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Abstract

We show it is possible to tile three-dimensional space using only tetrahedra with acute
dihedral angles. We present several constructions to achieve this, including one in which all
dihedral angles are less than 77.08◦, and another which tiles a slab in space.

1 Problem definition

Triangulations of two and three-dimensional domains find numerious applications in scientific

computing, computer graphics, solid modeling and medical imaging. Most of these applications

impose a quality constraint on the elements of the triangulation. Among the most popular quality

criteria for elements [4] are the aspect ratio (circumradius over inradius), the minimum dihedral

angle, and the radius-edge ratio (circumradius over shortest edge). However, many other quality

criteria have been considered, including maximum dihedral angle. Bern et al. for instance, studied

nonobtuse triangulations [3, 5], where domains are meshed with simplices having no obtuse angles.

In this paper, we consider a slightly stronger quality constraint: all the dihedral angles in the mesh

are forced to be acute (strictly less than 90◦). Although acuteness seems only slightly stronger than

nonobtuseness, this problem turns out to be considerably harder than the nonobtuse triangulation

problem, as we observe below in Section 3.

Definition. An angle is acute if it is strictly less than a right angle (π
2
= 90◦). A simplex is acute

if all its (interior) dihedral angles are acute. A triangulation is acute if all of its simplices are acute.

Problem 1. Given a domain Ω, compute an acute triangulation of Ω.

There has been extensive work on the two-dimensional version of this problem, for the special

cases where the domain Ω is a triangle, square, quadrilateral, or a finite point set [5, 10, 24, 31,

32, 34]. We review those results in Section 3. In three-dimensional space, however, almost nothing

has been known about acute triangulations before now. To the best of our knowledge, even the

following relaxed form of the problem, where the the input domain is the entire space, had not

been addressed in the literature.
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Problem 2. Is it possible to tile three-dimensional Euclidean space using acute tetrahedra?

We present an affirmative answer to this question, by several different constructions. The two-

dimensional analog of this problem has a trivial positive answer: congruent copies of any single

triangle will tile the plane. However, this idea does not extend to 3D, as the regular tetrahedron

(for instance) cannot tile space. All tetrahedra known to tile space have right angles, as further

discussed in Section 3.

We started this research on acute triangulations because of a method developed for space-time

meshing which required an acute base mesh. This and our other motivations are discussed in

Section 2. Section 3 surveys previous research in acute triangulations. Section 4 investigates what

acuteness means for a three-dimensional simplex and gives a comparison of acute and Delaunay

triangulations. Constructions tiling three-dimensional space, and hence solving Problem 2, are given

in Section 5. The paper concludes in Section 6 with a quality assesment of these constructions.

2 Motivation

We were originally motivated to study acute triangulations by the space-time meshing algorithm of

Üngör and Sheffer [42]. This tent-pitcher algorithm was designed to discretize space-time domains

into meshes that obey a certain cone constraint, which requires all faces in the mesh to have smaller

slopes than the cones that define the domain of influence imposed by the numerical (engineering)

problem. (For instance, we might require simply that all faces make at most a 45◦ angle with

the horizontal.) Because there is then a well-defined direction of information flow across element

boundaries, such meshes enable the use of very efficient element-by-element methods (including

space-time discontinuous Galerkin methods) to solve a wide variety of numerical problems, for

instance in elastodynamics. The tent-pitching algorithm starts with a space mesh of the two-

or three-dimensional input domain and constructs the space-time mesh using an advancing front

approach. The algorithm is known to generate a valid space-time mesh if the initial space mesh is

an acute triangulation [42], but may fail if there is an obtuse angle or even a right angle.

Later, Erickson et al. [16] proposed an improved version of the tent-pitching algorithm. By

removing the acute angle requirement, the new space-time algorithm works over arbitrary spatial

domains. However, there is a loss of efficiency (more elements are required) whenever there is a

nonacute angle.

Thus the study of Problem 1 is motivated by current space-time meshing algorithms. But

even a solution to Problem 2 is useful, since it leads to a better understanding of the acute

triangulation problem for more general input domains, and it also finds some direct applications in

mesh generation.

Spacial tilings of high quality have been used for designing meshing algorithms: Fuchs [23],

Field and Smith [17, 19] and Naylor [35] built meshes by overlaying standard tilings onto the

given polyhedral domain. They used tilings known at the time, such as Sommerville constructions
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(a) (b) (c)

Figure 1: An almost regular triangulation of a cube with a hole (A. Fuchs); (a) the point set of a
body-centered cubic (BCC) lattice overlayed with the domain; (b) the adjusted point set; (c) the
conforming Delaunay triangulation.

(Figure 5) and subdivided cubes (Figure 7), which we discuss in Section 3.2. Their approach has

three steps, illustrated in Figure 1:

(a) Overlay the chosen tiling with the given domain. The main challenge in this step is finding the

right scaling, location and orientation for the tiling so that it matches the domain boundary

as closely as possible.

(b) Adjust the points to get a better fit. For this purpose, one of the standard smoothing

techniques [9, 18, 22] can be used. Alternatively, Fuchs [23] suggested minimizing a function

which penalizes configurations that produce irregular vertices.

(c) Construct the mesh by computing the conforming Delaunay triangulation of the adjusted

point set and the domain boundary.

Fuchs [23] reports good performance of his experiments when he used the second Sommerville

construction (Figure 5(b)) as the space tiling. (This tiling is the Delaunay triangulation of the

body-centered cubic lattice.) The dihedral angles of his mesh in Figure 1(c) range between 7.6◦

and 168.2◦. However, most of the angles (here and also in his meshes of similar geometric domains)

cluster around 60◦ and 90◦, which are exactly the dihedral angles of the BCC tetrahedron in the

input tiling. Some of the constructions we propose in Section 5 are considerably better in terms of

dihedral angles and also other quality measures. Our new constructions can find immediate use to

improve the results of this previous research [23, 17, 19, 35] on tiling-based meshing.

Bossavit suggests [7, 8] that acute triangulations may also be useful in computational

electromagnetics.
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3 Background

3.1 Acute and nonobtuse triangulations

There has been considerable research [1, 3, 4, 6, 14] on the nonobtuse triangulation problem, which

imposes a slightly weaker constraint than the acute triangulation problem. Angles in a nonobtuse

triangulation are less than or equal to 90◦. Bern et al. [3] showed that any d-dimensional point

set can be triangulated with O(n⌈d/2⌉) simplices, none of which has any obtuse dihedral angles.

However, they also proved that no similar result is possible if all angles are required to be at

most 90◦ − ǫ. This indicates that the acute triangulation problem is much more challenging than

nonobtuse triangulation. To appreciate this difference, consider the two problems for a square

domain in two dimensions. A single diagonal cuts a square into two nonobtuse triangles, as in

Figure 2(a). Finding an acute triangulation, however, can be a challenging recreational math

problem.

(a) (b) (c) (d)

Figure 2: (a) nonobtuse triangulation of a square (b) a square meshed with eight acute triangles
(c) a square meshed with ten acute triangles (d) triangulation where maximum angle is 72◦

Lindgren [31] showed that at least eight triangles, as in Figure 2(b), are needed. Later, Cassidy

and Lord [10] showed that for any n ≥ 10 (but not for n = 9) there is an acute triangulation with

exactly n triangles. Figure 2(c) shows the solution with ten triangles. We can use the maximum

angle in a triangulation as a quality measure. The triangulations in Figure 2(b,c) can be realized

with maximum angles about 85◦ and 80.3◦, respectively. Eppstein [15] improved this angle to 72◦

using fourteen acute triangles, as shown in Figure 2(d). Using Euler’s formula, Eppstein also showed

that any acute triangulation of a square must have an interior vertex of valence five, implying that

72◦ is the best possible. It is unknown whether there is a triangulation achieving this with fewer

than fourteen triangles.

The acute triangulation problem has been studied for other simple polygons as well. Gard-

ner [24] asked the question for triangles. Manheimer proved that seven acute triangles are necessary

and sufficient to subdivide a nonobtuse triangle [34]. Recently, Maehara [32] showed that an

arbitrary quadrilateral can be tiled by 10 (but perhaps not by any fewer) acute triangles. Gerver [25]
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(a) (b)

Figure 3: Acute triangulation gadgets and their use on a point set (M. Bern and D. Eppstein [5])

considered the problem of finding triangulations with a stricter upper bound (between 72◦ and 60◦)

on their angles, and gave necessary conditions for a polygonal domain to have such a triangulation.

If we restrict ourselves to two-dimensional point sets, a solution to the acute triangulation problem

is given by Bern et al. [5]. Their approach starts with a quadtree, and replaces the squares by tiles

with protrusions and indentations. Figure 3 shows sample tiles together with an acute triangulation

resulting from their algorithm.

Krotov and Krizek [29] studied refinement methods to subdivide a nonobtuse tetrahedral

partition into another finer one. Unfortunately, they called the resulting triangulations acute type

instead of nonobtuse even though 90◦ dihedral angles were ubiquitous in them. Another related

work is by Hangan, Itoh and Zamfirescu [27, 28] who studied acute surface triangulations of certain

special shapes such as a cube, sphere and icosahedron.

3.2 Acute and nonobtuse tilings

Aristotle claimed that regular tetrahedra could meet five-to-an-edge to tile space, and this claim

was repeated over the centuries (see [36]). This of course is false, because the dihedral angle of a

regular tetrahedron is not 72◦ but arccos 1

3
≈ 70.53◦. Figure 4 shows the small gap left when five

tetrahedra are placed around an edge.

There are, however, tetrahedral shapes which can tile space. Sommerville [38] found four

such tetrahedra, shown in Figure 5. Four decades later, Davies [12] and Baumgartner [2]

independently rediscovered three of the Sommerville tetrahedra; Baumgartner also found a new

example. Goldberg [26] surveyed the list of all known space-tiling tetrahedra, and found three

infinite families, including the one shown in Figure 6(a).
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The construction of this family is based on a tiling of the plane by equilateral triangles of side-

length e. The infinite prism over each triangle is filled with tetrahedra whose sides are 3a, b, b, b, c, c,

where b2 = a2 + e2 and c2 = 4a2 + e2, as shown in Figure 6. Since the ratio a/e is arbitrary, there

is a continuous family of tetrahedral space-fillers of this type. Goldberg’s two other families can be

derived simply by cutting these tetrahedra into two conguent pieces, either by the plane through C,

D and the midpoint of AB, or by the plane through A, B and the midpoint of CD. Whether the

list is complete or not is still an open problem [13, 36]. None of the known space-tiling tetrahedra

is acute (although several are nonobtuse). In fact, the tilings all contain edges of valence four. (In

Goldberg’s family, these are the edges of length c.)

Since it seems likely that there is no tiling of space by congruent acute tetrahedra, we will now

consider tilings with several shapes of tetrahedra. There are now many more ways to fill space, for

instance by subdividing the cube into five or six tetrahedra as in Figure 7. These tilings also, of

course, have 90◦ dihedral angles, and so are nonobtuse but not acute.

There are many results (like minmax and maxmin angle results) known about optimality of

Delaunay triangulations in the plane. But these do not extend to three dimensions, and little is yet

known about optimum triangulations in space. Thus it is not surprising that the constructions of

acute triangulations do not easily extend from two to three dimensions. It is perhaps remarkable

that acute triangulations of space can be constructed.

4 Acute Tetrahedra

An acute tetrahedron does not necessarily have high quality in terms of either aspect ratio or

radius-edge ratio. Low-quality tetrahedra have been classified into nine types [11], and three of

these (the spire, splinter and wedge) can have all their dihedral angles acute. However, fortuitously,

the tetrahedra in our constructions are mostly quite close to regular, and are high-quality for use

in mesh generation and numerical simulations.

70.53

Figure 4: The regular tetrahedron does not tile space.
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(a) (b) (c) (d)

Figure 5: Sommerville tetrahedra. The first tetrahedron is half of the third. The fourth tetrahedron
is one fourth of the second.

c c a

3a

3a

e
e

e

b

e

e
e

2a

3a

bb

c

b

b b

c

b

3a

c

b

b

c

C

A

B

D

(a) (b)

Figure 6: Family of space tilings

4.1 Acuteness test

By definition, a tetrahedron is acute if each of its six dihedral angles is less than 90◦.

Lemma 1. Consider an edge ab of a tetrahedron abcd, and let Π denote projection to a plane

normal to ab. The dihedral angle along ab is acute if and only if Π(a) = Π(b) lies strictly outside

the circle with diameter Π(c)Π(d).

Proof. The dihedral angle along ab is by definition the angle ∠Π(c)Π(a)Π(d); the lemma follows

from standard plane geometry (Thales’ theorem, see Figure 8(c)).

This lemma can be applied to each of the edges of a tetrahedron. We now examine some

alternate criteria for acuteness.
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(a) (b)

Figure 7: Cube subdivided into (a) 5 or (b) 6 tetrahedra.

Lemma 2. A tetrahedron is acute if and only if the orthogonal projection of each vertex onto the

plane of the opposite facet lies strictly inside that facet. An acute tetrahedron has acute facets, but

this is not a sufficient condition.

Proof. Suppose the projection of a vertex d is not inside the opposite triangle △abc. Then, the

dihedral angle along any edge that separates the region it projects to from △abc must be nonacute,

as in Figure 8(a). (If the projection is on a triangle edge, then the corresponding dihedral angle is

exactly 90◦.) Conversely, if the dihedral angle along edge ab is nonacute, then d projects outside

△abc, as in Figure 8(b).

We prove the second statement in contrapositive form, while noting that nonacute sliver

tetrahedra can have acute face angles. Suppose tetrahedron abcd has a nonacute face angle ∠bac;

we will show the tetrahedron is nonacute. If the projection of d onto △abc is not in the interior we

are done by the first part of the lemma. Otherwise, we claim the dihedral angle along ad is larger

than ∠bac and thus is nonacute. To check the claim, remember the spherical dual law of cosines

(see [41]):

cos d′ = − cos b′ cos c′ + sin b′ sin c′ cos∠bac

where b′, c′ and d′ are the dihedral angles along the edges ab, ac and ad, respectively. (See

Figure 8(d).) Assuming b′, c′ < π
2
, this gives cos d′ < cos∠bac as desired.

4.2 Acuteness of Delaunay Triangulations

Given a set of vertices, the Delaunay triangulation is optimal in many ways. However, a Delaunay

triangulation in any dimension can have obtuse angles. In this section, we investigate the converse,

whether an acute triangulation is necessarily the Delaunay triangulation for its vertices. The answer

is positive in the plane, but negative in three-space.

Lemma 3. Any acute two-dimensional triangulation T is Delaunay.

Proof. Since T is acute, the diametral circle of each edge is empty of other vertices. By definition,

this means the edge is in the Gabriel graph of the vertex set, which is a subgraph of the Delaunay
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b c

{ac,bc}

{ac}{ab}

{bc}

{ab,bc}

{ab,ac}

{}

c
d

ab

(a) (b)

ab

d

c

b c

a

cb

d

d

(c) (d)

Figure 8: Acuteness tests: (a) if vertex d projects outside △abc, the label shows which edges have
obtuse dihedral angles; (b) if the dihedral angle along ab is obtuse, both c and d project outside
their opposite triangles; (c) Thales’ theorem says that the angle at ab is obtuse exactly when it lies
outside the circle with diameter cd; (d) if the vertex d projects inside the triangle abc then the face
angle ∠bac is smaller than the dihedral angle on ad.

triangulation. But since the edges of T form a triangulation, it must be the entire Delaunay

triangulation. See also Figure 9.

Corollary. If an acute triangulation of a two-dimensional vertex set exists then it is unique.

Lemma 4. There is an acute triangulation T in three dimensions which is not Delaunay.

Proof. Consider a “cube corner” tetrahedron, and glue it to a copy of itself across the equilateral

face. Then move the two corner vertices away from each other a tiny amount to make the tetrahedra

acute. In coordinates, take a suitable small ǫ > 0, and let a = (−ǫ,−ǫ,−ǫ), b = (1, 0, 0), c = (0, 1, 0),

d = (0, 0, 1), and e = (2/3+ǫ, 2/3+ǫ, 2/3+ǫ). The two tetrahedra abcd and bcde are acute, but the

Delaunay triangulation of these five points consists of three tetrahedra: abce, acde, and abde, as in

Figure 10, because e is inside the circumsphere of abcd. Note that the three Delaunay tetrahedra

are obtuse, having 120◦ dihedral angles along edge ae. The acute triangulation we started with is

obtained by performing a 3-to-2 flip on the Delaunay triangulation.
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cb

a

Figure 9: Acute triangles in the plane are Delaunay. An alternate proof uses the fact that the
circumcircle is contained in the union of the three diametral circles around the edges.

a b

e

d

c

Figure 10: An example of an acute triangulation in space which is not Delaunay.

5 Constructions for Acute Tilings

5.1 TCP triangulations

Our first set of acute triangulations basically come from the crystallography literature. Chemists

studying alloys of two transition metals have often found that since the two types of atoms are

similar (but slightly different) in size, the Delaunay triangulation of their positions is built of nearly

regular tetrahedra. These TCP (tetrahedrally close packed) structures were first described by Frank

and Kasper [20, 21] and have been studied extensively by the Shoemakers [37] among others.

A combinatorial definition of the TCP class was given by Sullivan [39]: A triangulation is called

TCP if every edge has valence 5 or 6, and no triangle has two 6-valent edges. This definition

includes all the chemically known TCP structures, but also allows some new structures [40] not yet

seen in nature.

It is not hard to check that the definition allows exactly four types of vertex star in a TCP

triangulation. Dually, the voronoi cell around any vertex has one of the four combinatorial types
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shown in Figure 11: these are the polyhedra with pentagonal and hexagonal faces but no adjacent

hexagons. (It is interesting that these dual structures are seen in some other crystal structures: in

some zeolites, silicon dioxide outlines the voronoi edges, while in clathrates, water cages along the

voronoi skeleton trap large gas molecules.)

(a) (b) (c) (d)

Figure 11: Foam cells with pentagonal and hexagonal faces

All known TCP structures can be viewed as convex combinations of the three basic ones (called

A15, Z and C15) shown in Figure 12. There are many ways to understand these structures [39]. To

construct A15, we can start with a BCC lattice. Its Delaunay triangulation is one of the Sommerville

tilings discussed above; since the edges have even valence the tetrahedra can be colored alternately

black and white. If we take the BCC lattice together with the circumcenters of all black tetrahedra,

we have the vertices of A15: their Delaunay tetrahedra are all now nearly regular. Similarly, the

C15 structure arises from the diamond lattice by adding selected circumcenters, and the Z structure

can be obtained similarly starting with hexagonal prisms.

The C15 structure (also known as the cubic Friauf–Laves phase) is shown in Figure 13, where

the red spheres are centered on a diamond lattice (FCC together with a certain translate) and the

blue spheres are at selected circumcenters.

In any triangulation of space, the average dihedral angle multiplied by the average edge valence

is exactly 360◦. If a tiling could be made of regular tetrahedra, the average edge valence would thus

be n0 := 360◦/ arccos(1
3
) ≈ 5.1043. But by symmetry, the regular tetrahedron is a critical point for

average dihedral angle, so any tiling made of nearly regular tetrahedra should have average valence

(a) (b) (c)

Figure 12: The voronoi cells for the three basic TCP structures, A15, Z, and C15.
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(a) (b)
(c)

Figure 13: The vertices of the C15 triangulation are at the centers of these balls.

(a) (b)

(c) (d)

Figure 14: Four simple periodic square/triangle tilings of the plane which lead to the TCP structures
named (a) Z; (b) A15; (c) σ; and (d) H.

quite close to n0. Indeed, all known TCP structures have average valence between 5 1

10
and ≤ 51

9
,

the values for C15 and A15.

Sullivan [40] has formalized a construction suggested by Frank and Kaspar for mixing the basic

TCP structures. Start with any tiling of the plane by copies of an equilateral triangle and a square,

like one of the four shown in Figure 14. Suppose the side length of the square and triangle is 4.

Mark black and white dots on the tilings as shown. (The dots are at edge midpoints, at triangle

centers, and at distance 1 from the sides of the sqaures.) Then the vertices of the corresponding

TCP structure are at heights 4k − 1 above the black dots, at heights 4k + 1 above the white dots,

and at heights 4k and 4k + 2 above the vertices of the square/triangle tiling. (Here k ranges over

12



all integers.)

Again, in each case the TCP triangulation is simply the Delaunay triangulation of this periodic

point set. See Figure 16. The triangulations constructed in this way are all combinations of the

A15 and Z structures. A variant of this construction [40] builds combinations of the Z and C15

structures, again starting from an arbitrary square/triangle tiling.

Especially in the mixed structures like σ and H, the particular geometry we have described here

may differ slightly from that found in the actual crystals with the same combinatorics. Presumably,

these slight adjustments do not affect the shapes of the tetrahedra very much. The quality figures

we present below are measured using the exact geometry we have just described.

Sullivan’s original interest in these structures was for the mathematical study of foam geometry.

The Kelvin problem asks for the most efficient partition of space into unit-volume cells, that is, for

the partition with least surface area. Lord Kelvin’s suggested solution was a slightly relaxed form

of the BCC voronoi cells (truncated octahedra). But in 1994, Weaire and Phelan [43] discovered

that a relaxed form of the voronoi cells for the TCP structure A15 is more efficient than the Kelvin

foam [30].

It is perhaps not surprising that TCP structures are related to foams: Plateau’s rules for

singularities in soap films minimizing their surface area imply that a foam is combinatorially dual

to some triangulation, preferably one with nearly regular tetrahedra. It is an interesting question

whether any triangulation meeting the combinatorial definition of TCP can be built with tetrahedra

close to regular, but certainly for the known TCP structures this seems always to be the case. Thus

our acute triangulations arising from this construction have high quality by almost all measures.

5.2 Icosahedral Construction of the Z Structure

An alternate construction for the TCP Z structure is inspired by the work of Field [17]. His tilings

involved right-angled tetrahedra, but by selectively adjusting the point set, we obtain a tiling with

only acute tetrahedra. A regular icosahedron can be subdivided into 20 acute (and nearly regular)

tetrahedra simply by coning to the center point. We place icosahedra in a hexagonal lattice in the

plane, each in the same orientation, touching edge to edge, as in Figure 15.

This layer then gets repeated vertically, with each icosahedron sharing a horizontal face with

the ones just above and below it. Our point set is then the vertices and centers of all the icosahedra.

Its Delaunay triangulation, shown in Figure 16(d), is combinatorially the TCP Z structure, but

with slightly different geometry than that constructed before. The horizontal faces (seen head-on

as equilateral triangles in Figure 15) are shared by two icosahedra. Each other face separates an

icosahedron from one of the four types of Delaunay tetrahedra that fill the gaps. There are two

type of gaps. The deeper gaps are defined by the points a, b, c, d, e, f, g, and g′ (opposite to g) and

are filled with two type of tetrahedra, e.g., bdfg and abfg. The shallower gaps are defined by the

points d, f, h, i, j, k, e, and e′ (opposite of e) and are filled with two type of tetrahedra, e.g., ee′df

and ee′fh.

13
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Figure 15: Icosahedron construction.

5.3 An Acute Triangulation of a Single Slab

The acute triangulations we have described so far, though periodic, do not have any planar

boundaries within them. Here we describe an acute triangulation of a slab (which can of course be

repeated to fill all of space). We view this as partial progress towards the problem of triangulating

an arbitrary domain, although it seems much harder to find an acute triangulation of a cube or

even an infinite square prism. We triangulate the bottom half of the slab in the following eight

steps. Let h be the height of the slab and γ = h/14.2.

1. Start with a grid of equilateral triangles of side length 6γ on the base plane, as in Figure 17(a).

2. Place a near-regular tetrahedron (with height 4γ) over each triangle, as in Figure 17(b).

3. Add a tetrahedron in the gap between each pair of adjacent tetrahedra, as in Figure 17(c).

The resulting surface has deep hexagonal dimples at the original vertices in the base plane.

4. Add six tetrahedra in each dimple, each with one vertex on the starting plane, two vertices

at height 4γ, and one new vertex at height 4.6γ over the starting vertex, as in Figure 17(d).

Now we have a surface with shallow hexagonal bumps.

5. Place a vertex at height at 7.1γ over the midpoint of the edge between each pair of adjacent

bumps. Each such vertex and edge form a vertical triangle; let this separate two new

tetrahedra whose fourth vertices are the the two nearby bump vertices, as in Figure 17(e).

The surface is now covered by tall diamond-shaped bumps.

6. Place a tetrahedron between each adjacent pair of bumps, as in Figure 17(f). We now have an

alternating grid of medium-depth six-sided holes (over each of the shallow hexagonal bumps)

14



(a) (b)

(c) (d)

Figure 16: Acute triangulations filling space. (a) The TCP structure Z (from a triangle tiling). (b)
The TCP structure A15 (from a square tiling). (c) The TCP structure σ, a mixture of A15 and Z.
(d) Icosahedron construction of Figure 15.

and deep tetrahedral holes (over the points where three of the shallow hexagonal bumps

meet).

7. Fill each tetrahedral hole, to form a surface alternating between six-sided holes and flat

triangles, as in Figure 17(g).

8. Place six tetrahedra into each medium-height hexagonal hole to turn it into a medium-height

hexagonal bump, as in Figure 17(h). In order to make the bumps equal to the holes, the

height of the new vertices is chosen as [2(7.1 − 4.6) + 4.6]γ = 9.6γ.

To complete the triangulation of the slab, we now repeat the first seven steps in reverse order.

Any of the constructions given in this section serves to prove our main result:

15



(a) (b) (c)

  

(d) (e) (f)

(g) (h)

Figure 17: Eight steps in filling a slab with acute tetrahedra. The nodes in the base plane are
colored white; successive layers above that plane are then colored yellow, red, blue and black, in
order.

Theorem 5. It is possible to tile three-dimensional Euclidean space with acute tetrahedra.

6 Evaluation of the constructions

Our constructions use tetrahedra of quite good quality (as summarized in Table 6) and so they are

quite suitable for mesh generation.

There are still some challenges left to make use of these tilings in real-life meshing techniques.

A strategy is required to fit the tilings into a planar projection of the spatial domain. Malkevitch

studies this problem in [33]. He describes the conditions for a polygon to be tiled by squares and

16



radius-edge
ratio

smallest
dihedral angle

largest
dihedral angle

Construction min max min max min max

TCP Z from triangle tiling .651 .737 53.13 67.37 73.89 77.07
TCP A15 from square tiling .645 .707 53.13 67.79 73.39 78.46
TCP σ .645 .737 53.13 67.79 73.39 78.46
TCP C15 .612 .711 60 70.52 70.52 74.20
TCP Z from icosahedra .629 1.000 41.81 69.09 71.99 83.62
Slab .636 .938 46.83 67.88 74.39 87.70

Sommerville I 1.118 1.118 45 45 90 90
Sommerville II .645 .645 60 60 90 90
Sommerville III .866 .866 45 45 120 120
Sommerville IV 1.581 1.581 30 30 131.81 131.81
Cube V .612 .866 54.73 70.53 70.53 90
Cube VI .866 .866 45 45 90 90

Regular tetrahedron .612 .612 70.53 70.53 70.53 70.53
Cube corner .866 .866 54.73 54.73 90 90

Table 1: The quality of the tetrahedra in our constructions (and of the regular tetrahedron) can
be measured in terms of the radius-to-shortest-edge ratio and the maximum dihedral angles.

equilateral triangles. Also, even though one of our constructions fits between two parallel planes

in a slab, all of them have dimples (cavities on the surface) in most directrions, making them not

very suitable for meshing domains with flat surfaces.

Open problems related to this work include the following

1. Given a point set in 3D that has an acute triangulation, how can we compute it?

2. Are these constructions the best possible? For instance, which tiling of space with tetrahedra

minimizes the maximum dihedral angle?

3. Is it possible to tile the space with congruent copies of some single acute tetrahedron?

4. Is it possible to subdivide a cube (or even an acute tetrahedron) into acute tetrahedra?

5. Is it possible to extend the planar acute triangulation algorithm of [5] into three dimensions,

using constructions similar to ours?
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