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Abstract
We investigate the problem of finding a minimal volume parallelepiped en-
closing a given set ofi three-dimensional points. We give two mathematical
properties of these parallelepipeds, from which we derive two algorithms of
theoretical complexityd(n®). Experiments show that in practice our quickest
algorithm runs inD(n?) (at least fom < 10°). We also present our application
in structural biology.

Keywords: Algorithmic geometry, parallelepiped, bioinformatic.

Résumé
Nous étudions le probleme de la recherche d'un parallélépipede de volume
minimal englobant un ensemble donnérdpoints d’'un espace de dimension
trois. Nous démontrons deux propriétés mathématiques de ces parallélépipedes
a partir desquelles nous élaborons deux algorithmes de complexité théorique
en O(n). Nos expériences montrent que la complexité en pratique de notre
algorithme le plus rapide est &(n?) (au moins quana est inférieur a 19).
Nous présentons également notre application en biologie structurale.

Mots-clés: Géométrie algorithmique, parallélépipedes, bioinformatique.
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1 Introduction

It is sometimes useful to circumscribe a complex three-dimensional shape with a simpler shape, of mini-
mum volume. Solutions for this problem are known if one is looking for the minimal volume enclosing
ball or ellipsoid [10], cylinder [5], tetrahedron [12], or rectangular box [2]. Our original motivation was to
approximate the surface of a protein with a set of regular shapes in the hope of finding some “outstanding
faces” of the protein, e.g. responsible of interactions with other proteins. From biological considerations,
parallelepipeds seemed more suitable for our problem. So, in this paper we show how to compute a paral-
lelepiped of minimal volume enclosing a three-dimensional shape or set of points. Our algorithms rely on
mathematical properties inspired by the properties satisfied in the plane by the minimal enclosing parallelo-
gram [7-9].

In Section 2 we prove two mathematical properties of minimal enclosing parallelepipeds. From these
properties, we derive two algorithms in Section 3. In Section 4, we report the experiments we performed
on these algorithms. Finally, in Section 5, we give an insight of our biological motivation: we apply our
technique to a protein and discuss the result.

2 Mathematical properties

First, we remark that the minimal volume parallelepiped enclosing 8 sEpoints is the minimal volume
parallelepiped enclosing the convex hull®fs the convex hull 0§ is the smallest convex enclosiig)

Then, the first theorem states that each pair of opposite faces of the minimal enclosing parallelepiped must
flush a face or two edges of the convex hull (and not just a face as in 2D). In this paper we never consider
degenerated sets of points, i.e. included in a plane.

Theorem 1 For any set of points of convex hull there exists a minimal enclosing parallelepip@dsuch
that, for any pair of opposite faces @, either one of the faces contains a facetobr both faces contain
an edge of” and the two edges are not parallel.

Proof We consider a set of points of convex hdlland one of its minimal enclosing parallelepip@d
Any face ¥ of P contains at least one vertex ¢f otherwise it would be possible to moye closer to its
opposite face to obtain an enclosing parallelogram of smaller volume.

To prove the theorem, we suppose ttatloes not satisfy the property stated by the theorem and we
show that we can build an enclosing parallelogram satisfying the property and at least as §malsaby
hypothesis® does not satisfy the property stated by the theorem, there exist two oppositefaamed 7>
of  such that none of them contain a face(and if both contain an edge ¢f, both edges are parallel.

We denote byP; (resp.®,) the plane containing (resp. 72).

A parallelepiped is defined by its eight vertices. It is also defined by the three pairs of parallel planes that
contain its faces. We will call these planes slupporting planesLet us consider a pair of supporting planes
p1 andpy, i.e. two supporting planes corresponding to opposite facds &ffe take two parallel linesd;
andd,, the first included irp; and the second ip,. We rotatep; aroundd; and p, aroundd, with a same
angle. This way, we obtain a new pair of parallel planes which defines, with the four remaining supporting
planes ofP, a new parallelepiped. This new parallelepiped may or may not be an enclosing parallelepiped
for C. We say that we have rotated the pair of supporting pldpesp,}.

We first study the freedom we have to rotate the pair of supporting pkahes»} while the obtained
parallelepiped remains enclosing f6r

The possibility to rotate some supporting planes

We consider the numbex;, of vertices ofC belonging to either of the two faceg and %,:
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n, > 5: one of the two faces contains at least three vertices and thus a fate This is impossible by
definition of F; and %».

ny = 4: by definition of 71 and 7>, both faces contain an edge ¢fand these two edges are parallel. We
denote byd; (respectivelyd,) the line of P, (resp.P,) containing the edge af N F1 (resp.CN F2).
Then one can (slightly) rotate, in any directiah, and P, of a same angle arourd andd, while
transforming? into another parallelepiped enclosigy as long as the angle of the rotation remains
small. Indeed, we can rotate the pair of supporting plg®s?} until one of the rotated planes
touch a new vertex of .

ny = 3. because of our hypothesis, one face contains a single vertéxaoid the other one an edge of
C. Without any loss of generality, we denote By the face containing the edge. We defitheas
previously andd, as the line of, containingC N %, and parallel tod;. Then one can (slightly)
rotate, in any directionP, and?, of a same angle arourdj andd,, under the same conditions than
previously.

ny = 2: each face contains exactly one vertex@f We randomly peak any vecterin ¢ to define the
direction ofd; andd,: d; (resp.dy) is then the line of; (resp.?,) parallel tovand containing” N 71
(resp.CN %2). Then one can (slightly) rotate, in any directia?,and P, of a same angle arourtj
andd,, under the same conditions than previously.

Building an enclosing parallelogram smaller than?

From what precedes, whatever the case, one can (slightly) rotate, in any dirggtaong P, of a same
angle aroundl; andd, while transforming? into another parallelepipe@’, enclosingC. We now compute
the volume of the new parallelepiped. In the following, given two point$ andJ, 1J denotes the vector
from pointl to pointJ and|J the algebraic measure.

St

e

Figure 1: Original parallelepiped and the rotation. Figure 2: Detail of Figure 1.

Figure 1 shows the original parallelepiped and the newfb‘l’ce (B'F’G'C’) obtained from the rotation
of P, by an angle 0B aroundd;. We use the notations defined on Figur&ily. (resp.Sy p) is the intersection
of dy with the line(BC) (resp.(FG)). In order to ease the computations, we measure the rotation aggund
andd, not by an angle measured in a plane orthogondj tout in the planéd ABCD). © is the angle defined
by the vectorss ;C andS; :C'.

The volume of the parallelepipefl is equal to: vo|P) = |(CBACD).CG|. The volume of?’ is equal
to: vol(?’) = |(C'B' AC'D’).C'G/|. To explicit the value of vdlP’), we need to explicit the values 6fB’,
C'D’, andC'G’. We start withC'D’.
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The value ofC'D’. C'D’=C'C+CD+DD’. To compute the value @D’ we focus on Figure 2, which is
a magnification of Figure 1. We denote dyhe angle defined by the vect@8andCD. Then coga — &) =
& and co$—3) = S&b. As the sum of the angles in a triangle is equaltté = 5 +©, and:

cogd)
coqa —9d)

sin(©)
~ sin(a—©)

S cog5+0)

CcC = "~ cog(0-0)-1T)

C&,t == C &.Jﬁ )

and,ucp denoting the unitary vector of same direction and orientation @an

sin(©)
CC =————~-CS.Ucp.
sin(a — ©) Stt-Ueo
Symmetrically, we have foDD’ (S (resp. S ) being the intersection af, with the line (DA) (resp.
(HE))): DD’ = —Siﬁ'('x%) DS .Ucp. Gathering these two results, we obtain:

C'D' = C'C+CD+DD' =CD+ S_S'”<O)

m(csu —DSt).Ucp.

The values ofC'B'andC'G'. C'B'=C'C+CB+BB'. Thus, a'C andBB are parallel taicp, there exists
a valuex such thatC'B’ = CB+ x.Ucp. Symmetrically, there exists a valyesuch thaC'G' = CG+y.ucp.

The volume of 7. Collecting the previous results, we have:

(CB'AC'D').C'G = ((CB+x.Ucp) A (CD+ Sif(g(?g) (CSit — DSpy)-Ucp)
(CG+Yy.lcp)
= CBACD.CG+ 322 (CS 1 — DSy) (CBA Ucp.CO)

_ in(©) (CS—DSy)
— (1+ 2%y g2l ) ceacD.CG

Therefore: n©) (CSi—DS)
SIn t— t
sna—o) |co||®) @

We have two cases to consider, depending whe®&r; — DS, ) is null:

vol(?') = '14—

1. CSt— DS # 0. sina) is obviously non null, knowing the definition @f. For very small val-
ues of®, sin(la — ©) has the same sign than &r). As we can chos® to be either strictly neg-
ative or strictly positive (see the discussion above), we chos®farvery small value such that
Osin(a)(CSt — D) < 0. Then vo[?') < vol(P) and we have built an enclosing parallelogram of
(strictly) smaller volume.

2. CSt — DSt =0. Then? and?’ are two enclosing parallelepipeds of same volume (whatever the
value of ©). We take for© the largest value possible. The two new fagg'sand 7, contain by
definition ofd; andd, all the points of; and %, belonging toC. Because of the maximality @,

F{ U ¥, contains at least one more point 6f(and thus one more vertex ¢f) than 71 U 7. If 7’
satisfies the property stated by the theorem, we are happy. Otherwise, we afpltheoprocess
we have applied teP to obtain?’. This way we obtain a new enclosing parallelogr@h As the
number of vertices,, of (F1U %) N C is strictly increasing with this process, we shortly end up with
a parallelepiped of volume at most equal to(¥®) and which satisfies the property stated by the
theorem. Indeed, any parallelepiped with> 5 satisfies this property (as we have shown above).



4 E Vivien, N. Wicker

In both cases we obtain, may be after a few iterations, a parallelepiped encfosiatisfying the desired
property, and whose volume is less than or equal to the volurie of |

Theorem 2 Let S be a set of points and’ its convex hull. LetP be a minimal volume parallelepiped
enclosings$ and which satisfies the property stated by Theorem 1. 7Leind 7, be two opposite faces of
. Then, the projection af, N C on %, along the other faces @ has a non-null intersection with, N C.

Proof We prove this result by contradiction. Thus we suppose thad, minimal volume enclosing paral-
lelepiped which satisfies the property stated by Theorem 1, does not satisfy the property stated by Theorem
2. Then we show that we can build an enclosing parallelepiped of strictly smaller volume. The proof rely
on a careful study of Equation 1. First, we remark that, because of its definition, thecahgkea value

strictly between 0 andt. Therefore sifa) is always (strictly) positive® will be chosen small. Thu® and

sin(©) will have the same sign. Also gia — ©) and sir{a) will have the same sign. €S, — DS is not

null and ifCS;; — DS and si{®) have opposite signs, i.e. if §i@)(CS 1 — DSt) < 0, the volume of?’

is strictly smaller than that aP. We now show that, because of our hypotheses, there always exist a rotation
satisfying this property.

Let P’ be projection off, N C on #; along the other faces a. By hypothesis, the intersection Bf
and 71N C is empty.P’ and 71N C are polyhedra ag1 N C (resp. 72N C) is either a single vertex, an edge,
or a face ofC. P’ and #1.N C are two bounded (convex) polyhedra and, as their intersection is empty, there
exists a lined of F; which separates them strictly: if, P’ and 1N C lie on either sides afl, none of them
having some points in common with (the dubious reader will find in the Appendix the lemma 2 which
proves the existence af). We take ford; the line of F; parallel tod and containing a vertex gf1 N C
which is the closest t&”. We chose fod, the line of %, parallel tod and containing a vertex gf, N C
whose projection orf; is a vertex o’ which is the closest t¢1 N C. We defineS, ; andS; from d; andd,
as previously. TherCS ; andDS; cannot be equal. Otherwise, the projectiorgbn #; would be equal
to d; which is impossible by definition af;, d», andd (d would have points common # and %1 N C).

Figure 3 show the case whel& 1 — DSt > 0 (resp.CS 1 — DSt < 0). In this case, one can rotate the
pair of planeq 1, P} of a same angl® < 0 (resp.© > 0) aroundd; andd; respectively while the obtained
parallelepiped remains enclosing, and Wi, ; — DSy ) sin(©) < 0. Hence, the obtained parallelepiped
has a volume strictly smaller thah [ |

H H

Figure 3: Case€S 1 — DS > 0 (left) andCS t — DSt < 0 (right). The intersections of and #; and %,
are drawn in bold. The projectid? of >N C is drawn in dotted lines.

The following lemma is a corollary of Theorem 2. This lemma states whether two pairs of planes
satisfying the condition of Theorem 1 can satisfy the condition of Theorem 2, in which case we speak of
compatiblepairs of planes. This lemma is thus a weak version of Theorem 2.
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Lemma 1 LetS be a set of points and its convex hull. Le(?l,LPz} and{Ps, 4} be two pairs of planes
satisfying the property stated by Theorem 1forLet 1 = {V}, ...,v"w} be the vertices off N C, for any

i € [1;4]. Let m > (resp. b 4) be a vector normal teP; and P (resp. Pz and 7y).
{P1, P} and{Ps3, P4} can satisfy the property stated by Theorem 2 if and only if

J(a,b) € 1 x 1%, (b—a).ng4>0, 3I(c,d)ecV1x15, (d—c).n3a<0
(e f) € 13 x 1V, (f—e).n2>0, 3(g,h) € 13 x V4, (h—g).n2<0.

This lemma, proved in the appendix, just mathematically states that the pair of plBngs} contains a
direction which maps a point @af; N C on a point of2, N C, and reciprocally.

3 Algorithms

Using Theorem 1 we derive a rather simple algorithm. Then we refine it using Lemma 1.

3.1 Afirstalgorithm

Theorem 1 tells us that there is at least one minimal volume enclosing parallelepiped such that each of its
faces is either parallel to a face of the convex hull or to two non-parallel edges of this convex hull. Then,
Algorithm 1 simply enumerates all the possible triplets of orientation of the supporting planes, and search
which one gives an enclosing parallelepiped of minimal volume. The algorithm is rather straightforward:
after the computation of the convex hull, we build the pair of candidate supporting planes defined by faces
of the convex hull, then the pair of candidate supporting planes defined by a pair of edges of the convex hull,
and we test all the triplets of pairs of candidate supporting planes. The volumes of the parallelepipeds are
computed using a formula proved in appendix (Lemma 3).

Theoretical complexity

Let n be the number of points i§. Its convex hullC containsv vertices withv < n. If ¢ was enforced

to be simplicial, it contains exactlyv2- 4 faces and 8— 6 edges [1]. Then, the sé€{ contains at most
O(9v?) = O(n?) faces. Except for the loops, all the operations in this algorithm are performed in constant
time except for the steps 1, 5 and 13:

e Step 1: the computation of the convex hull caStalogn) [1];

e Step 5: to find the vertex which is the furthest from a face of the convex hull, we need to scan all the
vertices which costs at wor€l(n);

e Step 13: for this test we simply check that the direction of eglgeesp.e>) has two scalar products
of opposite signs with the normals to the two faces of the convex hull contagpifrgsp.e;) (to see
it, write thate; A ey, the normal to the new plane, is a convex combination of the normals to the two
faces, and take the scalar product vatlor e;); hence a cost aD(1).

The overall theoretical complexity of this algorithm is thus at w@&h®), wheren is the number of
vertices ofS$, because of the search on all the triplets of elemenfg oMore precisely, the complexity of
this algorithm is inO(nlogn +V?), wheren is the number of vertices &andv the number of vertices of its
convex hull. We will see in Section 4 that the complexity is far better in practice. Nevertheless, we now use
Lemma 1 to speed-up our algorithm.
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Algorithm 1 Compute a minimal volume parallelepiped enclosing the set of pgints
: Compute the convex hull’ of the set of points
N=0 {The set of candidate supporting planes}
Let ¥ be the set of all the faces ¢f
for each facef of # do
Find the vertew of C which is the furthest fronf
Associate tof the vectom; normal tof and linking f andv (v+ ns is a point off)
N = NU{(f, f—n¢,ne)}
Let £ be the set of all the edges of
for each paife;,e;} of elements ofE do
if &1 ande, are not parallethen
Build the planed; andf, parallel toe; ande,, f; containinge; and f, includinge,
Compute the vectan;, normal tof; (and thus tof,) such thatf; +ns, = f
if C is enclosed in the space between the planend f; then
N=NU {(flv fa, nfl)}
:vol_min= 4o
: planes=0
. for each elementfy, f1,ny) of AL do
for each elementfs, f5,ny) of AL do
for each elementfs, f5,n3) of AL do
if Ny Any.nz #~ 0then

vol — | InPlna[2ing]
niAng.N3

if vol < vol_minthen

vol_min = vol

planes= {fy, f], f2, f}, f3, f}
. return planes

[EEY

N NN N NRERRRRRERRPR R
g hr N P OO0 NOAE®®NRO

3.2 A second algorithm

We use Theorem 2 to refine Algorithm 1. Theorem 2 gives us a condition for a triplet of pairs of parallel
planes to be an actual candidate for a minimal volume enclosing parallelepiped. Of course, we do not want
to enumerate anymore any triplets of pairs of candidate parallel planes. Thus we use Lemma 1 to check
whether two pairs of candidate planes can be used together in a minimal enclosing parallelepiped. This way
we obtain Algorithm 2.

Theoretical complexity

The worst case complexity of Algorithms 1 and 2 is obviously the same. If we study more carefully the
algorithm and denote bythe number of vertices of the convex hull, &the number of faces built at steps 9

to 14, and byc the size of the largest of the sets “compatilfief;,n;)”. Then steps 4 to 7 have a complexity

of O(v?), steps 9 to 14 have a complexity@fv?), steps 19 to 23 have a complexity@f(v+ €)?) (at least

if Cis simplicial), and steps 24 to 31 have a complexitydfv+ €) x ¢2). Hence the overall complexity of

O(nlogn+ (v+ €)% 4 v x c?) (2)
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4 Experiments

We first compare the two algorithms on our application: we run the two algorithms on all the 45 proteins we
had. The results presented on Figure 4 show that Algorithm 2 is significantly more efficient than Algorithm 1
even for small inputs. These results are confirmed by Figure 5 which presents a comparison of the two
algorithms on larger and synthetic input sets (points randomly picked on a sphere).

Algorithm 2 being far more efficient, we focused on it. We wanted to determine what was its complexity
in practice. Thus we needed to run it on convex hulls with a large number of vertices. As the proteins we
had did not give us such examples —the convex hull of our worst-case protein only had 94 vertices— we
used synthetic data. We randomly picked points on the surface of a sphere as for such sets of points the
convex hull is almost equal to the number of points in the set. Figure 6 shows the result of the experiment
for convex hulls containing up to 10 000 vertices. The graph of the executionTiimx&n) in function of
the numbem of vertices of the convex hull “looks” quadratic. Indeed the grapiiafe(n)/n® is almost an
horizontal line (this graph is also displayed on Figure 6 but scaled up to be readable). To confirm this result
we approximate the execution with a cubic function (using the nonlinear least-squares Marquardt-Levenberg
algorithm implemented in gnuplot). We exactly found:

Time(n) ~ 2.15263x 10~ x n3 4-2.09904x 10~% x n? — 0.00101368« n+ 0.770604

with an asymptotic error of 218% on the cubic term, and of188% on the quadratic term. The corre-
sponding graph is also drawn on Figure 6 but is hardly seen as it is almost equalimtiie) graph. Even

if this function is cubic, its cubic term has almost no influence for convex hulls of up’teeltices as, until

then, the quadratic term is dominant. We tried to extend this result by running Algorithm 2 on larger sets.
The result is presented on Figure 7. There, the computed cubic approximation as an even less important
cubic term (8.66169x 10714+ 8.503x 10713) x n® for (2.44779x 1079 +£5.343x 10798) x n?). This

is not really surprising as the experimental uncertainties are rather important compared to this cubic term.
Furthermore, we only ran experiments up to 40000 vertices as for such large convex hulls, the algorithm
already takes around one hour to run on our experimental platform (Intel Xeon CPU running at 1.80 GHz
and 512 MB of memory, C++ program compiled with GNU g++ 3.0, the convex hulls being computed using
the Qhull library [3]).

One can wonder whether these results are influenced by the type of synthetic data we used. Therefore,
we studied the execution time of Algorithm 2 on purely random sets of points containing up to 150 000
points. Figure 8 presents the grapime(n) in function of the numben of vertices of the convex hull and
the graph ofTime(n)/n? (scaled up). In this figure, the execution time does not take into account the time
needed to compute the convex hull (when it is included in all other figures). The reason of this removal is
quite simple: even with large sets of points, the size of the convex hull is rather small (less than 250 vertices)
but most of the time is spent in its computation because of the size of the input sets. The graphs have the
desired shape. But the convex hulls are too small for the graphs to be conclusive.

From our experiments we can conclude that Algorithm 2 as an apparent complexity of

O(nlogn+V?)

wheren is the number of points in the se®sandv is the number of vertices of the convex hull. This seems

at least true for input sets whose convex hull as up tovEdtices, which seems to be the only input sets

that may be processed in a reasonable time (we may even wonder whether so large convex hulls exist in
practice). This result is quite coherent with Equation 2 when we remark that in all our examples we have
found thate < v (with the notations of Section 3.2).
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Figure 6: Execution time of Algorithm 2 on 499 Figure 7: Execution time of Algorithm 2 on 248
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5 Application to proteins

Our initial motivation is to approximate the “surface” of a protein with a set of regular shapes. We hope
to be able to discover, by this method, the “faces” of the protein responsible of its interactions with other
biological objects, when such faces actually exist. Once we have approximated a protein by its minimal
volume enclosing parallelepiped, we consider the “composition” of each of the six faces of the minimal
volume enclosing parallelepiped.

A protein is a sequence of amino-acids. The two main characteristics of amino-acids are whether they
are electrically charged and whether they are attracted by water (hydrophile amino-acids) or repulsed
(hydrophobic amino-acid®) So we consider the composition of the faces of our parallelepiped in terms of
electrically charged and hydrophobic amino-acids. The composition of a face is the set of the amino-acids
whose center of gravity is close to the face (less than 2.4 A away from the face in our model).

We chose to illustrate our work with a protein which is a nuclear receptor. A nuclear receptor initiates
the transcription of some part of the DNA when it is activated by a certain molecule called its ligand. More
important for us, nuclear receptors are known to have a large interaction face: we want to check whether we

IThe electrically charged amino-acids are: aspartic acid, glutamic acid, lysine, arginine, and histidine.
2The hydrophobic amino-acids are: leucine, isoleucine, valine, methionine, phenylalanine, tyrosine, and tryptophan.
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Time(nyn? -
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Figure 8. Execution time of Algorithm 2 on Figure 9: The PPAR protein with its minimal
15073 sets of random points. volume enclosing parallelepiped.

are able to rediscover this interaction face.

We chose the nuclear receptor protein called PPR&dXxisome Proliferator-Activated Receptorhis
protein is involved in the metabolism of glucose, lipids, and cholesterol. PPAR is presented on Figure 9
with its minimal volume enclosing parallelepipédThe composition of the parallelepiped faces is summa-
rized in Figure 11 (the numbering of the parallelepiped faces is presented on Figure 10). From biological
considerations, faces 5 and 6 do not “contain” enough amino-acids to be significant. Among the remaining
faces, Face 1 is the one containing the smallest percentage of hydrophobic amino-acid and the one contain-
ing the biggest percentage of electrically charged amino-acids. Face 1 as thus an outstanding composition
(the amino-acids belonging to Face 1 are drawn the darkest on Figure 10). Actually, Face 1 corresponds to
the dimerisation interface of PPAR: thanks to this interface, PPAR can form an heterodimer with the protein
RXR (Retinoid X Receptdr Therefore, we were able to re-discover PPAR interface.

We do not claim from the above example that our method enables us to predict anything: we only
presented this example to give an insight to our motivation and application. In the general case, we cut a
protein in sub-pieces (if necessary) and we approximate each sub-piece with its minimal volume enclosing
parallelepiped. The whole description of this work goes far beyond the scope of this paper.

Figure 10: Numbering of the parallelepiped faces.

SWe used the structure of PPAR proposed by Xu et al. [11] and denoted 1k74Rmaiieén Data Base
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Face 1 2 3 4 5 6

Number of amino-acids 32 19 18 13 8 4
Hydrophobic amino-acids 6% | 21% | 22% | 38% | 0% | 0%
Electrically charged amino-acids50% | 47% | 44% | 38% | 62% | 75%

Figure 11: Composition of the faces of the minimal volume parallelepiped enclosing PPAR (cf. Figure 9).

6 Conclusion

We presented two mathematical properties of the minimal volume parallelepiped enclosing a three-dimensional
set of pointsS. Using these properties we designed two algorithms of theoretical comp&xi#y, wheren

is the size of5(the number of points it contains). Our experiments show that the practical complexity of our
quickest algorithm i©(nlogn -+ v?) wheren is the size oSandv the number of vertices of its convex hull,

at least wherv is smaller than 19 Finally, we applied our method to search for the interaction faces of a
protein, our initial goal. Although the application of this research to structural biology is in the preliminary
stages, the first results are promising.
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A Additional results and proofs

Proof of Lemma 1 For the two pairs of parallel planes to have a chance to satisfy the property stated by
Theorem 2, there must exist a poinin ;N C and a pointy in 2N C and a directiord in P53 such that
the projection ok on 2 alongd is equal toy. In other words, the vectgr— x must be parallel tePs. This
property is equivalent tgy — x).n3 4 = 0. We prove that this property is equivalent to the system of Lemma
1.

The points ofP, N C are exactly the convex combinations of the vertice®ofi C. We use this property
for the pointx of P, N C and also for the poingin %N C:

|| [ %] L |7%] [7%] 2
A1 >0,...,Ajy >0, Aj=1,Xx= Y Ajvj, and3p; >0,..., k4 >0, k=Ly=") HVW.
" JZl le : v kzl k21

24 . L (w ) . IA <sz| ) |l .
Yy=X= ) WVik— ) Ajvj = Aj | MiVi— M | Ajvy = HiA j (Vi — Vi),
k; le & kzl ,Zl J 2 kzl ” kzl ,Zl J :

=

and(y — x) is a convex combination of the valuég — v}). We have three cases to consider:

e All the scalar productévﬁ — vjl).n374 are (strictly) positive (resp. negative). Then, the scalar product
(y—Xx).ng 4 is also (strictly) positive (resp. negative) and the two pairs of parallel planes cannot satisfy
the property stated by Theorem 2.

e At least one of the scalar products is null: the two pairs of parallel planes can obviously satisfy the
property.

e No scalar product is null, but there exist some valkges, j1, j2 such that(vﬁ1 — vjll).n374 >0 and

(vﬁ2 —vjlz).ngA < 0. We define the pointsandy as follows:

2 1 1 2 1 1
X — |(Vk2 - ij).n374‘le + |(Vk1 - le).n374|Vj2 and

|(Vi, = Vi,)-Na.al + [ (Vi —Vi,)-Na4

‘ (Vﬁz - V:jLz)’n?’A’V%l + ’(Vﬁl - V}l) 'n374|vﬁg

|(V§2 - V:jl-z)'n374| + ’(Vﬁl - V}Ll)'n3~,4|

One can check thatbelongs taPy N C, yto P> N C and thatly — x).nz4 = 0.

To obtain the desired property, we redo on the pair of pldigs?,} what we have done of?y, 7}. R

The following lemma is used in the proof of Theorem 1.

Lemma 2 Let A and B be two polytopes (bounded convex polyhedra) which have an empty intersection.
There exists an hyperplane which strictly separates A and B. In other words, there exists an affine form
X — AX+ 1 which takes (strictly) negative values on A and (strictly) positive values on B.

Proof LetC=A-B={z3xe A 3Jye B,z=x-—y}. Cdoes not contain 0 as, by hypothe#is) B = 0.

C is convex.We take two pointgy =x; —y1 andz =x— Yy, of C (X € A, X2 € A, y1 € Bandy, € B).
Leta be any value in0;1]. 0z + (1—a)z = (ax1 + (1—a)x2) — (ay1 + (1—a)y2). AsAandB are convex
(ax1+ (1 —a)xz2) belongs toA and(ay; + (1 —a)yz) to B. Thereforepz + (1—a)z belongs taC andC
is convex.
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C is a polytope. To prove it, we use Minkowski's representation of polytopes [6]: there exists a set
{v1,...,vp} of vertices ofA such that:

A:{x

Symmetrically, we denote bjwi,...,wq} the vertices oB. We show thaC is a polyhedron by showing
that it admits as (not necessarily minimal) Minkowski’s representation thé sefvi —w; }1<i<p1<j<q. It
is obvious thaV is included inC. By convexity ofC, the polytope generated by, which is the convex hull
of V, isincluded inC. We still have to show tha is included in this polyhedron. Let=x—y be any point
of C. x belongs toA andy to B. Thus, there exist some values, ..., o, andfy, ..., B such that:

p p
X= ZlGiVi,Vi €lplai>0Ya=1;.
i= i=

o

p q q
€[1;plai >0, Vj€[1;q B >0, Zldi =1, ZB;‘ =1 x= 'ZGiVi andy = ZBjo-
= = 1= =

Hence:
q p
zZ= Zla.v. ZLBJWJ Z (Z ) ajVi — (Za.) Bjw;.
Therefore:
z—zli ), with V(i j) € [1; p] x [1;0],aiBj > 0 and Z aiBj =1.
=1 (iL)ellipx[Lq]

Thuszis a point of the polyhedron generated\by
There exists a vectorA such thatvx € C,A.x < 0. We show this property by contradiction. Thus, we
suppose that:

VA,Ixe C,A.x>0. 3

C is a polyhedron. Therefore, by definition, there exists a sehdiyperplanesx+ b; > 0 such that:
C=n",{xJaxx+b; > 0} [6]. We suppose that there exists a vailee[1;m| such thab; < 0. Then, for any
elememx of C, ax+b; > 0« (—a)x < by < 0. Thus, for any elememtof C, (—a;)x < 0 and\ = (—g;) does
not satisfy Equation 3 and there is a contradiction. Thus, for any vaiyé;m|, b; > 0 anda.0 > 0 > —b;.
Thus, for any valué € [1;m], 0 belongs to the sdix|a;x+ b; > 0} and 0 belongs t€, which is impossible.
Building the strictly separating hyperplane. Let A be a vector satisfying the property we just proved:

YXeCAX<0. YXeCAX<0&eVYyeAVze B Ay <Az A(resp.B) is a polyhedron. Thus any linear
form overA (resp.B) reaches its maximum (resp. minimum) on a vertex, and thus a poitresp.B) [4].
Letya (resp.zs) be such a point. We havey € A Vze B,Ay < Aya < Ays < Az. The hyperplane defined
by the equationAx = % strictly separates andB. |

Lemma 3 (Another formula to compute the volume of a parallelepiped)
Let ABCDEFGH be a parallelepiped. Let fresp. n) (resp. n) be a vector normal to the pair of
planes((DAEH), (CBFG)) (resp. ((DCGH), (ABFE))) (resp. ((ABCD), (HEFG))) whose norm is equal

to the distance between these two planes. Then, the volume of the parallelepiped ABCDEFGH is equal to:

@ — | Inal?[Ina] 2Ins]|?
niAng.n3
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Proof The volume of the parallelepiped is equal #8:= |(HGAHE).HD|. We need to explicit the values
of HG, HE, andHD as functions ofi1, np, andnz. We start withHD. Because; andn, are perpendicular
to HD, the direction oHD is equal to+ %2 | et a be the angle defined by the vectét® andnz. As

[IneAng][ *
i - i _ sl HD — o sl _niam, i
the triangle defined b, D, andH + ng is rectangle||HD|| = Tcosol hence:HD = £ 2 A Besides,
_ _MmAnp  ng PR ing- o lnslPraAny i ; .
Ccosa = Hnwgzl\‘l\ns\l’ which |mpI|e§. HD =+ Similarly we obtain the values diG andHE:
— 4 [Imf[“n2Ang — 4 lIn2[[“naAny i .
HG =+ 5 andHE = 27 =, Collecting these results we have:
v — [In|[2[]n22[[ns][2| (N2ANg) A(NaA). (N1 Anp )|
- £n1/\n2‘n3\3
_ Im[[?[[n2][2]Ina][*][((N2/AN3).n1)ns — ((N2ANg) .Ng)na]. (N ANg) |
- |n1/\n2.n3|3
_ Im[[?[[na][2]Ina][*[[((N2ANg).n1)ng].(naAN2) |
- ‘I’]]_AI’]z.ng,‘3
_ malPlIm2][}Ins]|?
|n1/\n2.n3\

(using the formulaiA (VAW) = (U.W)V — (U.V)W). [ |
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Algorithm 2 Compute a minimal volume parallelepiped enclosing the set of pgitdptimized).

1

WWWRNRNNNNNMNNRNNNRERRRRR R R P
NP QOO X NOR®NMNEOO®NOORR®NREO

Compute the convex hufl of the set of points
N=0 {The set of candidate supporting planes}
Let F be the set of all the faces of
for each facef of F do
Find the vertew of C which is the furthest fronf
Associate tof the vectom; normal tof and linking f andv (v+ ns is a point off)
N = NU{(f, f—n¢,ne)}
Let £ be the set of all the edges of
for each paife;, e} of elements ofE do
if e1 ande; are not parallethen
Build the planed; and f, parallel toe; ande,, f1 containinge; and f; includinge,
Compute the vectan;, normal tof; (and thus tofy) such thatf; +ns, = f
if Cis enclosed in the space between the plaihesnd f, then

N = NU{(fla fz,nfl)}

: vol_min= +oo
: planes=0
. for each elementfy, f1,ny) of AL do

compatibléfy, f1,n) =0

: for each elementfy, f{,ny) of AL do

for each elementfs, f5,ny) of A do
if (fq, f;,n1) and(fy, f,np) satisfy Lemma then
compatiblé fq, f{,n1) = compatiblé f1, f{,n1) U{(f2, f5,n2)}
compatibléf,, f),ny) = compatibléf,, f5,nx) U{(f1, f{,n1)}

. for each elementfy, f1,ny) of AL do

for each elementfs, f5,ny) of compatiblé f1, f{,n;1) do
for each elementfs, f3,n3) of (compatiblé f1, f{,n1) N compatiblg o, f5,ny)) do
if N1 Anp.nz £ Othen

vol — | InElna[2ing]
niAng.N3

if vol < vol_minthen
vol_min= vol
planes= {fy, f], f2, f}, f3, f}

. return planes




