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Abstract

With the advent of 5G and the evolution of Internet protocols, industrial appli-
cations are moving from vertical solutions to general purpose IP-based infras-
tructures that need to meet deterministic Quality of Service (QoS) requirements.
The IETF DetNet working group aims at providing an answer to this need with
support for (i) deterministic worst-case latency and jitter, and (ii) zero packet
loss for time-sensitive traffic.

In this paper we focus on the joint routing and scheduling problem in large
scale deterministic networks using Cycle Specified Queuing and Forwarding
(CSQF), an extension of Cyclic Queuing and Forwarding (CQF) with multi-
ple transmission queues and support of segment routing. In this context, we
present two centralized algorithms to maximize traffic acceptance for network
planning and online flow admission. We propose an effective solution based on
column generation and dynamic programming. Thanks to the reinforcement of
the model with valid inequalities, we improve the upper bound and the solution.
We demonstrate on realistic instances that we reach an optimality gap smaller
than 10% in a few seconds. Finally, we also derive an ultra-fast adaptive greedy
algorithm to solve the problem at the cost of a small extra gap.

Keywords: Deterministic Networking, Routing, Scheduling.

1. Introduction

The 5th generation of networks is paving the road for latency-sensitive net-
work services to enable a wide-range of applications like factory automation,
connected vehicles and smart grids [1]. Traditional Internet Protocol (IP) ser-
vices allow delivering packets with no loss and no ordering issues. However,
they cannot provide strict Quality of Service (QoS) guarantees. Certain service
classes can be given preferential treatment but performance is still statistical.
Deterministic performances are now a must to support applications with low and
worst-case latency requirements, such as audio and video bridging, industrial
automation (smart factory), smart grid, and remote control for telemedicine or
automotive.
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A collection of IEEE 802.1 Ethernet standards, known as Time-Sensitive
Networking (TSN) [2], has been developed in the past decade to support profes-
sional applications over Local Area Networks (LAN) with mechanisms such as
priority queuing, preemption, traffic shaping and time-based opening of gates at
output ports. While these mechanisms are well suited for static traffic require-
ments and small networks, they are not enough to support large-scale IP net-
works. The IETF DetNet (Deterministic Networking) [1] working group is tak-
ing a step further by defining Segment Routing (SR) mechanisms so that Layer 3
can dynamically exploit Layer 2 functionalities for queuing and scheduling to
support (i) deterministic worst-case latency and jitter, and (ii) zero packet loss
for time-sensitive traffic. In particular, the working group is currently specifying
Cycle Specified Queuing and Forwarding (CSQF) [3], a promising extension to
Cyclic Queuing and Forwarding (CQF, a.k.a. IEEE 802.1Qch) with more than
2 transmission queues in order to relax tight time-synchronization constraints
and to schedule, in a more flexible way, transmissions at each hop.

In TSN layer-2 networks, several works have optimized the opening and
closing of gates at output ports (IEEE 802.1Qbv, [4, 5, 6]) to meet low latency
requirements. However, these solutions suffer from two main limitations: 1)
the overall gate schedule has to be modified at network-level every time the
traffic characteristics evolve and 2) no queues can be used to dynamically de-
lay packets at nodes. Alternatively, CSQF proposes a scalable solution where
transmission cycles at each port repeat periodically thanks to the round-robin
opening of multiple queues dynamically selected by IP packets using segment
routing identifiers (SIDs), a label stack that determines scheduling and routing
at each hop. A network controller decides the proper label stack for each flow by
solving a joint scheduling and routing problem. In this context, we propose two
centralized control plane algorithms to maximize traffic acceptance both in the
offline (i.e., global optimization) and the online (i.e., fast demand acceptance)
scenarios. We point out that the offline algorithm can be used either to dimen-
sion the network, i.e., configuring network parameters, or to route batches of
demands into the network, while the online algorithm can be used to quickly ac-
cept new demands as soon as they arrive into the network considering the same
network parameters decided by the offline planning. For the online algorithm,
the inputs to the problem are discovered in sequence and a decision must be
taken at demand arrival, while for the offline algorithm to dimension network
resources all inputs are known when solving the problem. Up to our knowledge,
it is the first paper to formulate the joint routing and scheduling problem for
DetNet and provide efficient algorithms in large-scale deterministic networks.

We formulate the Deterministic Networking (DN) planning problem to max-
imize the acceptance of time-triggered traffic and we analyze its NP-hardness.
Then, we present an effective solution based on column generation and dynamic
programming to solve a relaxed version of the problem which we round after-
wards. Furthermore, thanks to the reinforcement of the problem model with
valid inequalities, we show that we can drastically improve the upper bound (by
up to 30%) to better estimate the optimality gap and enhance the final solution
(by up to 5%) on large instances. We demonstrate on realistic instances with
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hundreds of nodes and links that we can reach a gap smaller than 10% in a
few seconds. Finally, as an alternative, we derive an ultra-fast adaptive greedy
algorithm (10 µs per demand) at the cost of an extra 5% gap when compared
to the advanced solution based on column generation. This algorithm can be
used for the quick acceptance of new demands in an online fashion.

More details about CSQF are given in Sec. 2. Relevant related works are
discussed in Sec. 3. The DN problem is formulated and analyzed in Sec. 4.
Sec. 5 derives the column-generation algorithm and Sec. 6 presents the adaptive
greedy solution. Numerical assessments are shown in Sec. 7. Sec. 8 concludes
this paper.

2. DetNet System Model with CSQF

A promising standard draft from the IETF DetNet group is the Cycle Spec-
ified Queuing and Forwarding (CSQF) mechanism [3]. It is an evolution of
the Cyclic Queuing and Forwarding (CQF) [7], also referred to as peristaltic
shaper, which considered 2 queues on ports, open and closed alternatively in
a cyclic fashion. At any given time, one queue is for transmission while the
other one is for reception. CQF works well for small networks as it assumes
perfect synchronization between nodes and as the delay of packets cannot be
dynamically controlled. A packet sent from a node in a cycle c must be received
during the same cycle and retransmitted at cycle c+ 1. To improve scalability
and flexibility, DetNet CSQF adds the possibility of using more queues for loose
synchronization between nodes and advanced scheduling [8, 9]. Differently from
CQF which is a layer 2 protocol, CSQF operates at layer 3 as it allows the
routing and the scheduling of packets using Segment Routing (SR).

2.1. Segment Routing for packet forwarding

While in CQF a packet can only be forwarded at the next transmission cycle
that follows the reception one, CSQF allows a flexible transmission scheduling
by using a SR label stack to explicitly state for each intermediate node on which
port (routing) and in which cycle, i.e., which queue (scheduling), each packet
should be transmitted after being received and processed. Precise knowledge of
the position of a packet inside the network at a generic instant t comes from the
fact that, at each node, the worst case forwarding latency is known. Each time
a packet arrives at a node, the scheduling of its future transmission is realized
by its assignment to one of the inactive queues. As shown in Figure 1, the SR
Id (SID), i.e., the label, contained in the header of the packet allows at each
SR-enabled node to first determine the output port for the packet. A range
of SIDs is assigned to each port in order to define the outgoing queue for each
packet. Once the port is chosen, the SID is used to map the corresponding
outgoing cycle. Second, as the cycles are statically mapped into transmission
queues, the SID is used to determine the outgoing queue in which the packet
will be transmitted. The role of the centralized controller is to define, for each
flow, on which port and in which queue each packet will be inserted, in order to
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Figure 1: CSQF packet forwarding based on SR headers.

avoid congestion on queues. As the number of outgoing cycles depends on the
life cycle of each flow, a simplification consists on considering a finite number
of cycles on which the traffic can be mapped.

Like in TSN, DetNet traffic with CSQF is time-triggered (TT) and follows a
specific pattern that repeats over time. This period is referred to as hypercycle.
For each cycle, the application specifies how much data will be sent. To ensure
deterministic end-to-end performance, it is necessary to provide a scheduling and
routing decision at each hop and guarantee that enough capacity is available.
According to CSQF, a DetNet-enabled device decides how and when a packet
is forwarded by consuming the first Segment Routing ID (SID) available in the
label stack of packet headers. As a first step, the receiving node maps the SID
into the corresponding output port. As a second step, the device uses the same
label to select the queue associated with the intended transmission cycle. MPLS
or IPv6 can be used. In the first case, labels are encoded over 32 bits, in the
former case they are basically IPv6 addresses (e.g., 128 bits when no compression
is used). The SR label stack can be provided by a centralized network controller
that (a) computes a feasible path from source node to destination node, (b)
computes the right scheduling within each node traversed by the flow, and (c)
distributes the corresponding SR label stack to all the network elements via
specific protocols (e.g., PCEP).

2.2. Deterministic forwarding in DetNet devices

The delay introduced by a node to forward a packet can be split into 4
terms: (i) the propagation delay, (ii) the processing delay, (iii) the transmis-
sion delay, and (iv) the queuing delay. The propagation delay is given by the
physical distance between two entities, the processing delay is the time required
to receive the packet and sent it to the upper layers of the ISO/OSI stack for
routing and scheduling decision, the transmission delay to put the packet on
the physical link. While the propagation and the forwarding delay can be as-
sumed as constant, the processing delay can vary due to different reasons. In
order to provide deterministic forwarding latency, it is possible to measure the
worst-case processing latency and use the queuing delay to compensate the pro-
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cessing delay, ensuring that the sum of the two terms is equal to a constant
and known value—If the processing delay is large, the time spent inside a queue
will be small and the packet will be scheduled for quick transmission, while if
the processing delay is small, the time spent in the queue will be large and the
packet will wait a for longer before being sent. Using this method, the process-
ing delay, which is a stochastic process, is bounded by a constant value and a
deterministic forwarding delay can be provided by the CSQF-enabled device.

Inside a DetNet-enabled device, each port is equipped with N queues (typ-
ically 8), normally used for DiffServ and Best Effort (BE) traffic. In CSQF,
the standard defines that out of the N queues, NDN queues (by default 3) are
reserved for time-sensitive traffic. These queues are served in a round-robin
fashion such that the active queue is open for transmission and closed for recep-
tion. Conversely, the NDN−1 inactive queues can only accept packets for future
transmission, i.e., a packet can be delayed by at most NDN−1 cycles, according
to the queue in which the packet is inserted. For this reason, the assignment
of packets to specific inactive queues defines their transmission schedule and
needs to be carefully controlled. Each time-sensitive queue is drained after the
activity period and is dimensioned to receive all the packets scheduled within a
cycle without introducing any packet loss. And in order to support BE traffic, a
percentage (e.g., 50%) of the cycle duration is allocated to DetNet traffic while
the remaining is for BE traffic. Due to the periodic activation of queues, the
time at each node is logically divided into cycles. In order to guarantee deter-
ministic latency, the duration of all cycles is the same throughout the network.
The starting time of the cycles at the different nodes is not synchronized and
can present an offset which is measured and known by the controller.

2.3. Deterministic packet forwaring: a networking view

As in CSQF the forwarding delay is known, as well as the offset between
nodes and the activation time of each queue, the controller can decide for the
routing and scheduling of each flow in the network, ensuring that no collision or
congestion can happen in the network. This is equivalent to deciding, for each
packet, when and where it will be transmitted as well as its scheduling, i.e., if
a packet is sent in the first available slot or delayed by one or more additional
cycles before transmission.

In Figure 2, we show an example of how a packet is propagated from node
A to node C through node B. Once the packet is sent from A, it is received
at B within a cycle (cycle 2 in the figure). As node B decides for immediate
packet forwarding, the packet is transmitted in the next cycle. Finally, node C
decides for the scheduling of the packet two cycles later, so that the packet will
be transmitted at cycle 6. As the same considerations apply if we consider 0
offset between cycles of different nodes, for the sake of simplicity and without
loss of generality, we will consider throughout this paper a 0 time offset such
that all cycles are aligned at the different nodes.
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Figure 2: CSQF packet forwarding. Between nodes A and B, and, B and C, the packet is
transmitted in the next cycle, while node C decides to schedule packet transmission two cycles
later.

3. Related work

In the literature, most of the papers are focusing on the scheduling of
TSN/IEEE 802.1Qbv gate openings and closings to satisfy a certain traffic ma-
trix. The matrix is composed of TT traffic flows which generate packets at
known and repeating time instants. Routing information is generally given by
the spanning tree protocol operating at layer 2. In this context, the goal is to
find a feasible scheduling while minimizing the number of queues. In this case,
a variant of the flow shop scheduling problem must be solved.

For 802.1Qbv, [4] introduces the problem as an Integer Linear Program (ILP)
while [5] uses OMT (Optimization Modulo Theory) to formulate a Satisfiability
Problem (SAT). [6] also presents a SAT problem but considering robustness to
control worst-case performance in case of uncertain traffic inputs. These papers
do not introduce practical and efficient heuristics. The resolution of ILP or SAT
models with solvers can only be achieved on very small instances.

In case routing can also be decided, [10] presents an online heuristic for
802.1Qbv. In this case, the end-to-end transmission of a cyclic TT flow must
be realized in the same global transmission cycle to minimize the end-to-end
latency. In other papers from the same authors, an ILP model is formulated
to maximize traffic acceptance for a set of flows [11]. [12] formulates a similar
problem by considering constant time shifts between incoming and outgoing
transmissions at intermediate nodes (no controllable queuing is allowed). [13]
presents a SAT problem formulation of the same problem. [14] proposes a
compact ILP formulation of the joint routing and scheduling problem with the
objective of minimizing the average latency. No scalable resolution algorithms
are provided.

Instead, our work focuses on both deterministic latency and jitter require-
ments rather than minimum latency. Our solution uses the recent CSQF stan-
dard proposal to guarantee worst-case performance at each hop thanks to the
use of cyclic transmissions and segment routing for dynamic scheduling. We for-
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Table 1: Overview of notation

Symbol Definition
C #cycles per hypercycle
G = (V,A) G topology of: V network nodes, A: directed links
∆a / ba delay / per-cycle capacity of link a
D set of demands
sd, td source and destination of demand d

P / Pd set of s-paths (all / belonging to demand d)
d(p) demand that s-path p belongs to

bwd
c / bwd packets (dus) emitted at sd (in cycle c / one hypercycle) by d

bwd(p)
a,p (c) capacity (in dus) needed on a for d(p) during c if p is chosen

∆d delay constraint for d
rpk cycle shifts at k-th node of path p
R max cycle shifts at all nodes
yp decision variable: 1 if p is chosen, 0 otherwise

mulate the joint routing and scheduling problem for DetNet to maximize traffic
acceptance as an ILP. We analyze the hardness of the problem and solve it at
large scale and with quantifiable optimality.

4. Problem formulation and Complexity

This section introduces our model for the routing and scheduling of traffic in
DetNet with CSQF. We formulate its Integer Linear Problem (ILP) and analyze
the complexity. The notation used in the following is summarized in Table 1.

4.1. Cycles, Topology, and Demands

Thanks to CSQF, time is partitioned into cycles of equal duration, e.g. 10
µs. Blocks of consecutive cycles form hypercycles of size C, e.g. comprising 12
cycles each. C is chosen such that the all network behaviour is the same in each
hypercycle as will be argued below. Without loss of generality, we assume that
the cycles start at the same time across the network and the hypercycle length
C is the same on every port / link.

Let us consider a network G = (V,A). The nodes v ∈ V represent DetNet-
enabled routers or switches. The nodes are connected with data links repre-
sented by the (directed) link set A ⊆ V × V . Each arc a = (u, v) ∈ A induces
a delay of ∆a cycles which comprises its propagation delay as well as the pro-
cessing and queuing delay at node v. Furthermore, each arc a has a per-cycle
capacity ba (in data units du, fixed size in Bytes).

A given set of demands D, i.e., a set of TT flows, needs to be routed through
the network. Demand d is defined by

• a source node sd ∈ V and a destination td ∈ V ,
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ba1 = 4 ba2 = 3

∆a1 = 5 ∆a2 = 2
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Figure 3: A demand d between source sd and destination td with two s-paths p1 and p2 and
hypercycle length C = 2, together with a second demand d′ with only one path p′.

• a deterministic pattern of packet arrivals that repeats in every hypercycle.
In cycle c, the source node sd ∈ V of demand d emits packets for a
total of bwd

c ∈ Z+ (in data units du). Note that due to the repetition.
bwd

c = bwd
c%C for any c ∈ Z+.

• a maximum acceptable end-to-end delay (in cycles) denoted by ∆d.

4.2. Scheduled Paths

For a demand d to be accepted, the central controller needs to assign a unique
feasible scheduled path (s-path). An s-path p is a path in G, i.e. a sequence of
arcs (a1, . . . , a|p|) where arcs ak = (uk, vk) are such that u1 = sd, v|p| = td and
vk = uk+1 for k = 1, . . . , |p|−1, together with an integer sequence (rp1 , . . . , r

p
|p|−1)

where rpk ∈ Z≥0 indicates the number of cycle shifts at corresponding nodes vk.
A shift is an explicit additional delay (expressed in multiple of cycles) that is
introduced at nodes to schedule data transmissions into a specific CSQF queue.
While the modeling for the routing and scheduling problem is based on cycle
shifts, the path is finally encoded with transmission queues at each hop (i.e.,
for each outgoing port / link a SR label is derived from the chosen cycle shift).
If c is the earliest possible cycle in which a packet may be forwarded from vk
(recall that processing and queuing delays are included in the arc delay of the
preceding arc), a cycle shift of rk means that transmission is carried out in
cycle (c + rk)%C. The maximum number of shifts at a node is R = NDN − 2
where NDN is the number of CSQF queues reserved to deterministic traffic. The
introduction of cycle shifts allows to accept more traffic, as we will see later.

Let us consider the example in Figure 3 with a single demand d where a
path from s to t has two hops with an intermediate node u. In all even cycles,
s sends 2 du, and in all odd cycles, it sends 1 du. The pattern repeats after
two cycles (C = 2). We consider two possible s-paths denoted p1 and p2 that
may be used for d. From u, the earliest transmission of the 2 du is in the odd
cycles (c = 5%2 = 1), while the one of the 1 du is in the even cycles (i.e., at
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c = (1 + 5)%2 = 0), as the delay is ∆a1 = 5 cycles. The s-path p1 does not
introduce any additional shift (recall that the one induced by the delay on a1

is mandatory) at node u (rp1

1 = 0). The s-path p2 has a cycle shift of rp2

1 = 1
at u, so it forwards 2 du in even cycles and 1 du in odd cycles. Now, to extend
the example and show the need to introduce scheduling (i.e., extra cycle shifts)
at intermediary nodes, let us consider a second demand d′ from u to t that has
only one available s-path p′ due to delay constraints. This s-path uses arc a2

such that in even cycles, d′ requires 0 du on a2 and 2 du in odd cycles. S-paths
p1 and p′ together thus require 4 du in odd cycles, prohibitive with a per-cycle
capacity ba2

= 3. However, the additional cycle shift in p2 for demand d allows
both d and d′ to be routed via a2.

A single s-path is feasible for demand d if the following two conditions hold.
1) End-to-end delay: The s-path delay ∆(p) must not exceed the maximum
end-to-end delay ∆d. ∆(p) has two aspects: (i) the sum of arc delays ∆a and
(ii) the sum of cycle shifts rpk at the intermediate nodes. In the example in
Figure 3, ∆(p1) = 7, and ∆(p2) = 8, as indicated by the arc delays of 5 and 2,
respectively. The difference comes from the shift at u on p2.

We denote as ∆uk
(p) the shift (in cycles) for the data to be transmitted at

intermediate node uk. It is easily calculated as

∆uk
(p) =

k−1∑
i=1

(∆ai
+ rpi ) (1)

where ∆u1
(p) = 0 since there is no delay at u1 = sd. The total delay of the

s-path is ∆(p) = ∆u|p|(p) + ∆a|p| .

2) Arc-cycle capacity: A demand d consumes a certain capacity bwd
a,p(c)

on arcs a of the s-path p at cycle c. This value is determined by following the
cyclic shifts along p: on the first arc of p, the required capacity during cycle c
is bwd

c , the bandwidth emitted by the source sd. As seen above, the delay at
intermediate node u is ∆u(p). Any packet emitted from sd in cycle c is thus
forwarded from u in cycle (c+ ∆u(p))%C. The required bandwidth for demand
d during cycle c on arc a = (u, v) within s-path p is therefore given by

bwd
a,p(c) = bwd

(c+∆u(p))%C .

If enough capacity is available on every arc and during every cycle, p can be
assigned to d.

For ease of notation, each s-path p is associated with a unique demand
d(p) ∈ D. Otherwise, two demands with identical sources and destinations
would have identical s-paths variables. The set of feasible s-paths for a demand
d is denoted by Pd. P =

⋃
d P

d is the disjoint union of all s-paths variables.

Remark 1. The path set P is not given as an input. For each demand d,
Pd needs to be generated. For general graphs, the cardinality of Pd may be
exponential in the input size.
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4.3. Problem Statement

The central controller tries to route each demand d via a unique feasible s-
path in Pd. This is indicated with the variable yp which is set to 1 if p is chosen
for d(p), 0 otherwise. Uniqueness of the s-path is ensured with the constraint∑

p∈Pd

yp ≤ 1 ∀d ∈ D. (2)

The arc capacities are shared among the routed demands. No more data than
its capacity ba may be sent onto any arc a during any cycle c. This condition is
ensured by the constraint∑

p∈P:a∈p
bwd(p)

a,p (c) yp ≤ ba ∀a ∈ A,∀c. (3)

Note that due to the given cyclic structure, it suffices to calculate the bandwidth
in the cycles 0 to C−1. Note also that cycle shifts rpi > 0 may allow for otherwise
incompatible demands to be transmitted via the same arc.

The aim of the central controller is to accept a subset of demands such that
the total accepted bandwidth is maximized. The bandwidth bwd of demand
d is the sum of the bandwidth transmitted over the cycles 0, . . . , C − 1, i.e.
bwd =

∑C−1
c=0 bwd

c . Thus, the Deterministic Networking (DN) problem can be
formulated as an ILP in the following way:

(DN) max
∑
p∈P

bwd(p)yp

s.t.
∑
p∈Pd

yp ≤ 1 ∀d,

∑
p∈P:a∈p

bwd(p)
a,p (c) yp ≤ ba ∀a, c,

yp ∈ {0, 1} ∀p.

4.4. Complexity Analysis

The DN problem is an NP-hard optimization problem. This is due to The-
orem 1 that shows NP-completeness for the decision counterpart, called DND.

Theorem 1. The DND problem is NP-complete.

Proof. DND decides if, for a given threshold ` ∈ R+, there is a feasible solution
to DN with objective value ≥ `. The following reduction proof is based on the
well-known k-Disjoint Paths (kDP) problem [15, Theorem 19.7]. We consider
the (NP-complete) version of kDP which decides if k arc-disjoint paths can be
found between nodes s and t in a directed graph G. This problem can be reduced
to an instance of DND by setting the number of cycles to C = 1 and bwd

0 = 1
for k demands that all have source s and destination t. The capacity of every
arc a is chosen to be ba = 1. Choosing ` = k, DND returns true if and only if
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there are k arc-disjoint paths in G. Since all reduction steps are polynomial in
the problem size, the NP-hardness proof is complete. Furthermore, it is clear
that DND belongs to NP since the validity of any solution can be checked in
polynomial time. Thus, DND is NP-complete.

In fact, there are two aspects which induce the ”hardness” of DN: the number
of cycles C and the routing aspect, i.e. the multitude of available paths per
demand.

Complexity due to routing. The DN problem generalizes the unsplittable Multi-
Commodity Flow problem (uMCF, also called Unsplittable Flow problem, see
for example [16]) that is at the core of all routing problems through the introduc-
tion of cycles and delays. DN is a temporal expansion of uMCF as transmission
cycles need to be decided on each link of scheduled paths. In addition, all com-
modities must experience a maximum end-to-end delay. However, in general
the coefficients in objective function and constraints of uMCF are independent
and not related as in DN (recall that the objective in DN is maximization of
the bandwidth that is also used in the capacity constraint). Guruswami et al

[16] show that it is NP-hard to approximate uMCF within |E|1/2−ε
for any

ε > 0. Their proof, however, can easily be extended to DN (with its related
coefficients) with the same result even in the case of C = 1.

Complexity due to cycles. If C is part of the input, and not a priori bounded,
DN cannot even be efficiently approximated in polynomial time (unless P=NP),
i.e. there is no polynomial-time approximation scheme (PTAS). This is true even
if the graph G consists only of one single arc. Then, DN is equivalent to the
0-1 Multidimensional Knapsack (01MK) problem (see [17]): a 01MK instance
is transformed to a DN instance by multiplying each constraint such that the
right-hand side (rhs) is the least common multiple of the given rhs values. If the
number of constraints (given by C) is unbounded, there is no PTAS for 01MK
[18].

Note that DN becomes weakly NP-hard (and thus solvable in pseudo-polynomial
time) if the number of cycles C and the set of feasible s-paths |P| are bounded
(and can be computed in polynomial time) since the same is true for 01MK with
bounded dimensions [18].

To conclude this section, we show that the DN is harder than the classical
unsplittable Multi-Commodity Flow problem. Indeed, the capacity constraints
correspond to a knapsack problem (weakly NP-hard) on each link, whereas, the
capacity constraints for DN problem correspond to the 0-1 Multidimensional
Knapsack problem (strongly NP-hard) on each link.

5. Scalable Global Algorithm

This section presents a solution to DN based on Column Generation (CG)
and Randomized Rounding (RR), a classic approach for intractable ILPs. Be-
cause the DN model has an exponential number of variables it is not possible to
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solve it with a linear solver. However, we can use a CG procedure to generate a
polynomial sub set of variables ensuring the optimality of the linear relaxation
of the DN model (referred to as LDN). We then round the LDN solution to an
integer solution using a randomized rounding algorithm which provides a high-
quality and feasible solution to the original DN problem. The optimal solution
to the relaxed problem provides a upper bound (UB) to DN and it can be used
to evaluate the integrality gap. By strengthening the capacity constraints (see
Sec. 5.3), we present an enhanced LDN formulation that helps to improve the
CG-RR solution as well as the UB.

5.1. Solving the Linear Relaxation

LDN relaxes the integrality constraints on the variables yp. It is well-known
that linear programs (LPs) such as LDN can be solved in polynomial time in
terms of input size [19]. However, as to Remark 1, the number of variables in
DN in general is not polynomial in the input size which poses a problem solving
LDN in practice. We overcome this problem by applying column generation [20]
to LDN.

5.1.1. Column Generation

We start with a restricted LP which contains only a subset of the variables
of the so called master LP LDN. This subset of variables is given by the greedy
algorithm described in the next section. By solving the pricing problem, we
decide whether there are variables that are currently not contained in the re-
stricted LP but might improve the objective value. If no such variables can be
found, the current subset of variables is guaranteed to be sufficient to solve the
master LP optimally. Otherwise, the newly generated variables are added to
the restricted LP and the process iterates. This method is based on LP duality
(see for example [21]).

In the following, we consider a subset of s-paths P ′ ⊆ P that respect the
end-to-end delay. For ease of notation, we assume that for all d ∈ D, there is
an s-path p ∈ P ′ such that d(p) = d. The induced restricted relaxation of DN
is:

(LDN′) max
∑
p∈P′

bwd(p)yp

s.t.
∑

p∈P′:d(p)=d

yp ≤ 1 ∀d, (4)

∑
p∈P′:a∈p

bwd(p)
a,p (c) yp ≤ ba ∀a, c, (5)

yp ≥ 0 ∀p ∈ P ′ .

Note that a feasible solution (y′p) to LDN′ induces a feasible solution (yp) to

LDN by setting yp = y′p for p ∈ P ′ and yp = 0 otherwise. If (y′p) is optimal
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for LDN′, we can determine if the induced solution (yp) is optimal to LDN by
considering the dual of LDN′:

(D-LDN′) min
∑
d

λd +
∑
a

∑
c

baµa,c

s.t. λd(p) +
∑
a∈p

∑
c

bwd(p)
a,p (c)µa,c ≥ bwd(p) ∀p ∈ P ′,

λd ≥ 0 ∀d,
µa,c ≥ 0 ∀a, c,

where the dual variables λd relate to primal constraints (Eq. (4)) and dual
variables µa,c relate to constraints (Eq. (5)).

Let
(
(λ′∗d ) ,

(
µ′∗a,c

))
be an optimal solution for D-LDN′. If there exists a

separating s-path p ∈ P \P ′ such that

λ′∗d(p) +
∑
a∈p

∑
c

bwd(p)
a,p (c)µ′∗a,c < bwd(p), (6)

then the solution is infeasible to D-LDN, the dual of LDN. The problem D-LDN′′

with P ′′ = P ′ ∪{p} constitutes an improved approximation to D-LDN. If no such
separating s-path exists, the solution is feasible to D-LDN and also optimal for
DLN.

Note that for LDN, the latency constraint must be integrated in the pricing
problem. To solve the pricing problem, an s-path fulfilling Eq. (6) needs to be
found if and only if one exists.

5.1.2. Generation of Separating s-Paths

Given an optimal solution
(
(λ′∗d ) ,

(
µ′∗a,c

))
to D-LDN′, an algorithm generat-

ing separating s-paths respecting the end-to-end delay has to determine for each
demand d ∈ D if such separating s-paths P ′′ ⊆ P \P ′ exist. If yes, it should
return (a subset of) P ′′, ∅ otherwise.

For each demand d ∈ D, finding the (delay constrained) shortest s-path p

in terms of path weight
∑

a∈p
∑

c bwd(p)
a,p (c)µ′∗a,c solves the pricing problem. If

solved optimally, it guarantees that a path is found if it exists. If the weight
of the shortest path is strictly smaller than bwd(p) − λ′∗d(p), then we add the

column (variable) associated with this path to the problem. If for all demands,
no columns can be added, the CG procedure terminates.

In order to compute a shortest s-path, we construct the extended graph
Gext = (V ext, Aext) where V ext = {uc | (u, c) ∈ V × {0, . . . , C − 1}}. When a
path p in Gext contains node uc, the respective s-path in G passes the following
arc (u, v) with a cycle shift of c w.r.t. the source sd(p) of the respective demand.
The arc set Aext represents the possible transitions to the following node v. E.g.
if s-path p in G has no additional shift scheduled at v, the path in Gext takes
the arc (uc, v(c+∆(u,v))%C) ∈ Aext. Generally, if there is a scheduled shift of r

cycles at v, the respective arc is (uc, v(c+∆(u,v)+r)%C) ∈ Aext since the cycle in
which p leaves v is (c+ ∆(u,v) + r)%C.
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Figure 4: Constructing the extended graph Gext from graph G.

As an illustration, Fig 4 shows three internal nodes u, v, w of some path p for
a demand that has demand 2, 1, 0 data units over cycles 0, 1 and 2, respectively
(C = 3). A maximum of 1 additional shift per node is allowed. Exiting node u,
p has a cycle shift of 1, thus it contains u1 in Gext. There is no additional shift
at v, thus the following node in Gext is v(1+∆(u,v))%3 = v0. At the following node
there is a shift of one cycle (rw = 1), thus p contains w(0+∆(v,w)+1)%3 = w2.

This construction allows setting the arc weights in Gext independently of
the specific path as w(uc′ ,vc′′ )

=
∑

c bwd
(c′+c)%Cµ

′∗
a,c. Thus, finding a separating

s-path in G is equivalent to finding a simple path in Gext that respects both the
weight and the delay constraint.

In case the end-to-end delay constraint is negligible, shortest path algorithms
such as Dijkstra’s may be applied to find the shortest path (in terms of arc
weights) in polynomial time. In contrast, finding a shortest path that also meets
the delay constraint is NP-hard. In [22], the authors propose a suboptimal but
polynomial-time algorithm called LARAC based on the problem’s Lagrangian
relaxation and Dijkstra’s algorithm. This heuristic may however not find any
separating s-path even if one exists, making its use prohibitive for solving the
pricing problem.

Our algorithm guarantees to find a separating s-path if one exists. Thus,
LDN is solved to optimality and we obtain an upper bound to DN. To efficiently
solve this pricing problem, we apply a dynamic programming algorithm (see
Algorithm 1) that finds a suboptimal separating s-path for every demand d in
case it exists and guarantees to return an empty set in case no separating s-
path exists. The algorithm reduces to a recursive depth-first search (DFS) on
the extended graph Gext which can be in practice generated on the fly.

For every node v ∈ V , we maintain a label (w,∆) that signifies that v
has been reached by an s-path with an accumulated weight at most w and
latency at most ∆. At any point during the execution of the algorithm we have
L(vc) = L(vc′) for all c, c′. For every demand d, the label sets are initialized by
L(sd) = {(0, 0)} and L(v) = ∅ for v ∈ V \ {v}. Let the current path at the node
uc have a label (w,∆). From uc, the algorithm chooses a neighbor vc′ ∈ δext

+ (uc).
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Algorithm 1 generate-s-Paths

P ′′ := ∅
for each d ∈ D do

wa,c :=
∑C−1

c′=0 bwd
(c+c′)%Cµ

′∗
a,c′ ∀a ∈ A,∀c ∈ C

L(sd) := {(0, 0)}
u := sd, c := 0, w := 0, ∆ := 0
p := rec-s-Path(u, c, w,∆, d)
P ′′ := P ′′ ∪{p}

end for each

The current path label is updated to (w′,∆′) = (w + w(uc,vc′ )
,∆ + ∆(uc,vc′ )

)
where ∆(uc,vc′ )

is the delay of arc a′ including the cycle shift. The new path is

rejected if the delay is too high, i.e. ∆ + ∆(uc,vc′ )
> ∆d, or if it is dominated,

i.e. if L(v′) contains a label (w̄, ∆̄) for which w̄ ≤ w′ and ∆̄ ≤ ∆′. In this case,
the algorithm goes back to uc. Otherwise, the current label is added to L(v′),
and all labels in L(v′) that are dominated by the current label are deleted. If
destination node tdc (for any c) is reached by the algorithm while the current
delay ∆ does not surpass the delay limit ∆d and the current weight w is smaller
than bwd − λ′∗d , add the corresponding path to the return set. Finally, return
the set of all generated paths.

Algorithm 2 rec-s-Path(u, c, w,∆, d)

for each v ∈ δ+(u) do . iterate over outgoing arcs
w := w + w(u,v),c . update weight
∆ := ∆ + ∆(u,v) . update delay
if v = td then . destination reached

if (w,∆) feasible then
return ((u, v), ∅) . accept arc, done

else
reject (u, v)

end if
else

for each r ∈ {0, . . . , R} do . iterate over cycle shifts
∆ := ∆ + r . include shift
c := ∆%C . update cycle
if (w,∆) is feasible and not dominated then

delete all labels dominated by (w,∆)
return ((u, v), r) + rec-s-Path(v, c, w,∆, d)

. accept arc and continue
else

reject current path
end if

end for each
end if

end for each
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Note that in the worst case, Algorithm 1 terminates after all sd-td-paths
have been explored. However, in case of a tight delay bound, the algorithm is
very fast. If it can be determined that the delay bound for demand d is very
permissive, the Algorithm 1 may be modified by reducing the bound ∆d in a
first run and, in case no path is found, iteratively increase it until its original
value is reached. This procedure may avoid the enumeration of exponentially
many paths.

5.2. Randomized Rounding

Once the optimal solution (y∗p) to the linear relaxation LDN has been ob-
tained, a feasible solution yp to DN is computed by randomized rounding. As
the linear relaxation provides a fractional solution where a demand can use sev-
eral paths, in order to respect the uniqueness constraint for each demand, at
most one path, out of those given by linear relaxation, must be selected. For a
demand d picked at random, we assign a probability of y∗p/

∑
p′∈Pd y∗p′ to each

s-path p ∈ Pd. According to these probabilities, we choose a path p ∈ Pd.
If there is sufficient residual capacity in the network, we assign the s-path to
demand d. Otherwise, delete the path, renormalize the remaining probabilities
and iterate until an s-path is assigned or no s-path with positive probability
remains. Then, we continue with the next demand. This algorithm is executed
several times. The best solution, referred to as CG-RR solution, is selected.

5.3. Improving the Fractional Solution

In order to improve both the upper bound given by the linear relaxation and
the CG-RR solution, we leverage on the fact that in practice for any demand
d, the required bandwidth bwd

c per cycle c is a multiple of a packet size psd.
While the packet sizes may vary among the demands, they are not arbitrarily
distributed. If the arc capacities ba are not multiples of the packet sizes, we can
produce a fractional solution to DN that is closer to its optimal integer solution
and thus improve the CG-RR solution as well as the upper bound by tightening
the capacity constraints shown in Eq. (3).

We denote the greatest common divisor of the bandwidth requirements

bwd
a,p(c) of all paths p ∈ P̄d

, d ∈ D̄ by psa, where D̄ is the set of demands

with at least one path through link a with cycle shift c, P̄d
is the respective set

of paths for d and P̄ =
⋃

d P̄
d
. We assume that psa is not a divisor of the arc

capacity ba. Then capacity constraint is strengthened by division by psa for all
c:

∑
p∈P̄:a∈p

bwd(p)
a,p (c)

psa
yp ≤

⌊ ba
psa

⌋
(7)

This constraint is valid since the left hand side is integer, and it is stronger than
that in Eq. (3) since b ba

psa
c < ba

psa
.
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6. Fast Greedy Algorithm

Alternatively to the CG-RR solution presented in Sec. 5, a more conven-
tional Greedy approach is to route the demands one-by-one. When a demand
d is next in line, the greedy algorithm tries to find a feasible s-path such that,
for all affected arcs and all cycles, the capacity constraint is respected. We
call such an s-path P̄-feasible where P̄ is the set of already assigned paths. If
no such s-path can be found, d is rejected, otherwise it is added to P̄. Such
approach encompasses two subproblems: a) paths generation and b) path se-
lection. The order of incoming demands is considered as input, such that the
Greedy algorithm can also be used in an online setting.

6.1. Path Generation

In order to generate P̄-feasible s-paths for any demand d, one can search
for a set of K maximally arc-disjoint paths and hope for a good load balancing
(using the path selection algorithm in Sec. 6.2). As for the IPRAN scenario
described in Sec. 7 specific knowledge about the network allows to define sets
of bottleneck arcs that should be mutually avoided, the algorithm can become
more effective. In this context, we first identify sets of mutually avoidable arcs
{a1, . . . , ak} for which an arc can only belong to one s-path for d. In our scenario,
the set is composed by outgoing and incoming arcs respectively at the source
and destination nodes. Then, we use a shortest path algorithm with the delay
as arc length (e.g. Dijkstra’s algorithm) and a maximum delay and we enforce
the use of exactly one of these arcs to generate diversified s-paths Pd. In more
general scenarios, we may use more general but slower K-maximally edge disjoint
algorithms (see chapter 7.6 in [23]).

The runtime of the algorithm depends in large parts on the path generation.
Assuming a limitation K on the number of generated paths per demand and an
efficient Dijkstra implementation, the runtime is in O(|D|K(|A|+ |V | log(|V |)).

6.2. Path Selection

Given a set paths P̃d
of P̄-feasible s-paths for demand d, the simplest ap-

proach to path selection is assigning the first (or a random) p ∈ P̃d
. However,

this can lead to very low traffic acceptance as bottleneck links can quickly ap-
pear and partition the network. To adress this problem, we use a form of load
balancing inspired by competitive online routing algorithms [24]. For two fea-
sible sets of s-paths P, P ′ for the same subset of demands, we consider a load
balancing metric lb such that lb(P) > lb(P ′) if solution P is more balanced.

Given a set of routed demands P̄ and demand d, Greedy selects path p ∈ P̃d
for

which lb(P̄ ∪{p}) is maximal. Based the idea of proportional fairness (see [25]),
we use a load balancing metric lb that is maximal when the available bandwidth
on the arcs A is fairly distributed:

lb(P̄) =
∑
a∈A

log(ava(P̄) + ε).
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where ava(P̄) is the percentage of unused bandwidth on arc a when paths P̄ are
used. The addition of a small ε > 0 allows for the case in which exhausting the
capacity of some arc cannot be avoided. The percentage of unused bandwidth
is defined for the busiest cycle, i.e.

ava(P̄) = 1−max
c

∑
p∈P̄:a∈p bwd(p)

a,p (c)yp

ba
.

This definition reflects that bandwidth should be kept available for future de-
mands on all cycles in a fair manner.

7. Numerical Evaluation

This section presents results in a realistic 5G scenario computed with a C++
environment on a 40×3.0 GHz machine with 190GB RAM. Linear programs are
solved with IBM CPLEX 12.6.3.

7.1. Setup

We consider a typical IPRAN (IP Radio Access Network) scenario with 1700
nodes connected via 5200 directed arcs. The topology is divided into 3 layers:
access, aggregation, and core. Access layer is composed of 1600 nodes, i.e. 800
BS (Base Station) and 800 CSG (Cell Site Gateway). The aggregation layer is
composed of 80 nodes referred to as ASG (Aggregation Site Gateway). In the
core layer there are 20 RSG (Radio Service Gateway) nodes connected to the
EPC (Evolved Packet Core). We choose this network topology for all evaluation
since it is highly relevant for DetNet applications.

The capacity of links in the access and aggregation are 10 Gbps and 40 Gbps,
respectively. In the core, links have a capacity at either 100 Gbps or 400 Gbps.
Each BS has a 1-to-1 mapping with a CSG. Each CSG is connected to a pair of
ASG via a direct link. Up to 20 CSG are connected to the same pair of ASG.
Groups of ASG are connected via a ring with some additional shortcuts. A
group of connected ASG and their CSG form a domain. There are 10 domains
in the network. The core network is fully meshed.

The link delay is chosen proportionally to the distance between its nodes: for
the access link it is uniformly distributed between 0.2 and 0.8 ms, corresponding
to a distance of 10-40 km between elements. In the aggregation, the link delay
is uniformly distributed between 0.8 and 1.6 ms, while in the core it is uniformly
distributed between 2 and 10 ms. The cycle duration is 10 µs and the internal
processing delay (worst-case) is 30 µs for each node.

We consider 250 to 2500 demands for each scenario. Each demand has a
hypercycle C = 12 and a packet size of 500 Bytes. We consider that the traffic
pattern is binary: either there is some traffic sent in a cycle or there is no traffic
at all. In case there is some traffic, we consider that either 1 or 2 packets are
sent per cycle, that corresponds to a max throughput of 200 Mbps. The same
number of packets is sent in every cycle with data transmission. We consider
three traffic patterns randomly selected: one data transmission every 2, every
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3, or every 6 cycles. Demands are shifted at the beginning by a random number
of cycles. In our main demand scenario (Sc1), 60% of demands are directed
to a BS which is connected to the same pair of ASG, via the associated CSG
nodes, of the source node (labeled as D1), 30% of demands are directed to a
BS which is in the same domain of the source node (labeled as D2), and 10%
of demands are directed to a BS in a different domain (labeled as D3). In
secondary scenarios, the distributions over D1, D2 and D3 are 100%/0%/0%
(Sc2) and 34%/33%/33% (Sc3). The end-to-end delay constraint is using a
discrete uniform distribution between 1, 2, and 3 ms for D1 demands, between
4, 5, and 6 ms for D2 demands, and between 40, 50, and 60 ms for D3 demands.

To eliminate statistical fluctuations, results are obtained by averaging on 10
different traffic realizations. In the considered scenario, Greedy computes for
each demand at most K = 4 disjoint paths when NDN = 2 and K = 8 paths
when NDN = 3 to account for each possible time shift at the first CSG.

7.2. Benchmark solutions

We consider that each node is running the CSQF standard with NDN = 3
queues that can be used for DetNet traffic. As a first benchmark solution, we
consider the case in which NDN = 2 for all nodes, corresponding to a CQF
solution in which additional shifts at intermediary nodes are not possible. The
two solutions are labeled to as CSQF and CQF in the plots.

In addition, as a comparison point to our algorithms, we considered the
case where the exact knowledge about the cycle-specific demand patterns is not
available. In this case, a demand is characterized as a flow with a total arrival
volume of data over each hypercycle. We still request the solution to uphold the
DetNet guarantees on delay and jitter. Since, in the worst case, all data packets
are emitted by the source during the same cycle, the entire capacity needs to be
reserved during all cycles on all links of the chosen routing path. This problem
is then a multi-commodity flow problem. We solve it with a column generation
method similar to (but simpler than) CG-RR. Its solution is called NoCycleInfo
in the rest of this section.

7.3. Results

Figure 5a shows the accepted traffic (in %) of the total demands of each
instance for the different algorithms, together with the upper bounds of the CQF
and the CSQF cases, derived from the respective linear relaxations. We observe
first of all as expected that the use of algorithms adapted to CQF/CSQF are
superior to the simple reservation of the worst-case, represented by NoCycleInfo.
Second of all, while the percentage of accepted traffic decreases with increasing
demands, CSQF shows a superior acceptance rate than CQF. This is due to the
flexibility introduced by the scheduling at each intermediate node.

Comparing CQF and CSQF in more detail, Figure 5b shows the gap to
the respective best upper bound coming from the linear relaxation in CG-RR,
for both Greedy and CG-RR. We can see that for small amounts of demands
(i.e., less than 500), both CG-RR and Greedy nearly give the optimal solution.
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Figure 5: Benchmarking results for CG-RR and Greedy on a realistic IPRAN scenario varying
the number of demands and the number of queues (denoted CQF and CSQF, for 2 and 3
queues, respectively).

When the traffic increases (around 1000 demands), CG-RR still manages to get a
solution equal to the upper bound (i.e., an optimal solution). For larger traffic,
instead, both solutions plot an increasing gap because the linear relaxation
provides an infeasible solution that accepts more traffic by splitting demands
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over multiple paths and multiple cycles. However, the real optimum lies in
between the best upper bound and the integer solution found by CG-RR. CG-
RR allows to provide a gap smaller than 10% for all the considered traffic
scenarios, both for CQF and CSQF. The gap is slightly better for CQF as the
results provided by the linear relaxation are closer to the integer solution. The
use of 3 queues in CSQF (instead of 2 for CQF) allows to accept more demands
as it enables to postpone traffic with non-critical delay constraints.

As shown in Figure 6a, CG-RR provides a solution within a few seconds,
which is quite reasonable for offline network planning. While improving the
solution by up to 5% (see next paragraph), the reinforcement of the model
leads to a marginal increase of the execution time by up to 30% in the case of 3
queues. On the other hand, Greedy, which is paying for a larger gap to the best
upper bound, can provide a solution to the planning problem within hundreds
of microseconds. To give idea about the memory used during computation, CG-
RR needed on average about 500MB RAM to solve instances with 250 demands
and 750 MB for 2500 demands. As we focused on the rapid resolution of the
planning problem, we did not consider arrivals and departures of demands in
this evaluation scenario. However, from our results, we believe that the Greedy
algorithm is very suitable for online and ultra-fast demand acceptance (10 µs
per demand).

The fact that we have an upper bound close to the solution provided by CG-
RR and Greedy mainly depends on the reinforcement of constraints presented in
Sec. 5.3. Figure 6b shows that for low traffic there is no significant improvement
as the optimal solution is already provided. However, for larger traffic scenarios
the improvement can be up to 30% as the linear relaxation is closer to the
integer solution. The reinforcement of constraints allows to produce a solution
for the linear relaxation that is closer to the integer optimum. As the use of 2
queues reduces the possibility of splitting traffic, a better upper bound is found.

Figure 7a presents the improvement of CG-RR with modified constraints
over the case with original constraints in terms of accepted traffic. We can see
that the improvement is up to 10% for CQF and up to 5% for CSQF. The
improvement comes from the fact that the reinforcement model gets a linear
relaxation closer to the integer solution. As before, the smaller improvement for
CSQF is due to the split of traffic in the linear relaxation over multiple paths
and multiple cycles.

Finally, we show in Fig. 7b the results of our CG-RR algorithm on the dif-
ferent load scenarios described in Sec. 7.2. For each scenario, we compare the
traffic acceptance rate improvement (in %) over the basic NoCycleInfo algo-
rithm both for CQF and CSQF when the number of demands increases. We
observe that the superiority of CQF/CSQF-adapted algorithms holds over a the
variety of scenarios, particularly for larger instances. We also observe that the
additional scheduling opportunities provided by CSQF always improve traffic
acceptance compared to CQF.
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8. Conclusion

In this paper we presented two algorithms for the joint routing and schedul-
ing problem of time-triggered flows in large scale deterministic networks using
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Figure 7: CG-RR with modified constraints and different demand scenarios.

CSQF. We formulated the problem as an extension of a multi-commodity flow
problem and analyzed its NP-hardness. We proposed an effective solution based
on column generation and dynamic programming. Thanks to the reinforcement
of the model with valid inequalities, we improved the upper bound and the
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solution. On realistic IPRAN instances, we demonstrated that we reach an
optimality gap smaller than 10% in a few seconds. Finally, we also derived an
ultra-fast adaptive greedy algorithm (10 µs per demand) that can be used online
flow admission at the cost of an extra 5% gap when compared to our advanced
solution based on column generation.

Future work along these lines may include the development of an approxima-
tion algorithm with guarantees on the integrality gap for the rounding phase. It
may also include the development of an online algorithm based on recent primal
dual methods [26] to guarantee a certain competitive ratio.

References

[1] E. Grossman, C. Gunther, P. Thubert, P. Wetterwald, J. Raymond, J. Ko-
rhonen, Y. Kaneko, S. Das, Y. Zha, B. Varga et al., “Deterministic Net-
working Use Cases,” RFC 8578, May 2019.

[2] A. Nasrallah, V. Balasubramanian, A. S. Thyagaturu, M. Reisslein, and
H. Elbakoury, “Cyclic queuing and forwarding for large scale deterministic
networks: A survey,” ArXiv, vol. abs/1905.08478, 2019.

[3] M. Chen, X. Geng, and Z. Li, “Segment Routing (SR) Based Bounded La-
tency,” Internet Engineering Task Force, Internet-Draft draft-chen-detnet-
sr-based-bounded-latency-00, Oct. 2018.

[4] P. Pop, M. L. Raagaard, S. S. Craciunas, and W. Steiner, “Design op-
timisation of cyber-physical distributed systems using ieee time-sensitive
networks,” IET Cyber-Physical Systems: Theory & Applications, vol. 1,
no. 1, pp. 86–94, 2016.

[5] S. S. Craciunas, R. S. Oliver, M. Chmeĺık, and W. Steiner, “Scheduling
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