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Abstract

Deep learning has recently attracted great attention in many application
fields, especially for big data analysis in the field of edge computing. Feder-
ated learning, as a promising machine learning technology, applies training
data on distributed edge nodes to design shared learning systems to protect
data privacy. Due to the system update in federated learning is at the ex-
pense of parameter exchange between edge nodes, it is extremely bandwidth
consuming. A novel distributed hierarchical tensor depth optimization algo-
rithm is proposed, which compresses the model parameters from the high-
dimensional tensor space to a union of low-dimensional subspaces to reduce
bandwidth consumption and storage demands of federated learning. In ad-
dition, an update method based on hierarchical tensor back propagation is
developed by directly calculating the gradient of low-dimensional parame-
ters to reduce the memory requirement and improve the training efficiency
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caused by edge node training. Finally, a large number of simulation experi-
ments were performed to evaluate performance based on classical data sets
with different local data distributions. Experimental results show that the
proposed algorithm reduces the burden of communication bandwidth and the
energy consumption of edge nodes.

Keywords: Federated learning, Back-propagation, Hierarchical tensor,
Edge computing.

1. Introduction

With the widespread rise of the Internet of Things, the amount of data
generated by connected devices in IoT is enormous. Therefore, it is not
practical to upload large amounts of data directly to the remote cloud for
further processing and analysis, which will cause severe network congestion
and intolerable transmission delays[1]. With the rapid development of edge
computing, various edge devices such as those capable of storing, processing
and analyzing IoT data are deployed, in addition to learning and analyzing
tasks in collaboration with remote cloud. Meanwhile, deep learning has also
been successfully applied to industrial big data analysis. Many models have
been developed to learn inherent features from large amounts of raw data.
For example, the deep computing model based on tensor data representa-
tion and hierarchical feature learning is extended to the tensor space[2, 3].
However, some significant challenges exist in distributed edge node training
depth computing models, especially in IoT environments. First, uploading
local data from edge nodes to remote clouds is not secure due to increasing
awareness and demands for data security and user privacy[4, 5].This is true
for most industries, and it is generally not permitted to share data between
different companies, or even between different parts of the same company.
Secondly, due to resource constraints, it is not practical to conduct model
learning on these low-end nodes because the parameters of deep computing
models are very large, and training such models usually requires expensive
hardware resources such as large storage and memory units. In order to
solve the problem of data security, a ”federated learning” technology is pro-
posed to solve the problem [6].Federated learning can not only learn efficient
sharing model, but also effectively break the data privacy barrier between
different users. In IoT applications, for example, many factories typically
deploy similar assembly lines with many IoT nodes. However, the amount of
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data collected from just one company is not enough to learn a valid model.
In addition, companies generally do not share their data because of data se-
curity concerns. The industry alliance aims to extract more knowledge from
multiple companies without exposing raw data to others[7]. Federated learn-
ing can be used to help organizations train with each other in more efficient
models to accomplish such tasks.

When federated learning needs to exchange parameters between edge
node and cloud server, the problem of training bottleneck will occur due
to large parameter model and high communication cost. Edge devices, in
particular, have problems with computing, storage capacity, and poor con-
nectivity, which can make things worse. In order to reduce the cost of com-
munication, several existing methods have been designed by reducing the
frequency of communication [8–10] or using recompression technology[11–
13]. The communication frequency is reduced by reducing the number of
local updates or improving the convergence speed of the training algorithm.
Its weight compression techniques include gradient sparsity and quantization,
which indicates that a small part of parameters are selected for updating and
quantization in each update.

A distributed hierarchical tensor depth optimization algorithm (DHT-
DOA) based on federated learning is proposed. The proposed algorithm uses
hierarchical tensors decomposition (HTD) to achieve low-rank approximation
of weight tensors, thus achieving the purpose of reducing the communication
bandwidth between edge nodes and servers, and reducing the storage require-
ments of edge nodes. The main contributions of this paper are as follows:

1) A new DHT-DOA based on federated learning under edge computing
framework model is proposed. The model parameters are compressed from
high-dimensional tensor space to a group of low-dimensional subspaces so as
to reduce the bandwidth consumption and storage requirements of edge node
distributed training.

2) An updated algorithm based on gradient descent hierarchical back-
propagation is designed to train the edge node model. It can reduce the
memory requirement of edge node training by directly computing the gradi-
ent of low dimensional parameters.

3) In this paper, real datasets are used to evaluate the performance of the
proposed algorithm. Experimental results show that the proposed algorithm
can not only achieve better compression efficiency, but also reduce the total
energy consumption of edge nodes.

The rest of this paper is structured as follows: The second section gives
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relevant introduction. The third section introduces the relevant background,
concepts and preparatory knowledge. The fourth section introduces the sys-
tem model and problems. Section 5 introduces and analyzes the proposed
algorithm, and Section 6 provides performance evaluation. Finally, section 7
summarizes this article.

2. Related Works

In recent years, with the continuous rise of industrial information, federal
learning has provided unlimited prospects in secure Internet of Things. A
real IoT environment with federated learning is designed for human-machine
collaboration scenarios[7]. A privacy-protected data sharing strategy combin-
ing federated learning with blockchain is designed to improve IoT efficiency
sharing and security issues. In addition, federated learning can be spread to
other areas such as network attack detection for iot devices, edge computing
caching and offloading, and autonomous driving safety prediction in vehicle
networks[14]. When sensitive information such as driver’s physical condition
and action cannot be uploaded to the cloud, for example, federated learning
can be used to predict vehicle collision[15]. Wei.et al. [16] can be investigated
for a general understanding of federated learning and its specific application
background in edge networks.

From other perspectives, some measures are at the expense of reducing
communication costs by using weight compression techniques such as gradient
thinning and quantization. Gradient sparsity is based on the pre-set gradi-
ent threshold or constant sparsity rate. Only a small number of parameters
are selected to update and then used for distributed training[11]. Gradient
index lowers data transmission by converting gradients into low-precision
values[13]. Wiedemann [17] et al. designed a compression structure to better
transmission potency and realize more precision, which integrates with gra-
dient sparsity, binarized sparse weight and position index of sparse weight
to carry out Columbus coding. Lin et al. studied a strategy named Depth
Gradient Compression (DGC), which uses gradient sparsity to compress com-
munication bandwidth, and furthermore uses impetus rectification and local
gradient prunning to prevent precision loss caused by gradient sparsity[11].
However, the above strategies all use compression and decompression mea-
sures; Its system schema is compressed before being passed to the server,
retrieved from the server, and then decompressed.
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Compared with the above work, the difference of this paper is that it
aims to loss the bandwidth for federated learning by applying the low-rank
representation of weight tensors. As a particularly effective method, tensor
decomposition can use low-rank representation to proximate the weight of the
system, and reduce the parameters greatly so that the classification accuracy
will not decrease too much, but also greatly speed up its training speed [18].
In addition, a tensor series set fuzzy deep convolution system is designed, in
which the system parameters are compressed by applying the tensor series
set decomposition technique [19]. However, at present, the application of
tensor decomposition to the compression of depth computing system cannot
produce successful compression rate. And most of the previous research
work only concentrates on an alone low-end device, but does not exist in the
federated learning system structure.

3. Concept description and Preliminaries

Define 1: Matrixization is the expansion (or flattening) operation of a
matrix (or tensor)[20]. A tensor A ∈ R

I1×I2×...×Id with d different modes
is adopted.Suppose these modes are divided into two disjoint subsets: p =
{p1, ..., pk} and q = {q1, ..., qd−k}. Meanwhile,these modes are trivialized by
dividing the two groups into row and column indexes, The result is that the
system used for training still has parameters equivalent to that of the primary
system on the nodes, thus reducing its training efficiency. In addition, it is
the extra communication required to spread the location message of those
sparse gradients.

At ∈ R
(Ip1 ...Ipk )×(Iq1 ...Iqd−k

) (1)

and it has properties: (At)(ip1 ,...,ipk ),(iq1 ,...,iqd−k
) ≡ Ai1,...,id , the set {1, ..., I1}×

...× {1, ..., Id}, ∀i1, ..., id.
Define 2: The dimesion treeDTI is a binary tree, and each node n ∈ DTI

consists of the subset of the mode Φ = {1, ..., d} and the depth h = [log2d] =
min {i ∈ N, i ≥ log2d}, If the root node is an Φ, then each leaf node is a single
node and each inner node is a disjoint union of its two children, respectively.
To simplify the notation, the set of leaf nodes and internal nodes is defined
by L(DTI) and I(DTI) respectively.
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Define 3: Define (δt)t∈DTI
be a rank probability distribution for the

DTI [21]. The hierarchical rank (δt)t∈DTI
of the tensor A ∈ R

I is denoted as

δt ≡ rank(A(t)), ∀t ∈ DTI (2)

Define 4: Define (δt) be the rank probability distribution with t ∈ DTI

being the node. The matrix M t ∈ R
It×rt and the tuple (M t)t∈DTI

of frames
are named t-frame and frame tree, of which rt := rank(At) ≤ δt. Every
internal node t has two successors S(t) = {tl, tr}. The tensor Tt ∈ R

rt×rt1×rt2 ,
where is the coefficient for the expression of M t by M tl and M tr .

M t = (M tl ⊗M tr)T t with(T t)i,j,k ≡ (Tt)i,j,k (3)

is the transfer tensor.
A. Hierarchical Tensor Decomposition(HTD)

HTD uses a matrixized hierarchy to decompose higher-order tensors into
a series of matrices or lower-order tensors. HTD correspond to dimension
trees whose nodes are described by subsets of tensor mode. The design of
HTD is based on t-frames and transfer tensors to obtain the node cluster t of
dimension tree, among which t-frames M t is obtained by recursive applica-
tion (3). The result is that the tensor A can be decomposed into a sequence
of t-frames and transfer tensors. The HTD case of an eighth-order tensor is
shown in Fig.1. For example, t-frames M 1 and M 2 are derived from rt left
singular vectors of A1 and A2. In addition, M (1,2) can also be derived from
the same operation of mode A(1,2). Therefore, the transfer tensor T(1,2) can
be obtained according to (3).

4. Problem definition and formulation

This paper adopts a system model of federated learning in edge computing
architecture, as shown in Fig.2. The model consists of iot nodes, wireless
access points(WAP) and a cloud server. IoT nodes can be considered edge
nodes, deployed in different locations. IoT nodes connect to cloud servers
through WAPs such as routers and gateways. This model is usually used in
federated learning models. Based on this, this paper studies the collaborative
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Figure 1: Example HTD diagram of a twelve-order tensor.

learning sharing model using federated learning instead of transferring raw
data from multiple edge nodes to the cloud server.

DefineM edge nodes {E1, ..., EM}, and use their respective local data sets
{D1, ..., DM} to train the learning model. The process of federated learning is
described below. Each node first iterates through its local dataset to learn the
local model using stochastic gradient descent several times, and then sends it
to the cloud. The cloud collects all models from multiple nodes and performs
a federated averaging algorithm to arrive at a global model.Therefore, the
model is sent back to the node to update its local model. The communication
process ends.In each round t, the model is updated by the following equation
as follows:

θti = θt−1
i − γgti ; θ

t =
N
∑

i=1

ni

n
θti (4)

where θti and gti are the updated local model and the gradient using back
propagation at the edge node Ei after round t, respectively. θt is the global
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Figure 2: System model.

model after the cloud performs federated averaging after round t, γ is the
learning rate, ni is the data of node Ei, and n is the total number of data.
However, updating the model requires a large amount of high-bandwidth
energy consumption due to the large number of parameters involved in the
model θti at the node and the need for communication exchanges with the
cloud at each round. This paper aims to study a distributed deep com-
puting model, which uses structural update to map local model θti to lower
dimensional space via HTD to reduce communication bandwidth and energy
consumption of edge nodes.

5. Algorithm Design and Analysis

A. Distributed Deep Convolution Optimization Algorithm Based
on HTD

In this paper, a distributed deep convolution algorithm based on HTD in
edge computing framework is proposed. The designed distributed learning
process involves two processes: local update and global aggregation.For local
update, each edge node uses gradient descent algorithm and its local training
data set to train the learning model independently. For global aggregation,
the cloud aggregates the weights from different edge nodes obtained by local
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update, and then returns the updated weights to edge nodes for the next
iteration update process.

Instead of sending all data sets to the cloud for processing, edge nodes can
cooperate to share and learn a common model.In local update processing,
deep convolutional neural network (CNN) based on tensors is used as the
computing model, because it has been proved to achieve better performance
than traditional CNN. The output of the above three types of layers can be
expressed as follows:

f(W (1) ∗ A+ b(1)) = H(W (1); b(1)) (5)

f(W (2) · A+ b(2)) = P(W(2); b(2)) (6)

f(W(3) �A+ b(3)) = C(W(3); b(3)) (7)

where θ ≡
{

W (j); b(j)|j ∈ {1, 2, 3}
}

represent the model parameters. ∗ and
�is tensor convolution and multi-point product operation, f(·) is the activa-
tion function, W and b indicate the corresponding weight and bias tensors
of the input tensors A ∈ R

M1×M2×...×Md . H(·), P(·) and C(·) represent the
feature extractors of the classifier at the convolutional layer, pooling layer
and full connection layer, respectively. Uploading the above parameters to
the cloud during local updates consumes bandwidth.HT mode is used to
represent the weight of learning model of each edge node in order to reduce
communication cost. In particular, the weight tensor W ∈ R

I1×I2×...×Id is
decomposed by HTD into d factor matrices M t ∈ R

(It × pt) and the d − 1
third-order tensor Tt ∈ R

pt×ptl×ptr . Therefore, the weight is expressed by the
following compact mode:

W = ⊗t∈I(DTI)(M tl ⊗M tr)T twith(T t)(i,j,k) ≡ (Tt)(i,j,k) (8)

where t ∈ I(DTI) belongs to node t of dimension tree I(DTI), M tl , M tr

and Tt are t-frame and transfer tensors of each internal node of dimension
tree in tensor mode respectively.

For the learning model, the typical loss function of each data sample at
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edge node Ei is defined on the training data as follows:

Ji(θ) =
1

2

mi
∑

n=1

(lθ(x
n
i )− yni )

2 (9)

where lθ(·) is the output of the deep convolution computing model at each
edge node, and xn

i , y
n
i comes from the training set {(x1

i , y
1
i ), (x

2
i , y

2
i ), ..., ((x

mi

i , ymi

i ))}
sample node Ei.

The proposed distributed deep convolution model algorithm is shown
in Algorithm 1. Firstly, the cloud starts the learning process with the
initial model parameter θ1, and then randomly selects I nodes out of M
edge nodes for parameter update. This process is similar to dropout reg-
ularization to avoid overfitting. In particular, the weight tensor is rep-
resented by a dimension tree whose corresponding hyperparameter is θ ≡
{

M j
t , T

j
t , b

i,W (2)|i ∈ {1, 2, 3} , j ∈ {1, 3} , t ∈ I(DTI)
}

transformed from θ ≡
{

W (j); b(j)|j ∈ {1, 2, 3}
}

.
Hereafter, the forward propagation algorithm in Algorithm 2 is used to

train edge nodes and perform local update. The shared model performs HT
back-propagation algorithm to obtain parameter updates (e.g., lines 24-32 in
Algorithm 1) based on the gradient descent algorithm. Specifically, in the
back propagation algorithm, the error term of the output layer (e.g., line 26
in Algorithm 1) is computed first, and then the error term of the hidden layer
(e.g., line 29 in algorithm 1) is computed. In the similar operation of the
output layer, the error term of the hidden layer is firstly computed according
to the propagation gradient of the following layer (e.g., lines 5, 12 and 17 in
Algorithm 3). The gradient of the hyperparameter is computed based on the
error term of each layer (as shown in lines 6-9, 13-14 and 18-21 in Algorithm
3).

The main purpose of Algorithm 3 in the backpropagation process is based
on the HT back-propagation algorithm described in Algorithm 4. To better
explain the algorithm, this paper sets up a cell in the dimension tree, which
consists of a parent node and two child nodes. Then introduce Kronecker’s
gradient. Two matrices A1 ∈ R

x1×x2 and A2 ∈ R
x3×x4 are defined, and the

Kronecker gradient between A1 and A2 is computed as follows:
X = ∂(A1⊗A2)

∂As∈{1,2}
= ∂B

∂As∈{1,2}
=

∑x1x3

i=1

∑x2x4

j=1
∂B(i,:)
∂As(:,j)

.

In Algorithm 4, the parent node is firstly computed as the gradient of
the root node, which includes the transfer tensor of the parent node and the

10
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Algorithm 1 Algorithm 1: Distributed Hierarchical Deep Convolution
Model Algorithm

1: Cloud computing: Input: the number of edge nodes M , the maximum
number of communication rounds tmax, rank R, learning ratio α, thresh-
old ρ
Input: θ∗

initialize θ0
training edge nodes N=max(M · α, 1)

2: for t = 1 : tmax do
3: training nodes set Ω=(random set of N nodes);
4: for user i ∈ Ω in parallel do
5: θti=nodeupdate(θt−1

i , R, ρ;
6: θt =

∑N

i=1
ni

n
θti ;

7: Edge computing:
8: nodeupdate(θi, R, ρ)
9: Input: rank R, threshold ρ, the maximum number of local iterations

rmax, θi;
10: Output: θ∗i ;
11: T =(batch decomposition of local data sets Di), y

1 = x1
i

12: for r = 1 : rmax do
13: for each bath b ∈ T do
14: for tr = 1 : ntr do
15: ztr+1 = EdgeFP (tr, θi, y

tr)y(tr+1) = f(z(tr+1));
16: if J(θi) > ρ then
17: if tr = ntr then
18: sigma(tr) = (f(ztr)− f(ztr+1))f ′(ztr);
19: end if
20: end if
21: for tr = ntr − 1 : −1 : 1 do
22: ∇θi, σ

tr = EdgeFP (tr, θi, z
tr, σtr+1);

23: θ∗i = θi − γ∇θi;
24: end for
25: end for
26: end for
27: end for
28: end for
29: end for

11
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Algorithm 2 Algorithm 2: Forward Propagation Algorithm at Edge Nodes

1: Edge FP(tr, θ, ztr );
2: Input: tr, θ, ztr;
3: Output: ztr+1;
4: if Layer(tr)=convolutional lay then
5: W1 = ⊗t∈I(DTI)(Mtl ⊗Mtr)Tt;
6: ztr+1 = W1 × ztr + b1;
7: if Layer(tr)=pooling layer then
8: ztr+1 = W2 × pooling(z(tr)) + b2;
9: if Layer(tr)=fully layer-connected layer then

10: W3 = ⊗t∈I(DTI)(Mtl ⊗Mtr)Tt;
11: ztr+1 = W3 � ztr + b3

12: end if
13: end if
14: end if

t-frames of the two child nodes (as shown in Algorithm 4, lines 8-10). Next,
compute the gradient of the other parent node that is the inner node. Since
the child node belongs to the parent node of the last layer, the process can be
divided into two processes. In Algorithm 4, the gradient is calculated when
the parent node belongs to the left or right child node of the last level cell
(as shown in algorithm 4, lines 19-21). The edge nodes then update the local
model in parallel and aggregate it in the cloud.

In the global aggregation process, the cloud updates the model param-
eters by calculating the average weight from multiple edge nodes. After
that, the cloud sends the average weight back to the edge nodes and starts
new iterations until the model converges or reaches the maximum number of
communication rounds.

B. Performance Analysis of the Proposed Algorithm
First, HTD is used to analyze the compression ratio index of model pa-

rameters. Obviously, the higher the compression rate of model parameters,
the less bandwidth required to transmit parameters from edge nodes to cloud
servers. We use HTD to decompose tensor weights of tensor convolution layer
and full connection layer.

For the convenience of analysis, this paper assumes that A ∈ RI1×I2×...×ID

represents the weight tensor to be transmitted in each training iteration on
each node, where D, I and R are the order, the maximum dimension, and the

12
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Algorithm 3 Algorithm 3: Back Propagation Algorithm at Edge Nodes

1: Edge BP(tr, θ, ztr, σtr+1 );
2: Input: tr, θ, ztr, σtr+1;
3: Output: σtr,∇θ;
4: if Layer(tr)=convolutional lay then
5: σtr = (W1)T × σtr+1 · f ′(ztr+1);
6: ∇W1 =

∑

σtr+1 ⊗ (f(ztr))T ;
7: (∇Tt∈I(TI),∇Mt∈L(DTI)) = HT BP (∇W1);
8: ∇θ =

{

∇b,∇Tt∈I(TI),∇Mt∈L(TI)

}

,withλb = σtr+1;
9: if Layer(tr)=pooling layer then

10: σtr = (W2 × σtr+1 · f ′(ztr+1);
11: ∇W2 = σtr+1 ⊗ pooling(f(ztr));
12: ∇b = σtr+1

13: if Layer(tr)=fully layer-connected layer then
14: σtr = (W3)T � σtr+1 · f ′(ztr+1);
15: ∇W3 = σtr+1 � (f(ztr))T ;
16: (∇Tt∈I(TI),∇Mt∈L(DTI)) = HT BP (∇W3);
17: ∇θ =

{

∇b,∇Tt∈I(DTI),∇Mt∈L(DTI)

}

,withλb = σtr+1;
18: end if
19: end if
20: end if

maximum hierarchicak rank of the tensor A. Next, by HTF, the tensor will
be decomposed into the D-factor matrix Mt ∈ RIt×rt and the D − 1 third-
order tensor Tt ∈ Rrt×rtl×rtr , resulting in the storage complexity of O(DIR)
and O((D−1)R3), respectively. Therefore, the magnitude of the correspond-
ing weight tensor is reduced to O(DIR + (D − 1)R3) after decomposition.
Since the initial size of the weight tensor A is O(ID), the compression ra-

tio becomes O( ID

DIR+(D−1)R3 ) with HTF. The compression rate using HTN is

about O(I/R) times that of TTN compared to TTN with data size O(DIR2).
Therefore, the proposed algorithm can reduce bandwidth consumption and
storage requirements. Next, analyze the energy consumption of the model,
which consists of the communication and computing energy of each edge
node. This paper adopts the communication and computing models adopted
in [7], which are usually used to analyze the energy consumption of edge
nodes. It is assumed that li bits of the parameter are transmitted from the
edge node Ei to the cloud with transmitted power pi, and that there is no
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Algorithm 4 Algorithm 4: Hierarchical Tensor Back-Propagation Algo-
rithm
1: Input: tr, θ, ztr, σtr+1;
2: Output: ∇Mt∈L(DTI),∇Tt∈I(DTI)

h = [log2d] = min {i ∈ N, i ≥ log2d};
3: for layer=0: h do
4: if layer=0 then
5: ∇T tr

t = ∇W · (Mtl �Mtr);
6: ∇M tr

tl
= ∇W ·X(Mtl

�Mtr )Tt;
7: ∇M tr

tr
= ∇W ·X(Mtl

�Mtr )Tt;
8: else
9: for t = 1 : 2layer do

10: if t ∈ ttr−1
l then

11: ∇T tr
t = ∇M tr−1

tl
· (Mtl �Mtr);

12: ∇M tr
tl

= ∇M tr−1
tl

·X(Mtl
�Mtr )Tt;

13: ∇M tr
tr

= ∇M tr−1
tr

·X(Mtl
�Mtr )Tt;

14: end if
15: end for
16: if t ∈ ttr−1

r then
17: ∇T tr

t = ∇M tr−1
tr

· (Mtl �Mtr);
18: ∇M tr

tl
= ∇M tr−1

tr
·X(Mtl

�Mtr )Tt;

19: ∇M tr
tr

= ∇M tr−1
tr

·X(Mtl
�Mtr )Tt;

20: end if
21: end if
22: end for

path loss at each model update, Therefore, the transmission rate obtained is
given as follows[22]:

ri = Blog2(1 +
pici
ϑ2

) (10)

where B is the bandwidth,ci ∼ exp(1) is the channel power gain and ϑ2

denotes the additive white Gaussian nosie power. It is assumed that ci is
constant during transmission of li bit parameters. Therefore, the duration Ti

of the parameters transmitted to li bits between the edge node Ei and the

14
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cloud is:

Ti = li/ri (11)

The corresponding communication energy of li bit transmitted on edge node
Ei during duration Ti is:

Ecom
i = piTi = (pili)/ri (12)

It is still assumed that A ∈ RI1×I2×...×ID is the weight tensor, with b bits for
each weight. Thus, the communication energy related to the dimension I,
order D and rank R of A can be obtained as follows:

Ecom
i =

O(pibDIR + pib(D − 1)R3)

ri
(13)

It can be concluded that the larger the rank R is, the larger the size of the
model is, and the more communication energy is consumed.

For the convenience of analysis, this paper considers that the computation
energy consumption of a local iteration of edge node is Ei. Edge node is set
to compute the effective capacitance chipset coefficient beta λi [23] , time
block set to Ti, for all the sample training {(xn

i , y
n
i )}, the size of Di (bit). In

addition, set the CPU frequency to fi and the number of one-cpu cycles for
executing the sample to li. Therefore, the number of CPU cycles to run a
local iteration on the edge node Ei is li|Di|.It can be concluded that the Ei

energy consumption of edge nodes required to compute a local iteration is as
follows:

Ecomp
i =

li|Di|
∑

i=1

λif
2
i = λili|Di|f

2
i = λiTif

3
i (14)

where
∑li|Di|

i=1
1
fi
= Ti.

The following sections will evaluate the energy consumption of the pro-
posed algorithm based on the above analysis.
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6. Experimental Settings and performance

6.1. Experimental environment Setting

In terms of performance evaluation, this paper adopts the classical data
set STL-10 for testing [24], which contains 15000 labeled images of 10 cat-
egories. The whole data set is divided into a training set containing 5000
images of 10 categories and a test set containing 10,000 images of 10 cate-
gories. During all the simulations, each training image was adjusted to 64×
64 pixels with RGB channels represented by third-order tensors.

In this paper, two different cases of data distribution on edge nodes are
taken as reference. In case I, the data samples are first divided into ten cat-
egories, and each edge node occupies the entire category, which represents
independent isomorphic distribution (IID). In case II, data samples of the
same category are assigned to each node, which represents a non-IID dis-
tribution. These two cases are IID=1 and IID=0 respectively. When using
HTF for model compression, the maximum level of the weight tensor ranges
from 1 to 10. Adam was selected as the optimizer, and the first-order mo-
ment estimation was β1 = 0.9, and the second-order moment estimation was
β2 = 0.999. By default, IID=1, η1 = 0.01, while IID=0, η2 = 0.001.All simu-
lation experiments were conducted on tensorFlow framework computers with
Intel CPU I7-9700, 16GB memory and a single NVIDIA Tesla V100 GPU,
which used synchronization to simulate multiple edge node scenarios.

6.2. Performance analysis

Performance requirements in terms of reduced accuracy, parameter com-
pression ratio (PCR), and power consumption were first assessed. The lower
accuracy refers to the lower classification accuracy of the proposed model due
to parameter compression compared with the original model. The smaller
the drop, the better the performance of the method. PCR represents the
compression ratio of model parameters before and after compression. For
comparative performance fairness, the proposed model does not use any addi-
tional model compression techniques such as parameter pruning, sharing, and
knowledge distillation. CNN based on tensors is used to construct the pro-
posed model. The proposed model contains three tensor convolution blocks,
each block is composed of two tensor convolution layers, a pooling layer and
two fully connected layers. In particular, there are 128 convolution kernels
in the first three convolution layers, and 256 convolution kernels in the last
three convolution layers, whose size is 3×3. As for the fully connected layer,
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it has 512 and 20 output units respectively. Fully connected networks also
employ a dropout strategy to prevent the neuron units from being set to a
probability of dropout of 52% to avoid over-fitting. ε is defined as the number
of local update steps at the edge nodes between two global aggregates, and
the number of communication rounds represents an aggregation performed
by its system. In this paper, T is also set as the total number of iterations
carried out by each edge node, and α is set as the percentage of all edge
nodes participating in each round of model update. 1) Performance com-
parison algorithm with different tensor decomposition: The accuracy decline
and performance comparison of PCR with different rank R were evaluated.
Fig.3 shows the change from 1 to 10 of the accuracy decline of different
tensor decomposition algorithms compared with R. In this simulation, the
parameters α = 0.8 and ε = 25 were selected. It is obvious from Fig. 3(a)
that PCR with HT is superior to the other two decomposition algorithms in
all rank R. However, it can also be seen from Fig. 3 (b) and (c) that this
improvement comes at the cost of accuracy. For example, when rank R is 6,
the accuracy decline of the above algorithm is similar: IID=1, when rank R
is not greater than 0.01, IID=0, when rank R is not greater than 0.03; The
corresponding PCR was about 60 for HTD, 40 for TTN and 35 for TuckerF.
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(b) (c)

Figure 3: Performance of different tensor decomposition algorithms: HTD, TTN, Tucker
decomposition. (a) PCR VS R. (b) Accuracy VS R in IID=1. (c) Accuracy VS R in IID
= 0.

2) Performance evaluation with noise properties: It is assumed that when
the model communicates between the edge node and the server, its model
weight is affected by gaussian noise pollution. Fig. 4 shows the comparison
of the accuracy decline of the proposed algorithms for two different data dis-
tributions with different SNR. It can be seen from Fig. 4 that the accuracy
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decline of the two data distributions decreases with the increase of SNR.
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Figure 4: Comparison of performance with (without) noise

3) Comparison of influence of polymerization frequency performance:
Evaluate performance comparisons of different aggregation frequencies with
different data distributions. Fig. 5 shows the decreasing accuracy of the
proposed model when the polymerization frequency varies from 1 to 150,
where M = 80 and α = 0.8 and the rank is R = 10 and R = 5, respectively.
It can be seen that at IID=1, the decrease in accuracy decreases as the ag-
gregation frequency ε decreases until it tends to level. This indicates that
high frequency model aggregation is not required when data distribution is
balanced. This is because edge nodes can learn the features of the whole
data set by themselves, rather than communicating frequently with other
edge nodes (in this case, the data set is evenly and randomly distributed
among each edge node). Compared with the case where IID = 0, the accu-
racy decreased first and then increased with the aggregation frequency. This
indicates that there exists an optimal value of aggregation frequency in the
case of deviation and imbalance of data distribution. This also means that
in the case of IID = 0, edge nodes can effectively learn the features of other
data sets only by communicating with the cloud.

4) Comparison of energy consumption and performance of grade R: Con-
sider here that 50 edge nodes will participate in the federated learning pro-
cess. This paper evaluates the energy consumption performance of each
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Figure 5: Comparison of aggregation frequency and accuracy under different conditions.

edge node for parameter communication and local computation. The fol-
lowing environment configuration is used in the simulation: B = 3MHz,
ϑ2 = −80dBm, Pi = 45 dBm, li = 10−3.20, fi = 2.5 GHz, λi = 10−29. As can
be seen from Fig.6 and Fig.7, the higher rank R is, the more communica-
tion energy and computing energy are consumed. This is mainly because the
size of model parameters increases with the increase of rank R. It is obvious
that the energy consumption of communication is much greater than that
of calculation. Because of its higher compression efficiency, the proposed
model can achieve lower communication energy consumption than other ten-
sor decomposition algorithms. It also shows that the computational energy
consumption of the proposed algorithm is similar to that of other methods,
which indicates that the proposed algorithm can reduce energy consumption
without introducing additional computational complexity.

7. Conclusion

In this paper, a distributed deep computing model with HTD for feder-
ated learning is proposed. For two different data distributions, the proposed
algorithm can effectively compress model parameters by HTF algorithm at
each model update. Specially, the decline in accuracy for IID distributions is
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Figure 6: Comparison of communication energy consumption and rank R under different
tensor decomposition algorithms.
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Figure 7: Comparison of calculated energy consumption and rank R under different tensor
decomposition algorithms.
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usually lower than for non-IID distributions in the same PCR case. Moreover,
compared with the compression and decompression method, it is found that
the proposed algorithm not only achieves small precision reduction in most
PCR cases, but also improves the training efficiency. In addition, it is shown
that compared with other tensor decomposition algorithms, the proposed
algorithm can save more energy, especially in communication energy. The
effect of aggregation frequency on different data distribution performance of
edge nodes is also studied. Finding the appropriate frequency of aggregation
is important for different data distributions.

Although the proposed algorithm has some innovative advantages, there
are still many challenges in practical application. First, federated learning
relies on the server for local model aggregation, which makes it difficult to
expand. To solve this problem, a fully distributed learning method based
on consensus algorithm can be adopted[7]. In addition, federated learning
has some limitations such as slow and unstable communication, and different
resources in heterogeneous devices. For example, when heterogeneous devices
participate in training, they may have different resources and involve different
computing capabilities, bandwidth limits, and so on. At the same time,
unstable wireless communication channels can cause problems with frequent
disconnections to servers.These limitations require serious consideration in
practice, which can be addressed by system-level design and some promising
communication techniques, which we will also consider in future work.
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



        



 

 












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










