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A B S T R A C T

Internet of Medical Things (IoMT) is now worth a billion dollar market. While offering enormous benefit,
the prevalent and open environment of IoMT ecosystem can be a potential target of varied evolving cyber
threats and attacks. Further, extensive connectivity of IoMT devices and their dynamic massive heterogeneous
communication can create a new attack surface for sophisticated multivector malware attacks. There is a dire
need to protect the forthcoming IoMT industrial revolution from varied evolving cyber threats and attacks. The
authors propose a hybrid DL-driven SDN-enabled IoMT framework leveraging Convolutional Neural Network
(CNN) and Cuda Deep Neural Network Long Short Term Memory (cuDNNLSTM) for a timely and efficient
detection of sophisticated multivector malware botnets. For comprehensive evaluation, a state-of-the-art IoMT
dataset and standard performance metrics have been employed. For verification purpose, we compare our
proposed framework with our constructed hybrid DL-driven architectures and benchmark algorithms. Our
proposed technique outperforms in terms of detection accuracy and testing efficiency. Finally, we also perform
10-fold cross validation to utterly show unbiased results.

1. Introduction

Internet of Things (IoT) is an enduring evolving technological
paradigm connecting billions of smart objects [1,2] resulting in smart
ecosystems such as smart factories, smart cities, smart health, smart
home, smart vehicular networks, smart grids and Industrial Internet of
Things (IIoT). Consequently, IoT is becoming and indispensable part
of any emerging computing and networking paradigm. Currently, the
latest revolution of Industrial IoT is growing tremendously resulting
in huge monetary benefits and automation [3]. IIoT has the ability to
enhance industrial safety, quality control, automation and production
flow management.

On the contrary, open and prevalent environment of the Internet of
Medical Things (IoMT) can be a potential primary target for various
cyber threats and attacks [4]. Heterogeneous and dynamic nature of
IoT devices magnifies the possibilities of cyber exploits exponentially
that may leads to Denial of Service (DoS), Distributed Denial of Service
(DDoS), advance persistent threats and attacks, data-injection attacks

∗ Corresponding author: Mian Ahmad Jan.
E-mail addresses: adnak@dtu.dk (A. Akhunzada), mianjan@tdtu.edu.vn (M.A. Jan).

1 Equal-first author: Adnan Akhundzada.

and sophisticated malware botnet attacks to entirely jeopardize the
availability and confidentiality of available data, processes, or even
throw the whole ecosystem into chaos [5–7]. Hence, IoMT besides
leveraging huge benefits is vulnerable to varied evolving cyber threats
such as key logging, phishing, identity theft and malicious bot prolif-
eration [8]. Likewise, the digital landscape of the IoMT is also prone
to complex hacking approaches, physical security threats, and set of
varied devices to be simply compromised by botnets [1]. Consequently,
attacks launched against IoMT can have devastating effects with severe
damages compare to traditional industries and enterprises [4]. Further,
attack detection is radically divergent from existing mechanisms due to
IoT special service requirements (i.e., resource limitations, low latency,
scalability, distribution and mobility) [9]. Hence, IoMT network des-
perately need an adaptive, flexible, dynamic cost-effective, well-timed
detection mechanism against varied prevalent evolving cyber threats.
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Fig. 1. DL-driven SDN-enabled IoMT detection framework.

1.1. Motivation

IoMT infrastructure comes at the cost of severe cyber threats and
attack countermeasures. Multivector malicious bots are one of the most
prevalent and sophisticated cyber threats in IoT environment. Botnet, is
a captivating platform to potentially launch almost all kind of network
attacks on IoMT [10], such as leveraging traditional malicious codes
and syndicate attack methods that makes it a remarkable platform
for the skilled adversaries. Consequently, botnets have the ability to
launch various types of attacks, such as Distributed Denial of Service
(DDoS), keylogging, identity theft, phishing, reconnaissance and bot
proliferation [9,11,12]. Eventually, there is a dire need to enhance
protection mechanisms against various evolving malware bot threats
and attacks.

To the best of our knowledge, this is the first effort that com-
prehensively tackle sophisticated IoMT multi-vector evolving cyber
threats using a hybrid DL-driven SDN-enabled framework. Moreover,
the authors propose a highly scalable, adaptive, cost effective, well-
timed detection framework leveraging the underlying IIoT resources
without exhaustion is a novel breakthrough.

1.2. Contributions

The main contributions of the paper are manifold.

(1) The authors propose a highly efficient and scalable hybrid DL-
driven (i.e., cuDNNLSTM-CNN) SDN-enabled framework to de-
tect sophisticated and malicious multivector evolving IoMT bot-
nets. Further, the proposed SDN-enabled mechanism is designed
that do not place extra burden on the underlying IoMT resources.

(2) A current state-of-the-art publicly available IoMT dataset (i.e.,
Bot-IoT dataset) is employed for a comprehensive evaluation of
the proposed mechanism.

(3) Standard performance metrics have been utilized to thoroughly
evaluate our proposed mechanism (i.e., accuracy, precision, re-
call, F1-score, ROC, FNR, FPR, FDR, MCC etc.).

(4) For verification purpose, we compare our proposed technique
with our constructed hybrid DL driven architectures (i.e., hy-
brid DNN–GRU, LSTM–GRU). We also provide a comprehensive
comparison with current benchmark algorithms.

(5) Our proposed mechanism outperforms both in terms of detection
accuracy, and computational complexity.

(6) Finally, a 10-fold cross validation is also performed to explicitly
show unbiased results.

1.3. Organization

The remainder of this paper is structured as follows. Background
and related work is provided in Section 2. Section 3 describes a detailed
overview of our proposed scheme (i.e., network model, hybrid DL-
Driven architecture, time complexity of the proposed model description
and pre-processing of the dataset). Section 4 elaborates the experi-
mental setup and performance evaluation metrics. Section 5 presents
experimental results and discussions. Section 6 concludes the paper
with future remarks.

2. Background and related work

Software defined networking (SDN) is considered a promising next
generation networking paradigm. SDN basically comprises of three
planes (i.e., application plane, control plane and data plane and their
corresponding APIs (i.e., southbound and northbound). A comprehen-
sive and detailed architecture of SDN is explored in our published
work [13–17]. The power of SDN lies in its centralized control in-
telligence that is the control plane. The controller is central decision
maker and has the ability to view abstractly and govern the whole un-
derlying topological view (i.e., central and global network view) [18].
Moreover, the controller is programmable and can customize various
functionalities [17]. Precisely, the control plane has the capability
and potential to extend many underlying networks at the data plane
such as software defined vehicular networks, software defined edge
computing architectures, software defined fog computing architectures,
software defined IoT architectures and so on. The literature is evident of
varied SDN-enabled computing architectures [9,19–21]. There are few
computing architectures that shows an infrastructure plane extended
from data plane to show more clarity. However, together explicitly; it
is known as data plane. Consequently, SDN-enabled frameworks can en-
hance the potentials of underlying highly dynamic and heterogeneous
environment of Industrial IoT as shown in Fig. 1. that also depicts
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Fig. 2. DL-driven hybrid detection model.

Table 1
Features table.

Sr. no Features names Sr. no Features names Sr. no Features Sr. no Features

1 pkSeqID 12 State 23 Dpkts 34 TnP-Per-Dport
2 Stime 13 State-number 24 Sbytes 35 AR-P-Proto-P-SrcIP
3 Flgs 14 Ltime 25 Dbytes 36 AR-P-Proto-P-DstIP
4 Proto 15 Seq 26 Rate 37 N-IN-Conn-P-SrcIP
5 proto-number 16 Dur 27 Srate 38 N-IN-Conn-P-DstIP
6 Saddr 17 Mean 28 Drate 39 AR-P-Proto-P-Sport
7 Sport 18 Stddev 29 TnBPSrcIP 40 AR-P-Proto-P-Dport
8 Daddr 19 Sum 30 TnBPDstIP 41 Pkts-P-State-P-Protocol-P-DestIP
9 Dport 20 Min 31 TnP-PSrcIP 42 Pkts-P-State-P-Protocol-P-SrcIP
10 Pkts 21 Max 32 TnP-PDstIP
11 Bytes 22 Spkts 33 TnP-PerProto

our proposed hybrid DL-driven framework. A major breakthrough of
SDN-enabled hybrid DL-driven IoMT frameworks is that it leverages the
underlying resource constrained nature IoT devices without exhaustion.
Our proposed detection mechanism is highly scalable that can simply
be customized and extended to any commercial controller such as
Floodlight, POX, and Open daylight etc. Authors in [22] propose a
hybrid intrusion detection system based on Spark Machine Learning
and Convolutional-LSTM. The proposed technique achieves 97.29%
detection accuracy with 0.71% false alarm rate utilizing the ISCX-
UNB dataset for evaluation. The study in [23] presents a hybrid IDS
for improved IoT security that combines Genetic Algorithm and Deep
Belief Network for the cyber threats detection. This approach achieves
approximately 99% accuracy. The article [5] is based on using deep
auto encoder and deep forward neural networks for the identification
of malicious activities in industrial internet of things. This model scores
a detection accuracy of 99%.

Bhatt et al. [24] employed a hybrid detection module (HDM) com-
prising of One class Support Vector Machine (OCSVM), Self-Organizing
Maps (SOM), Gaussian Mixture Model (GMM), and Isolation Forest with
98% detection accuracy. A synthetic MQTT Dataset [25] is used to
detect multi-class attacks by applying a GRU-LSTM ensemble model
that nearly achieves 99% per class accuracy. Deep learning based IDS
in [26] employs Gated Recurrent Neural Networks (GRU) for iden-
tifying intrusion in IoT network and achieve an overall accuracy of
98.91% having False Alarm Rate of 0.76% that needs to be reduced for
improved efficiency. In [27], the authors propose a bio-inspired SDN-
based IDS for cross fire attacks. [28] presents a novel SDN originated
IoT network security architecture, SeArch, leveraging deep learning
models for intelligent threat detection in IoT network that scores 95.5%
of average accuracy employing Stacked Autoencoder (SAE) and Self Or-
ganizing Map (SOM). The work done in [29], demonstrates an artificial
neural network-based approach to train a network packet inspector for
the identification of malicious packets from the IoT devices.

3. Methodology

The section presents the complete methodology of the proposed
work.

3.1. Network model

The SDN control plane has the capability to extend IoMT at the data
plane. Our proposed hybrid DL-Driven SDN-enabled IoMT detection
framework is part of the control plane as shown in Fig. 1. The proposed
detection module is essentially deployed on the control plane of the
SDN. The reasons of placement of our proposed module on the control
plane are manifold. Firstly, the control plane is programmable and
represents the core centralized intelligence of the SDN. It maintains the
global view of the entire underlying networks and all the forwarding
decision are made here at the control plane. Secondly, the proposed
framework at the control plane can simply leverage the underlying
IIoT constrained devices without exhaustion that makes it a more
suitable breakthrough for IoMT. Further, the proposed system is highly
manageable and scalable being centralized, customized, and extended
to any commercial SDN controller. Some architectures divide the data
plane into two (i.e., data plane and infrastructure plane). However, in-
frastructure is explicitly part of the data plane. Therefore, we have data
plane that implicitly carries infrastructure plane that may comprises of
Varied IoMT devices, wireless technologies, sensors, and various mobile
and smart devices etc. A complete explanation of the SDN architecture
is provided in our published work [14–16].

3.2. Proposed Hybrid DL-driven architecture

The proposed Hybrid DL architecture comprises of CNN and cuD-
NNLSTM to detect sophisticated multi vector malware botnets in IIoT
environment. A schematic architecture of our hybrid CNN-cuDNNLSTM
model is shown in Fig. 2. Initially, we trained our Model on 2D-CNN
to do feature extraction by applying two layers known as convolution
and pooling layer that results on feature maps. This process helps the
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model to learn the spatial features efficiently. On the contrary, 2D-
CNN is unable to figure-out the critical inter-dependency of the features
due to lack of temporal information. Therefore, we introduced the
cuDNNLSTM layers after the CNN layers, to learn the spatial as well as
temporal features in a more robust way. By employing this method, we
managed to overcome the vanishing and exploding gradient dilemma
efficiently that has mainly resulted in a higher detection accuracy with
reduced False Positives. Finally, temporal feature vectors are passed as
input to the Softmax classifier as a probabilistic function. The complete
architecture of the proposed hybrid architecture is given in Table 1.

(1) Convolutional Neural Network (CNN) Convolutional Neural Net-
work (CNN) is a multi-layered architecture comprises of convolutional
layers, Pooling layers and fully-connected layers. It is a feed-forward
neural network that works in two parts: (a) Feature extraction, and
(b) predictions. CNN facilitates in achieving Feature Extraction in order
to retrieve distinguishing features. Feature extraction can be expressed
as Eq. (1) where ⨂ indicates the convolutional operation and 𝑊 𝑗𝑘

represents weights (i.e., weight of the 𝑗th layer in the 𝑘th feature
map) initialized randomly and then trained with CNN model. 𝐹𝑗−1 is
defined as the output of the 𝑗 − 1 layer and 𝐹𝑘 is the output of the
𝑘th feature map in the convolutional layer. Subsequently, we make
final predictions on basis of these extracted features. Hence, it is
important to realize that feature extraction is crucial for classification
problems. CNN facilitate in adjusting the weights and biases of neurons.
In addition, the idea behind the convolutional layers is to extract
the spatial patterns and reducing the noise of the original signal by
applying the convolutional operations. A detailed explanation of the
CNN is given in [30–32]. We have further employed cuDNN-enabled
CNN that essentially improves the overall computational complexity of
CNN.

𝐹𝑘 = 𝜎(
∑

𝑊 𝑗𝑘
⨂

𝐹 (𝑗 − 1)) (1)

(1) Cuda Deep Neural Network Long Short Term Memory (cuDNNLSTM)
The complexity of scaling up Recurrent Neural networks stems from

the dependence of the state computation on time. In common archi-
tecture of RNNs, such as Long Short Term Memory (LSTM) and Gated
Recurrent Units (GRU), the computation of each step is postponed until
the previous step has been completed. Such sequential dependencies
result in slower recurrent networks which can limits their applicability.
cuDNNLSTM is a fast LSTM implementation backed by cuDNN [25].
cuDNN is a GPU accelerated library which enables fast and easy multi-
threading for LSTM networks with high sequence modelling capacity.
In addition, it also performs fast matrix multiplication to improve
the overall performance. LSTM neural networks have the ability to
overcome the long-term dependency problem as they can memorize
information for a longer time period. LSTM layers are made up of
recurrently connected memory blocks which helps the model to forget
the previous states and replace it with new information [33]. Hence,
system learns gradually to its maximum capability. cuDNNLSTM has
the ability to overcome the BasicLSTMCell sequential dependency prob-
lem [34]. The pseudo code of the proposed hybrid architecture is given
in Algorithm 1.

3.3. Time complexity of hybrid CNN-cuDNNLSTM algorithm

We have analysed the time complexity of our proposed DL-Driven
hybrid detection model. Since it is a hybrid architecture, we com-
pute the time complexity of the CNN-2D and cuDNNLSTM separately.
Subsequently, we added both time complexities to show overall time
complexity of the proposed DL-driven hybrid model. Time complexity
can be calculated using the following equations:

𝐶𝑁𝑁2𝐷 = 𝑂(
𝑓=1
∑

𝑑
𝑛𝑙−1.𝑠

2
𝑙 .𝑛𝑙 .𝑜

2
𝑙 ) (2)

where l is the index of convolutional layer while f denotes its depth.𝑛𝑙
is the number of filters in the 𝑙th convolutional layer. 𝑛𝑙−1 presents the

number of input channels of 𝑙th layer and 𝑠𝑙 denotes the spatial size
of the feature map, whereas; the basic architecture of LSTM is local in
time and space [35] and therefore, the complexity of each weight is
𝑂 (1). Consequently, the complexity of CNN-cuDNNLSTM per time step
can be computed using Eq. (3).

𝑂(
𝑓=1
∑

𝑑
(𝑛𝑙−1.𝑠2𝑙 .𝑛𝑙 .𝑜

2
𝑙 ) +𝑤) (3)

for calculating the complexity of training process of CNN-cuDNNLSTM
detection model can be written as Eq. (4):

𝑂((
𝑓=1
∑

𝑑
(𝑛𝑙−1.𝑠2𝑙 .𝑛𝑙 .𝑜

2
𝑙 ) +𝑤).𝑖.𝑒.,𝑘) (4)

where i denotes the input length, e is the number of epochs and k
expresses the number of folds. Hence, our proposed algorithm has O
complexity in the symbolic asymptotic notation.

3.4. Dataset description

Selecting an appropriate dataset contributes significantly in evalu-
ating the performance of a detection system. Extant researchers have
employed KDD99 [36], NSL-KDD [37–39], KDD CUP99[27,40], UNSW-
NB15 [41], CICIDS 2017 [42] for intrusion detection in IoTs that lacks
supportive IoT features and are mainly composed of missing realistic
traffic, and IoT traces. That is why, we selected a current state-of-
the-art publicly available Bot-IoT dataset [8]. The dataset comprises
of realistic IoT network traffic, as the traffic is recorded from varied
dedicated IoMT devices with real IoT traces. Bot-IoT dataset has 72
million records captured in an IoT simulated environment. We have
used a down scaled version of this dataset that initially contains 668522
attack and 477 legitimate traffic instances, each instance or record with
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Table 2
Description of system model.

Algorithm Layers Neurons/Kernal AF/LF Optimizer Epochs Batch-size

CNN-cuDNNLSTM

Conv Layer(2) (60,20) RelU/CC-E
MaxPool layer (1,1) – Adam 5 32Dropout (0.1) –
Flatten –
cuDNNLSTM(2) (60,20) –
Merge Layer –
Output Layer 4 softmax

DNN–GRU

dense layer(2) (10,10) RelU/CC-E
Dropout(2) (0.35,0.35) –

Adam 5 32GRU(3) (10,15,5) –
Dropout(3) (0.35,0.35,0.35) –
Merge Layer –
Output layer 4 softmax

LSTM–GRU

dense layer (2) (15,10) RelU/CC-E

Adam 5 32

Dropout(2) (0.35,0.35)
GRU(2) (15,10)
Dropout(2) (0.35,0.35)
Merge Layer –
Output layer 4 softmax

AF = Activation Function. LF = Loss Function. CC-E = categorical cross-enotropy.

42 features as shown in Table 1. We have up-sampled the legitimate
traffic instances to 2400. The dataset is multi-nominal carrying multiple
classes of attacks. However, we have labelled our dataset with three
main attack classes (i.e., DDoS, theft and reconnaissance) (see Table 2).

3.5. Data pre-processing

Pre-processed data is achieved by applying the following steps.
(1) Data Transformation
Initially we have dropped the rows which contain missing values

(i.e., nans, blanks etc.,) from the dataset as it can drastically impact
the quality of data and the quality of the proposed evaluation model. It
was observed that, each instance in Bot-IoT dataset contain 40 numeric
and 7 non-numeric features. DL-enabled algorithms normally process
data in the form of numeric matrix. Therefore, we have converted all
of the non-numeric features such as flgs, proto, state and category
to numeric values by using sklearn's label encoder function. In next
step, we performed one hot encoding on the output label ‘category’
as numeric ordering of categories can degrade the performance of
the model and may produce unexpected results. Finally, we have also
converted two more features ‘saddr’ and ‘daddr’ IP values that contains
both IPV4 and IPV6 addresses to numeric values. we have observed
that ‘sport’ and ‘dport’ are in hexadecimal format, therefore; we need
to convert these hexadecimal values to integers to feed the dataset
accordingly.

(2) Data Normalization
To increase the effectiveness of IDS, there is a need to shift all values

to a scaled version as it depurates the effect of gross influence. This
process is referred as normalization [28]. MinMaxScaler function have
been utilized to perform the normalization on the feature vectors of
Bot-IoT dataset. The minmax normalization is based on the following
equation:

𝑋𝑖 − min(𝑋)
max (𝑋) − min (𝑋)

(5)

3) Up-sampling Dataset
We have also addressed class imbalance problem in the dataset.

We observed that there is only 477 IoT normal traffic, in contrast, to
668522 attack traffic is present in the selected file UNSW_2018_IoT
Botnet_Full5pc_4. We up-sampled the Normal traffic to create a bal-
anced dataset. After up-sampling, the total number of normal records is
2400. Now the total number of IoT traces are 670445 (i.e., attack and
normal).

4. Experimental setup and performance evaluation metrics

4.1. Experimental setup

We have trained all the proposed hybrid DL models using Keras with
python version ‘Python 3.7.3’. In addition, we have configured our PC
server with GPU based Tenserflow and Nvidia cuDNN library to enable
parallel processing and fast matrix multiplication. All experimentations
have been carried out on a single PC server equipped with Intel(R) Core
(TM) i7-8750H CPU @ 2.21 GHz processor, 16 GB RAM and Nvidia
GeForce GTX 1060 6GB graphics card.

4.2. Performance evaluation metrics

We have employed standard performance evaluation metrics (i.e.,
accuracy, precision, recall, ROC, F1-Score, testing and training time,
True Negative Rate (TNR), False Negative Rate (FNR), False Discovery
Rate (FDR), False Positive Rate (FPR), Matthews Correlation Coefficient
(MCC) and False Omission Rate (FOR). True Positive (TP), True Nega-
tive (TN), False Positive (FP) and False Negative (FN) are being noticed
from confusion matrix. Elements of the confusion matrix = FP, FN, TP,
TN where FP (false positives) indicates the number of normal instances
misclassified as anomalous; FN represent attacks which are incorrectly
identified as normal; TN and TP represent correctly classified attacks
and normal instances. Whereas, ROC curve plots the visualized perfor-
mance for the comparison of true positive rate and false positive rate.
Mathematical formulas for basic evaluation metrics are as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(6)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(7)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(8)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑇𝑃
2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(9)

𝐹𝑃𝑅 = 𝐹𝑃
𝐹𝑃 + 𝑇𝑁

(10)

5. Results and discussions

To analyse the performance of our proposed Hybrid DL-Driven
model (i.e., CNN-cuDNNLSTM), we thoroughly compared it with our
constructed hybrid DL-driven models (i.e., DNN–GRU, LSTM–GRU).
A correlation of the results obtained by applying the aforementioned
standard and extended evaluation metrics are thoroughly analysed
and detailed in this section. Additionally, a comprehensive comparison
of the proposed model is also provided with current benchmarks in
Table 4.
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Fig. 3. Confusion Metrics.

Fig. 4. ROC Curves.

5.1. Cross validation

To show explicitly unbiased results, we have employed 10-fold cross
validation presented in Table 3. The results of each fold is displayed
for more clarity. Further, the average results of the 10-fold for varied
performance metrics are shown in their corresponding subsections.

5.2. Confusion matrix analysis

A thorough analysis of the confusion matrices evidently shows
that our proposed technique outperforms from the rest of our con-
structed two hybrid DL-driven architectures as shown in Fig. 3. Our
proposed technique identifies correctly the three different classes of
attacks. On the contrary, LSTM–GRU performs comparatively better
than DNN–GRU.

5.3. ROC analysis

An ROC curve plots the visualized performance for the comparison
of true positive rate and false positive rate. The ROCs as shown in
Fig. 4. presents precisely better performance of the proposed algorithm
compared to the rest of the hybrid DL-driven architectures.

5.4. Accuracy, precision, recall and F1-score

For a detailed performance assessment, Fig. 5. presents the detection
accuracy, precision, recall and F1-score. It depicts clearly that our
proposed mechanism outperforms in terms of the crucial performance
metrics compared to LSTM–GRU, and DNN–GRU. However, Fig. 6.
clearly demonstrate the average per-class accuracy of the varied attacks
that also depicts that CNN-cuDNNLSTM produced outclass results as
compared to DNN–GRU and LSTM–GRU.

Fig. 5. Accuracy, precision, recall, F1-measure.

5.5. TPR, TNR, MCC analysis

We calculated the TPR, TNR, and MCC values from the confusion
matrix for the detailed assessment and analysis. Fig. 7. exhibit clearly
that our proposed mechanism shows better results in terms of TPR, and
MCC. However, the value of TNR is almost same for LSTM–GRU and
CNN-cuDNNLSTM compared to DNN–GRU.
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Table 3
10-Folds results for hybrid DL algorithms.

Folds Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Hyb-1 Hyb-2 Hyb-3 Hyb-1 Hyb-2 Hyb-3 Hyb-1 Hyb-2 Hyb-3 Hyb-1 Hyb-2 Hyb-3

1 99.99 99.99 99.99 99.73 98.12 100 100 100 100 100 100 100
2 100 99.99 99.18 100 99.21 98.63 100 100 99.09 100 100 99.09
3 99.98 99.98 100 100 99.74 100 99.11 100 100 100 97.01 100
4 99.96 99.99 99.18 99.75 100 99.08 99.54 100 100 98.32 100 100
5 100 98.36 99.46 100 99.08 97.08 100 99.08 100 100 99.08 100
6 98.51 99.97 99.15 98.96 99.32 98.54 99.21 100 99.09 100 100 99.09
7 99.95 99.96 99.19 99.47 96.21 97.55 100 99.09 99.09 99.45 100 99.09
8 100 99.18 99.25 100 99.12 100 100 100 100 100 99.09 100
9 99.97 99.95 99.17 100 98.65 100 100 100 99.09 100 100 99.09
10 99.96 99.96 99.36 96.34 100 100 99.11 99.54 100 100 100 100

HYB-1 = Hybrid CNN-cuDNNLSTM. HYB-2 = Hybrid DNN–GRU. HYB-3 = Hybrid GRU-LSTM.

Table 4
Comparison with benchmarks.

Parameters H. Muna [43] Y. Li [44] R. Vinaya [45] Our work

Dataset UNSW-NB 15 NSL-KDD DMD-2018 Bot-IoT dataset
Algorithm DAE-DFFNN Multi-CNN DGA CNN-cuDNNLSTM
Binary_class ✓ ✓ ✓ ✓

Multi_class ✓ ✓ – ✓

Cuda Enabled – – – ✓

10-fold – – – ✓

Accuracy by Class ✓ ✓ – ✓

Average Accuracy 99 86.95 99.2 99.99
Precision – 89.56 85.0 99.83
Recall – 87.25 99.2 99.33
F1-score – 88.41 91.5 99.33
Testing Time 55000(ms) – – 3000(ms)
FPR 8.2 13.45 – 5.99
Evaluation Metrics(others) – – – ✓

Others = TNR, FNR, FDR, FOR, MCC.

Fig. 6. Per-class Accuracy.

5.6. FPR, FNR, FDR and FOR analysis

For the rigorous assessment and analysis, we calculated the FPR,
FNR, FDR and FOR, values from the confusion matrix. Fig. 8. demon-
strates clearly that our proposed mechanism shows better results in
terms of FPR, FNR, FDR and FOR. Conversely, LSTM–GRU performs
comparatively well than the DNN–GRU.

5.7. Speed efficiency

We investigated the proposed hybrid deep learning model in the
context of total elapsed time it requires. There are two major phases
(i.e., testing and training). Since Training time is performed offline,
we usually do not consider it. However, testing time represents the
actual efficiency of the model (i.e., testing time represent the total time

Fig. 7. TPR, TNR, MCC.

elapsed when the model is deployed in real time). For more clarity, we
have calculated both average testing and training time. The results in
Fig. 9. clearly shows that our proposed mechanism is quite efficient and
computationally in-expensive both in testing and training time. On the
other hand, DNN–GRU is time efficient compared to LSTM–GRU.

6. Conclusion

IoMT demands a reliable, dynamic, flexible, faster and secure net-
work infrastructure for its exponential growth. In this paper, we intro-
duced a novel Hybrid DL-driven SDN-enabled IoMT detection frame-
work to combat sophisticated multivector botnet attacks (i.e., DDoS,
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Fig. 8. FPR, FNR, FDR, FOR.

Fig. 9. Training and testing time.

theft and reconnaissance). The proposed mechanism is highly scalable,
cost-effective and proficient. Besides, the proposed SDN-enabled IoMT
framework leverages the underlying IoT resource constrained devices
without exhaustion. Comprehensive evaluation and comparison with
current benchmarks and our constructed GPU accelerated hybrid DL
driven architectures (i.e., DNN–GRU and LSTM–GRU), the proposed
mechanism outperforms in terms of detection accuracy and speed
efficiency. Finally, we endorse varied hybrid DL-driven architectures
for rigorous evaluation in the emerging computational paradigms and
IoT ecosystems.
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