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Abstract

The number of minimum pseudo-triangulations is minimized for point sets in convex position.
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1. Introduction

A pseudo-trianglds a planar polygon with exactly three convex vertices, catl@thers Three reflex
chains of edges join the corners. Lebe a set ofz points in general position in the plane.pseudo-
triangulation for S is a partition of the convex hull of into pseudo-triangles whose vertex setSis
A pseudo-triangulation is calleshinimumif it consists of exactly: — 2 pseudo-triangles (and:2- 3
edges), the minimum possible. Each vertex of a minimum pseudo-triangulatipainted that is,
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its incident edges span a convex angle. In fact, minimum pseudo-triangulations can be characterized
as maximal planar straight-line graphs where each vertex is pointed [18]. Therefore, they have been
alternatively called pointed pseudo-triangulations.

Pseudo-triangulations have received considerable attention in computational geometry due to their
applications to visibility [13,14], ray shooting [8], kinetic collision detection [1,11,12], rigidity [18], and
guarding [17]. Several of their interesting geometric and combinatorial properties have been discovered
recently [2,9,10,16]. Still, little is known about the number of pseudo-triangulations a general pdint set
allows. (Assuming general position §fis necessary to avoid trivial situations.) In [15], the number of
minimum pseudo-triangulations is determined for sets of points with exactly one interior point. Also, a
(coarse) upper bound on the number of minimum pseudo-triangulations for setsimtighior points is
given, namely 3times the number of triangulations. An asymptotic lower bound for the maximal number
of pseudo-triangulations is derived in [6].

For standard triangulations it is not known which sets of points have the fewest or the most
triangulations In contrast, we show that sets of points in convex position minimize the number of
minimum pseudo-triangulations. This adds to the common belief that minimum pseudo-triangulations
are more tractable in many respects. In the next section, we illustrate that a lower boRi@’ pon
their number is easy to obtain for every point set, by using an inductive argument. Section 3 refines our
construction and presents the main result. We close with several remarks and also include the descriptior
of an interesting parity property.

2. Incremental prelude

Let us split the given point sef into two setsH and I, containing its extreme and interior points,
respectively. The seif, as being in convex position, admits exadtly_, triangulations, wheré = |H |
andC; denotes thé&th Catalan number. Since for sets in convex position the only pseudo-triangulations
are triangulations, these constitute also all possible pseudo-triangulatioHs for

Since Cj,_, is in Q(3") we are done ifl = ¢. Otherwise we pick any of the triangulations faF
and complete it to a minimum pseudo-triangulationSdby successively adding the— 4 points of 7
in an arbitrary but fixed insertion order. The generic step inserts some pairt into some pseudo-
triangle A,. There are exactly three ways to complete the interionpfto a valid minimum pseudo-
triangulation: choose 2 of the 3 corners 4f and connect them tp by geodesics (inner tangents)
in A,. This splitsA, into two new pseudo-triangles. Exactly one pseudo-triangleph@s a corner and
will be called abase pseudo-triangltor p (see Fig. 2). Observe thatas well as all vertices of\, stay
pointed after the insertion.

Any two pseudo-triangulations we construct in this way are different, since we started with
pairwise different triangulations and applied only changes restricted to already existing pseudo-triangles.
Therefore this method yieldS),_, - 3"~ minimum pseudo-triangulations for.

4 See http://www.igi. TUgraz.at/oaich/triangulations/counting/counting.html for examples of point sets that are currently
conjectured to minimize the number of triangulations.
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Fig. 1. Edges ofA, are flipped.

3. Refined incremental approach

We will show that a factor of 4 (rather than 3) can be gained per insertion step. To this end, the
n — h points inI are inserted in soméirectional order and a carefully chosen edge flip is applied after
inserting any poinip € I to raise its degree from 2 to 3. This will lead to 4 distinct minimum pseudo-
triangulations.

An edge flipreplaces a given edgeby a unique edge’. Edgee’ lies on the geodesic between the two
corners opposite te in the two pseudo-triangles adjacenteto

Recall thatA, is the pseudo-triangle into which poiptis inserted. Unlike flips in triangulations, a
flip of an edge ofA, does not need to increase the degrep.oAn edge which still does will be termed
anaugmenting edglor p. See Fig. 1, where is an augmenting edge farwhile f is not.

The unigueness of the insertion order is mandatory and can always be guaranteed by the genera
position assumption of. In the following discussion we will assume that the points of thelsate
inserted in increasing-order.

Lemma 1. For eachp € I at least one of its three base pseudo-triangles contains an augmenting edge
for p. An exception occurs if = 3 and p is the first inserted point.

Proof. See Fig. 2. The rightmost cornenf A, must be an extreme point &f because all points of
inserted so far lie to the left gf. Leta andb the two other corners of,. Consider the three geodesics
from p toa, b andc. One of them is just the line segmemt, because there are no points/db the right

of p. Denote withz, andz, the points of tangency of the two other geodesics. These vertices split the
boundary ofA,, into three (not necessarily reflex) chains of edg€s, ¢,), E(t,, 1,) and E(1,, ¢). Each
chain defines a base pseudo-triangle with copnefn edgee of A, is calledvisible (from p) if there
exists some point interior toe such that the line segmenp does not cross the boundary af,. We
argue that augmenting edges must be visible: consider, e.g., the Eainy). If a non-visible edge

of E(c,t,) is flipped then the new geodesic either runszyiar ends up at (rather than ap). In both
casesg is no augmenting edge. Note that visible edges need not be augmenting, though, because they
might be convex hull edges and hence non-flippable.

Assume now thatd, contains no augmenting edge. We are going to show that no edge, @
flippable then. This implies that, = abc is the convex hull ofS, which is just the exceptional case
stated in the lemma.

Consider the chai (c, t,,) first. When flipping a (non-augmenting) edgekxic, #,), the new geodesic
either ends at the extreme poinbr runs viar,. Moreover, only a single edgeof E(c,t,) is visible,
because the edge incident ¢ds augmenting, otherwise. For the same reason, the vertdges not
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Fig. 2. Pointp and its base pseudo-triangles.

lie betweenc anda. Let us argue next that flipping an edge of the second cRaip, 7,) cannot give a
geodesic via,.

Case (DE(c, t,) #e.

We haver, # a. Let E be the subchain af (¢, 1,) from a to ¢,. ThenE andc lie on different sides of
the raypt,. This outrules the geodesics vjain question.

Case (2)E(c,t,) =e.

If e is a convex hull edge, we haye= a ande = ca, such that, is an extreme point. if is an internal
edge, flipping already yields a geodesic that runs ¥ja= «, because is not augmenting. In both cases,
no geodesic via, in question is possible.

In conclusion, the vertex, behaves forE(z,, t,) as does the vertex for E(c,t,), i.e., flipping an
edge of the respective chain yields a geodesic that either ends at the first endpoint of this chain or runs
via its second endpoint. Clearly, the same is now true for the third chéin c¢). On the other hand,
if we reverse the cyclic order of our argumentation (and start with the diin ¢)), then we get that
flipping an edge of a chain yields a geodesic that either ends atttmmdendpoint of this chain or runs
via its first endpoint, opposite as before. Since the geodesic has to fulfill both requirements, this gives a
contradiction. We conclude that none of these chains contains a flippable edge.

Note that there can be more than one augmenting edge. fdfe only proved the existence of one,
which is best possible in the worst case.

By Lemma 1, each generic insertion step creates 4 distinct minimum pseudo-triangulations,
3 containing a base pseudo-triangle each, and one coming from the applied flip. To see that they are
also distinct from all other minimum pseudo-triangulations, which do arise when starting with different
triangulations forH, consider the sef of all generated pseudo-triangulations. We define a géajoin 7
by connecting each palf, T’ € 7 by a directed edge, provided thHAtis obtained fron7"’ by inserting a
single point ofI.

Lemma 2. The graphg is a forest of trees whose roots are g , triangulations ofH .

Proof. Take any membeF < 7. Itis sufficient to show thal has a unique predecessorin G, provided
that 7 uses points of as vertices. Consider the rightmost pomwt 7 in T. By construction,p is of
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degree 2 or 3. In the former case,and its incident edges are simply removed fr@hio obtain7".

In the latter case, we first flip away a certain edgepfind then remove and its 2 remaining edges.

The applied flip has to exactly reverse the flip of the augmenting edge whose existence is guaranteed in
Lemma 1. The crucial observation is that such a flip has to restore the corresponding base pseudo-triangle
for p, and thus never alters the convex angle spannegldvgdges. So we can tell frofi which flip to

perform: the one that relievgsfrom its middle edge. O

Lemma 1 combines with Lemma 2 as follows.

Theorem 1. Let \V, , denote the least number of minimum pseudo-triangulations attained by a set of
n > 4 points with/z extreme points.

3.4v4 h=3
> 9 9
N2 { Chz-4", h>4

This bound implies a proof of a common though until now unsettled conjecture:

Corollary 1. A setS of n points minimizes the number of minimum pseudo-triangulations if and only if
S is in convex position.

Proof. The Catalan numbers, which count the minimum pseudo-triangulations for any seqtaifits
in convex position, increase by a factor ©f_1/C,_», which is strictly less than 4. Sinc&} ;3 = 3 and
C, =2, we get

Now>Chp, n>h>3
by applying toN,, , the factor of 4 stated in Theorem 10

Corollary 2. A setS of n points minimizes the number of pseudo-triangulatiGnsluding non-minimum
ones if and only if S is in convex position.

Proof. Every pseudo-triangulation df is minimum in the convex case, whereas seta goints of a
different structure do admit non-minimum ones as well. So the assertion follows from Corollary 1.

4, Discussion and extensions

Remark 1. Itis instructive to see why Lemma 1 fails if no restrictions are imposed on the insertion order.
Without a directional insertion order, cyclically twisted geodesics can occur. In Fig. 3, none of the base
pseudo-triangles fop contains an augmenting edge. Surprisingly though, this pseudo-triangulation still
can be obtained by using our construction.

Remark 2. Our construction clearly does not produce all possible minimum pseudo-triangulations of a
point setS. The first gap occurs foks 3 = 13, where a 13th existing pseudo-triangulation is not counted
(see Fig. 4). It can be constructed, though, by using all augmenting edges of the base pseudo-triangles o
each inserted point. Note that pseudo-triangulations where, for instance, the rightmost inner vertex has
degree 4 or more cannot be obtained.
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Fig. 4. Only one of the two rightmost pseudo-triangulations in the first row is counted.

We also fail to count certain pseudo-triangulations since we limit insertiomterior points.
Lifting this restriction leads to thélenneberg constructiofrom combinatorial rigidity; see e.g. [18].
This construction starts with an arbitrary triangle spannedShynd vyields all possible minimum
pseudo-triangulations o§—though including duplicates. Let us revisit a proof for the existence of a
corresponding insertion order.

Proof. Let |S| =n. If n =3 we are done. Otherwise, recall that each minimum pseudo-triangulation
of S has exactly 2 — 3 edges. Thus the average degree of a point is strictly less than 4, such that a point
p € S of degree 2 or 3 has to exist. Treatas in the proof of Lemma 2, which leads to a minimum
pseudo-triangulation of \ {p}. The assertion now follows by induction.c

Remark 3. The point set data base of [3] has been used by [7] to obtain the valés,ah Table 1. We
exploited these values to slightly improve Theorem 1. For instance, fo¥, we get the uniform bound

Noi = Chp - 41,
Moreover, for point sets with triangular convex hulls, our bound sharpens to
1

/\/"1’3>E_4n

for n > 10. It is conjectured that—as a counterpart to Corollary 1—the number of minimum pseudo-
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Table 1

Values of\,, ;, for smalln andh

n/h 3 4 5 6 7 8 9 10
3 1 - - - - - - -
4 3 2 - - - - - -
5 13 8 5 - - - - -
6 63 38 23 14 - - - -
7 353 196 117 70 42 - - -
8 2095 1066 631 374 222 132 - -
9 12881 6494 3541 2086 1230 726 429 -

10 83167 40762 20455 11998 7042 4136 2431 1430

Fig. 5. Different triangulations fo§ \ {p} yield the same triangulation fdf when flipping towards the dashed edge.

triangulations ismaximizedby such sets. We believe that in fatf, , decreases monotonically with
increasingh.

Remark 4. A straightforward approach to extending the lower bound construction to pseudo-
triangulations which ar@aot minimunwill fail, as Lemma 2 critically relies on the pointedness of the
pseudo-triangulation vertices. The construction would have been interesting for standard triangulations
as well; a simple2(2") bound would have resulted. Fig. 5 illustrates the problem in this case. Beating
the threshold 2for triangulations is by no means trivial; the currently best bound [$]{8.33").

Remark 5. Corollary 1 implies the existence of point sets which asymptotically have more minimum
pseudo-triangulations than triangulations: the ‘double-circle’ point set (see footnote 1 in Section 1)

admits only @(Zm""g”) = 0(C,) triangulations, whereas this set h&C,) minimum pseudo-
triangulations, by Corollary 1.

4.1. Parity property

The edge flipping operation for pseudo-triangulations enables us to prove a parity property for the
number of minimum pseudo-triangulations, which may be useful for checking the correctness of counting

algorithms. A similar property is known for the number of crossings in complete geometric graphs, see
e.g. [4]. No such observations exist for triangulations.

Lemma 3. If the number: of extreme points of a sétis even then so is the number of minimum pseudo-
triangulations ofs.



10 O. Aichholzer et al. / Computational Geometry 28 (2004) 3—-10

Proof. LetV be the set of all possible minimum pseudo-triangulationsSta€onsider the flip graptF
on V, which connects two members df if and only if they can be transformed into each other by
applying a single edge flip.

Any pseudo-triangulatiori” € V has the same number of edges, namely-2 for n = |S|. ThusT
has exactlyi = 2n — 3 — h edges which are interior to the convex hull$fThese edges are known to
be just the flippable edges @f, and so the degree of each veriéxn F isi. Sinceh is even,; must be
odd. Consider the sum of vertex degreesFinwhich is|V| - i. Since for any graph this sum is even (as
being two times the number of edges), we conclude|tipis even, too. O
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