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Abstract

The number of minimum pseudo-triangulations is minimized for point sets in convex position.
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1. Introduction

A pseudo-triangleis a planar polygon with exactly three convex vertices, calledcorners. Three reflex
chains of edges join the corners. LetS be a set ofn points in general position in the plane. Apseudo-
triangulation for S is a partition of the convex hull ofS into pseudo-triangles whose vertex set isS.
A pseudo-triangulation is calledminimumif it consists of exactlyn − 2 pseudo-triangles (and 2n − 3
edges), the minimum possible. Each vertex of a minimum pseudo-triangulation ispointed, that is,
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its incident edges span a convex angle. In fact, minimum pseudo-triangulations can be characterized
as maximal planar straight-line graphs where each vertex is pointed [18]. Therefore, they have been
alternatively called pointed pseudo-triangulations.
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Pseudo-triangulations have received considerable attention in computational geometry due
applications to visibility [13,14], ray shooting [8], kinetic collision detection [1,11,12], rigidity [18],
guarding [17]. Several of their interesting geometric and combinatorial properties have been dis
recently [2,9,10,16]. Still, little is known about the number of pseudo-triangulations a general poinS

allows. (Assuming general position ofS is necessary to avoid trivial situations.) In [15], the numbe
minimum pseudo-triangulations is determined for sets of points with exactly one interior point. A
(coarse) upper bound on the number of minimum pseudo-triangulations for sets withi interior points is
given, namely 3i times the number of triangulations. An asymptotic lower bound for the maximal nu
of pseudo-triangulations is derived in [6].

For standard triangulations it is not known which sets of points have the fewest or the
triangulations.4 In contrast, we show that sets of points in convex position minimize the numb
minimum pseudo-triangulations. This adds to the common belief that minimum pseudo-triangu
are more tractable in many respects. In the next section, we illustrate that a lower bound of�(3n) on
their number is easy to obtain for every point set, by using an inductive argument. Section 3 refi
construction and presents the main result. We close with several remarks and also include the de
of an interesting parity property.

2. Incremental prelude

Let us split the given point setS into two setsH andI , containing its extreme and interior poin
respectively. The setH , as being in convex position, admits exactlyCh−2 triangulations, whereh = |H |
andCh denotes thehth Catalan number. Since for sets in convex position the only pseudo-triangul
are triangulations, these constitute also all possible pseudo-triangulations forH .

SinceCh−2 is in �(3h) we are done ifI = ∅. Otherwise we pick any of the triangulations forH

and complete it to a minimum pseudo-triangulation ofS by successively adding then − h points ofI
in an arbitrary but fixed insertion order. The generic step inserts some pointp ∈ I into some pseudo
triangle∆p. There are exactly three ways to complete the interior of∆p to a valid minimum pseudo
triangulation: choose 2 of the 3 corners of∆p and connect them top by geodesics (inner tangent
in ∆p. This splits∆p into two new pseudo-triangles. Exactly one pseudo-triangle hasp as a corner and
will be called abase pseudo-trianglefor p (see Fig. 2). Observe thatp as well as all vertices of∆p stay
pointed after the insertion.

Any two pseudo-triangulations we construct in this way are different, since we started
pairwise different triangulations and applied only changes restricted to already existing pseudo-tr
Therefore this method yieldsCh−2 · 3n−h minimum pseudo-triangulations forS.

4 See http://www.igi.TUgraz.at/oaich/triangulations/counting/counting.html for examples of point sets that are cu
conjectured to minimize the number of triangulations.
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Fig. 1. Edges of∆p are flipped.

3. Refined incremental approach

We will show that a factor of 4 (rather than 3) can be gained per insertion step. To this en
n − h points inI are inserted in somedirectional order, and a carefully chosen edge flip is applied a
inserting any pointp ∈ I to raise its degree from 2 to 3. This will lead to 4 distinct minimum pseu
triangulations.

An edge flipreplaces a given edgee by a unique edgee′. Edgee′ lies on the geodesic between the t
corners opposite toe in the two pseudo-triangles adjacent toe.

Recall that∆p is the pseudo-triangle into which pointp is inserted. Unlike flips in triangulations,
flip of an edge of∆p does not need to increase the degree ofp. An edge which still does will be terme
anaugmenting edgefor p. See Fig. 1, wheree is an augmenting edge forp while f is not.

The uniqueness of the insertion order is mandatory and can always be guaranteed by the
position assumption onS. In the following discussion we will assume that the points of the setI are
inserted in increasingx-order.

Lemma 1. For eachp ∈ I at least one of its three base pseudo-triangles contains an augmenting
for p. An exception occurs ifh = 3 andp is the first inserted point.

Proof. See Fig. 2. The rightmost cornerc of ∆p must be an extreme point ofS, because all points ofI
inserted so far lie to the left ofp. Let a andb the two other corners of∆p. Consider the three geodesi
from p to a, b andc. One of them is just the line segmentpc, because there are no points ofI to the right
of p. Denote withta and tb the points of tangency of the two other geodesics. These vertices sp
boundary of∆p into three (not necessarily reflex) chains of edgesE(c, ta), E(ta, tb) andE(tb, c). Each
chain defines a base pseudo-triangle with cornerp. An edgee of ∆p is calledvisible (from p) if there
exists some pointx interior to e such that the line segmentxp does not cross the boundary of∆p. We
argue that augmenting edges must be visible: consider, e.g., the chainE(c, ta). If a non-visible edgee
of E(c, ta) is flipped then the new geodesic either runs viata or ends up atc (rather than atp). In both
cases,e is no augmenting edge. Note that visible edges need not be augmenting, though, beca
might be convex hull edges and hence non-flippable.

Assume now that∆p contains no augmenting edge. We are going to show that no edge of∆p is
flippable then. This implies that∆p = abc is the convex hull ofS, which is just the exceptional cas
stated in the lemma.

Consider the chainE(c, ta) first. When flipping a (non-augmenting) edge ofE(c, ta), the new geodesi
either ends at the extreme pointc or runs viata . Moreover, only a single edgee of E(c, ta) is visible,
because the edge incident toc is augmenting, otherwise. For the same reason, the vertexta does not
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Fig. 2. Pointp and its base pseudo-triangles.

lie betweenc anda. Let us argue next that flipping an edge of the second chainE(ta, tb) cannot give a
geodesic viata .

Case (1)E(c, ta) 	= e.
We haveta 	= a. Let E be the subchain ofE(c, ta) from a to ta. ThenE andc lie on different sides o

the raypta. This outrules the geodesics viata in question.
Case (2)E(c, ta) = e.
If e is a convex hull edge, we haveta = a ande = ca, such thatta is an extreme point. Ife is an internal

edge, flippinge already yields a geodesic that runs viata = a, becausee is not augmenting. In both case
no geodesic viata in question is possible.

In conclusion, the vertexta behaves forE(ta, tb) as does the vertexc for E(c, ta), i.e., flipping an
edge of the respective chain yields a geodesic that either ends at the first endpoint of this chain
via its second endpoint. Clearly, the same is now true for the third chainE(tb, c). On the other hand
if we reverse the cyclic order of our argumentation (and start with the chainE(tb, c)), then we get tha
flipping an edge of a chain yields a geodesic that either ends at thesecondendpoint of this chain or run
via its first endpoint, opposite as before. Since the geodesic has to fulfill both requirements, this
contradiction. We conclude that none of these chains contains a flippable edge.✷

Note that there can be more than one augmenting edge forp. We only proved the existence of on
which is best possible in the worst case.

By Lemma 1, each generic insertion step creates 4 distinct minimum pseudo-triangul
3 containing a base pseudo-triangle each, and one coming from the applied flip. To see that
also distinct from all other minimum pseudo-triangulations, which do arise when starting with dif
triangulations forH , consider the setT of all generated pseudo-triangulations. We define a graphG for T
by connecting each pairT ,T ′ ∈ T by a directed edge, provided thatT is obtained fromT ′ by inserting a
single point ofI .

Lemma 2. The graphG is a forest of trees whose roots are theCh−2 triangulations ofH .

Proof. Take any memberT ∈ T . It is sufficient to show thatT has a unique predecessorT ′ in G, provided
that T uses points ofI as vertices. Consider the rightmost pointp ∈ I in T . By construction,p is of
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degree 2 or 3. In the former case,p and its incident edges are simply removed fromT to obtainT ′.
In the latter case, we first flip away a certain edge ofp, and then removep and its 2 remaining edges.
The applied flip has to exactly reverse the flip of the augmenting edge whose existence is guaranteed in
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Lemma 1. The crucial observation is that such a flip has to restore the corresponding base pseudo
for p, and thus never alters the convex angle spanned byp’s edges. So we can tell fromT which flip to
perform: the one that relievesp from its middle edge. ✷

Lemma 1 combines with Lemma 2 as follows.

Theorem 1. Let Nn,h denote the least number of minimum pseudo-triangulations attained by a
n � 4 points withh extreme points.

Nn,h �
{

3 · 4n−4, h = 3,

Ch−2 · 4n−h, h � 4.

This bound implies a proof of a common though until now unsettled conjecture:

Corollary 1. A setS of n points minimizes the number of minimum pseudo-triangulations if and o
S is in convex position.

Proof. The Catalan numbers, which count the minimum pseudo-triangulations for any set ofh points
in convex position, increase by a factor ofCh−1/Ch−2 which is strictly less than 4. SinceN4,3 = 3 and
C2 = 2, we get

Nn,h > Cn−2, n > h � 3

by applying toNn,h the factor of 4 stated in Theorem 1.✷
Corollary 2. A setS of n points minimizes the number of pseudo-triangulations(including non-minimum
ones) if and only ifS is in convex position.

Proof. Every pseudo-triangulation ofS is minimum in the convex case, whereas sets ofn points of a
different structure do admit non-minimum ones as well. So the assertion follows from Corollary 1✷

4. Discussion and extensions

Remark 1. It is instructive to see why Lemma 1 fails if no restrictions are imposed on the insertion
Without a directional insertion order, cyclically twisted geodesics can occur. In Fig. 3, none of th
pseudo-triangles forp contains an augmenting edge. Surprisingly though, this pseudo-triangulatio
can be obtained by using our construction.

Remark 2. Our construction clearly does not produce all possible minimum pseudo-triangulation
point setS. The first gap occurs forN5,3 = 13, where a 13th existing pseudo-triangulation is not cou
(see Fig. 4). It can be constructed, though, by using all augmenting edges of the base pseudo-tria
each inserted point. Note that pseudo-triangulations where, for instance, the rightmost inner ve
degree 4 or more cannot be obtained.
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Fig. 3. Twisted geodesics.

Fig. 4. Only one of the two rightmost pseudo-triangulations in the first row is counted.

We also fail to count certain pseudo-triangulations since we limit insertion tointerior points.
Lifting this restriction leads to theHenneberg constructionfrom combinatorial rigidity; see e.g. [18
This construction starts with an arbitrary triangle spanned byS, and yields all possible minimum
pseudo-triangulations ofS—though including duplicates. Let us revisit a proof for the existence
corresponding insertion order.

Proof. Let |S| = n. If n = 3 we are done. Otherwise, recall that each minimum pseudo-triangu
of S has exactly 2n − 3 edges. Thus the average degree of a point is strictly less than 4, such that
p ∈ S of degree 2 or 3 has to exist. Treatp as in the proof of Lemma 2, which leads to a minimu
pseudo-triangulation ofS \ {p}. The assertion now follows by induction.✷
Remark 3. The point set data base of [3] has been used by [7] to obtain the values ofNn,h in Table 1. We
exploited these values to slightly improve Theorem 1. For instance, forn � 7, we get the uniform boun

Nn,h � Ch−2 · 4n−h.

Moreover, for point sets with triangular convex hulls, our bound sharpens to

Nn,3 >
1

13
· 4n

for n � 10. It is conjectured that—as a counterpart to Corollary 1—the number of minimum ps
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Table 1
Values ofNn,h for smalln andh

n/h 3 4 5 6 7 8 9 10

h
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the
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tion 1)
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unting
s, see

do-
3 1 – – – – – – –
4 3 2 – – – – – –
5 13 8 5 – – – – –
6 63 38 23 14 – – – –
7 353 196 117 70 42 – – –
8 2095 1066 631 374 222 132 – –
9 12881 6494 3541 2086 1230 726 429 –

10 83167 40762 20455 11998 7042 4136 2431 1430

Fig. 5. Different triangulations forS \ {p} yield the same triangulation forS when flipping towards the dashed edge.

triangulations ismaximizedby such sets. We believe that in factNn,h decreases monotonically wit
increasingh.

Remark 4. A straightforward approach to extending the lower bound construction to pse
triangulations which arenot minimumwill fail, as Lemma 2 critically relies on the pointedness of
pseudo-triangulation vertices. The construction would have been interesting for standard triang
as well; a simple�(2n) bound would have resulted. Fig. 5 illustrates the problem in this case. Be
the threshold 2n for triangulations is by no means trivial; the currently best bound [5] is�(2.33n).

Remark 5. Corollary 1 implies the existence of point sets which asymptotically have more mini
pseudo-triangulations than triangulations: the ‘double-circle’ point set (see footnote 1 in Sec
admits only �(2

√
12n−logn) = o(Cn) triangulations, whereas this set has�(Cn) minimum pseudo-

triangulations, by Corollary 1.

4.1. Parity property

The edge flipping operation for pseudo-triangulations enables us to prove a parity property
number of minimum pseudo-triangulations, which may be useful for checking the correctness of co
algorithms. A similar property is known for the number of crossings in complete geometric graph
e.g. [4]. No such observations exist for triangulations.

Lemma 3. If the numberh of extreme points of a setS is even then so is the number of minimum pseu
triangulations ofS.
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Proof. Let V be the set of all possible minimum pseudo-triangulations forS. Consider the flip graphF
on V , which connects two members ofV if and only if they can be transformed into each other by
applying a single edge flip.
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Any pseudo-triangulationT ∈ V has the same number of edges, namely 2n − 3 for n = |S|. ThusT

has exactlyi = 2n − 3− h edges which are interior to the convex hull ofS. These edges are known
be just the flippable edges ofT , and so the degree of each vertexT in F is i. Sinceh is even,i must be
odd. Consider the sum of vertex degrees inF , which is |V| · i. Since for any graph this sum is even (
being two times the number of edges), we conclude that|V| is even, too. ✷
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