not
corrupted, the home controller has not got all the authorization
credentials for the event topic that only 𝑗′ has rights to access
to, and cannot reconstruct the policy representation by itself. The
ciphertext and the hash of the policy representation are computed
by the homomorphic functions such that the home controller
cannot directly get them if it cannot break these functions.

(2) Even if it obtains multiple subscribers’ authorization credentials,
the controller cannot use these authorization credentials from
different subscribers to obtain more authorization, because each
subscriber has the authorization credentials corresponding to its
own access tree, such that the mixed authorization credentials
from two different subscribers make no sense for reconstructing
a policy representation.

Table 2 illustrates the quantitative gain of policy-driven topology
construction against unauthorized nodes, where the gain is measured by
the number of unauthorized nodes that is resisted against by each extra
node, and the node number of the constructed topology is normalized by
treating it as the denominator in the gain. From Table 2, we know that
the gain increases when the unauthorized nodes increase in the network.
That is, the topology construction method is effective with one extra
node against more attacks, when available network resources become
less. The gain in case b is greater than the one in case a because more
authorized nodes result in few extra nodes in the constructed topology,
i.e., one extra node against more unauthorized nodes with increasing the
gain.

In order to quantitatively compute the gain of the policy encoding
method, we assume an authorization tree (i.e., representing a by trees)
has 𝑛 non-leaf nodes with all children having ‘‘and’’/‘‘or’’ relations. In
general SDN-based policy enforcement methods [37], the number of
flow entries is 𝑛, while, in our work, it is one, i.e, the gain of flow space
being 𝑛 − 1. Furthermore, the matching times averages 𝑛∕2 in general
methods, while, in our work, it is still one, the gain of computation time
being 𝑛∕2−1 if the policy encoding operation is periodically carried out
with long time, i.e., no considering encoding computation cost.

6. Evaluation

This section is dedicated to the analysis of the design and implemen-
tation of the proposed access control solution for a publish/subscribe

middleware over SDNs. A series of experiments are conducted to under-
stand the effects of the design: (i) extra nodes for the publish/subscribe
topology construction, (ii) event forwarding speed under the condition
of making policy matching, (iii) access control delay in the whole solu-
tion, and (v) the overhead on the SDN controllers and the administrator.

6.1. Topology construction

To test the topology construction algorithm, we perform two kinds
of testing, and the experiment settings are shown in Table 3. In the
first kind of testing, the unauthorized node percent is fixed at 10% to
unfold the authorized nodes affecting characteristics, the pub/sub node
percent varies from 20% to 80%, and the connection degree of nodes
ranges over [1, 3], [3, 7], and [5, 12]. In the second kind of testing, the
pub/sub node percent is fixed at 20% and 40%, the unauthorized node
percent varies from 10% to 70%, and the connection degree of nodes
ranges over [1, 3] and [3, 7].

Fig. 8 shows the results of the first kind of testing. From Fig. 8,
we know that, when the pub/sub node percent increases, the extra
node number (denoted by extraNum; topoNum denoting the number of
nodes to construct the topology; pub/sub-Num denoting the number of
publishers/subscribers in the topology; and 𝑛 = 1000) decreases. When
the connection degree of the nodes increases, the number of the nodes
to construct a topology for all the event streams decreases, and the
extra node number decreases. Fig. 9 shows the results of the second
kind of testing. In Fig. 9, it is interesting that the unauthorized node
percent almost does not affect the topology construction. When the
unauthorized node percent increases, the extra node number almost
remains unchanged. These experimental results show that our topology
construction is effective.

6.2. Policy matching

In the experiments of testing the event forwarding speed under the
condition of policy matching, we use physical SDN switches (Pica8
P-3290: 512 MB Memory, MPC8541 CPU, 1 μs/64 Byte-Frames, 48
Ports with 10/100/1000BASE-T), where a publisher publishes events at
different speeds measured by events per second: 1000 events/second,
3000 events/second, 5000 events/second, and 10 000 events/second,
with each event including 1024 bytes.

Fig. 10 illustrates the event forwarding speed of SDN switches under
the condition of matching policy representations, where the number of
events without the correct authorization policy representation varies
at different ratios of 0, 0.1, 0.2, 0.5, and 0.8. From Fig. 10, we know
that the event loss rate almost is the same as the ratios of the incorrect
input events after the matching operations of policy representation are
imposed on event streams. The extra delay from policy matching is about
0.88%. That is to say, using policy representation to encode policies
into flow tables is an effective way to establish the access control in the
publish/subscribe middleware over SDNs.

6.3. Performance comparison

In order to compare ours with others, two kinds of experiments
have been conducted, where the experiment environment in Fig. 10
is used, the SDN network deployment environment is illustrated in
Fig. 11, and we set 10 rules (ten attribute conjunctions/disjunctions)
and 20 attributes (using them to randomly form rules and determining
authorization nodes) respectively as the experimental parameters. In the
first kind of experiments, we test the performance of a general solution
without access control capabilities, which is used as the comparison
basis. In the second kind of experiments, the delay for different event
publishing rates is tested for ours and the access control solution of
DCACF in [50].

In Fig. 12, the event publishing speed is set from 200 events/second
to 5000 events/second for testing the whole solution with different

Auth
ors

 ve
rsi

on

Y. Zhang, H. Zhou and J.-l. Chen Computer Communications 134 (2019) 1–13

Fig. 12. Event delivery delay for topology and access control differences: Non-AC meaning no access control in middlewares.

Table 3
Settings of topology construction.

n The number of network nodes: [100, 1000] k The number of event streams
m The number of publishers & subscribers pub/sub percent m/n = 20%, 30%, 40%, 50%, 70%, 80%
u The number of unauthorized nodes unauthorized percent u/n = 10%, 20%, 30%, 40%, 50%, 70%
deg The connection degree of nodes: [1, 3], [3, 7], [5, 12] 𝑚∕𝑘 The number of nodes in each event stream
𝑚∕𝑘 ∗ 20% The number of publishers in each event stream 𝑚∕𝑘 ∗ 80% The number of subscribers in each event stream
cost Link cost: (0, 100] 𝑛 ∗ 𝑐𝑜𝑠𝑡 The cost on links out of streams and unauthorized nodes

Fig. 13. End-to-end delay with encryption.

event sizes. Fig. 12 shows that the end-to-end event delivery delay
increases when the policy matching is carried out in the home SDN
switches, and the constructed publish/subscribe topology is used. But
the performance of our solution is comparable to the general one with-
out access control operations. When the event size and publishing speed
increase, the delay increases with rapid ascension after congestion. The
delay is greater than the one in Fig. 10 because the former is tested as
a whole, and the later is only tested by the forwarding cost on one SDN
switch without other costs being considered.

In Fig. 13, the confidentiality mechanism is integrated, and the
access control solution of DCACF [50] based on encryption schemes is
compared with ours. Fig. 13 shows that the end-to-end event delivery
delay in ours is smaller than the one of DCACF [50], although the same
encryption scheme is used by the two solutions. It is due to that, in
our solution, policies are encoded into flow entries before the event
delivery, and only one encryption operation is carried out during the
event delivery. In addition, the difference of the policies almost makes
no effects on the delay because of policy encoding in advance. Although
our method satisfies the real-time requirements of most IoT applications,
to accomplish the line-rate event delivery, special encryption devices are
needed when confidentiality is integrated.

6.4. Overhead evaluation

Fig. 14 illustrates the overhead of computing the policy representa-
tion on SDN controllers, where the overhead is measured by the time
spent for the policy representation computation, and the number of
attributes is set from 7 to 300 with randomly forming rules. Fig. 15
illustrates the overhead of computing the global publish/subscribe

Fig. 14. Overhead on SDN controllers.

Fig. 15. Overhead on the administrator.

topology for many topics on the administrator, where the overhead
is measured by the time spent for the topology construction, and the
topology construction parameters are set as in Table 3. The two figures
show that our solution is efficient with the computation time staying at
the level of near sub-seconds, when the publish/subscribe middleware
has a moderate scale. In addition, the computation on the controllers
and the administrator does not happen frequently, and concurrency
optimization is possible when the scale becomes larger.

7. Conclusions

How to use SDN switches and SDN controllers to implement the
access control of publish/subscribe middlewares over SDNs is the
main issue addressed in this paper. Existing work on publish/subscribe
middlewares over SDNs did not comprehensively explore the issue,
and the access control solutions over traditional networks did not shed
light on the matching capabilities of flow tables of SDN switches. We

Auth
ors

 ve
rsi

on

firstly propose a method to construct a connected publish/subscribe
topology based on authorization policies, which enhances our policy
enforcement at the global network layer rather than on home switches to
check policies. The matching capabilities of SDN switches are then used
to compare the authorization policies with the subscribers’ attributes,
where complex authorization policies are flattened and encoded into the
bit string with high data compression and security. A two-party protocol
is designed to resist against the collusion attacks of SDN controllers and
subscribers. These three schemes form our cross-layer access control
solution for a publish/subscribe middleware over SDNs, which avoids
over-delegation and over-user-controlling, and maintains a flexibility
and a balance of performance and security. Finally, the evaluation shows
that our design is effective.

In the future, we will further improve the scalability of our solution
although we have evaluated its efficiency at the scale of one thousand
of nodes in a network. There are two directions for this issue. The first
direction is to use a more efficient Steiner tree generation algorithm
as the basis on which the topology construction method is imposed by
authorization policies. The second direction is to exploit the potential
of topic name tree to further reduce the number of flow entries and
matching times, where one topic name will not be independent with
others in the same topic tree, and a parent topic can cover its children
topics such that one policy representation of the parent may represent
multiple others in some scenarios (e.g. treating a cluster of nodes as
one event broker). Others such as streamlining policy matching are also
available.

Acknowledgments

This work is supported by the National Natural Science Foundation
of China (no. 61372115), the National Key Research and Development
Program of China (No. 2018YFB1003800), and EU H2020 DOMINOES
Project (No. 771066).

References

[1] A. Hakiri, P. Berthou, A. Gokhale, S. Abdellatif, Publish/subscribe-enabled software
defined networking for efficient and scalable IoT communications, IEEE Commun.
Mag. 53 (9) (2015) 48–54.

[2] A. Carzaniga, D.S. Rosenblum, A.L. Wolf, Design and evaluation of a wide-area
event notification service, ACM Trans. Comput. Syst. 19 (3) (2001) 332–383.

[3] H.-A. Jacobsen, A.K.Y. Cheung, G. Li, B. Maniymaran, V. Muthusamy, R.S.
Kazemzadeh, The PADRES publish/subscribe system, in: Principles and Applica-
tions of Distributed Event-Based Systems, 2010, pp. 164–205.

[4] M.A. Tariq, B. Koldehofe, G.G. Koch, I. Khan, K. Rothermel, Meeting subscriber-
defined QoS constraints in publish/subscribe systems, Concurr. Comput.: Pract.
Exper. 23 (11) (2011) 2140–2153.

[5] O.M.E. Committee, Software-defined Networking: The New Norm for Networks.
Open Networking Foundation, 2012.

[6] D.E. Bakken, A. Bose, C.H. Hauser, D.E. Whitehead, G.C. Zweigle, Smart generation
and transmission with coherent, real-time data, Proc. IEEE 99 (6) (2011) 928–951.

[7] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, G. Gu, A security enforce-
ment kernel for OpenFlow networks, in: Proc. of the 1st Workshop on Hot topics
in Software Defined Networks, ACM, Helsinki, 2012, pp. 121–126.

[8] P. Porras, S. Cheung, M. Fong, K. Skinner, V. Yegneswaran, Securing the software-
defined network control layer, in: Proc. of the 2015 Annual Network and Dis-
tributed System Security Symp. (NDSS 2015), Internet Society, San Diego, 2015,
pp. 1–15.

[9] H. Wang, L. Xu, G. Gu, FloodGuard: A DoS attack prevention extension in software-
defined networks, in: Proc. of the 45th Annual IEEE/IFIP, Int’l Conf. on Dependable
Systems and Networks (DSN 2015), Rio de Janeiro, 2015.

[10] I. Alsmadi, D. Xu, Security of software defined networks: A survey, Comput. Secur.
53 (2015) 79–108.

[11] J. Bacon, D.M. Eyers, J. Singh, P.R. Pietzuch, Access control in publish/subscribe
systems, in: Proceedings of the Second International Conference on Distributed
Event-based Systems, ACM, 2008, pp. 23–34.

[12] OMG. 2014. http://www.omg.org/spec/DDS-SECURITY/1.0/Beta1/PDF/, 2014.
[13] M. Ion, G. Russello, B. Crispo, Design and implementation of a confidentiality and

access control solution for publish/subscribe systems, Comput. Netw. 56 (7) (2012)
2014–2037.

[14] S. Müller, S. Katzenbeisser, Hiding the policy in cryptographic access control, in:
International Conference on Security & Trust Management, 2011, pp. 90–105.

[15] M.A. Tariq, B. Koldehofe, K. Rothermel, Securing broker-less publish/subscribe
systems using identity-based encryption, IEEE Trans. Parallel Distrib. Syst. 25 (2)
(2014) 518–528.

[16] G. Chockler, R. Melamed, Y. Tock, R. Vitenberg, Constructing scalable overlays for
pub-sub with many topics: problems, algorithms, and evaluation, in: Twenty-sixth
ACM Symposium on Principles of Distributed Computing, 2007, pp. 109–118.

[17] Ch. Chen, H.-A. Jacobsen, R. Vitenberg, Algorithms based on divide and conquer
for topic-based publish/subscribe overlay design, IEEE/ACM Trans. Netw. 24 (1)
(2016) 422–436.

[18] M. Onusa, A.W. Richab, Parameterized maximum and average degree approxima-
tion in topic-based publish–subscribe overlay network design, Comput. Netw. 94
(2016) 307–317.

[19] M. Castro, P. Druschel, A.M. Kermarrec, A.I. Rowstron, SCRIBE: A large-scale
and decentralized application-level multicast infrastructure, IEEE J. Sel. Areas
Commun. 20 (8) (2002) 1489–1499.

[20] S.Q. Zhuang, B.Y. Zhao, A.D. Joseph, R.H. Katz, J.D. Kubiatowicz, Bayeux: An archi-
tecture for scalable and fault-tolerant wide-area data dissemination, in: Proceedings
of the 11th International Workshop on Network and Operating Systems Support for
Digital Audio and Video, Port Jefferson, NY, USA, 2001, pp. 11–20.

[21] R. Baldoni, R. Beraldi, V. Quema, L. Querzoni, S. Tucci-Piergiovanni, TERA: topic-
based event routing for peer-to-peer architectures, in: Proceedings of the 2007
Inaugural International Conference on Distributed Event-Based Systems, Toronto,
ON, Canada, 2007, pp. 2–13.

[22] V. Ramasubramanian, R. Peterson, E.G. Sirer, Corona: a high performance publish–
subscribe system for the World Wide Web, in: Proceedings of the Symposium on
Networked Systems Design and Implementation, Vol. 6, San Jose, CA, USA, 2006,
pp. 115–117.

[23] S. Banerjee, B. Bhattacharjee, C. Kommareddy, Scalable application layer multicast,
in: SIGCOMM’02 Proceedings of the 2002 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communications, 2002, pp. 205–
217.

[24] Muhammad Adnan Tariq, Boris Koldehofe, Sukanya Bhowmik, Kurt Rothermel,
PLEROMA: A SDN-based high performance publish/subscribe middleware, in:
ACM/IFIP/USENIX Middleware Conference, 2014, pp. 217–228.

[25] Akram Hakiri, Aniruddha Gokhale, Data-centric publish/subscribe routing mid-
dleware for realizing proactive overlay software-defined networking, in: DEBS’16
Proceedings of the 10th ACM International Conference on Distributed and Event-
based Systems, 2016, pp. 246–257.

[26] S. Bhowmik, M.A. Tariq, L. Hegazy, K. Rothermel, Hybrid content-based routing us-
ing network and application layer filtering, in: IEEE 36th International Conference
on Distributed Computing Systems (ICDCS), 2016, pp. 221–231.

[27] S. Bhowmik, M.A. Tariq, J. Grunert, K. Rothermel, Bandwidth-efficient content-
based routing on software-defined networks, in: DEBS’ 16 Proceedings of the 10th
ACM International Conference on Distributed and Event-based Systems, 2016, pp.
137–144.

[28] Y.L. Wang, Y. Zhang, J.L. Chen, SDNPS: A load-balanced topic-based pub-
lish/subscribe system in software-defined networking, Appl. Sci. 6 (4) (2016) 1–21,
91.

[29] L. Opyrchal, A. Prakash, A. Agrawal, Supporting privacy policies in a publish–
subscribe substrate for pervasive environments, J. Networks 2 (1) (2007) 17–26.

[30] P. Pal, G. Lauer, J. Khoury, N. Hoff. J. Loyall, P3S: A privacy preserving publish
subscribe middleware, in: Middleware 2012, Springer, 2012, pp. 476–495.

[31] S. Choi, G. Ghinita, E. Bertino, A privacy-enhancing content-based pub-
lish/subscribe system using scalar product preserving transformations, in: Database
and Expert Systems Applications, Springer, 2010, pp. 368–384.

[32] W.X. Rao, L. Chen, S. Tarkoma, Toward efficient filter privacy-aware content-based
pub/sub systems, IEEE Trans. Knowl. Data Eng. 25 (11) (2013) 2644–2657.

[33] J. Bethencourt, A. Sahai, B. Waters, Ciphertext-policy attribute-based encryption,
in: Security and Privacy, 2007. SP’07. IEEE Symposium on, IEEE, 2007, pp. 321–
334.

[34] H. Padekary, Y. Parky, H. Huz, S.-Y. Changx, Enabling dynamic access control for
controller applications in software-defined networks, in: ACM on Symposium on
Access Control MODELS and Technologies, 2016, pp. 51–61.

[35] F. Klaedtke, G.O. Karame, R. Bifulco, H. Cui, Access control for SDN controllers,
in: ACM Sigcomm Workshop on Hot Topics in Software Defined Networking, 2014,
pp. 219–220.

[36] S. He, J. Liu, J. Mao. J. Chen, Hierarchical solution for access control and
authentication in software defined networks, Int. Conf. Netw. Syst. Secur. 8792
(2014) 70–81.

[37] J.Q. Liu, Y. Li, H.D. Wang, D.P. Jin, L. Su, L.G. Zeng, T. Vasilakos, Leveraging
software-defined networking for security policy enforcement, Inform. Sci. 327
(2016) 288–299.

[38] S. Pisharody, J. Natarajan, A. Chowdhary, A. Alshalan, D. Huang, Brew: A security
policy analysis framework for distributed SDN-based cloud environments, IEEE
Trans. Dependable Secure Comput. PP (99) (2017) 1-1.

[39] Open Networking Foundation. OpenFlow management and configuration protocol
(OF-CONFIG v1.1.1). Technical report, Mar. 2013.

[40] Open vSwitch. http://openvswitch.org/.
[41] V. Goyal, O. Pandey, A. Sahaiz, B. Waters, Attribute-based encryption for fine-

grained access control of encrypted data, in: Proceedings of the 13th ACM Con-
ference on Computer & Communications Security, 2006, pp. 89–98.

Auth
ors

 ve
rsi

on

http://refhub.elsevier.com/S0140-3664(18)30061-6/sb1
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb1
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb1
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb1
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb1
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb2
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb2
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb2
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb3
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb3
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb3
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb3
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb3
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb4
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb4
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb4
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb4
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb4
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb6
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb6
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb6
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb7
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb7
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb7
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb7
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb7
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb8
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb8
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb8
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb8
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb8
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb8
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb8
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb9
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb9
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb9
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb9
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb9
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb10
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb10
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb10
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb11
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb11
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb11
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb11
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb11
http://www.omg.org/spec/DDS-SECURITY/1.0/Beta1/PDF/
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb13
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb13
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb13
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb13
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb13
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb14
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb14
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb14
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb15
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb15
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb15
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb15
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb15
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb16
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb16
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb16
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb16
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb16
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb17
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb17
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb17
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb17
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb17
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb18
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb18
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb18
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb18
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb18
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb19
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb19
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb19
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb19
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb19
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb20
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb20
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb20
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb20
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb20
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb20
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb20
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb21
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb21
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb21
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb21
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb21
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb21
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb21
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb22
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb22
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb22
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb22
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb22
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb22
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb22
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb23
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb23
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb23
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb23
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb23
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb23
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb23
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb24
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb24
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb24
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb24
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb24
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb25
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb25
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb25
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb25
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb25
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb25
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb25
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb26
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb26
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb26
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb26
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb26
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb27
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb27
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb27
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb27
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb27
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb27
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb27
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb28
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb28
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb28
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb28
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb28
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb29
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb29
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb29
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb30
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb30
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb30
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb31
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb31
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb31
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb31
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb31
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb32
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb32
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb32
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb33
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb33
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb33
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb33
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb33
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb34
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb34
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb34
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb34
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb34
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb35
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb35
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb35
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb35
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb35
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb36
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb36
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb36
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb36
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb36
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb37
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb37
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb37
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb37
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb37
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb38
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb38
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb38
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb38
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb38
http://openvswitch.org/
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb41
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb41
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb41
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb41
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb41

[42] Y.-R. Chen, S. Radhakrishnan, S. Dhall, S. Karabuk, On multi-stream multi-source
multicast routing, Comput. Netw. 57 (2013) 2916–2930.

[43] S.L. Hakimi, Steiner’s problem in graphs and its implications, Networks 1 (1971)
113–133.

[44] R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller, J.W.
Thatcher (Eds.), Complexity of Computer Computations, Plenum, New York, NY,
1972, pp. 85–103.

[45] E.W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1
(1959) 269–271.

[46] L. Kou, G. Markowsky, L. Berman, A fast algorithm for Steiner trees, Acta Inform.
15 (2) (1981) 141–145.

[47] G.L. Nemhauser, L.A. Wolsey, Integer and Combinatorial Optimization, Wiley,
ISBN: 978-0-471-82819-8, 1998.

[48] C. Gentry, Fully homomorphic encryption without bootstrapping. http://eprint.
iacr.org, 2011.

[49] Y. Zhang, J.L. Chen, Wide-area SCADA system with distributed security framework,
J. Commun. Netw. 14 (6) (2012) 597–605.

[50] L. Duan, D.X. Liu, Y. Zhang, Sh. P. Chen, R.P. Liu, B. Cheng, J.L. Chen, Secure data-
centric access control for smart grid services based on publish/subscribe systems,
ACM Trans. Internet Technol. 0 (0) (2016) 23, pp. 1–17, Vol. 16, Issue 4.

[51] Y.S. Kim. J. Heo, Device authentication protocol for smart grid systems using
homomorphic hash, J. Commun. Netw. 14 (6) (2012) 606–613.

[52] E.L. Gazzoni, D. Luiz, G. Filho, E. Politécnica, Demonstrating data possession and
uncheatable data transfer. IACR Cryptology ePrint Archive, 2006.

[53] M.N. Krohn, M.J. Freedman, D. Mazieres, On-the-fly verification of rateless erasure
codes for efficient content distribution, in: IEEE Symposium on Security and
Privacy, 2004, pp. 226–240.

[54] F.E. Oggier, A. Datta, Self-repairing homomorphic codes for distributed storage
systems, in: 30th IEEE International Conference on Computer Communications,
2010, pp. 1215–1223.

Auth
ors

 ve
rsi

on

http://refhub.elsevier.com/S0140-3664(18)30061-6/sb42
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb42
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb42
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb43
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb43
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb43
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb44
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb44
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb44
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb44
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb44
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb45
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb45
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb45
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb46
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb46
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb46
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb47
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb47
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb47
http://eprint.iacr.org
http://eprint.iacr.org
http://eprint.iacr.org
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb49
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb49
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb49
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb50
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb50
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb50
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb50
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb50
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb51
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb51
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb51
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb53
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb53
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb53
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb53
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb53
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb54
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb54
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb54
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb54
http://refhub.elsevier.com/S0140-3664(18)30061-6/sb54

	Cross-layer access control in publish/subscribe middleware over software-defined networks
	Introduction
	Related work
	Preliminaries
	Publish/subscribe middleware over SDNs
	Attribute-based Policy Representation

	Policy-driven Publish/subscribe Topology for Multiple Topics
	Problem Statement
	Solving AC-TC-SDN

	Access control based on SDNs' matching capabilities
	Policy Matching by Flow Tables
	Resisting Against Collusion Attacks
	Policy Representation Scheme
	Security Analysis

	Evaluation
	Topology Construction
	Policy Matching
	Performance Comparison
	Overhead evaluation

	Conclusions
	Acknowledgments
	References

