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Abstract

In distributed, cooperative Internet of Things (IoT) settings, sensing devices must communicate in a resource-aware
fashion to achieve a diverse set of tasks, (i.e., event detection, image classification). In such settings, we continue to
see a shift from reliance on cloud-centric to edge-centric architectures for data processing, inference and actuation.
Distributed edge inference techniques address real-time, connectivity, network bandwidth and latency challenges in
spatially distributed IoT applications. Achieving efficient, resource-aware communication in such systems is a long-
standing challenge. Many current approaches require complex, hand-engineered communication protocols. In this
paper, we present a novel scalable, data-driven and communication-efficient Convolutional Recurrent Neural Network
(C-RNN) framework for distributed tasks. We provide empirical and systematic analyses of model convergence, node
scalability and communication-cost based on dynamic network graphs. Further to this, we show that our framework
is able to solve distributed image classification tasks via automatically learned communication.
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Internet of Things (IoT) applications are becoming in-
creasingly ubiquitous and pervading more and more of
our physical world, as in the case of smart parking
[1], smart industry [2], smart traffic [3], smart homes
[4], smart health [S], and emergency response systems
[6]. In such applications, embedded sensing devices
are typically resource constrained and need to meet op-
erational requirements whilst respecting limitations on
battery energy and processing capability. Current IoT
architectures are skewed in favour of cloud-centric an-
alytics, with the widespread sensors being ‘dumb’ and
relatively limited in capability. In part, this is a natu-
ral consequence of the need for collaborative decision
making, e.g., that sensor readings cannot be considered
in isolation but must be analysed as a collective spatio-
temporal series.

Although this centralized architecture takes advan-
tage of virtually unlimited cloud computing capabili-
ties, issues arise due to latency (data has to be sent up
to the cloud, analysed and then returned before actions Figure 1: High level illustration for distributed MNIST classification.
can be taken); bandwidth (raw data is typically sent to Multiple net\york nodes ot.)sefve unique MNIsT handwrit.ten digiFS
the cloud, consuming limited network bandwidth in re- and cooperatively solve a distributed task - finding the max in the this

> case. In this work we show that nodes can communicate through their
source constrained, e.g., LORA or 6LowPAN networks latent states to achieve this goal.
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[7]); and in battery energy (nodes have to send data to
the cloud, regardless of whether it is useful or not).

Recently, edge-centric computing paradigms [8]] have
emerged as a promising approach to address these chal-
lenges. In such settings, sensing devices are endowed
with increased computing capabilities, thereby enabling
inference at the edge of the network where data is col-
lected. In distributed, cooperative scene monitoring,
multiple sensing devices, (e.g., cameras) must observe
part of the environment and video data from all devices
must be fused to reach a collective insight. Transmitting
individual sensing device data to a central node for pro-
cessing is not scalable owing to bandwidth constraints.
Moreover, the approach is susceptible to overall net-
work failure in the event of a failing central node. These
limitations motivate distributed, cooperative approaches
in which sensing devices can perform local computa-
tions on observed visual data and cooperate with neigh-
boring devices to perform image classification, recogni-
tion or detection tasks. To achieve these tasks, devices
must communicate efficiently in a manner that respects
constraints on their battery energy and bandwidth bud-
gets. Handcrafted protocols and algorithms can be used
to achieve these goals, but are tightly coupled to the par-
ticular problem and wireless network topology.

Deep Networks have achieved notable successes in
domains characterized by massive amounts of data ow-
ing to their versatility, inference and predictive capacity
[9]. In IoT applications, Deep Networks, particularly
Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs) have achieved state-of-the-art
performance on computer vision tasks, (i.e., image clas-
sification [10] and action recognition [11]) and time-
series prediction tasks, (i.e., event detection [12] and
target tracking [13]]).

In this paper, we propose a novel data-driven Neu-
ral Network-based approach to achieving scalable, dis-
tributed communication at inference time. We consider
a hybrid scheme which combines CNNs and RNNs. Re-
cently, it has been shown that hybrid architectures in
which CNNs are employed for feature extraction and
RNNs for temporal modelling and prediction achieve
better results when compared to other architectures on
many tasks 11, [14} 15 [16].

As a motivating example, we extensively explore the
problem of observing visual data to solve distributed
tasks collectively, as illustrated in Figure [l Our ap-
proach does not require any specialized communication
protocols and automatically learns to minimize commu-
nication and handle link failure, whilst achieving high
accuracies on defined objectives.

We structure our paper as follows. Section [I|presents

related work, discussing distributed image classifica-
tion and event detection, multi-agent communication,
distributed machine learning and hybrid CNN-RNN ar-
chitectures. Section II introduces our problem set-
ting motivated by IoT scenarios. Section III pro-
vides an overview of our proposed scalable, data-
driven, communication-efficient Neural Network-based
approach and architecture. Section IV presents experi-
ments that empirically evaluate node scalability, model
convergence, computational and communication costs,
comparison with other methods and architectural con-
siderations/ablation on defined tasks. Finally, Section V
concludes the paper and provides a discussion of future
work.

1. Related work

1.1. Cooperative Deep Networks in loT settings

1.1.1. Distributed Image Classification

Devices in IoT settings, (i.e., cameras, mobile robots)
enable computer vision applications powered by Deep
Networks. Recent works have proposed Deep Network-
based algorithms for distributed, cooperative IoT set-
tings in which visual data from multiple cameras is an-
alyzed in real-time for various tasks namely, mobile ob-
ject recognition [[17], military coalition networks [[18]
and image classification [19}20]. [20] propose an agent-
based cooperative learning algorithm in which feature
summary vectors are passed to neighbouring agents to
achieve a global image classification task. Their work
assumes unlimited communication capacity and does
not optimize for communication cost. In [17], an edge-
mediated, collaborative learning framework for mobile
object recognition is proposed. [18]] focus on exploit-
ing the hierarchical nature of learned representations
from Deep Networks to adaptively distribute computa-
tion over edge devices in coalition networks. [19] pro-
pose a Deep Network architecture instantiated over dis-
tributed computing hierarchies, consisting of the Cloud,
edge devices and various sensors. Although these works
are of immense promise, they explore distributed im-
age classification in scenarios supported by edge infras-
tructure. In this paper we propose a more general ap-
proach, that is data-centric and does not rely on edge-
mediation or Cloud support for distributed visual in-
ference. Our approach is low-cost, can be instantiated
for inference on sensing nodes and is communication-
efficient. Instead of typically reasoning about how to
offload computation to less resource constrained de-
vices, our method seeks to utilize existing resources on
sensing nodes to optimize its communication cost while



achieving desirable accuracy on distributed, cooperative
tasks.

1.1.2. Distributed Event Detection

Several works [21,112,22]] have shown that Deep Net-
works are well-suited for event detection and processing
tasks in emerging IoT settings. This is of key impor-
tance because these models can fuse and process raw
temporal data from distributed sensors over long peri-
ods of time to provide accurate inference [12]]. In [22],
Long Short Term Memory (LSTM) networks are pro-
posed for predictive maintenance on distributed turbo-
fan machines. Their model is able to capture faulty con-
ditions based on the history of the systems being mon-
itored from large sets of sensor data. Work by [12]
characterizes complex events, often made up of a se-
ries of primitive events and employ a Deep Network
approach that is coupled with a state-based event detec-
tor. [21]] propose RNN-based architecture in which sen-
sor nodes communicate to solve distributed event detec-
tion tasks. Although these works offer an exploration
of model hyper-parameters as they impact model per-
formance, they fail to provide discussions on the com-
munication overhead incurred in distributively detecting
events from multiple sensor nodes.

1.2. Communication in Deep Networks

1.2.1. Learning Multi-agent Communication

Communication has been considered across mul-
tiple domains, i.e., Cooperative IoT settings, (e.g.,
Wireless Sensor Networks) [23]] and Multi-agent Sys-
tems [24]]. In such settings, most works employ pre-
defined communication protocols instead of automati-
cally learned communication. Research by [25] con-
siders agents with limited capability operating in par-
tially observable environments. In their approach, co-
operative agents individually controlled by deep feed-
forward networks can learn task-specific communica-
tion via back-propagation. Further works by [26] use
Reinforcement Learning and centralized learning ap-
proaches with decentralized execution. In these mod-
els, end-to-end back-propagation of error signals across
agents enables learning automated communication us-
ing Deep Networks. Although these approaches are el-
egant in design, their scalability is limited owing to the
need for specialized connectivity structures and more
computational power to compute multiple agent actions
at each time-step at inference time. In principle, our
model instantiates memory-efficient Neural Networks
and learns to minimize communication.

1.2.2. Distributed Machine Learning

In the field of Machine Learning, efficiently training
and optimizing Deep Networks is an issue of research
importance. This has been a consequence of the grow-
ing need to train and instantiate these algorithms in sce-
narios plagued with constrained computational budgets,
(i.e., mobile devices). To alleviate this constraint while
aiding applicability to large-scale data scenarios, (i.e.,
IoT applications), Distributed Learning [27] has been
widely explored. In distributed, cooperative IoT set-
tings, Deep Networks employed on sensing devices for
inference tasks are often trained in a decentralized fash-
ion. High latency and low-bandwidth limitations in such
settings introduces communication bottlenecks on train-
ing nodes. Such bottlenecks have inspired significant
research efforts that address communication-efficiency
in Distributed Learning [28,[29]. Although these meth-
ods are instrumental to low cost Distributed Learning,
they purely focus on providing model training methods
for optimizing gradient-based updates rather than task-
aware distributed inference.

1.3. Hybrid CNN-RNN Architectures

Deep Network architectures continue to evolve to suit
a wide range of tasks in IoT settings. [30, [31] ex-
periment with standalone CNN architectures on image
sensor data considering resource constraints. [32]] pro-
pose an RNN-based architecture that extracts features
from raw sensor data and performs recognition tasks.
These standalone architectures have proved to work in
problem domains where feature extraction from image
and/or sensor data is necessary before making predic-
tions. Nonetheless, hybrid architectures employing both
CNNs and RNNs have reported further performance
gains in the same domains, (i.e., recognition [[15,33}|11]]
and image classification tasks [[16} 34].) Work by [33]
shows that a hybrid CNN-RNN architecture for ges-
ture recognition outperforms pure CNN architectures.
Further work by [11] compares a pure RNN approach
to a CNN-RNN approach to action recognition in 3-D
videos. Their work reports a 13 % increase in accuracy
in the hybrid approach compared to the pure RNN ap-
proach. [[16}134] propose an end-to-end trainable unified
CNN-RNN framework for image classification. Moti-
vated by these works, we propose a hybrid CNN and
RNN architecture to achieve distributed image classifi-
cation via automatically learned communication. In our
approach, we take advantage of the CNN’s feature ex-
traction abilities and feed features into the RNN which
learns communication distributively. As in [16]], our hy-
brid approach is end-to-end trainable.
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Figure 2: Overview of communicating C-RNN architecture, showing two nodes interacting over two sampling time-steps. At any given time-step
t, each node observes visual data (in our case a single MNIST handwritten digit) then passes it through a CNN. The resulting image features are
passed as input into a communicating RNN that shares a subset of its latent states with its neighbour. Each node evolves its own latent states and
an output, but has identical weights. The temporal component built in the RNN is used to evolve the latent states via recurrent computation. A
sequence of communication steps are performed whilst holding the input at a given sampling time-step. Consequently, the sampling time-step is

slower than the communication time-step.

2. Problem Setting

We consider a scenario in which N nodes observe
visual data and must communicate with neighboring
nodes over potentially lossy wireless links to solve a
given image classification task collectively. Our sce-
nario is motivated by surveillance and computer vi-
sion based applications in the IoT. In such applications,
widely distributed cameras are deployed and insights
must be derived with minimal processing effort owing
to resource constraints on the devices. To aid scala-
bility whilst avoiding bandwidth constraints associated
with performing analytics on a centralized Cloud infras-
tructure, each camera must perform local inference on
the observed data and communicate with other devices
in the network to achieve a global inference task. In
our approach, we explore the problem of whether each
node in the network can observe a randomized hand-
written MNIST digit, perform feature extraction, then
pass the features as input to an RNN architecture that
can communicate a subset of latent states to neighbour-
ing nodes to solve various tasks. In this problem set-
ting, tasks include detecting which node is observing
the max MNIST digit based on automatically learned
communication. Further to this, we also consider a dis-
tributed parity problem in which the network must pro-

duce a signal value based on the parity of the max of
the MNIST digits being observed by all nodes in the
network.

3. Communicating C-RNN

In this section, we provide an overview of our pro-
posed scalable, data-driven, communication-efficient
Convolutional Recurrent Neural Network model and ar-
chitecture. Further to this, we discuss how each node
observes visual data then achieves feature extraction,
communication, training and inference.

3.1. Network Node Architecture

Our proposed communicating C-RNN architecture
is designed to enable communication amongst multi-
ple distributed nodes observing visual data and collec-
tively solving distributed objectives, (i.e., max and max-
parity). The communicating C-RNN architecture can
be extended to edge devices, (i.e., cameras and sensors)
cooperatively operating in a smart environment, (i.e.,
parking occupancy detection, surveillance). To achieve
their intended tasks, distributed nodes must collect data
from their environment, communicate and perform in-
ference locally. Figure [2] provides an overview of our



architecture, showing latent state communication and
inference for the nodes in the network.

Our communicating C-RNN architecture can be ex-
tended to an arbitrary number of nodes, N. We repre-
sent the topology with an undirected network adjacency
graph G = (V, &) where V = {l,..., N} are the nodes
in the network and & C V x V represents the presence
or absence of a link between any two nodes (i, j) € &.
Based on the network graph G, each given node has a
set of neighbours with which it can directly communi-
cate. Node connections can be task-specific and user
defined. Nonetheless, communication is learned by the
network. The communication paradigm for our archi-
tecture is discussed in detail later in this section.

3.2. Feature Extraction

Our communicating C-RNN architecture models dis-
tributed nodes observing visual MNIST handwritten
digits and collectively solving distributed tasks based
on each node’s unique observations. To achieve this un-
der resource constraints, we design a distributed CNN-
based feature extractor that encodes the image into a re-
duced set of features. At each sampling time-step ¢ and
for each node, the feature extractor takes as input a 28
x 28 image in gray-scale then passes it into two 2-D
ReLu-activated convolutional layers with max pooling
for downsampling and dropout [35]]. The first convolu-
tional layer filters the image with 10 kernels of size 5 x
5. The second convolutional layer has 20 kernels of size
5 x 5. The resulting features are then passed into a fully
connected layer with f;, units. The number of units f;,
for the fully connected layer corresponds to the num-
ber of features that are input to communicating RNN
framework. The weights of the feature extractor are ini-
tialized from a pre-trained MNIST handwritten digits
classifier. The feature extractors across all the nodes in
the network are identical in architecture and have the
same number of weights.

3.3. Node Communication

In our model, multiple nodes connected via an ar-
bitrary graph must communicate to distributively solve
various tasks. To achieve this, we design a novel com-
munication handler that takes as input, at any given
communication time-step ¢, the latent state space s =
{s1,..., s,} of all nodes in the network, where s, is the
latent state of the n™ node in the network. The com-
munication handler ¢ performs a mapping operation §
= (s, G) in which § = {5y, ..., §,} is the original latent
state updated with node communication as specified by
the network graph, G. Note that this allows nodes to

have arbitrary numbers of neighbours in the graph. Fig-
ure [3|shows in more detail how the mapping, § = ¥(s) is
achieved.

Y

Figure 3: Overview of the communication handler  in the overall
communicating C-RNN architecture for the n" node in the network.
At communication time-step ¢, the node evolves a latent state through
the RNN model fy. The latent state s, is then taken by ¢ as input
to achieve communication. In the case above, a gating function E, is
applied to allow nodes to choose to communicate or not at each time-
step . The remaining nodes 1...n — 1 pass their communication ¢
and ¢, as specified by the adjacency graph G to the n™ node via an
aggregation/pooling function. The aggregated communication to this
node d,,, is concatenated to the n node’s latent states s, to produce
updated states §,, at communication time-step +/.

At each communication time-step ¢, the latent state s,
(of an arbitrary dimension z, corresponding to the num-
ber of neurons in the RNN) of the n™ node is passed
to the communication handler  which aggregates com-
municated data from nodes which are connected via the
graph G. A subset of the latent state for the n” node
cn C sy, 1s used to communicate partial state to neigh-
bours. Rather than communicating the entire latent state
of dimension z, we instead send a smaller state subset
of size v < z for reasons of bandwidth efficiency. The
network thus needs to learn what state representation to
send.

To further enhance efficiency, we explore whether
nodes can learn to decide when to communicate or not.
We do so through a simple gating function E which
controls if data is actually transmitted over the wire-
less channel or not. As a simple example of a gating
function, using a RELU activation and only transmitting
information if the output is non-zero will limit commu-
nication to strictly positive values, with negative or zero
values not being sent. Without loss of generality, it is
clear that this could be extended to arbitrary functions.
Thus, this describes how nodes send data to one another.

Through the adjacency graph G and modulated by
each node’s gated output, a node must collect com-
municated states from its neighbours. As the network
graph is arbitrary and the number of nodes is not pre-



determined, it is clear that the number of communicated
states is variable. To handle this, an aggregation or pool-
ing function is used to aggregate the variable input into
a single vector d, also of size v. This aggregation func-
tion can be learned or pre-specified. In our implementa-
tion, we use max() as an aggregation function. The vec-
tor d, which represents the aggregated communicated
and gated states from peers is then concatenated with
the latent state s. Note that each node runs its own ag-
gregation, based on received communicated states and
is hence fully distributed. However, for maximizing
training efficiency, the communication handler y is built
inside a homologous and unidirectional RNN and per-
forms the mapping § = y/(s) simultaneously for all nodes
at each communication time-step ¢ within the communi-
cating RNN model.

3.4. Training and Inference

Asin [19}121], the nodes in our network distributively
observe unique sequences of data and must collectively
perform an objective task. Let x, be the n™ node’s se-
quence of input features. At each sampling time-step f,
input features, X = {x1, ..., x,} are passed from distributed
feature extractors attached to each node. At each given
sampling time-step ¢, each node evolves its individual
latent states with a series of updates being performed
iteratively as:

B = £y, 81) 3)

where fz; is the model updated latent state of the n™
node in the network. The communication handler i per-
forms the mapping §, = ¥(s’), resulting in the latent
states, §!, with node communication. The latent states,
§ are then passed into the model fy together with the
input features x,. The model f; takes the form of a
fully connected, light-weight RNN with model param-
eters and biases 6. The model’s parameters are tied
amongst all the nodes in the network and optimized us-
ing Adam optimizer [36]]. Using tied weights signifi-
cantly reduces the number of network parameters and
enables our model to train faster. This also ensures that
all nodes in the network are identical in operation, i.e.,
they all run the same network. The layers in f, are ac-
tivated using a non-linearity, ReLu. At each sampling
time-step ¢, each node computes an output 3, as given
by:

9, = o(hy) )
where o is a non-linearity. We evaluate our model

with joint optimization considering both model accu-
racy and communication cost. For the network’s accu-

racy loss, we use Mean Squared Error loss (MSE) as in
Equation (5):

1 Z
Lace®,3:6) = = ) Gi =) )
i=1

where § is the overall network prediction and y is
the network target. For joint optimization, we imple-
ment a combined 10Ss L,upinea that enables our network
to learn both the objective tasks and optimize for node
communication:

Gt = LS - a)?
Leonn(@,a6) = — > (2~ a) (©)

i=1

L(ﬁombined =w (Lacc + Lcomm) (7)

In Equation (6), a is the number of messages commu-
nicated across the nodes at inference time and a is the
target number of communicated messages for the net-
work based on a communication budget. In Equation
(7), the combined 10sS, L ompinea fOr €ach sample passed
to the network during training with a weight w is given.
Our distributed communicating C-RNN model is end-
to-end trainable. A single network is learned across all
nodes, although each node evolves its own latent states
based on unique observations.

For inference, a single target y, is defined for each
input sample, x, at any given sampling time-step ¢. The
nodes in the network communicate based on the connec-
tions defined in the network graph G. At the end of the
inference pipeline, any node in the network must have
a unified view of the environment to perform inference
on the objective tasks based on the communicate infor-
mation from other nodes in the network. In [19] a local
aggregator is used to determine if a combined summary
of information from all the end devices is sufficient for
the classification task. Our approach does not employ
any central coordination for the nodes thereby enabling
any node in the network to have sufficient information
for inference at the end of the inference pipeline. This
guarantees a seamless distributed operation based on au-
tomatically learned communication. It is worthwhile to
note that model inference is dependent on the node con-
nections in the network and must be modelled based on
the objective task.

4. Experiments

In this section, we evaluate the efficacy of our com-
municating C-RNN model quantitatively using mod-
els trained on the popular MNIST handwritten digits



dataset [37]. In our experiments, we quantitatively as-
sess model convergence, node scalability and commu-
nication cost on the max and max-parity tasks. Our ex-
perimental setting is composed of feature extractors for
the MNIST digits and unrolled communicating RNN's
implemented in PyTorch.

4.1. Experimental Setup

To assess whether our proposed communicating C-
RNN model can learn to communicate, we consider
a setup where we have a varying number of network
nodes, N between 2 and 40. In our model, parame-
ters of the feature extractors on each node are initialized
with weights from a pre-trained MNIST digits classi-
fiers. The classifiers are pre-trained over 4 epochs and
use a training batch size set to 64. The classifiers have
parameters optimised using SGD [38] with a learning
rate of 0.01 and a momentum of 0.5. The size of FC
units is varied based on the the number of input fea-
tures fi,, passed to the communicating RNN model. The
communicating RNN model is trained with f;, = 10 and
25. Our setup uses [36] for optimization with a learn-
ing rate /, = 0.005. The communicating RNN model
has 4 hidden layers, the first two with 50 units and the
other 2 with 8 units. Table[T|highlights hyper-parameter
choices.

Description Quality/Quantity
Platform PyTorch

Pre-trained CNN layers [, = 0.01, momentum = 0.5
CNN training batch size = 64, epochs = 4
Input features fin=10,25

RNN layers [, =0.005, act = Linear, Relu
Weights Shared

Optimizer Adam

Training method SDG

Loss L2

Model parameters a=1284,2169

Number of nodes N =21040

Table 1: Model hyper-parameters

The network parameters (which vary by f;,) are ini-
tialized with samples from a uniform distribution. De-
pending on the size of f;,, the number of parameters in
the RNN « is either 1284 (f;, = 10) or 2169 (f;, = 25),
making it amenable to deployment on low-end micro-
controllers with only a few kbytes of memory. Each
node is trained on randomly shuffled training samples
Mrpin = {my, ...,m;} from the MNIST dataset, where m;
is the i training sample. We evaluate our model in

terms of Root Mean Squared Error (RMSE). Further to
this, we employ an error index similar to the measure
used in [22] defining our model’s mean percentage er-
ror. This % error augments RMSE by estimating the im-
pact of the error made on each sample at inference time
as RMSE only provides a generic error estimation based
on mean ‘distance’ between model predictions and tar-
gets. The error rate is calculated as:

1o iy
Error %:—Zu (8)
Y i

where y;, §; and z are same as values defined in Equa-
tion (5).

Using RMSE and error percentages, we are able to
assess our model’s predictive performance at inference
time continuously by learning how much the model
‘misses’ the targets on both the max and the max-parity
tasks.

4.1.1. Distributed Max and Max-parity tasks

First, we consider a max task setup in which nodes
must learn the maximum MNIST digit being observed
across all nodes. Further to this, we consider a parity
problem (max-parity task) in which distributed nodes
must first cooperatively work out the maximum MNIST
digit observed, then determine parity of that digit. All
the nodes in the network show convergence (with M4,
=1000, M,.;; = 500) on the overall objective and achieve
low error percentages on test data.

max max-parity
N alfi Error % RMSE Error % RMSE
2 1284/10 1.03 0.195 2.24 0.454
2169/ 25 0.87 0.190 1.46 0.421
5 1284/10 0.18 0.150 1.79 0.461
2169/ 25 0.17 0.156 2.40 0.488
8§ 1284/10 0.11 0.113 1.83 0.456
2169/ 25 0.09 0.104 1.74 0.462

Table 2: Summary of model performance results for N = 2, 5, 8, with
communication channel size v =2 and @ = 1284, 2169 for f;, = 10, 25
respectively.

Table[2]provides a summary of results showing model
performance on the distributed node max and max-
parity tasks as the number of nodes () and number of
image features f;, are varied.

Our model achieves the lowest error percentages
when N = 8 and RMSE improves with increasing nodes.
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Figure 4: Training losses, RMSE and error percentages for max and max-parity tasks for M4, = 1000.

This shows that our model can scale while retaining
high inference accuracy on given tasks. It is not sur-
prising that the max-parity task is much harder to learn
compared to the max task. Efficiently learning parity in
distributed systems is typically difficult. The network
nodes learn to integrate information over multiple time-
steps (7' =2, 5, 8) via recurrent computation. For both
the (max and max parity) tasks, the error percentages are
slightly higher with f;, = 10, but this does not drastically
affect model performance. We also compare RMSE on
training data and RMSE on test data. A significantly
lesser train RMSE compared to test RMSE means a
model is over-fitting, whilst a greater means a model
under-fits. Our model neither under-fits nor over-fits.
Our results illustrate our model’s ability to instantiate
latent state communication with a communicating RNN
model to solve distributed objectives scalably. Figure []
shows training losses, RMSE and error percentages for
N=2,5,8.

4.2. Model Generalization

The success of any Neural Network model heavily
depends on its ability to generalise. This remains a dif-
ficult challenge for most Neural Network architectures.
To show the effectiveness of our model on adapting to
unseen network structures, (i.e., networks with vary-
ing number of nodes) we conduct experiments in which
training is done on N = 2, 3, 5 network nodes and infer-
ence is done on N = 6, 8, 12, 16, 20 and 40 nodes.

The results shown in Table [3]are comparable to cases
when only data from a single network structure is used
for training. At training time we vary N for batches of
training samples M,,,;, = 400 as shown in Figure El

Results on the test data show that our model gen-
eralises well and does not encounter any performance
degradation when tested on 20 and 40 nodes. Our model
is robust to a dynamic number of nodes, N during infer-
ence and generalizes well to learn the dependencies on
the defined tasks in spite of varying network structures.
This is of key importance for IoT systems which can

N Error % RMSE Avg. Test Loss
6 0.15 0.137 0.018
8 0.14 0.141 0.019
12 0.11 0.121 0.013
16 0.12 0.134 0.014
20 0.11 0.120 0.012
40 0.11 0.121 0.011

Table 3: Model performance results for inference on N = 6, 8, 10, 12,
16, 20, 40 with communication channel size v =2 and f;, = 25 for the
max task.

face dynamic changes in the number of nodes due to
node loss or replacement.

Dynamic Network Structures
— Tain 1Loss
Train 2 Loss
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Scaling Network Nodes (25 features)

0.25

o= RMSE - max
-+ Error % - max

= 2 nodes
= 3 nodes
0.15 5 nodes

Accuracy
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Number of nodes
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Figure 5: Left: Train and test losses on the max task. The network
uses dynamic network structures with N= 23,5 for M4i, = 400 for
each network structure at training time. Right: Model performance
for N =6, 8, 12, 16, 20, 40.

4.3. Communication-efficiency

In addition to demonstrating that our model can
learn to cooperatively solve distributed tasks via la-
tent state communication, we quantitatively assess
communication-efficiency at inference time. In resource
constrained systems, the total number of messages sent
to solve a problem must be minimized to conserve node
energy and limit network bandwidth. In our experi-
mental setup, we consider the total number of messages
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Figure 6: Communication patterns for N = 16 nodes across 5 sampling time-steps with low (factor: 0.25), medium (factor: 0.5) and high (factor:
0.8) penalization on communication cost optimization. Nodes in ON state (communicating nodes) are indicated by the green color whilst nodes in
OFF state (non-communicating nodes) are indicated by the yellow color. We can see that our model optimizes for communication cost (more or
less aggressively) depending on the impacting factor on the communication cost function.

communicated 7y, during inference. The commu-
nicated messages f.,m, are determined purely by the
model which optimizes a communication loss function
Lcomm by penalizing the total number of messages sent.
Figure [6] shows communication patterns in a 16-node
network when we vary the penalization on communica-
tion cost optimisation. Our model is able to automati-
cally adapt to the impact on penalization.

N -+ RMSE
. - Error %

0.45

0.40] «

0.35
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10 11 12 13 14 15 16 17 18
# of messages communicated overall

Figure 7: Model performance with varying number of messages com-
municated t.omm, for N = 5 on the max task. This demonstrates the
tradeoff between task accuracy and network resources. An operator
could choose to focus on efficient communication at the cost of a
small reduction in accuracy. Network nodes can only communicate
for a total maximum of #.y, =25 for each forward push.

As an architectural consideration, we set the size of
the node output communication channel v = 2. Our
results show that our model jointly optimizes for com-
munication cost whilst maintaining high predictive ac-
curacy at inference time. In Figure [7] we show the
trade-off between model performance and total number
of communicated messages in #,o, for N = 5.

L R
o u o wu o wu

Avg. number of messages communicated
o
wn

o
o

3
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Figure 8: Average number of messages communicated #.op,, for N =
5 as training progresses on the max task. Note how the network learns
to slowly reduce the amount of communication needed.

By taking the total number of messages communi-
cated across all nodes, #.,,, and dividing it by the max-
imum limit (the denominator) of the number of mes-
sages that can be communicated during inference, we



learn that only 51% - 56% communication is necessary
to reach a good accuracy on the max task. This intu-
itively makes sense, as nodes observing small digits can
stop participating in the process as it is clear that they do
not satisfy the max operator. In Figure[8] we show how
the network learns to communicate less with increasing
number of training epochs. This shows that nodes first
learn how to achieve good accuracy and then can reduce
communication cost through subsequent optimization.

4.4. Computational Complexity

Intelligent spatially distributed IoT applications must
execute a resource-aware operation that effectively
utilises limited computational resources available on
embedded IoT devices. Although Deep Networks, (i.e.,
CNNs) are powerful for inference tasks in many IoT
settings, they typically take up a significant amount of
memory. In our experiment, we quantify the computa-
tional overhead on both the feature extractors and the
communicating RNN model.

Op Params, a (K) FLOPs (K)/ %
Conv2d-1 0.26 149.76 / 30.28
MaxPool - 4.32/0.87
ReLu - 2.88/0.58
Dropout/Conv2d-2  5.02 320/ 64.7
MaxPool - 0.96/0.19
ReLu - 0.64/0.13
Linear-1 16.05 16.00/3.24
Totals 21.33 494.56 / 100

Table 4: Layer by layer computational overhead of a feature extrac-
tor applied on a single node at inference time. Model parameters, «
are given and FLOPs are estimated for extracting features for a single
image passed as a 4-D tensor on a single node. Feature extraction ker-
nels in the convolutional layers take up more computational resources
as compared to the fully connected layers.

Table E| shows the number of parameters and FLOPsﬂ
(FLoating-point OPerations) per layer in the models.
We can clearly see that most of the model’s computa-
tion (30.28 % in the first convolutional layer and 64.7
% 1in the second convolutional layer) is incurred at the
individual nodes’ feature extraction kernels during con-
volution operations. Although the linear layer only ac-
counts for 3 % of the computation, it involves 3x more

'We consider a FLOP as half a Multiply-Add operation. Thus, a
single Multiply-Add is 2 FLOPs

10

parameters when compared to the convolutional layers.
In total, the feature extractor takes approximately 0.16
MB of memory for inference on a single input image
considering the forward/backward pass and parameters.

Jin=10 fin=25
Op a(K) FLOPs(K) a(K) FLOPs (K)
Linear-1 075  0.700 1.5 1.450
ReLu - 0.050 - 0.050
Linear-2  0.408  0.400 0.408  0.400
ReLu - 0.008 - 0.008
Linear-3  0.126 0.112 0.261 0.232
ReLu - 0.014 - 0.029
Totals 1.284 1.284 2.169 2.169

Table 5: Layer by layer computational overhead for the communi-
cating RNN model. Model parameters, a are given for fi, = 10, 25
respectively and FLOPs are estimated for a single forward push at
timestep ¢ during inference on a single node. Using ReLu for layer
activation saves on computation cost as other activation functions, i.e.,
Sigmoid are more computationally costly as they use more FLOPs.

Table [5] shows the computational overhead for our
communicating RNN model. FLOPs and model param-
eters scale with the dimensionality of the input.

B 10 features
25 features
50 features
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Figure 9: Total (sum of all nodes) computational load with increasing
N =5, 12, 20, 40 at inference time on the max task. Model parameters
scale with increasing f;,. FLOPs are estimated as a product of N, ¢
and number of FLOPs per forward push, where ¢ is the number of
timesteps for which we hold the model input.

On a 8-node system, we realize a 5 % performance
difference on the max task when comparing f;, = 10
and f;, = 25, although the model performs 51 % more
FLOPs when f;,, = 25. Nodes in our model learn to dis-
tributively and cooperatively solve tasks via latent-state
communication. To achieve this, the model performs a



series of latent state updates across all nodes in the net-
work at inference time.

In Figure 9] we show the computational overhead
across N = 5, 12, 20, 40. It is worth noting how dou-
bling the nodes in the network results in 100 % increase
in FLOPs (the computational overhead scales linearly).
This is due to the model performing more latent state
updates with additional nodes in the network. Our re-
sults show that the computational overhead of the la-
tent state updates is negligible with respect to the overall
model.

fmw N Params (K) FLOPS (K) Error %
10 12 22.617 571.60 0.13
40 22.617 751.36 0.15
25 12 23.499 624.70 0.11
40 23.499 928.36 0.11
50 12 24.974 713.20 0.10
40 24.974 1,223.36 0.11

Table 6: Summary of computational overhead and model performance
for the unified C-RNN model on the max task with N = 12,40 and a =
1284, 2169, 3644 for fi, = 10, 25, 50 respectively. FLOPs are given
for inference on a single image.

As can be seen from Table[6] our unified model with
CNN-based feature extractors integrated with the com-
municating RNN model at each single node is suited
for embedded, resource constrained devices. This is
considering our model size (< 25K parameters) and the
number of FLOPs needed for inference in a N node net-
work on a single image. Further studies are necessary
to explore opportunities for optimisation on feature ex-
tractors through quantization and model compression.

4.5. Network Robustness

In distributed multi-node settings, network robust-
ness is of paramount importance. We model lossy-links
in which network nodes may fail to communicate their
latent states due to obstructions or multi-path etc.

Link failure 0% 20% 40% 60 %
Error % 0.170 0.176  0.188 0.194
teomm 7.0 100 130 13.0

Table 7: Model performance and average fcomm With link failure.

Table [/| shows a summary of our results with vari-
ous percentages of link failure with N = 5 and v = 2.
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Our communicating C-RNN model’s performance de-
grades by only 3.4 %, 13.6 % and 10.05 %, respectively
for 20%, 40% and 60% node failure on both max and
max-parity tasks. Moreover, our model automatically
learns to increase the total number of messages,  omm
sent amongst nodes with increasing link failure. This
shows that our model is robust to failing nodes.

4.6. Comparison with other methods

When considering distributed inference on local,
resource-constrained devices, communication cost is an
important concern. We evaluate our model’s computa-
tional footprint by comparing it with 4 baseline meth-
ods.

Energy-Unaware Distributed C-RNN Baseline In
this case, we setup an energy unaware variation of our
communicating C-RNN model. This model does not
optimise for communication cost as in the case with our
communicating C-RNN model. As in the communicat-
ing C-RNN model, each node observes a unique 28 x
28 MNIST digits in gray-scale, extracts 25 features and
feeds features in to the communicating RNN, which dis-
tributely and cooperatively solve the objective functions
(max and max-parity tasks) locally.

Centralised Baseline: In this model, each node ob-
serves a unique 28 x 28 MNIST digit in gray-scale and
transmits it to a central compute point that computes the
objective function.

Semi-centralised Baseline: Each node observes a
unique 28 x 28 MNIST digit in gray-scale, extracts 25
features from each image before transmitting them to a
central point that computes the objective function.

Tree-based Baseline: This approach considers a
classic Wireless Sensor Network arrangement as in [39].
We model a tree structure with N = 12, 40. At inference
time, the nodes observe a unique 28 x 28 MNIST digit in
gray-scale, extracts 25 features and communicates fea-
tures via links to neighbouring nodes to an aggregating
node. The aggregating node then passes features to a
central point for computation of the function from fea-
tures across all nodes.

We evaluate performance based on the communica-
tion and compute footprints of the baseline models com-
pared to our communicating C-RNN model. The com-
munication footprint measures the actual size of the
messages being transmitted/communicated whilst the
compute footprint gives a measure of the distance from
the very edge of the network to a central compute point.
In our case we model the distance from nodes at the
edge of the network to a central compute point as 4
units. All baselines use the same architecture for feature



extraction as given in section 3.2. In turn, the memory
requirement (1.8 MB for a 12-node system and 6 MB
for a 40-node system) for feature extraction on a single
image is similar across all baselines.

Baseline N Comms Compute Error %
Energy- 12 240 12.0 0.09
Unaware 40 800 40.0 0.10
C-RNN
Semi- 12 1200 48.0 0.08
centralised 40 4000 160.0 0.09
Centralised 12 9408 48.0 0.09
40 31360 160.0 0.09
Tree-based 12 3400 23.0 0.10
40 8100.16 160 0.11
Communicating 12 137.6 12.0 0.11
C-RNN 40 440 40.0 0.11

Table 8: Communication (bytes) and compute (units) footprints for
the different baselines considered in our experiment on the max task
with N = 12, 40 for fj, = 25. The communication and compute foot-
prints are given for inference on a single image across all nodes in the
network.

From results in Table E}, we can clearly see that
the communication and compute footprints for the cen-
tralised baselines scales quadratically when compared
to our communicating C-RNN model. Transmitting im-
ages to a central compute point is 8x more expensive
when compared to transmitting features from individ-
ual nodes. Although the communication and compute
footprints of the centralised approaches seem hefty, the
models achieve slightly higher accuracy on the objec-
tive task. Optimising for communication cost, as in our
communicating C-RNN model reduces the communi-
cation footprint, on average, by 1.7x when compared to
the energy-unaware variation of the same model. For
the two models, there is a marginal difference (10 %)
in model performance. Our communicating C-RNN
model uses 25x less communication and 1.9x less com-
pute resources when compared to the Tree-based base-
line in a 12-node system. These results demonstrate that
our communicating C-RNN achieves an encouraging
balance on communication and compute resource util-
isation whilst automatically learning to optimise com-
munication to solve distributed tasks locally. Moreover,
our approach automatically discovers complex com-
munication patterns without compromising on perfor-
mance.
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4.7. Architectural Considerations/Ablation

Our communicating C-RNN model presents oppor-
tunities for further optimization across the architectural
considerations. We manually vary the size of the node
output communication channel using v = 2, 10. The
node output communication channel size, v corresponds
to the number of latent states each node can communi-
cate. With v = 10, the model achieves an error percent-
age 6 % lower than that of v = 2. This is because most of
the nodes’ latent state information is retained for com-
putation within the model f;’s layers. We also consider
varying the number of features passed as input f;, from
the feature extractors into the communicating C-RNN
network. Our results show that there is only 5 - 10 %
increment in the model’s performance from a setup with
fin = 10 to a setup with f;, = 25. The model’s param-
eters scale with increasing f;, and v values considering
that these parameters directly affect the size of the la-
tent states of our model. Our results show that we can
achieve remarkable model performance even with small
values of both f;,, and v.

5. Conclusion

In this paper, we have presented a novel, scalable,
data-driven and communication-efficient Convolutional
Recurrent Neural Network (C-RNN) framework for dis-
tributed settings. Our model enables seamless latent
state communication without the need for complex pre-
determined, specialized communication protocols. We
showed through an array of experiments that our model
learns to communicate scalably and is suited for dis-
tributed IoT scenarios with visual data. Our model
achieves high accuracy with low communication cost
on defined target distributed objectives while being ro-
bust to node failure. Realizing optimal communica-
tion in resource constrained environments while meet-
ing required accuracies on target objectives is a key
challenge. Our work makes strides toward achieving
this using intelligent Machine Learning algorithms that
can sit on distributed, cooperating, resource-constrained
end devices in IoT settings. The concept of employing
latent state communication across multiple agents has
been explored in [21} 25], nonetheless, to the best of
our knowledge, this is the first time a communication-
efficient, yet scalable neural network architecture is pro-
posed for distributed inference on visual data whilst
considering latent state communication cost. Our com-
municating C-RNN architecture presents a wide ar-
ray of research directions on experimenting with more
sophisticated multiple node connection architectures.



With increasing number of nodes in a network, node
connections can easily become complex resulting in a
computationally intensive system. To solve this, future
work will entail coupling our model with quantized neu-
ral network architectures [31]] for resource constrained
devices. Moreover, it will be interesting to extend our
model to more complex scenarios in which heteroge-
neous nodes are observing multimodal data at inference
time.
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