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Abstract

Indoor location awareness enables many location-based services, such as smart

homes or smart offices. The huge amount of sensor data collected by nowadays’

smartphones provides a solid basis for applying advanced machine learning al-

gorithms to derive the correlation between indoor locations and sensor measure-

ments. The combination of multiple sensor measurements, such as the Received

Signal Strength of surrounding Wi-Fi access points and magnetic fields, is as-

sumed to be unique in many locations, which can be derived to accurately

predict smartphones’ indoor locations. In this work, we propose a novel ensem-

ble learning method to provide room level indoor localization in smart build-

ings. The proposal is based on a conditional probability model, which combines

prediction results of multiple individual machine learning predictors using con-

ditional probability concepts to predict class labels. We have implemented the

system on Android smartphones and conducted extensive experiments in real-

world office-like environments. The experiment results show that the proposed

ensemble predictor outperforms individual and ensemble voting-based machine

learning algorithms. It achieves the best indoor landmark localization accuracy

of nearly 97% in office-like environments. This work provides a coarse-grained

indoor room recognition, which can be envisioned as a basis for accurate indoor

positioning.
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1. Introduction

High localization accuracy within buildings would be very useful. In particu-

lar, large complex buildings like shopping malls, airports and hospitals would be

well served by this feature. It would make orientation within these highly com-

plicated structures much easier and would diminish the need for big floor maps

scattered all around these buildings. However, walls, roofs, windows and doors

of the buildings significantly reduce the GPS signals carried by radio waves,

which leads to a severe accuracy loss of GPS inside buildings.

In contrast to outdoor environments, building interiors are normally covered

by a large number of Wi-Fi access points that constantly emit signals. By scan-

ning the area around a device, we can measure the received signal strength of

each of the nearby access points, and we can assume that the list of all these

values combined is unique at every distinct point in the building. Furthermore,

we can assume that these values are constant over time when the Wi-Fi access

points are fixed in place and are constantly emitting signals with the same signal

strength. These assumptions are subject to change when indoor environments

are modified. Different solutions already exist for indoor localization of mobile

devices such as Pedestrian Dead Reckoning (PDR) and Wi-Fi fingerprinting

based methods [1] [2]. In PDR the future location of a smartphone user is pre-

dicted based on the estimated current location, and the movement information

is derived from inertial sensor measurements. In Wi-Fi fingerprinting, the Re-

ceived Signal Strength (RSS) values of several Wi-Fi access points in range are

collected and stored together with the coordinates of the location. A new set

of RSS values is then compared with the stored fingerprints and the location of

the closest match is returned.

With smartphones, it is easy to collect a lot of sensor data that provide a

solid basis to apply advanced Machine Learning (ML) algorithms to find the

correlations between indoor locations and smartphone sensor measurements.

Therefore, we propose to use supervised machine learning methods to process

the large amount of collected data. By training a classifier (supervised learning

2



algorithm such as K-Nearest-Neighbor) on the collected labeled data, rules can

be extracted. Feeding in the actual live data (RSS values, magnetic field values,

illuminance level, etc.) of a moving user, the trained classifier can then pre-

dict the user’s location in a coarse-grained level. We propose to apply existing

machine learning methods (including both individual and ensemble predictors)

and to develop novel conditional probability model-based ensemble predictors

to solve this task due to the large amount of features that are available in in-

door environments, such as Wi-Fi RSS values, magnetic field values, illuminance

level, etc. In our previous work [13], we have validated the performance of dif-

ferent ML algorithms to recognize indoor landmarks. The results show that

the Voting ensemble predictor outperforms individual machine learning algo-

rithms and it achieves the best indoor landmark localization accuracy of 90%

in office-like environments.

Whereas our previous work applied existing ML algorithms to recognize

indoor locations [13], this work presents a novel ensemble machine learning

algorithm to achieve high and stable room prediction performance. Compared

to [13], the contribution of this article can be summarized as follows:

• We propose a novel ensemble learning predictor by combining conceptually

different individual machine learning algorithms to predict class labels

(i.e., rooms, landmarks). This combination is made by applying concepts

of conditional probability and evidences about the prediction performance

of individual predictors.

• We conduct experiments in a large indoor office environment that covers

an entire floor, which has the double size of the experiment areas in [13].

• Experiment results show that our new algorithm outperforms other pre-

dictors, including our previous work [13].

The rest of the paper is organized as follows. Section 2 presents some re-

lated work in indoor localization and landmark detection. Section 3 describes

our ensemble machine learning method and the used machine learning models.
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Section 4 presents implementation and experiment details. Section 5 discusses

the performance results of our approach. Section 6 concludes the paper.

2. Related Work

Various machine learning-based approaches have been proposed that use fin-

gerprinting to estimate user indoor locations. Machine learning approaches can

be classified into generative or discriminative methods. Generative methods

build the machine learning model using a joint probability, while discriminative

methods build the machine learning model with a conditional probability [1]

[2]. K-Nearest-Neighbor (KNN) is the most basic and popular discriminative

technique. Based on a similarity measure such as a distance function, the KNN

algorithm determines the k closest matches in the signal space to the target.

Then, the location of the target can be estimated by the average of the coordi-

nates of the k neighbors [3]. Generative localization methods apply statistical

approaches, e.g., Hidden Markov Model [4], Bayesian Inference [5], Gaussian

Processes [6], on the Wi-Fi fingerprint database. Thus, the accuracy can obvi-

ously be improved by adding more measurements. In [6] for instance, Gaussian

Processes are used to estimate the signal propagation model through an indoor

environment. There is a limited number of works that have focused on reducing

off-line efforts in learning-based approaches for indoor localization [7] [8] [9].

These approaches reduce the off-line effort by reducing either the number of

samples collected at each survey point or the number of survey points or both

of them (i.e., reducing the number of collected samples and number of survey

points). Then, a generative model is applied to reinforce the sample collection

data. In [7] for instance, a linear interpolation method is used. In [8], a Bayesian

model is applied. In [9], authors propose a propagation method to generate data

from collected samples. In [2], authors combine characteristics of generative and

discriminative models in a hybrid model. Although this hybrid model reduces

offline efforts, it still relies on a number of samples collected from fixed survey

points (i.e., labeled samples). To maintain high accuracy, the number of sur-

vey points shall be increased in larger environments. Collecting samples from
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numerous survey points will become a demanding process, which makes the

system unsuitable to large environments. In [10], authors validated the perfor-

mance of different individual machine learning approaches for indoor positioning

systems. However, they rather compare the results without any deep analysis

of the performance difference. Moreover, they did not discuss how ensemble

learning approaches could be used to enhance the system performance.

Recently, there are some efforts spent to improve the indoor localization ac-

curacy by fusing multiple types of sensor information. In [14], authors proposed

a system to improve the accuracy of Wi-Fi based localization by fusing infor-

mation from alternate sources like LTE signals and magnetometers, collected

through software defined radios and smart-devices. In [15], authors introduced

a new indoor localization technique using off-the-shelf 802.11n multiple anten-

nas Access Points (APs), which achieved better results by using fusion between

multiple APs, instead of using only one AP. Authors of [17] designed a posi-

tioning system using narrow-band signals, particularly ZigBee signals, based on

an enhanced fingerprinting algorithm by fusing received signal strength (RSS)

and time information. However, few studies clearly show the impacts and im-

portance of different sensor information. In this work, we compare the indoor

localization performance of using the combination of different sensor data and

show the efficiency of combining multiple sensor inputs.

3. Machine Learning Algorithm for Indoor Landmark Localization

An indoor landmark is defined as a small area within a room. The aim of the

indoor landmark localization system presented in this work is to improve the ac-

curacy of indoor landmark recognition using machine learning approaches. This

section describes the details of our proposed conditional probability-based en-

semble learning predictor, so called Conditional Performance Ensemble Learning

Method (COND) approach.

3.1. Conditional Performance Ensemble Learning Method (COND)

It has been proven that ensemble learning methods can achieve better per-

formance than from individual learning algorithms alone. Thus, we focus on
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developing an ensemble learning method that is based on the performance of

its constituent learning methods. The proposed ensemble learning method is

based on the concept of conditional probability. In probability theory, condi-

tional probability is a measure of the probability of an event considering some

evidences. For the real-time landmark localization problem, we define an event

as an object that is located near a landmark. Moreover, we define an evidence

as the outcome provided by some machine learning landmark prediction model

(i.e., machine learning algorithm). Thus, the probability of being located at a

landmark considering some evidences can be written as follows:

P (ci | l1, l2, ..., ln) =
P (l1, l2, ..., ln | ci) · P (c)

P (l1, l2, ..., ln)
, (1)

where ci is the landmark identifier (i.e., the class) and li is the i-th evidence

provided by the i-th machine learning prediction model.

Equation 1 can be solved assuming conditional independence of events li

given the event ci. Conditional independence means that if some piece of infor-

mation is known, the probability of other events become independent. For the

real-time landmark localization problem, our assumption is that the probability

of obtaining the outcome li becomes independent if the value of ci is known.

Thus, Equation 1 can be written as follows:

P (ci | l1, l2, ..., ln) =
P (l1 | ci) · P (l2 | ci) · ... · P (ln | ci) · P (ci)

P (l1, l2, ..., ln)
(2)

Considering that individual predictors are independent from each other,

P (ci | l1, l2, ..., ln) =
P (l1 | ci) · P (l2 | ci) · ... · P (ln | ci) · P (ci)

P (l1) · P (l2) · ... · P (ln)
(3)

Therefore, the prediction of the landmark z can be calculated as follows:

z = arg max
c

P (c) ·
∏n

i=1 P (li | c)∏n
i=1

∑m
j=1 P (li | cj) · P (cj)

(4)

where z represents the predicted class, n is the number of evidences given

by n machine learning individual predictors, m is the number of landmarks (i.e,
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classes), and P (cj) is the initial emission probability. The initial emission prob-

ability is the likelihood of being located inside landmark ci when the localization

process starts.

3.2. Conditional Emission Probabilities

We define as emission probability the likelihood of observing a particular

outcome ln given that event ci has happened. Therefore, the set B containing

the emission probabilities P (li | ci) can be written as follows:

B = {P (ln | ci)},∀ln ∧ ∀ci ∈ Z, (5)

where Z is the set of landmarks (i.e., classes) to be predicted. Therefore, P (ln |

ci) represents the sensitivity of the individual learning method n when the target

is located inside the landmark i. Thus, P (ln | ci) can be written as follows:

P (ln | ci) =
Pln

Pln +Nln
, (6)

where Pln is the number of outcomes equal to ln and Nln is the number of

outcomes different to ln when the actual class is ci. Both, Pln and Nln can be

computed from the confusion matrix of each machine learning predictor.

3.3. COND Architecture

Figure 1 presents an overview of the COND learning method from a system

view. The key idea of COND is to combine conceptually different individual ma-

chine learning models to predict indoor landmarks. This combination is made

by applying conditional probability concepts and information about the individ-

ual prediction performance of each machine learning model. Thus, the outcome

of each individual machine learning predictor can be regarded as an evidence li

in COND. The prediction performance given the knowledge of the ground-truth

class label defines the probability of the occurrence of an evidence given the

ground-truth label class P (li | c). From the system view, COND implements

Conditional Performance Tables (CPT) to store P (li | c) of each individual ma-

chine learning model. As explained in Section 3.1, P (li | c) and li are used in
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the prediction process of COND. Thus, by considering the performance of each

individual learning model, COND balance out their strengths and weaknesses

to improve the prediction performance.

Classification
Model 1 

 (L1)

Classification
Model 2 

(L2)

Classification
Model n 

(Ln)

Fingerprinting data collection

gg
Wi+-FIWi-Fi LigthMagnetic

Field

Conditional Performance Metalearner

Predicted
ClassPt1 Pt2 Ptn 

Conditional Probability 
Performance Tables

Figure 1: Conditional Performance Learning Method (COND) system architecture.

3.4. Features

In a machine learning-based classification task, the attributes of the classes

are denoted as features. Each feature describes an aspect of the classes. In

our case features are our measurements, e.g., an RSS value. To deliver good

machine learning prediction accuracy it is very important to select the right at-

tributes/features and to also modify certain features or even create new features

out of existing features.

3.4.1. Wi-Fi RSS

These values provide the core data as they contribute the most to the per-

formance of the ML methods. The smartphone scans the surrounding Wi-Fi

access points and registers the RSS values of each access point. Wi-Fi RSS

values depend on the distance between smartphone and access points.
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3.4.2. Magnetic Field (MF)

The device’s sensors measure the magnetic field in the device’s coordinate

system. As the user walks around, the orientation of the device may change all

the time. Therefore, we have to collect all possible values from every orientation

in every point in the training phase. This would result in a huge amount of data

and the training performance would be inaccurate.

3.4.3. Light

Light sensors might also be helpful to identify rooms. For instance, a room

facing a window will clearly be brighter than one surrounded by walls only. As

shown in Section 4.3 this does improve the prediction accuracy. However, these

assumptions are not stable, as the illuminance level might change over time.

Therefore, it is better to work with light differences instead of absolute values.

4. Implementation, Experiments, and Results

This section explains the system implementation on Android smartphones

and describes the details of the experiments conducted in an office environment.

4.1. Implementation

Figure 2 shows the data flow and the different components of our system.

Sensor and Wi-Fi RSS values are measured by the smartphone and are received

by the app. We then perform the data training process offline in a PC to pass

the collected data to the Model Building component, which applies different

machine learning algorithms to build the models. The built models are then

optimized and transferred to the app on the smartphone for online experiments.

Considering that the landmark detection accuracy can be influenced by en-

vironmental parameters, we conduct some experiments to determine how pa-

rameters such as AP position or number of APs influence the accuracy of the

Wi-Fi-based fingerprinting landmark detection approach. Additionally, we per-

form experiments to show how accuracy is improved by considering additional

features such as magnetic field (MF) values and light illuminance level readings.

As shown in Figure 3, we define 14 wall separated areas in our experiments.
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Figure 2: The architecture of the implemented Android app.

Hereafter, we refer to these areas as rooms. In our experiments, we do not need

to know the exact locations of the Wi-Fi APs, while only the fingerprints of

Wi-Fi RSSI, MF readings, and illuminance level readings are recorded during

the data collection procedure.

1

2

6

5

3 7

8 4 9

12 13

14

1110

Figure 3: Experiment scenario, zone definition and ANs distribution (Diamond blue points:
Wi-Fi APs as Anchor Nodes).

Parameters of learning-based algorithms are optimized from training data.

Additionally, certain algorithms also have parameters that are not optimized

during the training process. These parameters are called hyperparameters,

which have significant impact on the performance of the learning-based algo-

rithm. Therefore, we use a nested cross validation technique to adjust them.

The nested cross validation technique defines inner and outer cross validation.

Inner cross validation is intended to select the model with optimized hyperpa-

rameters, whereas outer cross validation is used to obtain an estimation of the
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Table 1: Classifier’s Hyperparamenters.

Classifier Hyperparameter Value/Option
KNN G.B. Percent ratio 30%

SVM
Kernel Polynomial single order

Penalty parameter 1
Kernel coefficient 0

MLP
H. Layers Single
Neurons 10

Bagging
Base estimator CART
N. Estimators 10

Bootstrap True

generalization error. Ten-fold cross validation was applied on both inner and

outer cross validation. The classifiers were optimized over a set of hyperpa-

rameters. We optimized the global blend percentage ratio hyperparameter for

KNN, the kernel type function for SVM, and the number of hidden layers and

neurons per layer for MLP. Based on the parameter optimization process, we es-

tablished the optimal hyperparameter values for the classifiers as follows: global

blend percent ratio of 30% for KNN, single order polynomial kernel, c = 1, and

γ = 0.0 for SVM, and single hidden layer with 10 neurons for MLP. Table 1

shows the final settings of all the relevant hyperparameters derived from the

nested cross validation technique.

4.2. Experiments

To test the room landmark detection performance, we performed experi-

ments on the third floor of the Computer Science building at the University of

Bern, as shown in Fig. 3. During the experiments, we collected 17569 data

points in total, which were equally distributed along the whole area in each

room. Collecting the training dataset takes around 75 minutes. With the col-

lected data, we build models with different data: the first one builds the fin-

gerprint using only collected Wi-Fi RSS data, the second one using Wi-Fi RSS

together with MF readings, and the third one using Wi-Fi RSS, MF readings,

and illuminance level readings. Since the number of detected APs can differ on

each landmark, we set the RSSI value of the AP that was not detected to 0 .
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Thus, the length of the fingerprint remains constant, and the 0 RSSI value is

used as part of the fingerprint.

To build the landmark fingerprint database, a person walks randomly around

each room holding the phone in his/her hand. The data collection rate is only

constrained by computational capabilities of the smartphones’ Wi-Fi interface.

Thus, in our experiments every data measurement was collected at a rate of 3

entries/second. Since our approach does not need any survey point, the time

needed to build the landmark fingerprint database is proportional to the number

of collected instances multiplied by the instance collection rate. Therefore, our

approach needs much less time to build the landmark fingerprint database than

traditional fingerprint-based solutions. To better support open dataset in the

research of indoor localization, we have made our dataset openly accessible [18].

4.3. Results

This section presents and discusses results of the landmark detection model

when different classifiers and features are used. To extend our previous work,

we performed experiments in a bigger area compared to [13]. However, to test

the performance of our approach with different environment configurations, we

have divided our area of interest into two scenarios. We defined as landmark

to each wall separated subarea inside the are of interest. Thus, each room

corresponds to a landmark. Hereafter, we refer to room as landmark. We

defined the left part of Figure 3 as scenario 1, which covers Zones 1-8. The

right part of Figure 3 is defined as scenario 2, which includes Zones 9-14. For

performance comparisons, we include five individual predictors: Classification

and Regression Tree (CART) [16], Support Vector Machine (SVM), Multilayer

Perceptron (MLP), K-Nearest Neighbors (KNN), Naive Bayes (NB), and two

ensemble meta-classifiers: Soft Voting (SV) and Bagging. When comparing ma-

chine learning prediction performance, it is impossible to define a single metric

that provides a fair comparison in all possible applications. In this work, we

focus on the metrics of prediction accuracy, which refers to the rate of correct

landmark detection.
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Figure 4: Individual predictors landmark prediction performance with different numbers of
Wi-Fi RSS values in scenario 1.

4.3.1. Indoor Landmark Localization Accuracy

First, we only use Wi-Fi RSS values as inputs to machine learning algorithms

in scenario 1. Figure 4 shows the classification accuracy of different individual

predictors when different numbers of Wi-Fi RSS values are available and used.

As we can see, starting from 5 RSS values, more RSS inputs increase the predic-

tion accuracy for most of the predictors. Nevertheless, after 7 Wi-Fi RSS values

are used, the improvement of adding more RSS values is almost negligible in

almost all individual tested classifiers, and some of the predictors even got re-

duced accuracy when additional RSS values are considered. We think that the

signal interference caused by additional Wi-Fi APs may be the reason for the

worse performance when more than 7 Wi-Fi RSS values are utilized. There-

fore, we take 7 Wi-Fi RSS values as the default configuration for the following

experiments.

Next, we compare the classification accuracy when using only Wi-Fi RSS,

Wi-Fi RSS plus MF, and Wi-Fi RSS plus MF and illuminance levels. Figure 5

shows the performance evaluation of the selected individual classifiers obtained

with different feature combinations in scenario 1. The best performance is

reached by the NB predictor, which classifies 90.3% of instances correctly when

the fingerprint is composed by Wi-Fi RSS, MF readings, and illuminance levels.
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Figure 5: Individual predictors landmark prediction performance when using different features
in scenario 1.

Hyperparameters have significant impact on the performance of the learning-

based algorithm. Figure 6 shows the performance prediction of the selected

individual and ensemble meta-classifiers in scenario 1. Figure 7 presents the

performance prediction of the selected individual and ensemble meta-classifiers

in scenario 2. The individual classifiers were set up with the hyperparame-

ters optimized. The ensemble predictors use the outcomes of these individual

classifiers as inputs. The classifiers are all fed with Wi-Fi RSS plus MF and il-

luminance levels. All the individual classifiers have improved performance, and

NB even reaches an accuracy of 90.3%. The Bagging classifier uses a base clas-

sifier with random subsets of the original testing dataset. Then, it aggregates

the individual predictions to determine a final prediction. We set up CART as

base classifier for Bagging. Soft Voting uses the average predicted probabilities

of CART, MLP, NB, KNN, and SVM to predict the room. Soft Voting (SV)

can reach an accuracy of 87.7% in scenario 1 and 96.1% in scenario 2. Although

all the tested traditional classifiers (i.e., CART, MLP, NB, KNN, SVM, Vot-

ing and Bagging) show high prediction accuracy, our proposed COND method

outperforms them in both scenarios. COND achieves a prediction accuracy of

96.6% in scenario 1 and 96.8% in scenario 2.
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Figure 6: Landmark prediction performance of individual predictors with optimized hyperpa-
rameters and ensemble meta-classifiers in scenario 1.
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4.3.2. Result Analysis

In indoor environments, Wi-Fi RSS and MF measurements vary according

to locations. However, these values will remain similar on nearby positions.

For example, on locations close to landmark borders, high similarities will be

observed on the RSS values. These similarities could lead to misclassification

problems. From Figure 5 we can see that KNN and MLP have better accuracy

when both Wi-Fi RSS and MF readings are used. This is because KNN is an

instance-based predictor, which uses entropy as a distance measure to determine

how similar two instances are. Thus, this method is more sensitive to small

variations upon the instance as unity. Since CART is a decision tree machine

learning algorithm, it builds the classification model by parsing the entropy

of information on attribute level. It means that CART measures entropy in

the attribute domain to decide which attribute should be included. Thus, the

classification model is prone to misclassification in this room prediction problem.

When the illuminance level is included as input feature to predictors, Naive

Bayes outperforms others. This is because the feature of illuminance level is

completely independent from other radio signal measurements, which fits with

Naive Bayes’ strong assumptions about the independence of each input variable.

To further explain how the individual and ensemble predictors perform in

scenarios 1 and 2, we show the confusion matrix of room recognition using MLP,

Naive Bayes (NB), KNN, SV, and COND in Figures 8 and 9. We can observe

that zone 3 is identified with accuracies of 21% by MLP, 100% by NB, 18%

by KNN, 39% by Voting and 98% by COND. As a consequence, NB seems to

be better in predicting zone 3 as compared to other individual and ensemble

predictors. However, considering zone 4, NB achieves only 48% of accuracy,

whereas KNN achieves 66%. We can see that the ensemble predictors adopt

behaviors of different individual predictors. For instance, they adopt the good

behavior of MLP and Naive Bayes, which leads to a much better prediction

accuracy for zone 2. Unfortunately, ensemble predictors still have problems in

some zones. For instance, SV achieves only 39% of instances correctly classified
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in zone 3. It is because most of the individual predictors that contribute to SV

achieve low performance in that zone. It can be observed that in scenario 2

the SV ensemble predictor improves the accuracy compared to its constituent

individual predictors. However, in scenario 1 the SV predictor does not achieve

better performance than all its constituent individual predictors. It is because

the prediction process of SV can be strongly influenced by individual predictors

with low prediction performance. The performance of the Bagging classifier is

affected by the performance of its base classifier. Unlike Bagging, the COND

classifier relies on the performance of several individual predictors. As result,

COND overcomes Bagging by 17.6% and 13.0% in scenario 1 and scenario 2

respectively. Since COND is based on the conditional probabilities of its con-

stituent individual predictors, COND prediction is strongly influenced by in-

dividual predictors that show better performance in each scenario. Therefore,

despite the different physical set up of scenario 1 compared to scenario 2, COND

shows higher performance than the others tested predictors. Thus, we prove the

generality of COND with different set of inputs.

Our proposed COND method is able to outperform SV and all the individ-

ual tested predictors in both tested scenarios. Although COND and SV have

the same constituent individual predictors, COND is able to perform better

than SV. As it can be seen in Figure 9, COND overcomes SV in all zones. For

instance, in zone 4, SV achieves 63% and COND 96% of correctly classified

instances. This is because COND is able to balance out strengths and weakness

of its constituent algorithms. This balance is made based on the observed pre-

diction performance of each constituent classifier. Thus, we prove that COND

is able to predict zones more reliably than the other tested methods. Our

prediction model allows the production of better zone prediction performance

compared to individual and ensemble voting models.

5. Conclusions

This work analyzes the performance of five traditional individual predictors

and one ensemble predictor. Additionally, we propose a novel ensemble learn-
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(a) MLP performance scenario 1.
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(b) MLP performacne scenario 2.
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(c) KNN performance scenario 1.
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(d) KNN performance scenario 2.
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(e) NB performance scenario 1.
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(f) NB performance scenario 2.

Figure 8: Individual predictors normalized confusion matrix in scenario 1 and 2.
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(a) SV performance scenario 1.
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(b) SV performance scenario 2.
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(c) COND performance scenario 1.
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(d) COND performance scenario 2.

Figure 9: Ensemble meta-predictors normalized confusion matrix in scenario 1 and 2.
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ing algorithm, which is based on the concept of conditional probabilities. We

tested prediction performance of these seven predictors in distinguishing zones

on a floor. We have validated the performance of the system using different

smartphone sensor measurements, such as Wi-Fi RSS, MF readings, and illumi-

nance levels. Evaluation results show that the our proposed ensemble predictor

COND achieves the best indoor landmark localization accuracy of 96.8%. To

test the generality of our approach, we have divided our area of interest into two

scenarios. This allows us to test our approach with two different environmen-

tal configurations. We show that despite the different physical set up, COND

shows higher performance than the others tested predictors. Thus, we prove

the generality of COND with different sets of inputs. To support open dataset

for indoor localization research, we make parts of our experiment data openly

accessible such that others can make fair performance comparison.
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