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Abstract

Internet of Things (IoT) is a system of interrelated devices that can be used to allow large-scale collection and analysis
of data. However, as it grew, IoT networks were not capable of managing the data from these services. As a result,
cloud computing was introduced to address the need for datacentres for IoT networks. As the technology evolved, the
demand for a proper means of supporting and managing crowdsensing and real-time data increased, and cloud servers
could no longer keep up with the large volumes of incoming data. This demand brought rise to fog computing. It
became an extension to the cloud and allowed resources to be allocated around the network effectively. Its integration
to IoT reduced the strain towards the cloud servers. However, issues in high power consumption at the end device
and data management constraints surfaced. This paper proposes two approaches to alleviate these issues to keep fog
computing remain as a reliable option for IoT-related applications. We created an IoT-based sensing framework that
used an urban sound classification model. Through active low and high power states and resource reallocation, we
created a network configuration. We tested this configuration against IoT frameworks that use the default fog and
cloud setups. The results improved the framework’s end device power consumption and server latency. Overall, with
the proposed framework, fog computing was proven to be capable of supporting a scalable IoT framework for urban
sound sensing.

1. Introduction

Internet of Things (IoT) network is a platform that
allows devices to communicate with one another via a
wireless connection [1]. As a result, industries have de-
veloped many promising applications based on IoT [2].
Some examples of these applications are mobile asset
tracking, micro-location, secure communication, and en-
vironment sensing [3, 4, 5]. With the emergence of IoT
development, large volumes of data are being generated
by IoT devices every day [6]. This growth shows the
need for dedicated storage and more processing capacity,
which resulted in the introduction of cloud computing.
It is a model that implements an on-demand provider of
computing and online storage services [7, 8, 9, 10].

With the use of cloud computing in an IoT network,
devices can access software applications and infrastruc-
ture without the need of owning them [8]. Industries
used cloud computing to open IoT-related services and
applications that have larger scopes. Some of these ap-
plications are in home automation, healthcare, and navi-
gation [11].
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However, cloud services are now running into the same
issues that IoT networks had before [12, 13]. As net-
works expanded, so did the demand for its services. Too
many devices are attempting to connect and request data
from the server at the same time. As a result, data trav-
els in and out of a server at increased rates. Cloud-based
IoT networks used for centralized data management and
storage [14]. However, when it comes to scaling net-
works, one server cannot handle a network of end devices
that are continuously growing [15]. Applications that
require user mobility, low latency, and location aware-
ness becomes too hard for a centralized cloud-based IoT
network. As a result, more complex real-time data pro-
cessing and crowdsensing services become more of a
pipedream with cloud-based IoT solutions [13].

As a means of addressing this issue, fog computing
became an extension to cloud computing [16, 17]. Fog
computing is a process allocation technique that offloads
the different sections of the program from the server to
the end devices. Offloading creates a better means of bal-
ancing the number of computations between the fog and
the cloud [12].

This paper presents two approaches to improve de-
vice energy efficiency and server load balancing in an
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IoT network. These approaches are active low and high
power state, and process reallocation. Focusing on these
two can help our proposed IoT framework become more
scalable. We selected environmental sensing for our im-
plementation. Environmental sensing is a general topic,
hence, we focused on one of its subsets, which is urban
sound classification [18].

This paper built on our previous work in [19], which
focuses more on the comparison between cloud-based
and fog-based IoT networks. We point out the impor-
tance of process optimization towards the realization of a
configuration that can create an efficient framework. On
the other hand, this paper focuses more on the scalability
of the framework. We add more tests in an attempt to iso-
late other key factors that might contribute to improving
the framework’s scalability.

The rest of this paper is as follows: Section 2 is an
overview of fog computing and an introduction to our fo-
cused issues and proposed solutions. Section 3 discusses
the design specifications of our framework. Section 4 in-
troduces the experimental setup leading to the conducted
tests and results. Finally, Section 5 are the conclusions to
the study.

2. Fog Computing Background

This section provides an overview of fog computing as
an extension of cloud computing in IoT networks. Also,
it discusses the different fog computing categories and
which one are we using in our framework.

2.1. Overview of Fog Computing with IoT

IoT networks lacked scalability in a growing network
of devices [20]. Cloud computing enabled IoT to han-
dle the incoming wave of large-scale applications [8].
However, as the market for IoT-cloud services evolved,
the demand for new and innovative applications and ser-
vices arose. Examples of such as smart grids and smart
homes pushed IoT and the cloud to its limits [14]. Most
services now demand applications with features such as
real-time sensing, larger capacities, which cloud servers
are no longer able to sustain [17]. As a result, fog com-
puting became an extension of cloud computing. Also,
known as clouds at the edge, it uses nodes within the
boundaries of the network to carry out computations [21].
Fog computing is a computing paradigm that integrates
with the cloud infrastructure. It creates a computing fa-
cility for IoT services or other latency-sensitive applica-
tions through a distributed architecture [22].

Figure 1: Cloud-Fog-Device framework.

2.2. Fog Computing Categories in IoT
Fog computing consists of two categories: Cloud-Fog-

Device and Fog-Device [20].

1. Cloud-Fog-Device. A representation of this category
is shown in Fig. 1. It consists of three layers arranged in
increasing order based on storage and computing capa-
bilities.

(a) Device - An end device in an IoT network can be
either mobile or fixed, depending on its applica-
tion [20]. Most mobile IoT devices can be either
worn or carried. Some examples of heterogeneous
user-oriented devices are fitness trackers, smart-
phones, and smartwatches. Fixed IoT devices have
specific areas where they are deployed depending
on their intended tasks. These types of end de-
vices have limited energy and computing resources.
They are only there to collect data [23]. Not many
computations are carried out on these devices. The
edges send the data to the higher layers for analysis
and long-term storage.

(b) Fog - A fog is any device that has the capability of
computation, networking, and storage [22]. Some
examples of these devices are switches, routers,
proxy servers, bridges, and any other computing de-
vice [20]. As a result, time-sensitive applications
can run in fog nodes.

(c) Cloud - This layer is a computing and storage plat-
form that provides various IoT applications. Cloud
servers accommodate on-demand data storage and
other server resources that are accessible to any de-
vice connected to the Internet [20, 24].

2. Fog-Device A representation of this category is shown
in Fig. 2. It is composed of two layers with a similar ar-
rangement in terms of storage and computing capacities.
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Figure 2: Fog-Device framework.

(a) Fog - In this layer, the fog nodes cooperate without
the use of a cloud server to provide service to the
devices [20]. Each node decides on actions within
a network using a distributive structure where they
work as a collective unit [25]. The fog is the highest
layer in this category. As a result, its nodes will
have to handle the storing of device data without a
dedicated cloud server for storage.

(b) Device - Similar to the Cloud-Fog-Device frame-
work, the lowest layer is the end device. However,
more of the computations are allocated by the net-
work to the end device [25]. With the absence of
a cloud server, more processes are required to be
placed on the device to relieve the strain on the fog
servers. The edges will still send the data to the fog
layer for analysis and storage.

Our paper focuses on the Cloud-Fog-Device as the
structure of our proposed framework. This decision was
attributed to the simplicity of its potential implementa-
tion compared to the Fog-Device framework. A Fog-
Device network would require an algorithm that would
allow better collaboration between multiple servers to
achieve proper decentralization. As a result, a more com-
plex design would be warranted. On the other hand,
Cloud-Fog-Device will be easier to implement since the
layers and their purposes are better defined. Also, the
data flow is more straight-forward for Cloud-Fog-Device
as it travels from end device to fog to cloud then back.
Fog-Device is more complex because it warrants a pro-
tocol that can manage the data received from the end de-
vices before they are presented.

2.3. Open Issues for IoT- Fog Frameworks

The addition of fog computing can improve any IoT
service. However, a poorly constructed fog-based IoT
network might ignore significant aspects of the net-
work which allow it to function effectively and result
in many issues. Aspects such as power consumption,
data throughput, response time, server uptime, and many
more features that pertain to the network’s quality of ser-
vice should be taken into consideration. Ignoring these
would result in a poorly constructed network.

To determine these issues, we propose an IoT-based
Urban sound sensing fog framework. Urban sound clas-
sification is a type of environmental sensing framework
that focuses on categorizing the different sounds within a
city area [18]. It is composed of multiple sensing nodes
for recording sound and a central server for storing data
and classification results. Depending on the configura-
tion of the framework, the collected sound the classifi-
cation if either executed in the end device or the server.
Upon initial investigations on the feasibility of an IoT-
based version of the framework, some important issues
needed addressing [20, 26]:

• High Edge Device Power Consumption. In an urban
sound sensing framework, devices transmit data to
the server at intervals [27]. Each device must trans-
mit independently and is self-sustaining. Therefore,
they should be optimized before the service deploys
them. However, managing each device becomes
more complex as their numbers increase. One of the
main issues of sensing devices is its battery life [22].
Since services deploy these devices in areas with-
out a reliable power source, they need to account for
battery capacities. Sound is being recorded continu-
ously by this sensing framework. As a result, power
becomes a challenge if the software driving the de-
vice is not optimized. Power consumption must be
minimized to get the most our of each deployment.
It could define the lifespan of the framework.

• Difficult Data Management due to Decentralization.
The end devices within a fog framework are de-
centralized [25]. If it is improperly optimized and
programmed, it could lead to inaccurate data [22].
Data precision is essential in classifying the types of
sound that are being recorded by the devices. With-
out a proper data managing design for the end de-
vices and the fog nodes, data traffic will be an issue
for the server that will store all the results. Real-
time applications such as urban sound classification
will have data that will continuously be streamed to
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the server by multiple nodes [13, 27]. If the receiv-
ing end of the server cannot handle the volume of
data, then the framework will not work.

High power consumption and difficult data manage-
ment become more significant issues on the framework
once the number of end devices and fog nodes increases.
Therefore, each should be addressed to be able to achieve
a scalable IoT framework.

2.4. Proposed Solutions

Each proposed solution is aimed to address one or both
open issues and to achieve an optimized urban sound
sensing IoT framework. Urban sound classification is an
application that determines the type of sounds in a city
using environmental sensing [18]. It is an IoT frame-
work that monitors an area for informatic purposes [28].
For urban sound classification, its focus is the differ-
ent sounds of the city. However, continuous data trans-
missions are a requirement for an urban sound sensing
framework [27]. As a result, power is a concern to end
devices that have a limited supply [29]. Also, cloud
servers will suffer from the latency if processes are no
offloaded properly to the lower layers [26]. The follow-
ing are solutions proposed by this paper:

1. Active Low and High Power States. Like any sens-
ing framework, continuous data transmissions are
a concern to end devices that have a limited sup-
ply [28, 29]. In IoT-based fog computing, power
management is important to keep a standard qual-
ity of service [22]. We can optimize each device by
setting each peripheral within the device to only be
powered if needed. Implementing power states on
the end devices could increase the efficiency of the
framework. However, this could be a daunting task
as the number of edges increase.

2. Process reallocation. In urban sound classification,
data will be in and out of the fog and cloud servers
continuously. Similar to all sensing frameworks, it
will cause each server to fail once it can no longer
manage the data traffic efficiently [28]. However, if
we can keep the incoming data at a stable and work-
able size, then it will be easier to manage. Transmit-
ted data should not vary and remain small. The pro-
posed solution aims to find the best process config-
uration within each layer of the framework. We can
reallocate processes to achieve a balance between
computation load and times [26]. With realloca-
tion, the network can anticipate the incoming data.
As a result, implementing proper server scheduling

methods becomes possible. Also, with processing
loads balanced, latency will be less of an issue, and
we can reduce data traffic to a minimum [22].

3. Proposed Framework

This section provides an overview of the design of our
framework that implements our proposed solutions.

3.1. Design Overview

An urban sound classifier is a sensing framework that
analyzes the different sounds within a city area [18]. The
collected data is categorized based on a defined set of
sound types [28]. We chose this because it is an applica-
tion that requires fog computing as an architecture. It re-
quires multiple sensing nodes resulting in large volumes
of incoming and outgoing data. To implement this frame-
work, we need to consider real-time data processing and
big data management. Ideally, fog computing should be
capable of these due to its load balancing and node man-
agement features [17, 30]. However, as mentioned in
the previous section, fog computing was running into is-
sues in high power consumption in end devices and data
management in servers. These could prevent fog com-
puting from being a reliable option for this IoT-based ur-
ban sound sensing framework. This paper proposes ac-
tive low and high power states and process reallocation
to address these concerns.

We created an implementation of this urban sound
classifying framework. It uses a star topology with
a central server and end devices. Also, the design
makes use of a remote desktop as the server. This
server runs on an Ubuntu 16.04 operating system. Each
end device is a Raspberry Pi 3 Model B loaded with
a Raspbian-Jesse operating system (OS). Then, we in-
stalled the OS through the NOOBS software provided
by the Pi homepage. Connecting the devices to the
server is a wireless client-server socket setup. We used
an STM32 NUCLEO-64 board with an attached X-
NUCLEO-CCA02M1 expansion board. This hardware
choice made it easier to record sound and convert it into
formatted data. Python 3.6 was chosen to be the pro-
gramming language for the scripts to run the required li-
braries for the classifier and the digital microphone man-
ager. The server will be using Ubunutu 16.04 as its op-
erating system with a wireless network router as its fog.
This hierarchy and the setup of our framework is shown
in Fig. 3.

Raspberry Pi 3s devices were selected due to their
modularity and affiliation towards rapid prototyping. Our
framework requires multiple nodes that are identical in
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Figure 3: Framework setup and layer hierarchy.

functionality. Pis can also be easily reprogrammed and
adapted in situations when immediate changes to any of
our scripts are needed. It is a strong development tool that
allows us to incorporate other technologies such as the
STM32 NUCLEO-64 board without any difficulties due
to its flexibility. Also, Pis are very low powered which is
an advantage in our testing when it comes to us requiring
multiple nodes that are running at the same time.

3.1.1. Configuration setup
We created two initial configurations for the initial

testings. These derived frameworks will be tested based
on end-device power consumption and server latency
to check their performances. Then, we will compare
their results to a third, proposed configuration. It will
be formulated based on our proposed solutions to de-
termine their feasibility in creating a more scalable IoT-
framework. Our program needs to be flexible with sec-
tions and processes that can be reallocated along with the
network layers to support these configurations. In total,
there are three configurations in this paper:

1. Configuration 1 - The first configuration will rep-
resent a framework that relies heavily on the edge
devices and the fog. The division of the sections
within it is shown in Fig. 4a. In this configuration,
we allocated most of the processes at the edge of the
network in the end devices. Its allocation within the
program is shown in Fig. 4b.

2. Configuration 2 - The second configuration will
represent a framework that relies heavily on the
cloud server. The division of the sections within it is
shown in Fig. 5a. In this configuration, we will real-
locate the movable processes to the cloud server. Its
reallocation within the program is shown in Fig. 5b.

3. Proposed Configuration - The third or our pro-
posed configuration will be an implementation of
the solutions that we presented. We will use the ac-
tive low and high power states as well as resource
reallocation to create a better configuration. Within
each is an arrangement of the program that will
carry out the different processes in the framework.

For the first two configurations, the program is initially
broken down into two major sections: the sound recorder
and the sound classifier.

3.1.2. Sound Recorder
The sound recording section is composed of the dig-

ital microphone and a Python script to drive it. We
used a Python library called PySound to calibrate and
read from the mic. A commercial digital Micro-Electro-
Mechanical Systems (MEMS) microphone was used to
make the interfacing and prototyping easier. The micro-
phone setup was set to be their default, out-of-the-box
configurations (i.e.16 kHz sampling rate, single-channel,
16-bit resolution, 4096-byte frame size) to keep the de-
sign simple.

First, we initialize the PyAudio library within the
script used to record the sound. Then, PyAudio will
start the recording by creating an audio stream. Dur-
ing the recording process, the data read in by the Pi
from the microphone is broken down into size-defined
data frames. The selected frame size was 4096 bytes per
frame. Upon reaching the recording length, the library
closes the stream. Lastly, the resulting data is stored by
the script into a Waveform Audio File Format (WAV) file.

3.1.3. Sound Classifier
The sound classifying section is composed of a dataset,

a classify, and a script to train and run the classifier. We
chose urban sound classification due to the insurgence
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(a) Section setup.

(b) Process allocation.

Figure 4: Configuration 1 - Design and logic details.

of interest in smart cities. The dataset used is the Ur-
banSound8K dataset [18]. The UrbanSound dataset is a
collection of 1302 full-length recordings with each ur-
ban sound labeled according to the sound occurrence and
salience annotations. Each sound clip in the dataset was
obtained from an online free sound file provider. The 8K
iteration of the dataset cuts each sound clip into 4-second
segments. They cut the sound clips because of a listening
test conducted. This listening test showed that 4 seconds
was the best clip duration which yielded an accuracy of
82%. Within the UrbanSound8K dataset is a collection
of 10 low-level classes: air conditioner, car horn, chil-
dren playing, dog barking, drilling, engine idling, gun-
shot, jackhammer, siren and street music. We based the
classifier on [18]. The script makes use of a combination
of Librosa and Tensorflow to carry out the extraction and
classification.

Feature extraction is a part of pre-processing data be-
fore it gets used to train and test the classifier model.
This process obtains these features as vectors that rep-
resent specific aspects of the sound clip [31]. The script

(a) Section setup.

(b) Process allocation.

Figure 5: Configuration 2 - Design and logic details.

makes use of the sound processing library called Librosa
to extract these features. This library loads in each file
from the dataset and converts them into feature vectors.
Then, the conversion is carried out using feature extrac-
tion methods provided by Librosa. The script that we
used then saves each feature vector into text files that are
parsed back into the program during training and tests.
We used Tensorflow to build and train the model. It is a
neural network composed of 2 hidden layers, each hav-
ing 280 and 300 nodes respectively. After processing the
dataset, the script trains the neural network under 3000
epochs. The training process makes use of the dataset,
which we split 70-30; 70% of the sound files to train the
classifier while the remaining 30% for testing and veri-
fication. After multiple iterations, the best accuracy was
85% using a training epoch of 5000 and a learning rate
of 0.1.

4. Testing and Evaluation

This section consists of an overview of the testing se-
tups, followed by a discussion on the end device power
consumption and server latency tests.

4.1. Testing Overview
As mentioned in the overview, we have three configu-

rations that will be used by our tests. The first two config-
urations will model the default setups for fog and cloud
architectures, respectively. The third configuration will
implement our proposed active low and high power states
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Figure 6: Power consumption test setup.

and process reallocation technique. We will focus on
metrics that determine the end device power consumption
and server data management capabilities of each config-
uration.

We determined high power consumption among end
devices and data management as issues in an IoT-based
fog framework. As a result, we introduced active low and
high power states and process reallocation. We can make
the network run only parts of the architecture by defining
low and high power states. We programmed each Pi to
use only the necessary peripherals for each process. We
toggled its wireless component so that it would only run
when it transmits data between the device and the server.
As a result, we can isolate the main sections of the design
as the only significant power consumers.

There are two main sections in the design; sound
recorder and sound classifier. We determined which of
these sections can be moved between the end device and
server to know which parts can conserve energy. The
recording process needs to stay within the Pi because
it is what drives the digital microphone. However, the
sound classifier can either be placed on the server or re-
main within the Pi. We created a program that can be
divided into these sections so we can effectively reallo-
cate the processes.

4.2. Power Consumption Tests

We conducted our first test to check which of the two
configurations between the classifier placement requires
less power. A sample setup of the test is in Fig. 6. The
first configuration executes both the sound recorder and
classifier within the device. The second configuration
moves the classifier from the device to the server. The
testing setup has a node record the sound for 10 sec-
onds and has it classified either within the same Pi or
the server. Then, the power consumed is measured and
compared. We executed this setup 20 times, and the
results are shown in Fig. 7. According to the results,
the first configuration had an average power consump-
tion of 1852.00 mW while the second configuration had
1830.54 mW. These values show no significant difference
in the two configurations.

Figure 7: Power consumption of each configuration in 20 iterations.

Figure 8: Difference in power consumption with and without sending
the data to the server after recording.

In addition, the experiment was conducted overnight
for 10 hours to obtain a reasonable dataset. During this
time, the power readings were consistent without show-
ing any signs of overheating such as significant spikes in
power or long periods of high power usage on the side
of the Raspberry Pis or the server. As a result, the con-
ducted power consumption tests also further support the
feasibility of the framework of being deployed in a real
environment.

We chose to add another test to check the distribution
of the measured power consumption within each config-
uration. In this test, we measured the effects of wireless
transmission to the power consumption of the framework
by testing the sound recording section. The outcome of
the test within 20 iterations is shown in Fig. 8. Averaging
the results showed a power difference of 127.54 mW. For
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every iteration, the first configuration transmits around
130 kilobytes (KB) of data while the other configuration
only transmits 4 bytes (B) being the size of a single inte-
ger. As a result, data size becomes a significant variable
for wireless transmission. The first configuration sends a
whole sound file to the server for classification. The sec-
ond configuration only sends the results of the classifier.

These two configurations may have yielded the same
power consumption, but it was because of different rea-
sons; processing power and data size. The first config-
uration takes all the processing load by executing both
recording and classifying portions of the framework.
However, the second configuration demands more power
within the wireless transmission to move the sound data
from the end device to the server. Having smaller trans-
mitted data sizes saves energy, but it is canceled out by
processing demands of classifying at the edge of the net-
work.

We measured the runtime of each configuration in 20
iterations. The results were an average runtime of 57.77
and 16.42 seconds for the first and second configuration,
respectively. Therefore, this time difference points out
that the measured power consumption is due to the place-
ment of the classifying process. Also, the runtime results
point out the disparity in the execution times of the first
two configurations. There is no significant difference
in power consumption between the configurations. The
power drawn by running the classification in the end de-
vice is offset by the power required to transmit the sound
files to the cloud for classification. However, the time
differences points out at advantage of having the classi-
fier in the server. It improves the overall time it takes to
carry out the whole sound classification process.

Finally, we tried to create a configuration that balances
the processing load and the size of the data transmitted.
The classifier is composed of two subsections; the feature
extraction and the actual classification. Before a sound
file is classified, its feature vectors are first extracted. We
divided this section into two and having the feature ex-
traction process moved to the end device. As a result,
the data size changed from around 130 KB to a constant
1.6 KB. This consistency is due to the feature vectors
predefined to have a dimension for every sound clip.

Though we added more processes to the end device,
it was not as much as the first configuration. Also, at
the cost of the addition, the data transmission has be-
come more constant and stable in case the design re-
quired longer recording times. The resulting setup divi-
sion for the proposed configuration is shown in Fig. 9a
and the process reallocation is shown in Fig. 9b. We
tested this configuration under the same setup resulting
in an average power consumption of 1786.86 mW. Com-

(a) Section setup.

(b) Process allocation.

Figure 9: Proposed configuration - Design and logic details.

paring these results to the previous ones, it shows that
this is an improved configuration.

4.3. Latency Tests

The next concern is the server data management. Once
the number of nodes within the framework increase, we
need to examine if it will be able to handle the incom-
ing data. This test took the three configurations used in
the power consumption test and verifies their viability in
data management. We used latency to measure each of
their effectiveness in managing data. Latency is the time
it takes a data packet to finish transmitting from the de-
vice to the server. The experimental setup implements a
star topology with multiple nodes loaded with the same
configuration. Each node sends data to the server. The
server then takes each packet and measures the time be-
tween the beginning and the end of the transmission.

A sample setup of the latency test is shown by Fig. 10.
The test setup uses a round-robin type of schedule. All
nodes are listed based on their given IP address. The im-
plemented scheduler goes through this list and allows the
selected device connection one at a time. The latency of
each configuration was tested by creating networks that
had a varying number of nodes. We programmed each
device to transmit data to the server for the same duration
as the power consumption tests. The data was sampled
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Figure 10: Latency test setup.

for 10 iterations. The results of the tests where each con-
figuration consists of a network with 4, 8 and 12 nodes
are shown in Fig. 11. The results show that as the num-
ber of nodes increased, both the first and our proposed
configuration were able to handle the increase. However,
as the number of nodes reached 12, the latency of the sec-
ond configuration jumps to 300 milliseconds. This jump
in value depicts significant packet loss that shows how
this configuration cannot handle the current setup, which
had 12 nodes.

Wireless interference is a common reason for such
a significant difference in latency. However, the tests
for each configuration were conducted with the same
components and environment. If wireless interference
was present, it would have affected all the tests and not
just the second configuration. Thus, latency is more at-
tributed to the nature of the data being transmitted and the
time spent to compute the results in the server. Overall,
the results of our tests show that our proposed configura-
tion was the best out of the three.

5. Conclusion

Fog computing with IoT networks runs into power
consumption and data management issues. Due to these,
scalability becomes harder to implement when using
fog computing. Urban sound classification is a sensing
framework that benefits from fog computing. This paper
proposes process reallocation and active-low and high
states to create a more scalable framework. Our tests
resulted in a configuration that addresses each issue ef-
fectively.

Figure 11: Latencies of configurations in a star topology setup with 4,
8, and 12 Pis.

In terms of power consumption, data size and proces-
sor load is a significant variable. The proposed configura-
tion shows a balance between a constant data packet size
and a logically allocated processor load. For data man-
agement, latency is crucial for a growing network while
data speed is also important. It dictates how a server is
capable of managing its incoming data. Both the first and
our proposed configuration proved to be scalable based
on their latency test results. However, by taking into con-
sideration all of the test results from both issues, the pro-
posed configuration that implemented optimization tech-
niques proved to be better overall.

The first configuration showed to be more device
heavy while the second was more server heavy. Each is
a representation of the default fog and cloud computing
architecture, respectively. As a result, we created a third
configuration which is a hybrid of both architectures. It
shows the importance of balance between the two ex-
tremes focusing on more adaptive design. With this con-
figuration, proper processor load balancing can improve
an end device’s power consumption. Also, transmitted
data size management helps in a server’s data manage-
ment. Therefore, process allocation and power man-
agement through active-low and high states can improve
the scalability of an IoT-based urban sound sensing fog
framework.
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