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Abstract

Network operators need to continuosly upgrade their infrastructures in order to
keep their customer satisfaction levels high. Crowdsourcing-based approaches are
generally adopted, where customers are directly asked to answer surveys about
their user experience. Since the number of collaborative users is generally low,
network operators rely on Machine Learning models to predict the satisfaction
levels/QoE of the users rather than directly measuring it through surveys. Finally,
combining the true/predicted user satisfaction levels with information on each user
mobility (e.g, which network sites each user has visited and for how long), an op-
erator may reveal critical areas in the networks and drive/prioritize investments
properly. In this work, we propose an empirical framework tailored to assess the
quality of the detection of under-performing cells starting from subjective user
experience grades. The framework allows to simulate diverse networking scenar-
ios, where a network characterized by a small set of under-performing cells is
visited by heterogeneous users moving through it according to realistic mobility
models. The framework simulates both the processes of satisfaction surveys de-
livery and users satisfaction prediction, considering different delivery strategies
and evaluating prediction algorithms characterized by different prediction perfor-
mance. We use the simulation framework to test empirically the performance of
under-performing sites detection in general scenarios characterized by different
users density and mobility models to obtain insights which are generalizable and
that provide interesting guidelines for network operators.
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1. Introduction

According to recent Cisco estimates [1], by 2021 mobile cellular networks
will connect more than 11 billion mobile devices and will be responsible for more
than one fifth of the total IP traffic generated worldwide. Moreover, the global
average broadband speed will more than double from 2018 to 2023, from 45.9
Mbps to 110.4 Mbps. This will result in increased utilisation of high-bandwidth
demanding applications, such as on-demand 4K video streaming, cloud storage,
etc. To face this unprecedented growth in both volume of mobile traffic and data
rate needs of customers, network operators continuously invest in all network do-
mains, including but not limited to spectrum, radio access network (RAN) infras-
tructure, transmission and core networks. The final goal of such investments is to
generate profit by (i) attracting as many customers as possible and (ii) minimizing
the number of churners, i.e., users who stop their current subscriptions and move
to a different operator.

Concerning the latter point, a well established process mobile operators per-
form to avoid churns is to monitor their customers satisfaction levels through di-
rected surveys: as an example, the Net Promoter Score (NPS) survey asks users
to indicate the likelihood of recommending the network operator to a friend or
colleague on a scale from 0 to 10. In addition to such a generic survey, operators
often ask customers to reply very specific questions related to the user satisfaction
or Quality of Experience (QoE) relative to certain network services (network cov-
erage, voice and video quality, etc.), which can better highlight possible problems
in the network, such as under-perfoming or malfuctioning network cells/sites. Un-
fortunately, such a direct way to track users satisfaction is costly and cumbersome
for operators, mainly due to the generic poor cooperative attitude of customers.
Moreover, the problem of the reliability of users’ replies to such surveys is sub-
ject to intense investigations [2, 3, 4, 5]: regardless of the subject of the surveys,
studies confirm that it is not a trivial task to gather reliable responses from crowds,
especially when no reward systems are conceived.

To cope with these issues, several studies in the recent literature addressed
the problem of predicting the satisfaction level of customers, rather than directly
measuring it through surveys [6, 7, 8, 9, 10]. Following the renovated interest in
big data, machine learning and artificial intelligence, the goal of such works is to
identify the set of unsatisfied customers starting from a large variety of objective
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features, both operative (e.g., average throughput and signal quality) and business-
related (e.g., gender, age or tariff plan). Such features, and the corresponding
ground-truth satisfaction level, are generally used to train machine-learning mod-
els, eventually being able to estimate the satisfaction levels/QoE of a much larger
population. Finally, combining the true/predicted users satisfaction levels with
information on each user mobility (e.g, which network sites each user has visited
and for how much time), an operator may reveal critical areas in the networks and
drive/prioritize investments properly.

However, the detection of under-performing cells starting from true/predicted
subjective grades has its own issues. First, users are heterogeneous and their per-
ception of network quality is highly subjective. Second, when a negative satis-
faction expressed by a user refers to a long period of time (e.g., one month), it
is difficult to identify which of the network sites visited during that period is the
most responsible. Third, in case the user satisfaction level is estimated through a
machine learning algorithm, a prediction error is likely to be expected. Therefore,
in this complex scenario, an operator may argue about the validity/quality of the
detected under-performing cells. To solve these issues, we propose an empirical
framework tailored to assess the quality of the detection of under-performing cells
starting from subjective user grades. In details, the contributions of this paper are:

1. We build a framework that allows to simulate a network composed of a
(small) set of under-performing/malfunctioning cells, with heterogeneous
users moving freely in it according to realistic mobility models. Depending
on each user mobility and subjective profile, the framework allows to obtain
each user’s (true) satisfaction level.

2. The framework also simulates the process of satisfaction surveys delivery
performed by the operator, which is able to sample only a subset of the true
user satisfaction levels through surveys. We consider two different delivery
strategies: a completely random one and one which maximizes the number
of covered network sites.

3. Moreover, the proposed framework allows to simulate the process of users
satisfaction prediction using a machine learning algorithm whose perfor-
mance can be changed at will. This allows to quantify the impact of pre-
diction errors on the detection process, and to understand what are the min-
imum performance a prediction model for user satisfaction should possess
to be applied in the overall methodology.
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4. Finally, we test empirically the simulation framework with different users
density and mobility models to obtain insights which are generalizable.

The remainder of this article is organized as follows: Section 2 describes a
general crowdsourcing network monitoring process than can be adopted by an
operator to perform detection of under-performing sites, leveraging both objective
data and true/predicted user satisfaction levels; Section 3 describes the simulation
framework that can be used to assess the quality of the detection process. Diverse
scenarios characterized by different users density, mobility models and surveys
delivery strategies are simulated in Section 4, to empirically test the performance
of the detection of under-performing cellular sites. Section 5 reviews the relevant
literature on QoE prediction and QoE-based issues detection in cellular networks.
Finally, Section 6 summarises remarks and conclusions.

2. Under-Performing Sites Detection Process

Detecting possible issues in an operator network infrastructure using informa-
tion about the perceived user experience is a process known under the name of
crowdsourcing network monitoring, a field which has received increasing atten-
tion in the last few years [11, 12, 13]. According to this approach, the mobile
operator administers to its customers population U , |U| = N a set of user expe-
rience/satisfaction surveys (either directly or through the help of proper apps in-
stalled on the user equipments), whose answers may help to reveal critical/under-
performing network sites, hence steering investments in the right directions (e.g.,
increasing the bandwidth or the output power available at specific base stations).
Rather than detecting all sites responsible for users dissatisfaction, a more con-
venient output for a mobile operator consists in a site ranking, i.e., a sorted list
of network sites in which the ones responsible for the highest number of unsat-
isfied users appear at the top positions. In such a way, an operator may allocate
the available budget for investment to the first k sites in the list in a prioritized
fashion.

When the responses gathered from the users are few (and this is often the case
[10]), operators may rely on data science techniques to predict the satisfaction of
additional users, artificially enlarging the set of available responses. This is gen-
erally obtained by exploiting pre-trained machine learning models that correlate
objective network measurements collected from the users (e.g., throughput, chan-
nel quality, amount of time spent with limited service) with the users perceived
satisfaction. Since the objective network measurements are generally available for

4



Xa

Xna

ŝ

f(·)

Model training

ŝ = f(Xna)

sgt = f(Xa)

Prediction

Under-performing
sites detection / ranking

Ĵu
sgt

Figure 1: General process for crowdsourcing-based site ranking. The satisfaction grades from the
users, true or predicted, are combined with objective information such as user visit times to detect
critical network sites and rank them according to their impact on user satisfaction. Dashed lines
refer to the fact that the model f(·) is independent from the detection process and may be updated
asynchronosuly whenever new survey responses are gathered by the operator.

a much larger amount of users compared to the (subjective) satisfaction responses,
this strategy allows to greatly enlarge the knowledge base usable for detecting or
ranking under-performing sites. The general process is illustrated in Figure 1: let
U = {Ua ∪ Una} be the total set of network users, composed of customers whose
survey response is available (Ua) or not (Una). Similarly, let Xa and Xna be the set
of objective network measurements for the two sets of users. A machine learning
model f(·), trained and possibly updated with the knowledge coming from users
whose answers sgt are available, can be used to predict the satisfactions ŝ of non-
answering users. We underline that the model f(·) can be trained independently
of the detection process and updated any time new surveys responses are gathered
by the operator. Finally, the objective network measurements (Xa, Xna) and the
true and predicted user satisfaction (sgt and ŝ) are leveraged to produce a ranked
list of sites in the network, which we refer to as Ĵu.

Several important questions related to such an approach can be raised by a
mobile network operator:

Q.1 Ranking strategy: Assuming the availability of the (true) satisfaction of the
entire set of users, how can under-performing sites be ranked/detected?

Q.2 User heterogeneity: Different users react to network issues in different way.
How does such heterogeneity impact on the detection of under-performing
sites?
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Ĵu

Survey Delivery
(sampling)

sgt
User Profiler

User Mobility
Generator

Topology
 Generator Ju

Performance
evaluation

Ground truth set of under-performing cells

User/cell visit times

Figure 2: Architecture of a simulation framework to test the anomaly detection system.

Q.3 Prediction errors: When a ML model f(·) is used to predict the satisfaction
of the non-answering users, a prediction error is generally expected. How
does such an error impact on the ranking/detection of under-performing
sites?

Q.4 Users density: What is the relationship among the cardinality of the sets of
answering and non-answering users, the number of sites in the network and
the performance of the ranking/detection operation?

Q.5 Survey delivery: If only a subset of users is expected to answer the satisfac-
tion surveys, is there a way to select such a subset in order to increase the
performance of the detection process?

In the following, we describe a simulation framework that an operator can leverage
in order to find answers to such questions.

3. Simulation Framework

In order to answer to questions Q.1-Q.5, we propose a simulation framework
composed of several building blocks, illustrated in Figure 2. The following Sec-
tions provide details on each component of the framework.

3.1. Topology Generator (TG)
The TG is responsible of generating mobile network instances composed of

a set of network sites J , |J | = M , deployed in a realistic scenario (e.g., urban
or rural). The TG also defines which sites Ju ⊂ J , |Ju| = Ω < M , are mal-
functioning or under-performing in a particular network topology. The selection
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is performed according to a random process, specified in input. In this work we
consider a uniform distribution (i.e., all network sites have the same probability
of being under-performing), although an operator may use any other distribution.
As an example, sites characterized by a higher level of congestion (e.g., visited by
large number of users) may be selected as under-performing with a higher proba-
bility. Both the total number of sites M and the number of malfunctioning sites Ω
are input parameters of the simulation framework.

3.2. User Mobility Manager (UMM)
The UMM models the mobility of the population of users U through the cel-

lular network simulated by the TG. In particular, the UMM leverages a human
mobility model which defines for the i-th user i) which network sites are visited
and ii) for how long. Several models are available in the literature to simulate the
statistical properties of human mobility [14, 15, 16, 17]. In this work we consider
the model proposed in [17], which is based on the following observations: i) hu-
mans have a periodic tendency to return to previously visited places, ii) humans
spend most of their time in a few number of locations and iii) the distributions of
the time spent by a user in a location P (∆t) and the distance covered between two
sightings P (∆r) are fat-tailed, i.e. P (∆r) ∼ |∆r|−1−α and P (∆t) ∼ |∆t|−1−β .
In details, the mobility model implemented in the UMM works according to dif-
ferent steps, as illustrated in Figure 3:

• Initialization: let Si be an integer variable which counts the number of dis-
tinct locations visited by the i-th user, initially set to 1. At startup, each
user is associated to one site in the network topology, chosen at random.
Then, each user waits for a random period of time ∆t and eventually de-
cides whether to explore a new location (Exploration step) or to return to an
already visited site, including the current one (Preferential return step).

• Exploration: with probability Pnew = ρSi
−γ , the user jumps in a random

direction θ, uniformly distributed in the range [0, 2π) and with a random
jump length ∆r. The closest site to the landing location will be visited by
the user. As the user moves to this new position, the number of previously
visited locations increases from Si to Si + 1.

• Preferential Return: with probability 1 − Pnew, the user returns to a previ-
ously visited location with a probability proportional to the number of visits
the user previously had to that location.
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Figure 3: Considering a generic user i, S equals the cardinality of the set of visited places, circles
stems for the sites already visited by the user while their size represents the probability that the
user visits the corresponding network site.

These steps are repeated independently for each user: at each iteration the UMM
updates the vector ti ∈ RJ

≥0 whose entries ti,j corresponds to the visit times of the
i-th user in the j-th network site. The process ends when the total visit time for
each user is equal to the simulation time horizon T , i.e., when

∑
j ti,j = T, ∀i.

The parameters controlling the user’s tendency of exploring a new place ρ and γ,
as well as the fat-tail distribution parameters for the jump sizes α and the waiting
times β can be modified according to the specific case under consideration. We
detail the choice of such hyper-parameters in Section 4.

3.3. User Profiler (UP)
As illustrated in Figure 2, the UP leverages the network topology created by

the TG and the mobility information output by the UMM to simulate the users
(subjective) reactions s to the corresponding experiences in the network. As gen-
erally done in the field of QoE research [18, 19, 10], in this work we assume the
user reactions to be binary, i.e., s ∈ [0, 1]N . In details the i-th user reaction si is
defined as:

si =

{
1, if the i-th user is dissatisfied with her network service
0, otherwise.

(1)
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It is well known from the literature that the duration of a network disservice
has great impact on the experience perceived by a user. As an example, in the
case of video streaming, QoE is primarily influenced by the frequency and du-
ration of stalling events [20, 21]. Similarly, for web browsing, the number and
duration of IRAT handovers is shown to have a strong negative impact on user
experience [22]. In both cases users are observed to tolerate a certain amount of
disservice before expressing a negative opinion: for video streaming, one stalling
event per clip is acceptable as long as its duration is below 3 seconds, while for
web browsing a single IRAT handover is generally tolerated.

Following these observations, it is reasonable to link the user satisfaction si to
the time spent in under-performing or malfunctioning network sites. Operatively,
the UP leverages the set of under-performing sites Ju and the user visit times ti,j
to generate user satisfaction according to the following:

si =

{
1, if

∑
j∈Jc ti,j ≥ uiT

0, otherwise.
(2)

where T is the simulation time horizon and ui is a percentage value corre-
sponding to the user tolerance. In other words, we assume that each user has a
specific patience level with respect to negative network experiences. Intuitively,
the higher the tolerance of a user the more she will tolerate low service quality
during her network activity. To model the heterogeneity of the users, we assume
that the user tolerance ui is a Gaussian-distributed random variable with mean µ
and standard deviation σ, i.e., ui ∼ N (µ, σ2). Later in Section 4.2 we will discuss
about the choice of their values.

Finally, we observe that the reported user satisfaction depends also on fac-
tors completely unrelated with the network service itself, such as the ones relative
to users personal attitudes and expectations [9]. The UP models such noisy be-
haviours by generating a percentage ψ of the satisfaction labels si at random,
regardless of the sites visited by users and their tolerance. Again, ψ represents a
hyper-parameter of the model that can be set by the operator to simulate different
population types.

3.4. Survey Delivery (SD)
Any crowdsourcing-based network monitoring system is limited by the asso-

ciated network coverage, i.e., the percentage of sites visited by users answering
the surveys, as it is not possible to detect under-performing sites for which no in-
formation from users is available. As aforementioned, the number of users which
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answer to surveys is generally small compared to the total number of customers,
and the set of corresponding Ground Truth responses sgt is much smaller than
s. The SD component of the proposed framework simulates the process of ad-
ministrating satisfaction surveys to the customers, and can therefore be tought of
as a sampling process of the true user reactions. In this paper we consider two
scenarios for the surveys delivery strategy:

• Random Delivery (RD): in the most general case, we assume that the set of
users answering the surveys is randomly sampled from the total population.
This strategy is represented in Figure 4(a), where user icons represent those
users who replied to the received survey. In this (unlucky) example the
operator has low network coverage, as the received responses do not cover
under-performing sites in the network.

• Optimized Delivery (OD): with this policy, depicted in Figure 4(b), the op-
erator delivers surveys in a way to maximize the network coverage. This is
done by leveraging the user-visit times ti,j to set up an optimization prob-
lem (formalized in Section Appendix A) that selects the smallest set of
users whose responses would allow to maximize the number of visited sites.
Clearly, in this case we assume that the operator puts in place an incentive
strategy for the voting procedure, such that a user selected from the opti-
mization problem is rewarded for its answer (e.g. with premium data plan
access for limited time or other incentives).

Regardless of the chosen delivery strategy, the SD block samples the set of
users reactions s and returns a set of GT users feedbacks sgt, which is input to the
under-performing sites ranking and detection algorithm.

3.5. Under-Performing Sites Ranking and Detection Algorithm
At this point, the detection system mentioned at the end of Section 2 can be

used to detect/rank under-performing sites in the network. The ranking algorithm
will leverage: i) the user-specific cell visit times information generated by the
UMM; ii) the set of GT survey responses generated by the SD block and a pre-
trained ML model f(·), to predict the satisfaction feedback of all those users who
did not answer a survey. Note that the ML model is assumed to be already trained
and detailing which learning features belong to Xa and Xna is outside the scope
of this paper. For the sake of clarity, we underline that the ranking algorithm is
blinded about the true location of the under-performing sites, i.e., it does not know
which network site belongs to Ju.
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(a) RD: low network coverage
scenario

(b) OD: high network coverage
scenario

Figure 4: Strategies for the delivery of satisfaction surveys: a network coverage perspective. User
icons refer to the users who replied to the received surveys, while blackish and redish base stations
refer to regular and anomalous network sites respectively.

For each network site in the network topology, the algorithm computes a score
rj according to the following procedure:

1. First, the set Vj of all the dissatisfied visitors of site j is selected. Note that
Vj contains all those users such that ti,j > 0 and the associated ground truth
or predicted satisfaction is 0. We recall that a user visits multiple sites and
its dissatisfaction may be due only to one of them. To cope with this, we
tighten the time constraint as it follows:

ti,j > ξ
∑
j

ti,j (3)

where ξ is a percentage that acts as an activation threshold for considering
site j as responsible to the experience of the i-th user. Further details about
the choice of the value of ξ will be given in Section 4.2.

2. Then, the site score is computed by summing all normalized user visit times
above the threshold ξ, that is:

rj =
∑
i∈Vj

ti,j∑
j ti,j

. (4)

Finally, network sites are ranked in descending order according to rj and the
operator may use such an information to prioritise upgrading investments in the
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Figure 5: Voronoi representation of the considered network.

network. Here we assume that the operator has a budget for upgrading k network
sites. Feeding the value of k into the detection system allows to output a set Ĵu,
|Ĵu| = k, containing the first k sites of the ranked list.

In the following Section we run the simulation framework in different scenar-
ios and we compare the ranked set Ĵu with the true set of under-perfoming cells
Ju to assess the detection performance.

4. System evaluation

We use the proposed simulation framework to perform several experiments,
with the goal of answering questions (Q.1-Q.5). This section is organized as fol-
lows: first, we provide details on the experimental setup in Section 4.1. Then, Sec-
tion 4.2 focuses on the relationship between users satisfaction profile and the de-
tection performance, providing an answer to Questions Q.1,Q.2. Finally, Section
4.3 comments on the impact that both the surveys delivery strategy and the satis-
faction prediction errors have on the overall ranking task, thus answering Question
Q.3, Q.4 and Q.5.

4.1. Experiments Overview
We feed the Topology Generator with information gathered from a a real cel-

lular network currently operative in a middle-sized European city. The cellular
network is composed of 136 network sites deployed in an area of approximately
180Km2, whose locations are illustrated in Figure 5. We consider three differ-
ent densities of users per network site, corresponding to population sizes equal to
100k, 10k and 1k users. Moreover, regardless of the population size, we consider
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two different mobility scenarios according to the value of the hyper-parameter γ
that is input to the UMM:

• Scenario 1 (S1): this case reproduces the setup described in [17], where a
dataset containing one-year period trajectories of three million anonymized
mobile-phone users is used to statistically estimate the values of the hyper-
parameters. In this case, γ is set equal to 0.21;

• Scenario 2 (S2): we reproduce the users mobility patterns observed in a
dataset of 1500 anonymised customers in the same cellular network used
to feed the TG for a period of 1 month. In this case, γ is set equal to 3.
Therefore, this scenario is characterized by a lower tendency of the users to
visit new sites compared to the first scenario.

For what regards the others parameters input in the UMM (i.e., α, β, and ρ), they
are set to values estimated in [17] for both scenarios, that is α = 0.55, β = 0.8
and ρ = 0.6.

We plot in Figures 6(a) and 6(b) the average proportion of visit time resulting
from the UMM for the case of 100k users for the two scenarios, ranked in decreas-
ing order. The first bar refers to the average proportion of time spent by users in
the most visited site, the second bar refers to the second most visited site and so
on. As one can see, in both scenarios the distributions have a negative exponen-
tial trend, with the five most visited sites representing on average more than 60%
and 95% of the overall users visit time in the network for S1 and S2 scenarios,
respectively.

For what concerns the generation of the under-performing sites and the users
profiling, we set the values of Ω (i.e., the number of under-performing sites in the
network) to b0.1Mc, while µ and σ (i.e., mean and variance of the random variable
ui that controls users tolerance) are set so that the percentage of dissatisfied users
ranged between 15% and 30% of the whole population. This is because cellular
users feedbacks are typically unbalanced [6, 10, 9], i.e., the class of satisfied users
is usually much larger then the class of dissatisfied ones. Finally, we leave to the
next Section the discussion about the choice of the value of ξ, where we will also
comment its relationship with the profile of the visiting population (i.e., with the
hyper-parameters µ and σ).

4.2. Detection Performance and Users Heterogeneity
As a first experiment, we use the simulation framework to find answers to

questions Q.1 and Q.2. We leave aside the problem of predicting user satisfica-
tion, deactivating the sampling process in the survey delivery block and assuming
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(a) Scenario S1. (b) Scenario S2 and empirical data.

Figure 6: Average distribution of users visit time versus the site’s Order of Importance, for scenar-
ios S1 (red bins) and S2 (blue bins), and empirical mobility data (green bins).

an ideal scenario in which the operator has knowledge of to the true satisfaction
s for all users. At the same time, we are intersted in understanding how users
heterogeneity impacts on the process of detecting under-performing sites. There-
fore, we analyse the impact of parameters ξ and µ on the detection performance.
In particular, ξ is varied between 0.1 and 0.5 while µ takes values in [0.05, 0.15,
0.25, 0.35]. Note that for each value of the average user tolerance µ, the corre-
sponding value of σ is adjusted in order to let the fraction of dissatisfied users be
within 15% and 30%.

We recall that the framework outputs a set Ĵu containing the k-th, where k
is an input parameters which depends on the operator financial budget. The per-
formance metrics used for evaluating the detection performance are the Precision
and Recall at k (P@k,R@k), defined as:

P@k =
|Ĵu(k) ∩ Ju|
|Ĵu(k)|

(5)

R@k =
|Ĵu(k) ∩ Ju|
|Ju|

(6)

where the numerators correspond to the number of correctly detected sites, while
the denominators equal k and Ω respectively.

As one can see, P@k is defined as the proportion of the top-k ranked network
sites that are actually under-performing. On the other hand, R@k corresponds to
the proportion of correctly detected under-performing sites. We perform several
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(a) Scenario 1 (b) Scenario 2

Figure 7: AUC vs ξ for different average users tolerance to bad network events µ. The population
size equals 100k users, who move according to mobility scenarios S1 (left) and S2 (right).

experiments with different values of ξ and µ. Since an operator is unaware of the
true number of under-performing sites, we evaluate the performance for different
values of k = 1 . . .M , evaluating each time the measures P@k andR@k. Finally,
for a fixed couple (ξ, µ) we first compute the Precision-Recall ROC curve at dif-
ferent values of k, and then we summarize the performance of the system with the
Area Under the Curve value, AUC(ξ, µ). We highlight that the AUC summarizes
the detection performance for all possible values of k.

We run the tests 10 times, each time generating a new random set of under-
performing network sites. Figures 7(a) and 7(b) plot the average AUC values of
the detection process when applied to S1 and S2 scenarios, respectively. In both
scenarios, we observe that when the satisfaction feedbacks are retrieved from a
population of excessively touchy users (i.e., when µ = 0.05), the system AUC
lowers on average by 15% with respect to the other population profiles. Referring
to S1 (Figure 7(a)), we observe that the detection system performs similarly for
each µ greater than 5%. Differently, in scenario S2 (Figure 7(b)), the AUCs are
similar for µ equal to 0.15 and 0.25 while it is on average 8% lower for µ = 0.35.

From these observations we conclude that:

1. The detection performance depends i) on the way users move throughout the
network and ii) on their subjective profiles. In general, considering that the
true value of µ is unkwown and uncontrollable by the operator, the ranking
algorithm yields good detection performance in both scenarios, with AUC
greater than 80% and 60% for S1 and S2 respectively. This answers to
question Q.1 introduced in Section 2.
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2. Regardless of the average tolerance µ of the population, we observe that the
detection performance are stable with respect to the value of ξ, highlighting
a certain inherent robustness of the system. This is promising, as an operator
doesn’t need to worry about i) estimating µ or ii) tuning ξ with excessive
care. As a rule of thumb, setting ξ as the mean of the average times spent
in the most visited and second most visited site provides a good working
point. This provides the answer to question Q.2.

4.3. Satisfaction Prediction Trade-Off
To tackle question Q.3, we analyze the performance of the system in a more

realistic case where the operator has only partial information about users satis-
faction feedbacks. In particular, we investigate whether it is more reliable for
an operator to perform detection considering only GT users feedbacks (i.e., only
sgt) or it is convenient to include also the predicted satisfaction labels (i.e., also
ŝ). Without loss of generality, the analysis is performed fixing the values of µ,
σ and ξ to 0.25, 0.029 and 0.2, respectively. The performance metric used for
this analysis is the Recall at Ω, R@Ω. Note that R@Ω has a maximum value of
1, if all under-performing cells are detected. The size of the GT users sets are
fixed to 1% of the overall population size, i.e., we will assume a users response
rate to satisfaction surveys of 1%, as observed in [10]. Consequently, the three
populations of 1k, 10k and 100k users will be respectively characterized by an
average density of 0.073, 0.73 and 7.35 GT users per network site, which we refer
to as Low, Medium and High density. Concerning the delivery strategies, the OD
optimization problem is solved by setting n = 3. For a fair comparison, the OD
budget B is equal to the number of GT surveys used in the RD case.

4.3.1. Users QoE Prediction for Anomaly Detection
Any machine learning algorithm an operator can use to predict the user satis-

faction ŝ will be characterized by a certain prediction error. Considering the nature
of the satisfaction prediction problem, we assume the availability of a binary clas-
sifier and express its performance with the False Positive Rate (FPR) and the True
Positive Rate (TPR) metrics. In details, the FPR corresponds to the rate of false
alarms (satisfied users predicted as dissatisfied), while the TPR corresponds to the
recall of the classifier (percentage of dissatisfied users detected). We observe that
ML classifiers are characterized by several FPR and TPR working points, which
can be traded-off by tuning a decision threshold. To perform a comprehensive
analysis, we run the simulation framework assuming the availability of several
ML classifiers in order to cover all possible FPR and TPR working points. In
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Table 1: S1: Working points of a real binary classifier that yield best anomaly detection accuracy.
GT Users/Site Delivery (FPRC, TPRC)(%) RC@Ω (%) Rgt@Ω (%)

Low
RD (20,33) 28 7
OD (35,50) 29 9

Medium
RD (15,26) 39 39
OD (5,9) 41 53

High
RD (5,9) 42 75
OD (5,9) 42 82

particular, we let both the FPR and the TPR vary between 0 and 1 with step-size
equal to 0.05, thus analyzing 400 different performance points.

As an example, Figure 8 shows the obtained R@Ω for the case of 100k users
moving according to Scenario 1, where 1k user satisfaction grades are sampled
according to the RD strategy and the remaining are predicted with a ML classifier.
Curves with different colours refer to classifiers with different (and fixed) FPR
values, while the TPR is shown on the abscissa. Fixing a value of FPR (i.e.,
referring to one of such curves), allows to observe the recall of the sites detection
system versus the TPR of the user satisfaction classifier. The colored stars refer to
the performance of the classifier proposed in [10].

Considering a population of 100k users (Figures 8 and 9) we observe that: i)
for a fixed TPR, the detection accuracy increases with decreasing FPR values; ii)
for a fixed FPR, the detection accuracy improves with increasing TPR values; iii)
for a fixed value ∆, decreasing the FPR by ∆ is more beneficial than increasing
the TPR by the same value. These observations suggest that i) predicting that a
satisfied user is dissatisfied (i.e., having a false positive) is more detrimental for
the detection process than missing a dissatisfied user (i.e., missing a true positive)
and ii) when deciding the FPR/TPR tradeoff of its classifier, an operator should
prefer working points at low FPR rather than at high TPR. Moreover, this holds re-
gardless of the population size, the mobility type and the surveys delivery strategy,
which are illustrated in Figures 12 and 13.

This provides an answer to question Q.3.

4.3.2. To Predict or not to Predict?
It is worth analyzing the best performance RC@Ω achievable by a realistic

user satisfaction classifier, such as the one we proposed in [10]. We plot its per-
formance points (FPRC, TPRC) as coloured stars in Figures 8, 9, 12 and 13. For
the sake of clarity, we summarise in Tables 1 and 2 the best values of RC@Ω
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Table 2: S2: Working points of a real binary classifier that yield best anomaly detection accuracy.
GT Users/Site Delivery (FPRC, TPRC) (%) RC@Ω (%) Rgt@Ω (%)

Low
RD (15,26) 22 6
OD (20,33) 25 8

Medium
RD (15,26) 35 50
OD (5,9) 39 58

High
RD (10,16) 39 81
OD (15,26) 39 84

achievable in all tested scenarios, and we compare it with Rgt@Ω, the best perfor-
mance obtained leveraging only the available GT user satisfaction. We observe
that Rgt@Ω corresponds to the performance of a classifier that predicts each non-
GT user as satisfied (i.e., FPR=0 and TPR=0), since satisfied users do not con-
tribute to the ranking score. Therefore, Rgt@Ω corresponds to the top-left brown
point of a given performance cloud.

As one can see from Table 1, we observe that for high density of GT users
Rgt@Ω is 33% and 40% higher than RC@Ω, for RD and OD strategy respectively.
Similarly, in Table 2, Rgt@Ω is 42%(RD) and 45% (OD) higher than RC@Ω. In
the case of medium GT density, we observe a reduction of the recall gaps for both
mobility scenario. For what concerns S1 the recall improves at maximum by 12%
(OD), while in the case of S2,Rgt@Ω is still 15% (RD) and 19% (OD) better than
RC@Ω. The situation changes when considering low density of GT users. In this
case, we observe that for both mobility scenarios it is better for the operator to
leverage the classifier fC(·) for detecting under-performing sites in the network.
In fact, RC@Ω is more than 20% better than Rgt@Ω for both delivery strategies in
S1 mobility scenario while it is 16% (RD) and 17% (OD) better in scenario S2.
Such results are also illustrated in Figure 10(a) and 11(a). From such figures it is
clear that, when using the binary classifier proposed in [10], there exists a critical
GT density (represented with a colored star) above which satisfaction prediction
becomes detrimental in terms of detection performance. Comparing 10(a) with
11(a) we also observe that the critical density depends also on the characteristics
of user mobility in the network. Since an operator is able to evaluate both the
actual GT density available and the users mobility in its own network, it can also
take a decision on wheter or not to predict user satisfaction. This answers to Q.4.
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4.3.3. Random vs Optimized delivery
Finally, we discuss the obtained results in order to find an answer for Q.5.

We observe from Figure 10(a) and 11(a) that the OD strategy always outperform
the Random Delivery strategy. Moreover, using the OD strategy has the effect
of moving the critical points (yellow star) towards lower densities compared to
the RD strategy. The reason of such a better performance is clearly due to the
higher coverage that the OD strategy is able to reach. Figures 10(b) and 11(b)
show the network coverage for the different scenarios: as one can see, the OD
strategy allows to greatly increase the network coverage at different GT users
density, which in turns impact on the achievable R@Ω. However, we recall that in
case of the OD strategy the operators may need to put in place incentive strategies
for receiving the answers from the users selected by the optimization problem.

5. Related Works

Many works in literature recognize the importance for cellular operators to
monitor service levels at end hosts such to better understand which network events
hamper users experience [12, 13, 7, 11, 9]. On the one hand, the computa-
tional power embedded in today’s mobile devices let them be a powerful means
for data collection, that can be then processed by the operators for diverse pur-
poses [12, 13]. On the other hand, the analysis of users experiences in the net-
work and of their corresponding subjective perceptions have become a fundamen-
tal benchmark for network operators, which often adopt crowdsourcing strategies
to monitor and collect both objective and subjective users side information [7, 11].
In fact, Quality of Experience (QoE) models can be very helpful to quantify the
relationship between users experience and network quality of service [9], consid-
ering that the more users share the same perception about similar network events
the more likely those events share similar QoS characteristics [11].

A common way for network operators to collect users QoE evaluations is to
issue satisfaction surveys where the customers are asked what is their likelihood
regarding the experienced mobile services. Then, operators can for example lever-
age the collected QoE feedbacks to plan actions to minimize the churn-rate of
their customers,i.e., the percentage of customers who stop their contributions and
move to a different operator due to unsatisfactory service [6, 8, 10]. In [23]
the authors identify four main categories that influence the satisfaction of cellu-
lar users, namely context, user profile, system and content. The context considers
factors like the purpose of using the service, the user’s cultural background and
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the environment in which the user uses the service while the user profile con-
siders individual psychological factors and memory. Finally, system and content
address respectively technical influence factors (such as device-related problems)
and resolution/format related issues.

However, a common problem found by cellular operators to assess the QoE
of their customers through crowdsourced surveying campaigns is that few users
usually respond to satisfaction surveys. To counteract this problem, usually op-
erators implement techniques to estimate or predict users QoE feedbacks from
objective network mesurements. Many works in literature tackle the (complex)
issue of predicting users QoE in mobile networks, differentiating between short-
term ( [24, 25, 21, 26, 20]) and long-term ( [6, 8, 10, 4] users experiences. On
the one hand, a short-term network experience refers to the case in which a user is
first requested to interact with a mobile application under variable (and manually
controlled) QoS network levels and secondly asked to provide a QoE evaluation of
the experience. In [24], authors use in-smartphone measurements to feed several
ML algorithms and predict users cellular users QoE with respect to several mobile
applications. Leveraging a dataset comprised of 30 users, which were requested
to watch short videos and give QoE feedbacks for each session, they obtain 91%
and 98% accuracy on users feedbacks and service acceptability level respectively.
A similar work is described in [25], where the authors conduct both lab tests and
on field trials to analyse the impact of many network related features (e.g., band-
width, latency, etc.) on users QoE of common mobile applications. Interestingly,
in both [21, 20] the authors show that users QoE of video streaming applications
is primarily influenced by the frequency and duration of stalling events, i.e., the
longer the video playback re-buffering time the more likely the user will stop
watching it. Similarly, authors in [26] recognize from subjective users QoE as-
sessments that i) long video re-buffering and loading time are perceived as highly
disturbing by the users and ii) fluent playbacks are preferred with respect to other
video-related service indicators (such as resolution, frame rate or bit-rate). In
other words, the longer the users experience disturbing network events the more
likely their QoE will decrease.

On the other hand, the prediction of long-term users satisfaction is a much
more challenging task to address. This is because a long-term user experience
in a mobile network composes of many and different network events which to-
gether influence his/her QoE of the received cellular service. This means that
users memory plays an important role in long-term QoE assessment processes, as
discussed in [4]. Memory effects are also investigated in [6], where the authors
leverage a large volume of network data regarding the experience of users in the
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network of one of the biggest mobile operator in China over several months, with
the final aim of implementing a churn prediction system. They also integrate the
prediction system in a closed loop automatic retention mechanism, with the aim
of both acquiring new customers while retaining potential churners. Their results
show that such a system improved the recharge rate of potential churners of more
than 50%. With the same aim, in [8] authors introduce a modified random for-
est algorithm able to estimate a cellular customer’s churn rate yielding an AUC
value of 91.5%. Similarly, in [10] the authors correlate user-side network mea-
surements with corresponding QoE feedbacks to train several ML algorithms and
predict users satisfaction about network coverage and video streaming services.
Moreover, considering that different users visit several network areas/elements
and that the same area/element is usually visited by many different users, they
point out that i) the information about ground truth and predicted users QoE feed-
backs together with network measurements data can be used to recognize what
in the network causes users dissatisfactions and ii) the impact of misclassification
errors on such process could be somehow reduced when users QoE information
are grouped on a single network area/element.

To conclude, considering that users QoE feedbacks are by definition subjec-
tive, an important issue regards the reliability of users answers to satisfaction sur-
veys. Many works [2, 3, 5, 23] show that gathering reliable information from a
crowd is a very challenging task. In [2] the authors give a probabilistic approach
for supervised learning in a situation when there are possibly noisy replies col-
lected from multiple users and there are no absolute gold standards (i.e. standard
questions used to evaluate the level of reliability of experts). Similarly, authors
in [3] propose an iterative algorithm for deciding best survey allocation and cal-
culating a weighted estimate of the correct survey answer. Interestingly, in [5]
it is shown how an incentive-compatible compensation algorithm together with
approval-voting mechanisms successfully convert a significant fraction of incor-
rect answers to correct replies at the price of little increase in net expenditures.

6. Concluding Remarks

In this work we considered the process of crowdsourcing-based network mon-
itoring, which may be used by cellular operators to detect problems in their net-
work on the basis of users satisfaction feedbacks. We observe that several aspects
need to be considered by an operator that decides to leverage such an approach.
On the one hand, the heterogeneous reactions of users to service issues can ham-
per the detection of malfunctions in the network. On the other hand it is not
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trivial to understand which network site is the main responsible of a user feed-
back, considering that each user visits many network sites for different amounts
of time. Moreover, often very few users participate in the crowdsourcing process,
thus forcing the operator to implement ML algorithms able to predict users satis-
faction on the basis of objective measurements, in order to enlarge the knowledge
base usable for monitoring purposes. This introduces a further aspect, which re-
gards the impact of prediction errors on the detection of issues in the network.
For all these reasons, we implemented a simulation framework that can be used
by a cellular operator to analyse the application of a crowdsourcing-based net-
work monitoring process in different realistic scenarios and investigate the related
aspects. From the results we obtained, the following conclusions can be drawn:

• Under the reasonable assumption that users satisfaction depends on the per-
formance of the visited network sites, it is possible for a network operator
to rank/detect malfunctioning sites leveraging users satisfaction feedbacks
with good detection performance (as shown in Figure 7);

• The detection process works regardless of the satisfaction profile of the vis-
iting users, which in this work is represented by a random variable that con-
trols users tolerance to bad network events. In particular, Figure 7 shows
the robustness of the process with respect to the average users tolerance µ
and to the threshold ξ;

• If a binary classifier f(·) is included in the detection process, working at
low FPR rather than high TPR is more rewarding in terms of detection per-
formance (as observed in Figures 8, 9, 12 and 13);

• When the coverage of the network ensured by GT users is low, it is conve-
nient for an operator to leverage a ML classifier to predict the satisfaction
of non-GT users such to augment the knowledge base usable for detection
purposes. Moreover, this is true even when the classification performance
of the ML classifier are modest, as shown in Figures 8, 9, 12 and 13. Con-
versely, for high coverage values, it is better for the operator to rely only on
GT users for detecting under-performing sites in the network. These results
are summarised in 10 and 11;

• The implementation of delivery strategies that optimally allocate satisfac-
tion surveys to users such as to maximize the network coverage increases
the detection performance, as observed in Figures 10 and 11;
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We believe these observations can be useful for a network operator willing to
adopt crowdsourcing-based network monitoring.

Appendix A. Maximum Coverage Problem Formulation

In this Section, we describe the optimization problem that can be run by the
Survey Delivery block to optimize the delivery of the surveys in order to maximize
the network coverage. The optimization problem is the budgeted version [27] of
a family of well-known problems known as Maximum Coverage (MC) problems.
Given a collection S of items with associated costs defined over a domain of
weighted elements and a budget B, the (budgeted) MC problem aims to find a
subset S ′∪S such that the total cost of items in S ′ does not exceed B and the total
weight of the covered elements is maximized. In our case, we want to deliver
satisfaction surveys to users such that the number of covered network sites is
maximised, where a network site is covered if (i) it is visited by at least n users
and (ii) each user spends more than ξ percentage of its own time in the site. Table
A.3 summarizes the parameters that are leveraged by the optimization program.
Let:

• xi be a binary variable equals to 1 if a satisfaction survey is delivered to user
i and zero otherwise;

• cj be a binary variable equals to 1 if network site j is covered and zero
otherwise;

• hi,j be a binary association variable which equals 0 if the time that user i
has spent in site j is lower than ξT (i.e., if it is not sufficient for coverage),
while it can be both 0 or 1 otherwise.

Under these definitions, we propose an Integer Linear Programming (ILP)
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Table A.3: Parameters considered in the MC problem.
Parameter Definition

M Number of Network Sites
J Set of Network Sites

I = {1, .., N} Set of Users
B GT Users Budget
T Time Horizon
ti,j User-site visit time

ξ
Percentage of time a user

needs to spend in a site for covering it
n Minimum number of visitors to consider a site covered

formulation for our version of the budgeted MC problem as it follows:

max
xi

∑
j∈J

cj (A.1)

subject to: ∑
i∈I

xi ≤ B (A.2)

ti,j ≥ ξ · T · hi,j ∀(i, j) ∈ I × J (A.3)∑
j∈J

hi,j ≥ 1−M · (1− xi) ∀i ∈ I (A.4)∑
j∈J

hi,j < 1 +M · xi ∀i ∈ I (A.5)∑
i∈I

hi,j ≥ n−M · (1− cj) ∀j ∈ J (A.6)∑
i∈I

hi,j < n+M · cj ∀j ∈ J (A.7)

Equation A.1 represents the objective function, which aims at maximizing the
number of distinct covered sites. Constraint A.2 limits the number of distinct users
answering a survey to be lower or equal then the GT users budget B. Note that for
large population sizes N the number of users which ensures full coverage could
be smaller than the budget. Constraint A.3 controls the minimum time needed for
a user i to contribute to the coverage of site j. Note that while the variable hi,j
is forced to be 0 when the time spent by user i is not sufficient to be a covering
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visitor of site j, it is not constrained to be 1 if the coverage condition is met, so
that the solver can decide which user is more convenient to activate to maximize
the objective function. Constraints A.4 and A.5 control the selection of a generic
user i for the delivery of the survey (i.e. the activation of user i), which arises from
the activation of the corresponding time variable hi,j for at least one of the visited
network sites. In particular, A.4 forces the variable xi to be 0 in the case in which
the summation on the left is 0, whereas A.5 forces the same variable to be 1 in the
case in which the corresponding summation is strictly greater than 0. Note that
when A.4 forces xi to be 0, then A.5 deactivates, while the opposite happens when
A.5 forces xi to equal 1. Finally, constraints A.6 and A.7 set the requirements for
considering a site as covered and work similarly to constraints A.4 and A.5.
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(a) RD strategy, 100k users

(b) OD strategy, 100k users

Figure 8: Performance Clouds for a population of 100k Users moving according to S1.

28



(a) RD strategy, 100k users

(b) OD strategy, 100k users

Figure 9: Performance Clouds for a population of 100k Users moving according to S2.
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(a) Rgt@Ω (solid lines) and RC@Ω
(dashed lines) versus GT users per
network site, for RD (red lines) and
OD (orange lines) strategies.

(b) Average network coverage versus GT
users per network site, for RD (red lines)
and OD (orange lines) strategies.

Figure 10: S1 Mobility Scenario.

(a) Rgt@Ω (solid lines) and RC@Ω
(dashed lines) versus GT users per
network site, for RD (red lines) and
OD (orange lines) strategies.

(b) Average network coverage versus GT
users per network site, for RD (red lines)
and OD (orange lines) strategies.

Figure 11: S2 Mobility Scenario.
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(a) RD strategy, 10k users (b) OD strategy, 10k users

(c) RD strategy, 1k users (d) OD strategy, 1k users

Figure 12: Scenario S1, 10k and 1k Users: Detection Accuracy versus Classifiers working points,
for Random (left) and Optimized (right) surveys deliveries.
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(a) RD strategy, 10k users (b) OD strategy, 10k users

(c) RD strategy, 1k users (d) OD strategy, 1k users

Figure 13: Scenario S2, 10k and 1k Users: Detection Accuracy versus Classifiers working points,
for Random (left) and Optimized (right) surveys deliveries.
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