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Abstract

This paper presents a new strategy to efficiently deliver messages to influencers in social opportunistic networks. An
influencer node is an important node in the network with a high social centrality and, as a consequence, it can have
some characteristics such as high reputation, trustfulness and credibility, that makes it an interesting recipient. Social
network analysis has already been used to improve routing in opportunistic networking, but there are no mechanisms
to efficiently route and deliver messages to these network influencers. The delivery strategy proposed in this article uses
optimal stopping statistical techniques to choose among the different delivery candidate nodes in order to maximise the
social centrality of the node chosen for delivery. For this decision process, we propose a routing-delivery strategy that
takes into account node characteristics such as how central a node is in terms of its physical encounters. We show,
by means of simulations based on real traces and message exchange datasets, that our proposal is efficient in terms of
influencer selection, overhead, delivery ratio and latency time. With the proposed strategy, a new venue of applications

for opportunistic networks can be devised and developed using the leading figure of social influencers.
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1. Introduction

The global deployment of computer networks has per-
mitted the creation of a wide range of different social
network-based applications. These social applications al-
low collaborative behaviour among users to share their
personal interests or hobbies, for example [17].

As mobile devices get smarter, Opportunistic Network-
ing (OppNet) [18] has emerged as a solid network solution
that allows mobile nodes to communicate with each other
when no end to end connection is possible.

In the context of OppNet, research is directed towards
a new network paradigm that evolves from the traditional
node-to-node scheme to a more person-centric one. Under
different terms, such as Proximity-Based Applications [46],
Mobile Ad Hoc Social Networks (M ASNs) [47], Offline So-
cial Networks [49], or SmartPhone Adhoc Networks [49],
the research community is pointing at the human social
characteristics such as mobility patterns or personal in-
terests, to provide new social applications and to improve
networking decisions such as the message routing.

There are many reasons why these opportunistic social
networks can be a useful alternative to traditional con-
nected ones. One example for this is to preserve users’
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privacy. As explained in studies like [44], Internet service
providers are using packet inspection techniques to read
and store users’ messages and personal data. Opportunis-
tic social networks, in contrast with traditional connected
ones, can provide their users with a way of socialising with-
out renouncing to their privacy since OppNet nodes do not
rely on a network infrastructure that identifies their users.

When OppNet is seen from a social perspective, new net-
work roles come into view. For example, OppNet nodes
can be characterised in terms of how socially connected
they are. In social networks, an influencer node [31] is an
important node in the network with a high social central-
ity and, as a consequence, can have interesting character-
istics such as high reputation, trustfulness, and credibil-
ity. Having the possibility of communicating with influ-
encer nodes in an OppNet and make them send a message
with a given information may improve the social accep-
tance of this information. For example, in an emergency
scenario with damaged network infrastructure, a critical
advise from the emergency coordination to the population
will have more chances of being followed when it comes
(not just forwarded) from a trusted influencer.

However, finding strongly connected nodes in OppNet is
far from being easy to achieve due to OppNet’s dynamic
change of topology and the lack of a global view of the
network [30]. In this article, we propose a routing-delivery
mechanism that allows to deliver messages to influencers
of a network in an optimal way, statistically speaking.
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Figure 1: Two levels of the relationship of nodes in an OppNet:
electronic and virtual.

The optimality of this mechanism is achieved by making,
on one hand, optimal delivery decisions and, on the other,
optimal routing decisions. Optimal delivery decisions in-
volves deciding whether a node should be considered an in-
fluencer or not, whilst optimal routing decisions deals with
deciding the optimal message path to discover influencers.
To obtain this optimality, the routing-delivery strategy
proposed in this article uses optimal stopping statistical
techniques [6] to choose among the different delivery can-
didate nodes in order to maximise the social centrality of
the delivered node. For the routing decision process, we
propose a routing algorithm that takes into account other
node’s characteristics such as their physical centrality, that
is, how central a node is in terms of its physical encounters.

The paper starts with all the relevant state of the art in-
formation, in Section 2, paying special attention to Oppor-
tunistic Social Networks, centrality metrics, and optimal
stopping techniques in OppNet. Next, we provide a full de-
scription of our routing-delivery strategy in Section 3. The
paper follows with Section 4, where a simulation-based ex-
perimentation is presented. Finally, Section 5 contains the
conclusions we have drawn from this work.

2. Related Work

In this section, we study the state of the art of Op-
portunistic Social Networks. We make a summary of the
different ways of studying the centrality of a node in clas-
sical networks and in ego networks. Additionally, a brief
survey on articles that use Optimal Stopping statistical
techniques for improving OppNet is presented. Finally,
we present how to include complex routing and delivery
algorithms in OppNet within the messages.

2.1. Opportunistic Social Networks

Opportunistic Networking [18, 51] is a network
paradigm where end-to-end connection is not guaranteed.
Messages in OppNet use intermediate nodes to be routed
from their source to their destination in an opportunistic
way.

Social Network Analysis (SNA) has been applied to
OppNet to improve routing algorithms [35, 16, 29, 37, 26],

focusing on the two key concepts of SNA: community
and centrality. Social-based forwarding schemes outper-
form traditional schemes based on epidemic approaches
or mobility-based predictions. Moreover, other proposals
[15, 49] consider the existence of two levels of social net-
works in opportunistic environments. As depicted in Fig-
ure 1, there is a first level, an electronic (also called off-
line) social network, which refers to the physical wireless
network in which users mobility and proximity are con-
sidered. Secondly, a virtual or online social network that
reflects users friendships and influences [49]. That study
also encourages the combination of the social awareness
in both electronic and virtual social networks, in order to
improve the efficiency of new data forwarding protocols in
OppNets.

Under different terms such as Proximity-Based Applica-
tions [46], Mobile Ad Hoc Social Networks (MASNs) [47],
Offline Social Networks [49], or SmartPhone Adhoc Net-
works [49], the scientific community proposes a natural
evolution of OppNet where users, using mobile devices,
are connected using opportunistic contacts to form vir-
tual communities of similar personal interests. We use all
along this article the term Opportunistic Social Network
(OSN) to refer to this type of networks. There are some
OppNet studies that propose that social network applica-
tions can become a driver for the proliferation of OppNet
[28]. OSN is not merely for research: some recent propos-
als have developed solutions to build local mobile ad-hoc
social networks on top of Android-based mobile terminals
[48]. These solutions make opportunistic social networks
a feasible network paradigm with promising social appli-
cations as pointed out in studies like [21].

2.2. Centrality in Opportunistic Networks

When OppNet is seen from a social perspective, as de-
scribed in the previous section, nodes can be characterised
in terms of how socially connected they are. In order to
measure this sociability, Graph Theory can be very help-
ful. In Graph Theory in general, the term centrality iden-
tifies the most important vertices within a graph. Users
in OppNet in particular, are structured in communities,
and inside these communities, there are some more popu-
lar and influential than others. This influence is commonly
measured using centrality indicators.

Many research studies [40, 41] have proposed to use the
centrality of OppNet nodes to influence in the routing de-
cision. The basic idea behind this concept is to choose
nodes with high centrality to forward the custodied mes-
sages to increase the probability of delivering the message
to its destination: centrality defines a node’s ability to act
as a communication hub.

There a many different centrality metrics proposed in
the literature to measure the structural importance of a
node in the network. There are many centrality metrics
proposed by the scientific community [22]. The three most
important are degree centrality, betweenness, and close-
ness centrality. Degree centrality [39] measures the num-



ber of direct edges that reach a given node. Betweenness
centrality [2], instead, calculates the number of shortest
paths connecting other nodes that use the node being mea-
sured as a hop. Finally, closeness centrality [38] studies
the length of the shortest path connecting the rest of the
nodes.

Additionally, there has been a large effort in proposing
social metrics to define network centrality from an egocen-
tric point of view [23]. Ego networking is a network metric
where that consists of defining a node together with the
nodes to which this node is connected to and the links
among those nodes. Some studies [36] show that ego net-
work centrality is highly correlated to traditional central-
ity. This paradigm is very useful in Ad Hoc networks be-
cause of the lack of a central entity capable of calculating
nodes’ centrality.

2.3. Optimal stopping in OppNet

In this article, we propose a routing-delivery mechanism
that allows, in an optimal way, to deliver messages to in-
fluencers, that is, to highly social-connected nodes in the
network. This problem can be seen as the optimisation
problem of deciding when to make a delivery decision.
Probabilistically speaking, early delivery decisions will not
guarantee optimal results, that is, messages will be de-
livered to poor socially connected nodes. Late decisions,
moreover, will also fail since it is probable that good can-
didates will be discarded. Optimal Stopping Theory [43]
deals exactly with this type of problems. It is a statistical
solution for the problem of choosing the best moment to
make a particular decision to maximise a certain reward.

One of the most popular problems in Optimal Stopping
Theory is the secretary problem [20]. In this problem, a
person must interview a group of n candidates, that can
be ranked from best to worse, with the aim of selecting
the best one. The difficulty of this problem lies in the fact
that once a candidate is not selected he/she can not be re-
called again. The solution to this problem, as presented in
[20], is a selection strategy that discards the first n/e can-
didates interviewed (being e the mathematical constant)
and selects the first one, if found, that is better than all of
the previous ones.

There are different extensions of the secretary problem.
A complete survey can be found in [24]. In this article, we
will use a concrete variation of the secretary problem called
the rank-based selection and cardinal payoffs variation of
the secretary problem [3, 4]. This variation is more flexible
than the traditional problem because it allows the selection
of a candidate that is not necessarily the best, while trying
to maximise the quality of the candidate. The solution to
this problem is a similar strategy to the classical secretary
problem: it discards the first v/n nodes instead of the first
n/e, and then, as in the traditional problem, selects the
next one, if found, that is better than all of the previous
ones.

There are some proposals in literature that are using op-
timal stopping in OppNet. In [30], the authors propose to

apply optimal stopping theories to make network decisions
such as routing or node searching. However, these optimal
stopping theories are difficult to be directly implemented
in OppNet using traditional protocols because these pro-
tocols are not able to implement optimal strategies. The
reason for this limitation is that optimal strategies need
special delivery conditions that require keeping an inter-
nal state of the message with the purpose of remembering
preceding events. In [6], the authors present Software-
cast, a general delivery scheme for group communications
based on mobile code that helps to solve this limitation.
In Softwarecast, messages carry a software code and a de-
livery state that permit them to perform refined delivery-
decision-making methods based on optimal stopping the-
ories to implement complex delivery decisions. Software-
cast uses Active-DTN [8], an OppNet solution that con-
sists in extending the messages being communicated by
incorporating software code for forwarding, delivery, life-
time control and prioritisation purposes. Active-DTN has
been applied in different DTN scenarios such as oppor-
tunistic computing infrastructures [7], multi-application
mobile node sensor networks [5] and disconnected emer-
gency scenarios [8].

We base our proposal on the study OppNet Profile-cast
scheme [27]. In OppNet Profile-cast, message destinations
are users defined by certain profiles. These profiles pro-
vide very effective ways of characterizing nodes in terms
of nodes’ attributes. More concretely, we use a Profile-cast
model [9] that allows messages to be sent to profiles defined
in terms of relative delivery functions such as best, maxi-
mum or over-the-average. Additionally, in [9], the authors
present Explore and Wait, a composite routing-delivery
scheme that uses Optimal Stopping Theory-based deliv-
ery strategies to route messages to these special profiles.

Even though there has been a substantial number of pro-
posals to solve routing and delivery problems in OppNet,
there is not yet any proposal that gives a solution to the
complex problem of sending messages to highly connected
nodes in OppNet. In this article, we open a new avenue for
creating new applications in OppNet by proposing a novel
routing-delivery strategy that allows messages to be deliv-
ered to influencers. This strategy uses optimal stopping
delivery techniques strategies on the basis of the studies
presented in this section.

3. Influencer message delivery

In this section, we define the influencer message deliv-
ery problem and we describe an optimal routing-delivery
strategy based on optimal stopping theory to solve this
problem.

3.1. Influencer Nodes in OppNet

In network theory, nodes (vertex) are connected to one
another in a symmetric or asymmetric way forming con-
nections (edges). In OppNet, as introduced in Section 2,



Variable Description

ve Virtual centrality.

ec Electronic centrality.

ms Message scope.

tlimit Time limit for message delivery.

et Inter-Explore Time.

Tp Number of nodes a message has explored.

siet EWMA of iet.

@ siet EWMA weight factor.

lastxp List of nodes recently explored.

lastzpve  List of nodes considered for the trend
evaluation.

muc Median of the values in lastxpuc.

sve EWMA of the explored ve.

B svc EWMA weight factor.

VCtrend The trend of the virtual centrality.

Table 1: Description of the acronyms used in Section 3.

this relationship among nodes can be seen from two dif-
ferent perspectives: virtual and electronic, following the
terminology presented in [15].

A first perspective is a virtual one. Two nodes in an
OppNet are virtually connected if they virtually interact
with each other by, for example, exchanging messages or by
explicitly being defined as friends in a given social network.
A second perspective is an electronic one. In OppNet, two
nodes are electronically connected if they physically come
in contact with one another.

There are many proposals in literature for metrics that
quantify how strongly connected two nodes are in a net-
work. These metrics can be applied to both virtual and
electronic planes [17]. Examples of these metrics in-
clude frequency of the virtual/electronic contacts, their
longevity, their duration, reciprocity, etc.

An influencer node in OppNet is a node that has a high
virtual centrality in comparison to the rest of the nodes
from the network. As introduced in Section 1, an influ-
encer node is a special role in the network that has inter-
esting characteristics such as high reputation, trustfulness
and credibility. Following, we define the centrality metrics
we will use for the virtual and electronic social network.

3.2. Centrality Metrics

We need to define two different centralities metrics, the
electronic centrality —how physically connected a node is
—and the virtual centrality —how socially connected a
node is.

3.2.1. Electronic Centrality Metric

For the electronic centrality, we have chosen to use a
degree centrality metric. The degree centrality of a node
[39] represents the number of physical encounters a node
has made. We define two functions to update the electronic
centrality metric. On one hand, the electronic centrality

is increased whenever two nodes A and B meet, in the
following way:
ECpew, = €Cold, + 1 (1)

ECnewg = €Coldp +1 (2)

This action allows frequently-contacted nodes to have a
high electronic centrality.

On the other hand, in order to make this centrality met-
ric more adaptive to dynamical networks such as OppNet,
nodes automatically age their values of their electronic cen-
trality in order to decrease the impact of old physical con-
tacts. A node A will update its electronic centrality using
an exponentially decaying function in the following way:

€Cnewy = €Coldy X ’yk (3)

where €0, 1] is an ageing constant and k is the number of
time units that have passed since the last ageing update.

3.2.2. Virtual Centrality Metric

For the virtual centrality, we have chosen to maintain on
every node its ego network. An ego network, as introduced
in Section 2, is a network that consists of the single studied
node together with the nodes this node is connected to and
the links among those nodes. We have chosen to use ego
networks to study social node’s virtual centrality because
it can be performed locally by individual nodes without
complete knowledge of the entire network. As explained in
[19], this betweenness calculation is very efficient in terms
of CPU utilization. Additionally, as introduced in Section
2, some studies show that ego network centrality is highly
correlated to traditional centrality [36]. The calculation of
all the ego betweenness values for a given network would
be one order of magnitude lighter rather than calculating
the real betweenness scores.

In an ego network, nodes’ virtual contacts are repre-
sented by an adjacency symmetric matrix where its rank,
n, is the number of messages a given node has sent and re-
ceived. Note that this virtual metric considers both send-
ing and receiving messages. For these purposes, every node
keeps a contact matrix (CM) that represents the node’s
virtual ego perspective of the network. In this contact ma-
trix, the first row and the first column (C'M, ; and CM; )
defines virtual contacts from the local node. Any other
generic value C'M; ;, instead, defines virtual contacts be-
tween two nodes ¢ and j. To obtain this, for every message
m(from: A, to: B) sent, received or forwarded, the matrix
CM is updated in the following way:

CMup =1 (4)

where a and b are the row position in matrix C M for nodes
A and B.

We propose to use the betweenness egocentric central-
ity as virtual centrality. This metric is calculated by com-
puting the number of nodes that are indirectly connected



through the ego node. This calculation is done by obtain-
ing a new adjacency matrix, (CM'), where every value
CM; ; is set to CM; ; if both CM; ; and C'M;; are set to
1, otherwise CMi’,j is set to 0. Then, the betweenness ego-
centric centrality is obtained by summing the reciprocals
of the following matrix, as introduced in [19]:

CM"?[1 - CM (5)

3.3. Influencer Message Delivery Problem

The influencer message delivery problem can be formu-
lated as a set of the following constraints:

e The goal of this problem is to deliver a message to a
node with a high virtual centrality. The higher this
virtual centrality is, the better.

e There is a limited and known time to deliver the mes-
sage.

e There is an unknown number of nodes in the network.

e At a given time, at the hypothetical situation of hav-
ing all the nodes in the network together, they can be
ordered from best to worst according to their virtual
centrality.

e When a node has accepted the custody of a message, it
allows the message to explore its virtual centrality and
the one from every neighbor not selected for routing.

e As a message is being routed from one node to an-
other, it can be determined the relative ranks of the
explored candidate nodes but it cannot be observed
the absolute ranks of all of the nodes in the network.

e Once a candidate is rejected, it can be found again in
the future.

While in connected networks this delivery action can be
very easy to perform since network searches are easily con-
ducted, in OppNet, this is not an easy task to accomplish
because of the idiosyncrasy of the network. The search
problem in OppNet is quite difficult to conduct, as de-
scribed in proposals like [30].

This relative decision of delivering or not a message to
a contacted node is a similar problem to optimal stopping
problems [43]. As introduced in Section 2, optimal stop-
ping theories deal with problems that aim to choose the
optimal moment to take a particular action. The solu-
tion to these problems are complex strategies that, from a
statistical point of view, offer an optimal result.

The influencer message delivery problem is very similar
to the standard secretary problem. The main difference is
that in the influencer message delivery problem, the payoff
obtained when making a decision is equal to the selected
node virtual centrality value, whereas in the classical sec-
retary problem it is just 1 if the best overall candidate is
selected or 0 otherwise. This problem can be seen as the

rank-based selection and cardinal payoffs variation of the
secretary problem [4]. This variation of the secretary prob-
lem fits better to the influencer message delivery problem
than the traditional one because, as explained in Section
2, it includes the flexibility of allowing the selection of a
candidate that is not necessarily the best, while trying to
maximise the quality of the candidate in terms of its vir-
tual centrality. In the influencer message delivery problem,
we do not aim to send the message to the most influential
node, but to a node which has a high virtual centrality
(not necessarily the highest).

The influencer message delivery problem is extremely
challenging. A straightforward solution would be to broad-
cast an influencer discovery message to the network and
afterwards send the influencer message to the most social
node found. However, this solution could fail because once
the potential influencer is discovered, it could not receive
the influencer message due to the low delivery ratios ob-
tained in OppNet. Besides, this solution would have a high
network overhead.

Instead, if we allow just one message to perform both
the exploration and the delivery action some other prob-
lems may be found. First of all, the number of candidate
nodes a message can explore in a period of time is difficult
to estimate. Additionally, nodes have a dynamic value for
their virtual centrality since it changes overtime. Also, in-
fluencer messages can be forwarded to one node more than
once. Finally, the exploration action implies the necessity
of storing information within the message that should be
light in terms of storage and accurate in terms of the ex-
ploration.

In the following two sections, we explain our strategy to
solve the influencer message delivery problem that covers
all of these issues. We give a network oriented explana-
tion for this strategy. First, in Section 3.4, we explain
the message delivery decision process, that is, the decision
on which node should be the destination of the influencer
message. Secondly, in Section 3.5, we explain the message
routing decision process, that is, the decision on whether
or not to forward an influencer message to a certain con-
tacted node. In Algorithm 1, the complete strategy is
presented.

8.4. Delivery Protocol

In this section, we propose a delivery strategy for the
influencer message delivery problem, as defined in the pre-
vious section.

The influencer message delivery problem delivery strat-
egy consists of creating a single message that operates in
two different phases: the Explore Phase and the Wait
Phase, following the delivery scheme terminology pre-
sented in [9]. During the Explore phase, the influencer
message is routed from a node to another. Messages dur-
ing this phase are not delivered. Instead, the maximum
value retrieved for the virtual centrality is kept within the
message. This phase ends when the message has explored
more than a certain number of nodes. During the Wait



Phase, the message will still be routed from one node to
another, and it will be delivered to the first node found
that has a greater virtual centrality than all of the previ-
ous ones.

The key issue in this delivery problem, as in all optimal
stopping problems, is to decide when to stop exploring the
network and switch to the Wait phase. As introduced in
Section 2, we follow the variation of the secretary problem
called the rank-based selection and cardinal payoffs varia-
tion [4]. This variation of the secretary problem considers
\/n as the optimal value for the phase transition, being n
the number of candidates. However, in OppNet, the num-
ber of nodes a message can explore in a given time can not
be known in advance.

Accordingly, our optimal delivery strategy for the influ-
encer message delivery problem is the following:

e Within the message, keep:

— zp, the number of already explored nodes (up-
dated in line 14 of Algorithm 1).

— ms, an estimation of the total number of nodes
this message could explore in the remaining time
to be delivered (updated in line 7 of Algorithm
1).

— mazve, the maximum virtual centrality (ve) ex-
plored so far (updated in lines 8 and 9 of Algo-
rithm 1).

e Allow the influencer message to be routed from node
to node following the routing protocol that will be
presented in Section 3.5 and reject for delivery the
first /xp + ms nodes a message has explored (line 19
of Algorithm 1).

e Select the first node (if found) that is better than all
of the previous explored nodes in terms of its virtual
centrality (line 20 of Algorithm 1).

In order to calculate the estimation of the number of
nodes an influencer message can explore at a give time,
a statistic of the time between explored nodes is kept
within the message. We call this statistic the Smooth
Inter-Explore Time (siet). To prevent recently forwarded
nodes to distort this estimation, messages keep a list of the
last nodes the message has explored. We call this list last
explored node list (lastzp). In Section 4, the size of this
list is studied to understand its impact on the influencer
delivery performance.

Every time a node containing an influencer message con-
tacts another node not included in the lastxp list, the ob-
served Inter-Explore Time (iet) is calculated (line 5 of Al-
gorithm 1):

iet = time.now() — lastexploretime, (6)

where time.now is the current time and lastexploretime is
the last time the influencer message explored a node.

Input Variable

Description

msg
tlimit
swapmetric()

getve()

getec()

neighbours
lastxpT

lastxp

lastxpuc

xrp
CurrentMetric
mazxve

o,

Message to be delivered.

Time limit for message delivery.

A function that changes a metric
from electronic to virtual and wvice
Versa.

A function returning the virtual
centrality.

A function that returns the
electronic centrality.

The list of current neighbour nodes.
A message state variable with the
time of the last explored node.

A fixed-size unique-value LIFO
array with the last explored nodes.
A fixed-size LIFO array with the
last vc values of explored nodes.
The number of explored nodes.
The routing metric to use.

The maximum vc explored.

siet and svc EWMA weights.

Table 2: Description of the input variables from Algorithm 1.

Algorithm 1 Routing-Delivery strategy.

1: procedure SENDTOINFLUENCER

2 for all remote in neighbours do

3 sve = sve + B x (sve - getve(remote))

4 muc = median(lastzpuc)

5: iet = getTime - lastexploretime

6 siet = siet + a X (iet — siet) , a € [0,1]

7 ms = (tlimit — getTime )/siet > nodes to explore
8 if getvc(remote) > mazvc then

9: mazvc=getve(remote) > Update maxvc
10: end if

11: if muvc < svc then > negative trend, swap metric
12: swapMetric(Current Metric)

13: end if

14: zp=zp + 1

15: lastzpT = getTime()

16: lastzp.add(local)

17: lastxpvc.add(getve(local))

18: end for

19: if p > /zp + ms and getvc(local) > maxve then

20: deliver(msg); exit > End of Wait phase
21: else

22: for all remote in neighbours do

23: if CurrentMetric == electronic then

24: if getec(remote) > getec(local) then
25: forward(msg,remote); break

26: end if

27: else if getvc(remote) > getve(local) then
28: forward(msg,remote); break

29: end if

30: end for

31: end if
32: end procedure




The siet statistic is updated using an EWMA (Exponen-
tial Weighted Mobile Average) in the following way (line
6 of Algorithm 1):

Si€lpew = Sietoq + o X (iet — sietyq), a € [0,1],  (7)

where siet,;q is the historical iet, « is a weight factor and
iet the last iet time measured.

Finally, the estimation of the number of nodes an influ-
encer message could explore in a given time ¢ is calculated
using the following expression (line 7 of Algorithm 1):

ms = t/siet. (8)

3.5. Routing Protocol

In this section, we introduce a routing algorithm that
makes use of both electronic and virtual centrality metrics
to drive information in social OppNets toward nodes with
a high virtual connectivity (influencers).

This algorithm uses the electronic centrality (in what
extent a node is physically connected to others) and the
virtual centrality (in what extent a node is socially con-
nected to others). One may think that because the sought
destination (the influencer) is the best social connected
node in the network, exclusively taking into consideration
the virtual centrality would suffice for the sake of the rout-
ing. Unfortunately, virtual and electronic centrality are
not necessarily correlated. A physically highly-connected
node is a good candidate to forward messages to other
nodes (whatever their virtual connectivity, which might
be null). On the other hand, a socially highly-connected
node looks like a good candidate to forward messages to-
wards influencers, although this last forwarding might not
take place due to a lack of physical connectivity. There-
fore, an on-the-fly detection of the current trend towards
nodes with high virtual centrality is going to be considered.
If there is an upward trend of the virtual centrality (the
message is progressing towards an influencer), the routing
algorithm will keep using the same centrality (virtual or
electronic) as a selection criterion for choosing the next for-
warding node. Otherwise, it will use the other centrality
(the trend has to be reverted to get closer to influencers).

To make this routing possible, there are three required
elements: the current virtual centrality in a node, its elec-
tronic centrality, and the general trend of virtual centrality
considering all nodes, updated periodically and stored in
the message. The algorithm will use these three values to
make the routing decision for a particular message.

The electronic centrality of a node in a given time can
be easily calculated, for example, by counting how many
neighbour nodes are at physical reach during a window of
time. Every node keeps this metric, and can be accessed
from the routing algorithm. The virtual centrality of a
node at a given time can be worked out by ascertaining
the number of social contacts during the same window of
time.

The trend of the virtual centrality, vcirend, indicates
whether the tendency of this metric along the journey of

a message is upward (in this case the trend value is 1),
or downward (trend value of -1). To calculate this trend,
the algorithm uses two variables: another EWMA of the
virtual centralities of the explored nodes that we call the
smooth virtual centrality (svc) and the median of the met-
ric considering the last n updates (muvc). These two values
are stored in the message, and are updated every time step
by the node, as seen in lines 3-4 and 12 of Algorithm 1:

SUCnew = SVCod + B X (ve — svcoq), B € [0,1]  (9)

muvc = median(vey, vC_1,VC—2, . .., VC—_n) (10)

1
UCtrend = 1

We define currentmetric as an element in the set
electronic,virtual. It is first intitialised to virtual and
will be changed when vc¢iyeng is negative.

In the routing process, a neighbour is selected for for-
warding if its ec or vc, depending on the currentmetric,
is higher than the local one. This routing decision can be
seen in lines 23-28 of Algorithm 1.

svc < muc

(11)

svC > muc

4. Evaluation

The routing-delivery strategy presented in Section 3 is
our approach for delivering messages to socially influencers
in an OppNet. We have conducted several experiments us-
ing simulations based on real mobility traces and real so-
cial interaction behaviour in three different scenarios. In
these scenarios, we prove that our approach, in comparison
to state of the art proposals, improves the influencer grade
of the selected node for delivery, the network latency, and
the delivery ratio. We claim that our approach is highly
performant to solve the influencer message delivery prob-
lem in OppNet as presented in Section 3.3. In this section,
we describe the evaluation experimentation in detail.

(a) Infob.

(b) Cambridge. (¢) Taxis.

Figure 2: Electronic social network for Info5, Cambridge and Taxis
scenarios.



(a) Infob.

(b) Cambridge. (c¢) Taxis.

Figure 3: Virtual social network for Info5, Cambridge and Taxis
scenarios.

4.1. Simulation Environment

The experiment has been conducted over the Oppor-
tunistic Network Environment (TheONE) simulator [32].
For the sake of simulation accuracy, we have performed
the simulations presented in this sections following the be-
haviour and performance of a real Bundle Protocol im-
plementation capable of reproducing the influencer deliv-
ery strategy. We base our simulations on Active-DTN [8],
an OppNet solution' that consists in an extension of the
Bundle Protocol where the messages being communicated
incorporate software and message state for forwarding, de-
livery, lifetime control and prioritisation purposes.

In the following simulations, the routing-delivery strate-
gies presented in Section 3 are included in messages as
bundle forwarding and/or delivery extensions following the
bundle extension introduced in [8]. We simulate messages
sent to influencers as messages that carry a delivery ex-
tension with a software mobile code. The simulator is
programmed to allow messages, when carrying the deliv-
ery extensions, to be delivered in terms of mobile software
codes that are included in these delivery extensions.

As introduced in Section 3, there are several variables
that the message must keep to implement the Influencer
delivery strategy: the Smooth Inter-Explore Time (siet),
the last explored node list (lastzp), the number of ex-
plored nodes (xp) and the last vc values explored values
list (lastzpvc). These variables must be kept when being
forwarded from one node to another and represent histor-
ical information that allows our delivery strategy to be
capable of performing appropriately upon arriving at new
nodes. For these purposes, we have adapted the simulator
to extend its messages to include these variables.

In Table 3, details related to Active-DTN considered
for the simulations such as the mobile code extension size,
delivery mobile code compilation and execution time are
listed.

4.2. Simulation Model and scenarios

We have chosen three different scenarios to analyse the
performance of our proposal. The electronic social net-

L Active-DTN source code can be found at

https://github.com/SeNDA-UAB/aDTNPlus.

| General [ Value |
Transmission Speed 250Kb/s
Transmit Range 10-50m
# Nodes (Infob) 41
# Nodes (Cambridge) 51
# Nodes (Taxis) 370
# Messages 1000
# random seeds 50
Buffer Size 1GB

’ Electronic layer H ‘
Trace duration (Infob) 2.97 days
Trace duration (Cambridge) 6 days
Trace duration (Taxis) 30 days
# Contacts (Infob) 22459
# Contacts (Cambridge) 10641
# Contacts (Taxis) 449226

| Virtual layer | ‘
Message Payload 100 KB
# Message Events 18600
tlimat 20’-180’

l Active-DTN Settings H ‘
Mobile Code Extension Size 300 bytes
Compilation Time 54884 ns
Delivery Execution Time 360 ns

‘ Routing/Delivery Settings H
~ (electronic ageing constant) 0.98
Time unit size 30 s
a (siet EWMA weight factor) 0.75
B (sve EWMA weight factor) 0.75

Table 3: Simulation settings default values for all scenarios.

work, as defined in Section 3, of all proposals are defined by
physical contacts obtained from real mobility traces from
the Crawdad database?, a community resource for collect-
ing wireless data at Dartmouth College, United States.

The first scenario, the Info5 scenario, is based on real
mobility traces, as published in [42]. These traces were
retrieved during the 2005 edition of the Infocom conference
in the course of 2.97 days. Contacts from this mobility
traces represent 41 students carrying iMote platforms .
The total of physical encounters provided in these traces
is 22459.

The second scenario, the Cambridge scenario, is based
on real Bluetooth traces from students from the System
Research Group of the University of Cambridge carrying
small devices for six days [33]. Additionally, some station-
ary nodes were placed in various points of interest such as
grocery stores, pubs, market places, and shopping centers
all around the city of Cambridge, UK. A stationary device
was also placed at the reception of the Computer Lab, in
which most of the experiment participants were students.
The number of contacts provided in these traces is 10641.

Info5 and Cambridge are long-established scenarios
which have been used in many papers in the area of Op-

2http://crawdad.org/keyword-DTN.html.
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(f) Taxis: virtual centrality.

Figure 4: Evolution of the electronic centrality (contact degree centrality) and virtual centrality (betweenness ego centrality) of the different
nodes in the network every time two nodes connect as a function of the simulation time for the scenarios Info5, Cambridge and Taxis,

respectively.

portunistic Networking to compare the performance of dif-
ferent algorithms. Nevertheless, there are other more re-
cent and realistic scenarios which consider larger tempo-
ral and spatial scales, and with a larger number of par-
ticipants, which are ordinary people instead of volunteer
students. An interesting example is the mobile phone lo-
cation dataset provided by the company Airsage to the
MIT’s SENSEable City lab [13], which contains 200 mil-
lion anonymous location measurements of one million mo-
bile phones, collected in 2009 in East Massachusetts. From
this dataset, [11] constructs a scenario of 1900 users in a
Boston area of 150 km? during 29 days of October 2009,
very interesting to explore the human mobility properties
from a networking point of view. Also from this dataset,
[12] focuses on the Boston Independence Day Celebration
on the evening of July 4th 2009, in the Boston city area
(15 km?, 700 users), as a crowded event where to anal-
yse the feasibility of disseminating emergency information
among the mobile phones in absence of network infrastruc-
tures.

Therefore, in addition to Info5 and Cambridge, we anal-
yse the performance of our proposal on a third scenario,
which is larger in time, space and number of participants,
and which is also publicly available from the Crawdad
database. The Tawis scenario, as published in [10], con-
tains mobility traces from the ordinary activity of 370 taxi
cabs in the city centre of Rome over 30 days (February-
March 2014), covering an area of 64 km?. The number of
contacts provided in these traces is 449226.

All three scenarios run applications with the same ap-
plication traffic based on real message exchange from real
communication datasets taken from the Stanford Large
Network Dataset Collection®. We have simulated appli-
cation messages that define the virtual social network, as
explained in Section 3, with real dataset collections. The
virtual social network was generated based on anonymised
real message exchange from different users belonging to a
large European research institution as presented in [34].
These real message exchange social network has been
adapted to be integrated into the three above-mentioned
scenarios?.

In Figure 2(a), Figure 2(b), Figure 2(c), Figure 3(a),
Figure 3(b), and Figure 3(c) the electronic and virtual
social network for all scenarios are represented using the
Fruchterman-Reingold [25] algorithm to improve the place-
ment of neighbouring nodes.

In Figure 4(a), Figure 4(b) and Figure 4(c) we show the
evolution of the electronic centrality (contact degree cen-
trality) of the different nodes in the network as a function
of the simulation time for the scenarios Info5, Cambridge
and Taxis, respectively. As it can be seen, the overall elec-
tronic social network, from the point of view of the nodes,
is different from a scenario to another. In the Infob sce-
nario the contacts are more frequent, and the electronic

3Datasets https://snap.stanford.edu/data/
4TheOne Events for this Datasets can be found at
hitps://senda.uab.cat/wiki/aDTN in Section “TheOne resources”.
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Figure 5: Routing performance for the metrics delivery ratio, latency time, overhead and centrality value for the scenarios Info5, Cambridge
and Taxis using different routing algorithms: random routing, first contact routing, electronic routing, virtual routing and adaptive routing.

centrality values are very dynamical. In the Cambridge
scenario the contacts are less frequent, and the electronic
centrality values do not vary so much. Finally, in Taxis
we can see the diversity that comes from such a complex
scenario.

Additionally, in Figure 4(d), Figure 4(e) and Figure 4(f)
we show the evolution of the betweenness social ego cen-
tric centrality of the different nodes in the network as a
function of the simulation time for the scenarios Info5,
Cambridge and Taxis, respectively. In this case, even if
the social interaction defined for the three scenarios fol-
lows the same social trace, it can be seen that the social
centrality perception is different for the three scenarios.

4.3. Ezxperimentation Results

In this section, we describe the results of the different
simulations performed. We have included two types of
experimentations: routing experimentation and delivery
experimentation.

4.8.1. Routing Fxperimentation Results

We have performed a series of simulations where we have
studied the performance of our routing protocol. As pre-
sented in Section 3.5, our routing protocol aims to forward
messages delivered to influencers. The following exper-
imentations compare five different routing protocols: our
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routing proposal, three well-known ones and a random pro-
tocol. These routing protocols are:

e Our routing protocol presented in Section 3.5 (Adap-
tive Routing in the figures). If there is an upward
trend of the virtual centrality, the routing algorithm
will keep using the same centrality as a selection cri-
terion for choosing the next forwarding node and it
will user the other centrality, otherwise.

e Virtual Routing. Messages are forwarded to a con-
tacted node if its virtual centrality is bigger than the
custodian of the message. This routing behaviour has
been used in recent proposals like [6].

e Electronic Routing. Messages are forwarded to a con-
tacted node if its electronic centrality is bigger than
the custodian of the message. This routing behaviour
has been applied in many proposals such as [1] fol-
lowing the principle that hubs are good candidates
for message relays.

e First Contact Routing. A very popular routing pro-
tocol used in studies like [50] where messages are for-
warded to the first available contact for routing.

e Random Routing. Messages are forwarded to a con-
tacted node following a random criterion as used in
[45].
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We have simulated the behaviour of 1000 messages sent
to influencers in the Info5, Cambridge and Taxis scenar-
ios. We study in this experimentation the virtual cen-
trality value obtained, the delivery ratio, the latency time
and its overhead. In Figure 5, the results for these experi-
mentations are depicted. As it can be seen, our proposal,
for all scenarios, improves the virtual centrality value ob-
tained and the latency time. Messages for the four routing
algorithms have very similar and very high delivery ratio
performance. The reason for this high delivery ratio not
related to any routing scheme lies in the fact that Active-
DTN, the OppNet solution in which the simulations are
based on, is capable of evaluating the delivery conditions
of the custodied messages even if the OppNet node has not
contacted any new node. As a consequence of this, the de-
livery strategy, independently from the routing protocol,
will eventually decide to locally deliver the message, even
if there are no new contacts. As it can be seen in Figure
5, messages are almost always delivered. The ones that
they are not delivered, then, are the ones being dropped.
Finally, concerning the overhead, the best results are ob-
tained by the First Contact routing protocol. Our routing
protocol instead has a very similar overhead performance
to the Virtual Router and Electronic Router.

In Figure 6(a), we show the impact of the last explored
node list (lastzp) size on the virtual centrality value ob-
tained on average. As it can be seen, for the three scenar-
ios, the evolution of this performance is similar. However,
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for the Infob scenario this impact is much more clear than
for the other two scenarios.

Additionally, in Figure 6(b), we show the impact of the
size of the list of the nodes considered for trend evaluation
(lastzpvc) on the virtual centrality value obtained on av-
erage. We see that, for the three scenarios, the maximum
value on average for the virtual centrality is obtained when
this list has a small size. However, for the Cambridge and
the Taxis scenarios, this variable has a smaller effect on
the performance.

Moreover, in Figure 6(c) and Figure 7(a), we study the
performance impact of v, the electronic centrality ageing
constant and the size of its time unit, as presented in Equa-
tion 3 from Section 3.2.1. As it can be seen in Figure 6(c),
the best performances for the three scenarios are obtained
when  values are greater than 0.9. Concerning the size
of the time unit, there is no general value that fits well for
the three scenarios. However, only in the Taxis scenarios,
this parameter seems to have a high impact on the virtual
centrality value obtained, on average.

Finally, we study in Figure 7(b) and 7(c), the impact
of the two EWMA weight factors for siet and sve (o and
B). As it can be seen in these figures, giving a weight of
70% to new measured information and the remaining 30%
to the old measured one seems to be a good compromise
value that performs well for the three scenarios and both
exponential moving averages.
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Figure 8: Delivery Performance of 1000 influencer messages in 4 hours of time for two different strategies: Influencercast and Publish/Subscribe

strategies.

4.8.2. Delivery Ezxperimentation Results

As far as we know, this paper is the only publication that
studies the problem of sending messages to influencers in
OppNet. However, we still wanted to compare our pro-
posal with another scheme that could also implement this
delivery problem. We compare our proposal (OptStop in
the figures) with a publish/subscribe paradigm called the
Onside algorithm [14]. This proposal is a message dis-
semination algorithm that takes advantage of node’s so-
cial connections, its interests and the history of contacts,
in order to decrease congestion and required bandwidth.
In this publish/subscribe paradigm, nodes willing to send
messages to influencers are subscribed to virtual centrality
values from other nodes that have already published their
virtual centrality values. Messages sent to influencers are
sent to nodes whose centrality is the highest received.

We analyse the latency time, delivery ratio and virtual
centrality value obtained as a function of the maximum
time for delivery (tlimit) when 1000 messages to influ-
encers are sent to the two different scenarios using the two
different ways of solving the influencer message delivery
problem. As it can be seen in Figure 8(a), Figure 8(b),
Figure 8(c) and Figure 8(d), our strategy performs better
than the publish/subscribe one in terms of latency time,
delivery ratio, virtual centrality value obtained on average
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and network overhead.

5. Conclusions

To pave the way for new social applications in OppNet,
in this paper, we analysed the possibility of contacting
influencer nodes in such networks. Finding strongly con-
nected nodes in OppNet is far from being easy to achieve
due to OppNet’s dynamic change of topology and the lack
of a global view of the network. Therefore, we had to use
optimal stopping statistical techniques to devise a novel
routing-delivery strategy to allow messages to be delivered
to influencers in OppNet.

We firstly formulated the influencer message delivery
problem, whose goal is to deliver a message to a node
with a high virtual centrality, along with all its restric-
tions. In particular, the fact that there is an unknown
number of nodes in an OppNet. Our strategy to solve the
influencer message delivery problem follows an adaptation
of the variation of the well-established secretary problem
known as the rank-based selection and cardinal payoffs.

Our solution to this problem operates in in two differ-
ent phases: the Explore Phase and the Wait Phase. In
the Explore Phase, the influencer message is routed from
node to node while estimating the number of nodes this



message could explore. Our routing is adaptive as it takes
into account three different elements: both the virtual and
electronic centralities in each explored node, and the gen-
eral trend of the virtual centrality considering the last ex-
plored nodes. After exploring the first square root of the
estimated number of nodes for exploration, our strategy
enters the Wait Phase, where the message is delivered to
the first node that is better than all the previous explored
nodes in terms of its virtual centrality.

We evaluated our strategy using three scenarios based
on real mobility traces with real message exchange from
real communication datasets. In our experimentation we
proved that our routing protocol performs better than
state of the art ones in terms of latency time and vir-
tual centrality obtained with very similar delivery ra-
tios. Additionally, we compared our general strategy
with a publish/subscribe scheme. The simulation re-
sults showed that our proposal performs better than the
publish /subscribe one in terms of latency time, virtual cen-
trality value, delivery ratio and network overhead.
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