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Abstract

This paper describes a new computational geometry technique, almost-Delaunay simplices, that was implemented for 3D points
using CGAL. Almost-Delaunay simplices capture possible sets of Delaunay neighbors in the presence of a bounded perturba-
tion, and give a framework for nearest neighbor analysis in imprecise point sets such as protein structures. The use of CGAL
helps us tune our implementation so that it is reasonably fast and also performs robust computation for all inputs, and also
lets us distribute our technique to potential users in a portable, reusable and extensible form. The implementation, available on
http://www.cs.unc.edu/~debug/software is faster and more memory efficient than our prototype MATLAB implementation, and
enables us to scale our neighbor analysis to large sets of protein structures, each with 100–3000 residues.
© 2007 Elsevier B.V. All rights reserved.
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1. Motivation and definitions

The Delaunay tessellation (DT) is a geometric structure that defines a nearest neighbor relation on a set of points
in space (known as sites), using an exact geometric criterion—the “empty sphere test” [1]. The DT has been used in
the analysis of protein structure,2 among other applications, for detecting pockets and cavities [3,4], scoring packing
interactions and distinguishing native proteins from artificial decoy structures [5–7], and detecting patterns of local
structure [8].

In applications that deal with protein data, point coordinates are known only imprecisely—factors such as experi-
mental errors and protein flexibility introduce small changes in the point coordinates that can produce different sets of
Delaunay simplices.3 So, a natural question arises: whether analyses based on DT are stable and robust under changes
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Fig. 1. Processing AD edges then AD simplices.

to the input coordinates. To answer this question, we defined the almost Delaunay simplices [9] that give possible
neighbors under a bounded perturbation ε of the input.

Definition 1 (Almost-Delaunay). For a finite set of point sites P and ε � 0, a perturbation by ε adds a vector |vi | � ε

to each pi ∈ P . The set of almost-Delaunay simplices AD(ε) contains a k-tuple S ⊂ P iff there exists a perturbation
by ε producing Sε ⊂ Pε such that Sε has a circumscribing sphere containing no points of Pε .

Each k-tuple, for 1 � k � d+1, is an almost-Delaunay simplex for some minimum value of ε, denoted its threshold.
The Delaunay simplices are those with threshold zero.

We related computation of the almost-Delaunay (AD) threshold to a variant of a minimum-width annulus problem,
and proved properties of almost-Delaunay simplices [9] that we specialize here for tetrahedra in 3D:

(1) Local minima of the threshold correspond to annuli defined by 5 points in general position, with at least 2 on the
inner sphere and 2 on the outer. From these 5 points we get 3 tetrahedra by considering all pairs from the sphere
that has 3 points. A slab (annulus with infinite center and radii) is a special case defined by only 4 points.

(2) Points on the inner sphere form a Delaunay simplex.
(3) The center of the minimum-width annulus for a simplex S can come from the intersection of the Voronoi diagram

of all points and the furthest-point Voronoi diagram of the points in S.

We then described an algorithm based on these properties. We identified two parameters arising from biological
constraints that help us speed up our algorithm: the edge length prune, i.e. the maximum edge length between two
neighboring sites, typically 10 Å; and the threshold cutoff, i.e. the maximum perturbation allowed, 0.5–2 Å depending
on the type of perturbations of interest. Thus, we begin by computing the thresholds for almost-Delaunay edges, and
from them, for triangles and tetrahedra as in Fig. 1.

In this paper, we describe our implementation of the AD threshold computation for edges, triangles and tetrahedra
in 3D, which is written using CGAL. We describe the reasons for choosing CGAL, list the algorithm that is im-
plemented, and give a minimal user manual for the resulting AlmDel software. We discuss some design decisions,
unexpected issues that arose during development, our solutions, and the things we learned in the process. We report on
verification and timing comparison with the previous implementation. Finally, we sum up the contributions of CGAL
to our development efforts, and show that the use of CGAL helped achieve a fast and robust implementation of the
almost-Delaunay simplices that greatly facilitated their application to protein structure analysis on a large scale.

2. CGAL implementation

We had built MATLAB prototypes of the almost-Delaunay simplex computation in 2D and later in 3D. The code
for computing almost-Delaunay simplices from 3D points in MATLAB was very fast for small input sizes (100–250
points); it aggressively used MATLAB’s vectorized operations instead of for-loops to compute on entire matrices at
once, and thus trade time for space. MATLAB provides access to advanced geometric computations such as Delaunay
triangulations and Voronoi diagrams through QHull [10], and provides many other functions that help accelerate the
development of scientific and computational applications.

As we tried to compute AD simplices for proteins on a large scale, we found that the MATLAB implementation
became unreasonably slow and ran out of memory. The implementation could not handle inputs that arose in practice,
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such as large protein chains represented by one point per residue (typically 1000 points) or medium-length chains with
all atoms (typically 3000 points). To improve speed and memory utilization, we completely rewrote the code in C++
using CGAL.

2.1. Reasons for choosing CGAL

At the time we decided to implement our algorithm in C++, we had two clear choices of implementations to use:

(1) CGAL (Computational Geometry Algorithms Library, [11]), a C++ library containing high performance and ro-
bust implementations of many standard geometric data structures (e.g. Delaunay Triangulations, Convex Hulls,
Polyhedral Surfaces, Arrangements), and the algorithms that operate on them (e.g. updation, insertion, deletion,
point location).

(2) QHull, an implementation of the QuickHull algorithm [10] that computes convex hulls, Voronoi diagrams and
Delaunay triangulations in all dimensions, and is fairly quick and robust in two and three dimensions.

Since the almost-Delaunay simplex algorithm usually operates on geometric primitives and does not need any
computations more complex than convex hulls and Delaunay triangulations, QHull seemed a viable choice at first.
Below, we describe some of the features of CGAL that prompted us to choose it for our implementation.

The CGAL library makes heavy use of the C++ Standard Template Library [12–14] and the Generic Programming
paradigm [15–17]. The library is separated into three parts:

(1) The kernel [11,18] contains all the numerical and geometric types in two, three and general dimensions, and
operations for creating them and testing them (constructions and predicates).

(2) The basic library packages computational geometry data structures and algorithms implemented using them.
(3) The support library contains extensions of STL developed for CGAL, and classes for visualization and in-

put/output support.

CGAL prominently uses a technique from generic programming known as traits classes. All data structures and
algorithms in the CGAL basic library are parameterized by template arguments, including arguments called traits that
specify the interface between the data structure or algorithm and the data types or geometric primitives it operates
on. Most default traits classes in CGAL are written in terms of the types and classes provided in the CGAL kernel;
hence in most cases one plugs in the kernel as a traits class directly, and defines custom kernels parameterized using
different number types, coordinate systems and other aspects of geometric behavior.

Traits classes allow the programmer to swap number types, data structures and algorithms in and out to achieve
the optimum speed and robustness with minimal changes to the application code. We knew that achieving the correct
tradeoff between robustness, accuracy and speed for our implementation was important, and required varying data
types and even algorithms to find what worked best. The availability of traits classes convinced us to choose CGAL
instead of QHull [10] for computing Delaunay triangulations and convex hulls.

Further, the CGAL code was modular and there were examples demonstrating the use of individual modules of the
basic library. Data structures used to implement functionality (like the Triangulation Data Structure [19]) were well
abstracted into an implementation layer. Data structures at all levels could be easily customized through traits classes,
and were easy to navigate using a variety of access methods. The documentation on CGAL assured us that it had a
tried and tested kernel, supplying efficient implementations of most of the operations that are possible on geometric
objects such as points, lines and planes. By contrast, QHull’s interface was less modular and harder to understand, and
required the programmer to read and modify global variables; the authors recommended that users of QHull run the
binary and communicate with it via input and output files rather than interface with its functions. Since QHull does
not provide a complete geometric kernel, we would have had to re-implement more of the basic geometric operations,
running the risk of incorrect implementation or mishandling of degenerate cases.

On the flip side, there was a steeper learning curve associated with learning CGAL, STL and generic programming
techniques than there may have been with other libraries; this knowledge was needed to understand, tweak and de-
bug CGAL implementations of geometric primitives, predicates and algorithms, and later to achieve robustness and
speedups.



D. Bandyopadhyay, J. Snoeyink / Computational Geometry 38 (2007) 4–15 7
In Section 3 we discuss the lessons learned from the CGAL implementation, and in Section 4 we sum up the
benefits of using CGAL and the reasons why its use was crucial to the success of our implementation.

2.2. Algorithm implemented for 3D points

The steps for the AD computation in 3D using CGAL are below:

• Generate list of short non-Delaunay edges, which are the potential AD edges, from the proximity graph (further
described in Section 3).

• Consider any such edge, pq .
(1) Compute the candidate centers of a minimum-width annulus, which are vertices of the intersection of the

Voronoi diagram with the bisector plane of pq . Infinite edges of the Voronoi diagram are candidate centers
of slabs and are stored as directions. We use Brown’s lifting technique [20], which involves computation of
the lower convex hull in dual space.

(2) Evaluate the width of the annulus at each candidate center, which has p and q on the outer sphere and three
points on the inner sphere (two for slabs).

(3) Find the minimum width over all candidate centers. Half of this width is the AD threshold for edge pq .
(4) Retain the edge as valid if its threshold is less than or equal to the cutoff, otherwise remove it from the

proximity graph.
(5) Retain candidate centers with half annulus width � the cutoff (and candidate centers connected to them by

Voronoi edges) for the next stage of computation.
• Output the list of valid AD edges and their thresholds.
• For each valid AD edge, pq:

– Generate possible AD triangles by querying the proximity graph for points r that are near both p and q .
– For each point r :

(1) Select from pq’s candidate centers, those whose annulus contains r . This is a linear half-plane constraint
on the candidate centers, since all centers closer to r than to p or q would lie on the side facing away from
p and q of the line equidistant to all three points.

(2) Generate new candidate centers at the intersection points of edges between candidate centers and the con-
straint, denoted constraint cuts. The existence of minimum-width annuli at constraint cuts is the reason
we stored candidate centers with high threshold that were connected by edges to ones with half annulus
width � cutoff.

(3) Compute the annulus width at constraint cuts. p, q , r are on the outer sphere and the two points of the
Voronoi edge are on the inner sphere.

(4) Find the minimum annulus for edge pq from among candidate centers satisfying the constraint generated
by r , and constraint cuts of r .

(5) Record the threshold if it is less than cutoff.
– The AD tetrahedron algorithm is similar. We generate the possible AD tetrahedra by querying the proximity

graph for two points r and s that are near each other and also near both p and q . Then we generate two con-
straints (for r and s) and look for the minimum annulus among candidate centers that satisfy both constraints.

• The threshold for �pqr is the minimum of the threshold of pq constrained by r , pr constrained by q , and qr

constrained by p. Similarly the threshold for a tetrahedron is the minimum constrained threshold over all the
edges.

• Up to this point, the algorithm has produced all AD triangles and tetrahedra that have at least one non-Delaunay
edge. In 3D there are AD triangles and tetrahedra with all edges Delaunay, which arise when three Delaunay
tetrahedra share an edge whose vertices (say p and q) lie on opposite sides of the plane of the three other vertices
(a, b, c); then �abc and tetrahedra abcp and abcq are almost-Delaunay. We enumerate these triangles and tetra-
hedra during a traversal of the Delaunay tessellation, and compute their thresholds separately for efficiency. For
any such configuration of 5 points (a, b, c,p, q) the minimum width annulus for �abc and tetrahedra abcp and
abcq is defined by only these 5 points, and has either (a, b),(b, c),(c, a) or (a, b, c) as furthest neighbors and the
remaining points as closest neighbors.
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2.3. Brief user manual

The almost-Delaunay software package (AlmDel) was released in June 2004, after about three months of develop-
ment and five months of use and fixing bugs. In June 2005 it was described in a BioGeometry Newsletter article, and
a permanent software download page was set up at http://biogeometry.cs.duke.edu/software/almdel. It contains about
4000 lines of C++ code written by the first author of this article. CGAL and Boost libraries needed for compilation
are available at www.cgal.org. The source code has been released under a UNC Open Source Public License (similar
to CGAL’s QPL [21]), and two precompiled binaries are available for Windows and Linux. The ADCGAL binary
computes almost-Delaunay edges, triangles and tetrahedra, while the ADedgeCGAL binary is specialized to compute
almost-Delaunay edges only; this is the version that we use to build almost-Delaunay edge graphs [22]. Both programs
take three parameters:

ADCGAL [<cutoff>] [<prune>] [<inputfile>]
ADedgeCGAL [<cutoff>] [<prune>] [<inputfile>]

Input Parameters: Parameter names above are enclosed within angle brackets and should be evaluated by substituting
the parameter value. Explanation of the input parameters is as follows:

• <cutoff> is the threshold cutoff, i.e. the maximum perturbation allowed in the input data, in Å or the same
units as the input coordinates. Typically it is between 0.1 and 2 Å for protein structure data. The default value of
<cutoff> is 2.0 when it is not specified.

• <prune> is the edge length prune, i.e. the maximum length of any edge allowed in a simplex, also in Å or the
input coordinate units. Typically it is chosen between 8 and 15 Å for protein structure data. The default value of
<prune> is 10.0 when it is not specified.

• <inputfile> is the prefix of a file inputfile.out that contains the input point coordinates, one 3D point per row.
By default, points are taken from standard input if this parameter is not specified; thus the ADCGAL program can
read from an input pipe.

Output Format: The output of ADCGAL comprises indices of the edges, triangles and tetrahedra that are Delaunay,
and those that are almost-Delaunay with positive thresholds up to the cutoff. The output is stored in text files named
using the prefix <inputfile> as follows:

• <inputfile>.del, <inputfile>.del3 and <inputfile>.del4 store the indices of Delaunay edges,
triangles and tetrahedra, one per row.

• <inputfile>.AD, <inputfile>.AD3 and <inputfile>.AD4 store the indices of almost-Delaunay
edges, triangles and tetrahedra having positive threshold, along with their thresholds, one per row. Points are
indexed in the C style, starting at 0 for the first point and going up to n − 1 for the last (nth) point. The indices
of points that comprise each Delaunay/AD edge, triangle and tetrahedron are sorted in increasing order, and the
simplices are output in lexicographical order of their index vectors.

The ADedgeCGAL binary produces only files containing Delaunay and AD edges.

3. Lessons from CGAL implementation: Issues and design decisions

We now describe our CGAL experience, in particular the design decisions that were necessary to try to achieve
speed and robust computation at the same time. Many of the issues and work-arounds described here occurred at the
time we first implemented the software between October 2003 and May 2004, using CGAL version 3.0. CGAL at the
time was still evolving from a library that worked its best when exact number types were used, to one that would work
well in applications such as ours that need the speed of floating-point computation. As we predicted, work-arounds
for many of the issues we faced were incorporated into the next major release of CGAL, version 3.1 in December
2004; thus, our experience, among others, has actually helped shape the growth of CGAL. We have indicated this in
the following discussion.

http://biogeometry.cs.duke.edu/software/almdel
http://biogeometry.cs.duke.edu/software/almdel
www.cgal.org
www.cgal.org
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Proximity data structures: We decided to use two different structures for proximity information, one to store the
Delaunay tetrahedra with short edges, and another to store all short edges and non-Delaunay short edges. We con-
sidered the alternative of using algorithms available in CGAL for nearest neighbor searching, but since proximity is
calculated only once, and we needed a way to remove pairs of points from the proximity relationship if their AD
threshold is above the cutoff, we decided to store proximity in a graph structure. We used the Boost Graph Library
(www.boost.org) to define a graph with nodes containing site indices and edges stored in an adjacency list represen-
tation. We encapsulated the graph in a class ADPointNeighbors, with methods to list all short edges and to find
points or pairs of points near a short edge. Update: Boost is now distributed with CGAL 3.1.

The short Delaunay edges, triangles and tetrahedra were encapsulated into another class MyDelaunay that uses
CGAL’s Delaunay_triangulation_3 for implementing 3D Delaunay tessellations. ADPointNeighbors,
the proximity information class holds a reference to MyDelaunay and uses it to enumerate the Delaunay and non-
Delaunay short edges. MyDelaunay uses a boolean state stored in each tetrahedron and each of its faces to provide
traversals of only the short edges and the triangles and tetrahedra containing them. An earlier implementation that
deleted cells (tetrahedra) containing long edges from the triangulation led to precondition violations and instabilities
in the traversal, since the iterators for traversing a triangulation were not written to handle triangulations with missing
cells.

Fast and robust computation of 3D convex hull using Delaunay insertion and static filters: We started out using
the Cartesian<double> kernel for all computations since we were concerned about speed; exact computation
was not a priority since the original MATLAB code also used floating-point computation, protein coordinates are
imprecise, and they can be perturbed to remove degeneracies. We faced problems with the convex hull computation
in CGAL using the Convex_hull_3 class that implements the QuickHull algorithm [10]. We tried a sequence of
kernel types and implementation tweaks that did not work, as below:

• Convex_hull_3 using floating point arithmetic was faster than MATLAB’s version of QHull, but crashed or
went into an infinite loop for several common inputs.

• Computation using exact arithmetic was orders of magnitude slower than MATLAB.
• Dynamic filters implemented in the CGAL Filtered_kernel [23] provide exact evaluation of predicates

using floating point number types and interval arithmetic; exact arithmetic evaluation is forced only if the interval
of the result from floating point evaluation contains 0. The use of the Filtered_kernel made predicates
robust, but the Convex_hull_3 code still crashed since it depended on exact construction of a plane containing
three points, on which an orientation test was failing.

• Implementation of a plane class that stores the three defining points and tests orientation against them using
a determinant, instead of explicitly computing the plane equation. Now the code did not crash, but the use of
Filtered_kernel left it still about 2–4 times slower than the MATLAB implementation.

• Static filters are a technique for exact evaluation of predicates nearly as fast as floating point evaluation, wherein
the interval bounds to force exact evaluation of each predicate are computed at compile time or runtime using
properties known about the input data, such as the range of input points or the number of bits needed to repre-
sent them. Static_filters is an undocumented CGAL kernel available in CGAL releases 3.0 and 3.1; it
is planned to be merged into the Filtered_kernel class in later releases. Since Convex_hull_3 uses a
predicate (has_on_positive_side_3()) for which no static filtered version was available in CGAL 3.0,
we could not speed up the convex hull computation any further while keeping it robust. We anticipate that this
problem will be fixed in a future release of CGAL.

Thus, static filters offered the only hope for both fast and robust convex hull computation, but they could not
yet be applied to 3D convex hull computation. To make use of static filters that have been written for the Delaunay
tessellation [24], we computed the convex hull by incremental Delaunay insertion—running a DT point location step
for each new point, and inserting only the points found to lie outside the convex hull of the current DT. In the end we
report all faces on the convex hull of the DT (i.e. adjacent to an infinite face) as the convex hull. After this modification,
the AD edge code using static filtered floating point computation was not much slower than the MATLAB code using
floating point computation, as shown in Table 1.

Genericity through function objects: Function objects, also called functors, are generalizations of C function point-
ers in the Standard Template Library; they are objects that declare operator() and hence can be used like functions.

www.boost.org
www.boost.org
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Table 1
Time taken by two steps of the AD computation for a few protein chains, on a P4 2.0 GHz with 512 MB of memory. Cutoff was 2.0 Å and edge
length prune was 10 Å, except for the last chain which has coordinates for all atoms, closer together than representative points, where cutoff was
0.5 Å and prune was 6.0 Å

PDB ID
#
pts

#nonD
edges

AD edges (sec) ADtri/tet (sec)

Matlab CGAL Matlab CGAL

1ab8A 115 252 2.1 1.1 3.3 0.6
1jkeA 145 479 4.4 2.6 7.0 1.5
1bjfA 181 474 4.5 3.5 8.5 1.3
1jmkC 222 691 7.4 6.1 11.1 2.4
1g6aA 266 980 11.0 10.3 18.7 4.0
1c8bA 320 1024 11.9 13.6 20.8 4.5
1crzA 397 1557 20.0 25.1 41.3 8.4
1lj8A 481 1604 21.6 30.1 51.3 9.0
1m2oA 718 2491 40.5 72.1 136.4 19.1
1gaxA 862 2903 53.5 97.8 208.1 27.6
1iw7C 999 3390 108.0 140.1 307.8 34.3
1d2rA 2563 31537 nomem 3408 nomem 1193

Some advantages of function objects over function pointers are cleaner syntax of declaration and the ability to store
state within a function. Function objects turn functions into first-class objects much like in functional programming
languages, and enable their use in multiple instantiations, inheritance and polymorphism. They also facilitate the
generic programming paradigm by enabling functions to operate on generic data and to themselves modify the behav-
ior of templated classes, STL algorithms and other function objects to which they are template parameters. Function
objects have many uses in CGAL, such as for implementing predicates, traversing data streams, and converting one
type of data to another. The STL paradigm of using algorithms and function objects to do much of the monotonous
work without the chance of error played a major role in making our code efficient and reusable, and was a major re-
design from the MATLAB implementation. We made use of many of CGAL’s function objects in our implementation,
and also wrote function objects to encapsulate the following operations:

• the projection operation involved in lifted Voronoi and candidate center computation
• bounding box and centroid computations on an iterator range or a container of points
• mapping an iterator range of point objects to their vertex index numbers
• a constraint equation object to test ranges of candidate center points (including centers at infinity, stored as rays)

against a half-plane constraint, reporting candidate centers that satisfy the constraint and edges between two
centers that cross the constraint

• a sequence indexer to index a sequence container such as an array or a vector with multiple subscripts
• a sequence minimizer to find the minimum value in a container over a set of valid indices.

In our enthusiasm to make these function objects do everything, we gave many of them constructors that take an
iterator range and call the STL algorithm for_each to apply the same function operation on the elements of that
range (by passing it *this). However, we needed to pass the state reached during execution on the range back to
the calling instance using a method call, since the function object used is copied by value and the state will otherwise
be lost. In this example of code from a function object constructor, out() is a method that returns the value of state
variable result. The first statement fails, while the second works.

// op() updates result in temporary copy... changes lost!
std::for_each(indices_list.begin(), indices_list.end(), *this);
// get updated result from copy using method
result=std::for_each(indices_list.begin(), indices_list.end(),

*this).out();

Balancing library component use with custom development: We found that achieving a balance between using
sophisticated existing packages and writing custom code helped speed our development process. For example, since
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our definition of minimum-width annulus does not require it to contain all points but only points of the simplex, we
did not use or modify CGAL’s Minimum_annulus_d package. Instead we implemented the lifting technique [20].
Available functions for projecting a 3D point onto a plane and lifting it to a paraboloid were unsuitable:

• Plane_3.projection(Point_3) did not transform coordinates to place the origin on the plane of projec-
tion and basis vectors perpendicular to it.

• Plane_3.to_2d(Point_3) was supposed to do what we wanted, but it treats plane coordinates with the
world coordinate origin, rather than a point on the plane, as a reference point, and returns 2D coordinates that are
scaled and do not preserve distance between the 3D points.

• Construct_lifted_point_3 lifted to a plane rather than a paraboloid.

Hence, we hand-coded both the projection and lifting operations in a function object.
Also, we chose to calculate the fairly simple furthest point Voronoi regions (bisector plane between 2 points, and

lines equidistant from 3 points), rather than use code for kth-order Voronoi diagrams such as Julia Flötotto’s prototype
listed on the CGAL site.

Degeneracies creep in: Though we had assumed that our point sets were degeneracy-free, we found that degenerate
configurations for some predicates and constructions did arise. Some examples of degeneracies we had to deal with
are as follows:

Fig. 2. (a) The 2D intersection computation between a line l and a segment AB is computed by intersecting l and the line through AB and
checking if the intersection point lies inside the bounding box of AB . (b) Intersection between a vertical segment and a line fails with floating point
arithmetic since the intersection point of the two lines lies outside the bounding box of the segment that has zero width. (c) Increasing the width of
the bounding box by an infinitesimal amount δ ensures that the intersection is detected.

Fig. 3. (a) Intersection of three tangent planes computed by intersecting the leftmost plane and the rightmost plane to get a line, and then the line
and the middle plane to get a point. This intersection point can be inaccurate if the first two planes are almost parallel, in the same way as in (b) the
circumcenter of a very thin triangle can be computed with much more precision by intersecting the bisectors of a long side and the short side than
by intersecting the bisectors of both long sides.



12 D. Bandyopadhyay, J. Snoeyink / Computational Geometry 38 (2007) 4–15
• The standard 2D Segment–Line intersection code in CGAL is implemented as a Line–Line intersection test, and
reports the intersection point only if it lies within the rectangular bounding box defined by the segment. This fails
for vertical or horizontal segments or those that are nearly vertical or horizontal, since the computed intersection
point of the two lines lies outside the bounding box of the segment, as shown in Fig. 2. Similar problems affect the
2D Segment–Line, Segment–Ray, Ray–Line and Line–Line intersection tests that are used directly or indirectly
by our code. Andreas Fabri on the CGAL development team helped us modify the code for these 2D intersection
tests to widen the bounding box and thus avoid this problem. Update: code for robust 2D intersections was added
in CGAL 3.1.

• We had two problems with robust 3D intersection of 3 planes. The first problem arises with three points that lie
on a plane perpendicular to the bisector plane of two furthest neighbors, so that when projected on it they are
collinear and when lifted their tangent planes do not intersect in a point. An imprecise intersection test on three
such planes may find that an intersection point exists, but the resulting annulus with that candidate center has a
negative width that is impossible and must be rejected.

• The second problem is with loss of precision in exact evaluation of the intersection point even when it exists.
The CGAL operations and example code provided with CGAL version 3.0 for intersection point of three planes
intersects two of the planes to find a line, and then the line and the third plane to find the intersection point, as
below:

CGAL::Object int_obj=CGAL::intersection(pl0,pl1);
if (CGAL::assign(int_ln,int_obj))

CGAL::Object int_obj2=CGAL::intersection(pl2,int_ln);
if (CGAL::assign(int_pt, int_obj2))

return int_pt;
else throw "intersection point of 3 planes not a point";

else throw "intersection point of 2 planes not a line";

This method can fail to find the correct intersection point due to loss of precision in evaluating the first intersection
line between planes that are nearly parallel. Such cases often arise while computing the intersections of three lifted
tangent planes, when the first and second planes correspond to points that are nearly diametrically opposite with
respect to the origin of the plane of projected points. This situation is depicted in Fig. 3(a), and is analogous to
the 2D circumcenter computation of a thin triangle shown in Fig. 3(b) where intersecting the two nearly parallel
bisectors gives a very imprecise answer while intersecting one of them with the bisector of the bottom edge gives
a precise answer.
The intersection of three planes can be computed robustly using floating-point arithmetic, if it exists, by solving
the three plane equations using Cramer’s rule:

a1
x · x + a1

y · y + a1
z · z = c1

a2
x · x + a2

y · y + a2
z · z = c2

a3
x · x + a3

y · y + c3
z · z = c3

Ax = c ⇒ x = A−1c = (‖Ax‖/‖A‖,‖Ay‖/‖A‖,‖Az‖/‖A‖)

Above, Ax , Ay and Az are copies of matrix A with the first, second and third columns substituted by c. All the
above determinants should be evaluated as robustly as possible by subtracting one of the rows from the others. If
the resulting determinant ‖A‖ is zero or nearly zero, the evaluation is retried after subtracting a different row. This
is similar to the robust evaluation of predicates as proposed by Shewchuk [25]. Update: a function for computing
intersection of three planes was added in CGAL 3.1, but it has the same problems as before with floating point
robustness, since it relies on a sequence of pairwise intersections.

• Finally, the classical degeneracies do appear in some protein coordinates. Proteins represented by all atom coordi-
nates contain coplanar atoms in the peptide bond and planar sidechains, and certain decoys built on a cubic lattice
have cospherical atoms. In these cases we apply a random perturbation to the input of magnitude much smaller
than any intended cutoff value, which changes the AD thresholds of simplices at most by a correspondingly small
value.
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As the CGAL project evolves, users find new applications and provide feedback, many of the tricks we used in
our implementation will no longer be needed, and the functionality of many external libraries we used will be readily
available in CGAL components.

3.1. Correctness, time complexity and comparison

We verified that our algorithm is implemented correctly by comparing the almost-Delaunay edge, triangle and
tetrahedra thresholds output by it with the MATLAB implementation (which was itself tested against a brute-force
implementation). The test set for the comparison comprised over 400 protein structures, run at different values of the
cutoff and prune parameters. The results were found to match in every case.

We have shown earlier [9] that our algorithm takes O(n2 logn) time for calculation of AD edges and O(n2) for
calculation of AD tetrahedra in typical proteins, with some assumptions about the data being well packed that are
valid for protein structures. The times taken by the implementation for 12 proteins are shown in Table 1. We observe
that for computing edges, CGAL using filtered computation was not much slower than an optimized MATLAB imple-
mentation using floating point. For triangles and tetrahedra, CGAL was an order of magnitude faster, partly because
the MATLAB implementation was complex and not fully optimized. Both stages of the MATLAB version ran out of
memory for input data with 1000–3000 points, while CGAL did not.

4. Benefits of using CGAL

In this section, we briefly summarize our observations of how the choice to use CGAL benefited the development
of our package. This discussion picks up from Section 2.1 where we mention why CGAL was initially chosen for this
project.

• The flexibility of CGAL’s kernel and traits classes and the variety of data structures, function objects and algo-
rithms available allowed us to quickly experiment with a number of representations and methods to achieve fast
and robust computation. For example, we used Delaunay insertion to compute convex hulls fast and robustly.

• The final performance of the static filtered, robust CGAL implementation was comparable with that of the floating-
point MATLAB version for computing almost-Delaunay edges, while CGAL was an order of magnitude faster
than MATLAB for computing almost-Delaunay triangles and tetrahedra.

• The reliability of the kernels and library routines allowed us to concentrate debugging efforts on logic errors in
our own code, once the initial problem of achieving fast and robust floating-point computation with CGAL had
been solved.

• The availability of comprehensive code examples and demos, and steady support from the CGAL team and the
user support forum made the task of learning CGAL a lot easier once we had got past the initial stages.

• By using CGAL, the project took on some of the agility, versatility and high quality that is typical of CGAL code.
CGAL code for tasks such as Delaunay triangulation and convex hulls is highly optimized and yet elegant. This
makes the AlmDel package itself fairly high quality, and readily adaptable and extensible.

• CGAL is cross-platform, working on several platforms and compilers; this enables our code also to work on
several platforms, making it accessible to a larger community of users. We have tested it on Windows (Visual
C++. NET 2003, Intel Compiler, cygwin gcc), and on RedHat and other distributions of Linux (gcc-3.3.x).

• The ready availability of implementations of advanced computational geometry methods in CGAL will help in
the future development of AlmDel and other related and derived packages that may need access to such methods.

The availability of CGAL was critical to the success of this project, since the application of almost-Delaunay
simplices for analysis of protein structures had hit a bottleneck with the MATLAB implementation running out of
memory on inputs with about 1000 points. The use of almost-Delaunay simplices in further analyses depended on
the ability to compute them for proteins represented by 1000 or more points, and to process large families of ∼200
proteins or even the entire Protein Databank (PDB) of ∼10000 non-redundant proteins in a reasonable time. After
the CGAL implementation was complete, we were able to develop these large-scale applications with great ease.
Subsequently, we demonstrated the use of the almost-Delaunay simplices for many applications, such as:
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• Scoring the packing of over 10000 models (with chains 50–500 residues long) submitted to the CASP5 protein
structure prediction competition [26].

• Analyzing conformational change and identifying flexible residues in systems as complex as the Ca2+-ATPase
pump (994 residues) and the GroEL chaperonin (14 subunits with 518 residues each) [27].

• Building graph representations of protein structures using almost-Delaunay edges, for use in a subgraph mining
algorithm to find packing patterns common to ∼200 protein families of 4–400 proteins each [28], and using these
patterns to infer the function of new proteins from their structure [29].

5. Limitations and future work

While profiling the current implementation, we found that it wastes significant time in converting the points on the
convex hull computed by Delaunay insertion, into a polyhedral surface, using the Polyhedron_incremental_builder_3
class; on the average, 10–20% of the time taken to compute the convex hull. This step was necessary to interface with
code that used CGAL functions to traverse a polyhedral surface returned by Convex_hull_3. Some of these functions,
such as computing boundary half-edges that correspond to slabs, were difficult to write for a data structure not based
on half-edges. Still, rewriting the code to traverse the surface of the DT would remove this overhead.

The implementation has migrated to a series of compilers and platforms as it got more complex through its devel-
opment, and right now it uses CGAL-3.1 or higher, and has been compiled with Microsoft Visual C++ 7.1 and 8.0
(.NET 2003 and 2005) and the Intel compiler version 7.1 on Windows, and with gcc 3.3.x on cygwin and Redhat
Linux 9.0.

While a dataset with 3000 points is large for a protein structure, almost-Delaunay simplices are not limited to ana-
lyzing protein structures. Among other areas, we foresee their use in computer graphics and terrain modeling, where
researchers routinely study models with millions of points. Out-of-core techniques, data partitioning, hierarchical
schemes, parallel processing and algorithmic improvements may help scale the implementation to larger numbers of
points.

Though our framework allows computation of the almost-Delaunay simplices in dD, we have a complete imple-
mentation only in 3D since the driving problem of analyzing protein structure is in 3D. A 2D implementation is
planned. We plan to make almost-Delaunay simplices available as a CGAL extension package, and pursue further
algorithmic improvement (make it output sensitive, incremental and kinetic).

6. Conclusion

In this paper, we have shared the experience of implementing a complex computational geometry algorithm,
almost-Delaunay simplices, in CGAL. CGAL helped us create a practical implementation of our algorithm in 3D that
can process datasets with 100–5000 points in between a few seconds and an hour on a 2.0 GHz computer. CGAL was
essential for this project to succeed, since it provided a stable and powerful set of tools for geometric representation
and robust computation, which were highly parameterizable and could be used together in many different combina-
tions to achieve the goal of a fast and robust implementation. The successful completion of this implementation helped
us expand the scope and capabilities of our protein structure analysis studies.
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