
Approximate Distance Oracles for Graphs with Dense Clusters

Mattias Andersson a, Joachim Gudmundsson b,1, Christos Levcopoulos a

aDepartment of Computer Science, Lund University, Box 118, 221 00 Lund, Sweden.
bDepartment of Mathematics and Computing Science, TU Eindhoven, 5600 MB, Eindhoven, the Netherlands.

Abstract

Let G be a graph containing N disjoint t-spanners that are inter-connected with M edges. We present an algorithm
that constructs a data structure of size O(M2 + n log n) that answers (1 + ε)-approximate shortest path queries
in G in constant time, where n is the number of vertices of G.

1. Introduction

The shortest-path (SP) problem for weighted
graphs with n vertices and m edges is a funda-
mental problem for which efficient solutions can
now be found in any standard algorithms text, see
also [6,8,12–14].

Lately the approximation version of this prob-
lem has also been studied extensively [1,5,7]. In
numerous algorithms, the query version of the SP-
problem frequently appears as a subroutine. In
such a query, we are given two vertices and have to
compute or approximate the shortest path between
them. Thorup and Zwick [15] presented an algo-
rithm for undirected weighted graphs that com-
putes approximate solutions using a pre-computed
data structure (the time of pre-processing was re-
cently improved by Baswana and Sen [3]). Since
the query time is essentially bounded by a con-
stant, Thorup and Zwick refer to their queries as
approximate distance oracles.

We focus on the geometric version of this prob-
lem. A geometric graph G = (V , E) has vertices cor-
responding to points in R

d and edge weights from
a Euclidean metric, and is said to be a t-spanner
for V , if for any two points p and q in V , there ex-
ists a path of length at most t times the Euclidean
distance between p and q. Again considerable pre-

Email addresses: mattias@cs.lth.se (Mattias
Andersson), h.j.gudmundsson@tue.nl (Joachim
Gudmundsson), christos@cs.lth.se (Christos
Levcopoulos).
1 Supported by the Netherlands Organisation for Scientific
Research (NWO)

vious work exists on the shortest path and related
problems for t-spanners. The geometric query ver-
sion was recently studied by Gudmundsson et al.
[9,10] and they presented the first data structure
that answers approximate shortest-path queries in
constant time, provided that the input graph is a
t-spanner for some known constant t > 1. Their
data structure uses O(n log n) space and can be
constructed in time O(m log n).

In this paper we extend this result to hold
also for “islands” of t-spanners, i.e., a set of dis-
joint t-spanners G1, . . . ,GN inter-connected by
M edges. We construct a data structure that
can answer (1 + ε)-approximate shortest path
queries in constant time. The data structure uses
O(M2 + n log n) space and can be constructed in
time O((m + M2) log n), hence for M = O(

√
n)

the bound is essentially the same as in [9] and [10].
We claim that this generalization is natural in

many applications. Consider for example the rail-
way network in Europe where each country has a
railway network which usually is a t-spanner for
some small value t. The railway networks of the
countries are then sparsely connected. Typically
the number of inter-connecting edges is very small
compared to the total number of edges in the net-
work, see Fig. 1.

In [9] it was shown that an approximate shortest-
path distance oracle can be applied to a large
number of problems, for example, finding shortest
obstacle-avoiding path between two vertices in a
planar polygonal domain with obstacles and inter-
esting query versions of closest pair problems. The
extension presented in this paper also generalises

20th EWCG Seville, Spain (2004)

20th European Workshop on Computational Geometry

(a) (b)

Fig. 1. (a) Many geometric networks consists of a set of
“dense” graphs that are sparsely connected.(b) Example
of an instance where the dashed edges are inter-connecting
edges.

the results for the above mentioned problems.
We will use the following notation. For points p

and q in Rd, |pq| denotes the Euclidean distance
between p and q. If G is a geometric graph, then
δG(p, q) denotes the Euclidean length of a shortest
path in G between p and q. If P is a path in G
between p and q having length ∆ with δG(p, q) ≤
∆ ≤ (1+ε)·δG(p, q), then P is a (1+ε)-approximate
shortest path for p and q.

The main result of this paper is stated in the
following theorem:

Theorem 1 Let G be a geometric graph, with n
vertices and m edges, consisting of a set of dis-

joint t-spanners G1=(V1, E1), . . . ,GN=(VN , EN)
inter-connected by M edges, and let ε be a positive

constant. One can construct a data structure in

time O((m + M2) log n) using O(M2 + n log n)
space that can answer (1+ ε)-approximate shortest

path queries in constant time.

The set of pairwise disjoint t-spanners G1 =
(V1, E1), . . . ,GN = (VN , EN) will be called the
“islands” of G and, an edge (u, v) ∈ E is said to
be an inter-connecting edge if u ∈ Vi and v ∈ Vj ,
where i 6= j. A vertex v ∈ Vi incident to an inter-
connecting edge is called an harbor and, the set of
all harbors of Vi is denoted Ci. Note that the total
number of harbors is O(M) since the number of
inter-connecting edges is M .

2. Tools

In the construction of the distance oracle we will
need several tools, among them the well-separated
pair decomposition (WSPD) by Callahan and
Kosaraju [4], a graph pruning tool by Gudmunds-
son et al. [9] and well-separated clusters by Krz-
naric and Levcopoulos [11].

Fig. 2. An example cell partition, with respect to V ′, made
by the algorithm. Doughnuts are drawn with solid lines,
while inner cells are drawn with dotted ones.

In this section, given a set V of n points in R
d,

and a subset V ′ ⊆ V , we show how to associate a
representative point r ∈ V to each point p ∈ V ,
such that the distance |pr| + |rq|, for any point
q ∈ V ′, is a good approximation of the distance
|pq|. The total number of representative points is
O(|V ′|). The idea is to partition space into cells,
such that all points included in a cell may share a
common representative point.

We will use the fact that, given a set S of n
points in R

d, an approximate nearest neighbor data
structure can be efficiently computed (Mount et
al. [2]).

Next the algorithm for computing representa-
tive points is presented. As a pre-processing step
we compute the b-cluster tree T ([11]) of V ′ with
b = 10/ε2. For a level i in T let ν(D1), . . . , ν(Dℓi

)
be the nodes at that level, where D1, . . . ,Dℓi

are
the associated clusters. Let Dj,1 . . . ,Dj,ℓi+1

be the
cluster associated with the children of ν(Dj). For
each cluster Dj pick an arbitrary vertex dj as the
center point of Dj . The set of the ℓi center points
is denoted D(i). Perform the following four steps
for each level i of T .

(i) Compute an approximate nearest neighbor
structure with D(i) as input, as described by
Mount et al. [2].

(ii) For each center point dj in D(i) compute the
(1 + ε)-approximate nearest neighbor of dj .
The point returned by the structure is de-
noted vj .

March 25-26, 2004 Seville (Spain)

(iii) For each cluster Dj construct two squares;
is(Dj) and os(Dj) with centers at dj and
side length 2α = 2(1 + 1/ε) · rd(cl(Dj)) and
2β = 2ε|dj , vj |/(1 + ε) respectively, where
α < β. The two squares are called the inner
and outer shells of Dj , and the set theoretical
difference between the inner and the outer
shell is denoted the doughnut of Dj .

(iv) The inner shell of Dj is recursively parti-
tioned into four equally sized squares, un-
til each square s either (a) is completely in-
cluded in

⋃
1≤k≤ℓi+1

os(Dj,k) (the union of

the outer shells of the children of ν(Dj)). In
this case the square is deleted and, hence, not
further partitioned. Or, (b) has diameter at
most ε

1+ε
· K, where K is the smallest dis-

tance between a point within s and a point
in Dj . A (1 + ε)-approximation of K can be
computed in time O(log |Dj |). This implies
that the diameter of s is bounded by ε · K.

The resulting cells are denoted inner cells.
Note that, due to step 4a, every inner cell is
empty of points from Dj . An illustration of
the partition is shown in Fig. 2.

Finally, after all levels of T has been processed,
we assign a representative point to each point p in
V . Preprocess all the produced cells and perform
a point-location query for each point. If p belongs
to a doughnut cell then the center point of the
associated cluster (see step 1) is the representative
point of p. Otherwise, if p belongs to an inner cell
C and p is the first point within C processed in
this step then rep(C) is set to p. If p is not the first
point then rep(p) = rep(C). Further, note that an
inner cell may overlap with the union of the outer
shells of the children of v(Dj). If a point is included
in both an inner cell and an outer shell, we treat
it as if it belonged to the inner cell, and assign a
representative point as above.

For the above algorithm we can show the fol-
lowing theorem:

Theorem 2 Given a set V of n points in R
d, a

subset V ′ ⊆ V and a positive real value τ1 < 1, one

can for each point p ∈ V associate a representative

point r(p) such that for any point h ∈ V ′, it holds

that

min{|p, r(p)|, |r(p), h|} ≤ τ1|p, h|.
The number of representative points is O(|V ′|) and

they can be computed in time O(n log n).

3. Constructing the Oracle

In this section we consider the main result of the
paper, Theorem 1. The section is divided into two
subsections: first we present the construction of the
structure and then how queries are answered. Note
that the correctness analysis has been omitted.

3.1. Constructing the basic structures

In this section we show how to pre-process G
in time O((M2 + m) log n) such that we obtain
three structures that will help us answer (1 + ε)-
approximate distance queries in constant time. We
will assume that the number of edges in each sub-
graph is linear with respect to the number of ver-
tices in Vi, if not the subgraph is pruned. This is
done in time O(m log n) [9]. Hence, we can from
now on assume that #Ei = O(Vi).

Let V ′ be the set of vertices in V incident on
an inter-connecting edge. Now we can apply Theo-
rem 2 with parameters V , V ′ = Γ′ and τ1 to obtain
a representative point for each point in V .

Now we are ready to present the three structures:
Oracle A: An oracle that given two points p and

q answers ‘yes’ if p and q belongs to the same
island, otherwise it will return the representative
points (to be defined below) for p and q.

Oracle B: An (1 + ε)-approximate distance ora-
cle for any pair of points belonging to the same
island.

Matrix D: An O(M) × O(M) matrix. For each
pair of representative points, p and q, D con-
tains the (1 + ε)-approximate shortest distance
between p and q.
The representative point of a point p is denoted

r(p), and the set of all representative points of Vi

and V is denoted Γi and Γ, respectively. Note that
Ci ⊆ Γi. Now we turn our attention to the con-
struction of the oracles and the matrix.

The construction of Oracles A and B are rather
straightforward, with construction details omit-
ted. However, Oracle A can be constructed in lin-
ear time, using linear space, and Oracle B can be
constructed in O(m log n) time, using O(n log n)
space.

Matrix D is constructed as follows. For each i,
1 ≤ i ≤ N , compute the WSPD of Γi with sep-
aration constant s = (1+τ2+τ3

τ3−τ2
) (the constants τ2

and τ3 are necessary for the correctness analy-

20th European Workshop on Computational Geometry

p
q

Fig. 3. Illustrating the approximate shortest path between
p and q. The boxes illustrate the “harbors” along the path.

sis). As output we obtain a set of well-separated
pairs {{(A1, B1}, . . . , {Awi

, Bwi
}}, such that wi =

O(#Ci). Next, construct the non-Euclidean graph
F = (Γ, E ′) as follows. For each Γi and each well-
separated pair {Aj , Bj} of the WSPD of Γi select
two (arbitrary) representative points aj ∈ Aj and
bj ∈ Bj . Add the edge (aj , bj) to E ′ with weight
Bi(aj , bj), where Bi(p, q) denotes a call to oracle
Bi for Gi with parameters p and q. Note that the
graph F will have O(M) vertices and edges.

Let D be an O(M) × O(M) matrix. For each
representative point p ∈ Γ compute the single-
source shortest path in F to every point q in Γ
and store the distance of each path in D[p, q]. The
total time for this step is O(M2 log M), and it can
be obtained by running Dijkstra’s algorithm M
times.

Lemma 3 The oracles A and B, and the matrix

D can be built in time O((M2 + m) log n) and the

total complexity of A, B and M is O(M2+n log n).

3.2. Answer a query

Given the two oracles and the matrices pre-
sented above the query algorithm is very simple.
Let r(p) denote the representative point of p ∈ V .
Now assume that we are given two points p and
q. If p and q belong to the same islands then we
query Oracle B with input p, q and return the
value obtained from the oracle. If p and q does
not belong to the same island we return the sum
of B(p, r(p)), D(r(p), r(q)) and B(r(q), q). Obvi-
ously this is done in constant time.

Using Lemma 3 and analysing the correctness
of the query algorithm above, we can finally show
Theorem 1.

References

[1] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani.
Fast estimation of diameter and shortest paths
(without matrix multiplication). SIAM Journal on

Computing, 28(4):1167–1181, 1999.

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman,
and A. Y. Wu. An optimal algorithm for approximate
nearest neighbor searching. Journal of the ACM,
45(6):891-923, 1998.

[3] S. Baswana and S. Sen. Approximate Distance Oracles
for Unweighted Graphs in O(n2 log n) Time. In Proc.
15th Annual ACM-SIAM Symposium on Discrete

Algorithms, 2004.

[4] P. B. Callahan and S. R. Kosaraju. A decomposition
of multidimensional point sets with applications to k-
nearest-neighbors and n-body potential fields. Journal

of the ACM, 42(1):67–90, 1995.

[5] E. Cohen. Fast algorithms for constructing t-spanners
and paths with stretch t. SIAM Journal on Computing,
28(1):210–236, 1998.

[6] E. W. Dijkstra. A Note on Two Problems in Connexion
with Graphs. In Numerische Mathmatik vol. 1, 1959.

[7] D. Dor, S. Halperin, and U. Zwick. All-pairs
almost shortest paths. SIAM Journal on Computing,
29(5):1740–1759, 2000.

[8] M. L. Fredman, R. E. Tarjan Fibonacci heaps and their
uses in improved network optimization algorithms.
Journal of the ACM, 34(3):596-615, 1987.

[9] J. Gudmundsson, C. Levcopoulos, G. Narasimhan and
M. Smid. Approximate Distance Oracles for Geometric
graphs. In Proc. 13th ACM-SIAM Symposium on

Discrete Algorithms, 2002.

[10] J. Gudmundsson, C. Levcopoulos, G. Narasimhan and
M. Smid. Approximate Distance Oracles Revisited.

In Proc. 13th International Symposium on Algorithms

and Computation, 2002.

[11] D. Krznaric and C. Levcopoulos. Computing
hierarchies of clusters from the Euclidean minimum
spanning tree in linear time. In Proc. 15th Annual

Conference on Foundations of Software Technology

and Theoretical Computer Science, 1995.

[12] R. Raman. Recent results on the single-source shortest
paths problem. SIGACT News 28:81-87,1997.

[13] M. Thorup. Floats, Integers, and Single Source
Shortest Paths. Journal of Algorithms, 35(2):189-201,
2000.

[14] M. Thorup Undirected Single-Source Shortest Paths
with Positive Integer Weights in Linear Time. Journal

of the ACM, 46(3):362-394, 1999.

[15] M. Thorup and U. Zwick. Approximate distance
oracles. In Proc. 33rd ACM Symposium on Theory of

Computing, 2001.

