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Abstract

We consider the problem of computing a minimum weight pseudo-triangulation of a set S of n points in the plane.
We first present an O(n log n)-time algorithm that produces a pseudo-triangulation of weight O(wt(M(S)) · log n)
which is shown to be asymptotically worst-case optimal, i.e., there exists a point set S for which every pseudo-
triangulation has weight Ω(log n ·wt(M(S))), where wt(M(S)) is the weight of a minimum spanning tree of S. We
also present a constant factor approximation algorithm running in cubic time. In the process we give an algorithm
that produces a minimum weight pseudo-triangulation of a simple polygon.

Pseudo-triangulations are planar partitions that
recently received considerable attention mainly
due to their applications in visibility [7], ray-
shooting [3], kinetic collision detection [4], rigidity
[10], and guarding [9].

A pseudo-triangle is a planar polygon that has
exactly three convex vertices, called corners, with
internal angle less than π. A pseudo-triangulation
of a set S of n points in the plane is a partition of
the convex hull of S into pseudo-triangles whose
vertex set is exactly S.

A related problem is the problem of triangu-
lating a point set. Minimizing the total length
has been one of the main optimality criteria for
triangulations and other kinds of partition. The
complexity of computing a minimum weight tri-
angulation is one of the most longstanding open
problems in computational geometry and it is
included in Garey and Johnson’s [1] list of prob-
lems from 1979 that neither are known to be
NP-complete, nor known to be solvable in polyno-
mial time. As a result approximation algorithms
for the MWT-problem have been considered. In
this paper we consider the problem of comput-
ing a pseudo-triangulation of minimum weight
(MWPT) which was posed as an open problem by
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Rote et al. in [8]. An interesting observation that
makes the pseudo-triangulation favorable com-
pared to a standard triangulation is the fact that
there exists point sets where any triangulation,
and also any convex partition (without Steiner
points), has weight Ω(n · wt(M(S))), while there
always exists a pseudo-triangulation of weight
O(log n·wt(M(S))), where wt(M(S)) is the weight
of a minimum spanning tree of the point set. We
also present an approximation algorithm that
produces a pseudo-triangulation whose weight is
within a factor 27 times the weight of the MWPT.
In comparison, the best constant approximation
factor for the MWT-problem, Levcopoulos and
Krznaric [6], which is proved to be achievable by
a polynomial-time algorithm [6] is so much larger
that it has not been explicitly calculated.

An edge/segment with endpoints in two points
u and v of S will be denoted by (u, v) and its length
|uv| is equal to the Euclidean distance between u
and v. Given a graph T on S we denote by wt(T )
the sum of all the edge lengths of T . The minimum
spanning tree of S and the convex hull of S, de-
noted M(S) and CH(S) respectively, will be used
frequently throughout the paper. Both structures
can be computed in O(n log n) time.

1. A fast pseudo-triangulation

As mentioned in the introduction there exist
point sets S where any triangulation will have
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Fig. 1. (a) An example where any triangulation will
have weight Ω(wt(M(S)) · n). (b) An example where any
pseudo-triangulation will have weight Ω(wt(M(S)) · log n).

weight Ω(n · wt(M(S))), an example is given
in Fig. 1a. A natural question is whether there
exists similar worst-case bounds for pseudo-
triangulations. In this section we show that one
can always construct a pseudo-triangulation of
weight O(log n · wt(M(S))), and this is asymp-
totically tight, i.e., there exists a point set S
for which every pseudo-triangulation has weight
Ω(log n · wt(M(S))). We start with the lower
bound.
Observation 1 There exists a point set S in

the plane such that any pseudo-triangulation has

weight Ω(wt(M(S))· log n).
Next we present an algorithm that produces a

pseudo-triangulation whose weight asymptotically
meets the lower bound, that is:
Theorem 1 Given a set S of n points in the

plane one can in time O(n log n) produce a pseudo-

triangulation of S of weight O(wt(M(S)) · log n).
The algorithm performs two main steps: first

a partition of the convex hull of S into sim-
ple polygons P1, . . . , Pm followed by a pseudo-
triangulation of each polygon.

In this section we first show how a visibil-
ity polygon P can be pseudo-triangulated in
time O(n log n) using edges of total weight
O(wt(P ) · log n). We also show how to pseudo-
triangulate a special polygon, called an hourglass
polygon. Finally it is shown how one can construct
a spanning graph of S that partitions the convex
hull of S into empty polygons that either are vis-
ibility polygons, or hourglass polygons by using
segments of small total weight. Combining these
results gives us Theorem 1.

1.1. Pseudo-triangulating a visibility polygon

We will show that a weak visibility polygons
whose visibility edge has two convex vertices eas-
ily can be pseudo-triangulated. This result will be
used in the algorithm that pseudo-triangulates a
visibility polygon. First a simple observation.

Observation 2 The geodesic shortest path be-

tween any pair of points p and q in a weak visibility

polygon P is a concave chain.

Observation 3 A weak visibility polygon P whose

visibility edge (p1, p2) has two convex vertices can be

pseudo-triangulated in time O(n log n) using edges

of total weight O(wt(P ) · log n).
Now we are ready to consider visibility polygons.

Assume that we are given a visibility polygon P
with respect to q with n vertices p1, . . . , pn ordered
clockwise around the perimeter of P starting with
q. Let r1, . . . , rm be the convex vertices of P .

Observation 2 implies that we can partition P
into one pseudo-triangle and a set of weak-visibility
polygons by adding the pseudo-triangle with cor-
ners at p1, ri and rj , where 1 < i < j. The two
convex vertices ri and rj are chosen in such a way
that the two angles ∠p2, p1, ri and ∠pn, p1, rj are
less than π. Note also that p2 and pn are con-
vex vertices since P is a visibility polygon. The
pseudo-triangle will consist of the edges in the con-
cave chain between ri and rj plus the edges (p1, ri)
and (p1, rj). The resulting subpolygons outside the
pseudo-triangle are weak visibility polygons whose
visibility edges have convex vertices. According to
Observation 3 each of these subpolygons can be
pseudo-triangulated in O(n log n) time using edges
of total weight O(wt(P ) · log n). Hence we have
showed the following lemma.
Lemma 2 The algorithm produces a pseudo-

triangulation T of a visibility polygon P in

O(n log n) time whose weight is O(wt(P ) · log n).
We end this section by considering the pseudo-

triangulation of an hourglass polygon. A polygon
P is said to be an hourglass polygon if P consists
of two concave chains connected by two edges.

We will later need the following straight-forward
observation:
Observation 4 An hourglass polygon P can be

pseudo-triangulated in linear time by adding one

edge e such that wt(e) 6 1/2 · wt(P ).

1.2. Partition a point set into simple polygons

As input we are given a set S of n points in the
plane, and as output we will produce a set of poly-
gons that are either hourglass polygons or visibility
polygons. The partition is done in two main steps.
First construct the convex hull and the minimum
spanning tree of S. This is done in O(n log n) time
and it partitions CH(S) into simple (maybe de-
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generate) polygons, denoted P1, . . . , Pm. Secondly,
each polygon Pi is processed independently. The
task at hand is to partition Pi into a set of hour-
glass polygons and “restricted” visibility polygons,
which can be pseudo-triangulated as described in
the previous section.

A restricted visibility polygon rvp(P, q) of a
polygon P with respect to a vertex q is a visibility
polygon of P with respect to q such that every
vertex of P (q) also is a vertex of P .
Definition 3 Every edge e = (u, v) of a restricted

visibility polygon R(q) that short cuts exactly three

edges of the maximal visibility polygon P (q) is said

to be a split edge.

Now, let v1, . . . , vn be the vertices of P in clock-
wise order, starting at q = v1. It remains to show
how we can partition P into visibility polygons and
hourglass polygons in O(n log n) time. The idea is
to recursively partition P into restricted visibil-
ity polygons and hourglass polygons. Consider one
level of the recursion. If P is not a restricted visibil-
ity polygon with respect to q, or an hourglass poly-
gon then the following two steps are performed:

(i) Build a restricted visibility polygon rvp(P, q)
of P .

(ii) For each split edge e in rvp(P, q) construct an
hourglass polygon H such that H∩R(q) = e.

A more precise description on how this can be per-
formed in time O(n log n) can be found in the full
version.

2. A MWPT of a simple polygon

Even though the above algorithm is asymptoti-
cally worst-case optimal with respect to the weight
of the minimum spanning tree it can be very far
from the optimal solution. In the rest of this pa-
per we will focus on developing a constant factor
approximation algorithm for the MWPT-problem.
As a subroutine we will also develop an algorithm
that finds an optimal pseudo-triangulation of a
simple polygon.
Theorem 4 Given a simple polygon P one can

compute the minimum weight pseudo-triangulation

of P in O(n3) time using O(n2) space.

We will use a similar dynamic programming
method as proposed by Gilbert [2] and Klincsek
[5] for finding a minimum weight triangulation of a
simple polygon. The basic observation used is that
once some (pseudo-)triangle of the (pseudo- )tri-

angulation has been fixed the problem splits into
subproblems whose solutions can be found recur-
sively, hence avoiding recomputation of common
subproblems.

Let P be the simple polygon with n vertices
p1, . . . , pn in clockwise order. Let δ(pi, pi+j) be the
shortest geodesic path between pi and pi+j . Define
the order of a pair of points pi, pj to be the value
(i − j − 1) mod n, i.e., the number of vertices on
the path from pi to pj along P in clockwise order.
Sort the pairs with respect on their order, ties are
broken arbitrarily. Note that every pair of points
pi and pj will occur twice; once as (pi, pj) and once
as (pj , pi). Now we process each pair in sorted or-
der as follows.

Assume we are about to process (pi, pi+j) and
that the path δ(pi, pi+j) goes through the vertices
pi = pi+a0

, pi+a1
, . . . , pi+ak

= pi+j . Note that the
path partitions P into k + 1 subpolygons. Let
L[i, i + j] be the total edge length of an optimal
pseudo-triangulation for the subpolygon (or sub-
polygons) containing the chain pi, pi+1, . . . , pi+j of
the perimeter of P . Compute L[i, i+ j] recursively
as follows. If (pi, pi+j) is not a convex or concave
chain then we set L[i, i+ j] = ∞. In the case when
the path is a concave or convex chain we obtain
one polygon P ′ bounded by the path δ(pi, pi+j)
and the path between pi and pi+j , and k polygons
P1, . . . , Pk where each Pl is bounded by the edge
(pi+al

, pi+al−1
) and the edges from pi+al−1

to pi+al

along the perimeter of P . If the path is a concave
or convex chain then we will have three cases.

- If δ(pi, pi+j) contains more than one edge
then we know that L[∗, ∗] already has been com-
puted for every edge along δ(pi, pi+j), hence
we only have to add up the values of L[∗, ∗]
which can be done in linear time, i.e., calculating∑k−1

α=0
L[pi+aα

, pi+aα+1
].

- If δ(pi, pi+j) contains exactly one edge
(pi, pi+j) then an optimal pseudo-triangulation of
P1 can be obtained in linear time as follows. We
will have two cases; either pi and pi+j are corners
of the pseudo-triangle in P1 containing (pi, pi+j)
or not.

In the case when both pi and pi+j are con-
vex vertices within P1 then an optimal pseudo-
triangulation of P1 can be obtained in linear time
as follows. Any optimal pseudo-triangulation of
P1 that contains the edge (pi, pi+j) must have pi

and pi+j as corners thus we can try all possible
vertices pm, i < m < i + j as the third corner.



20th European Workshop on Computational Geometry

Testing a pseudo-triangle with corners at pi, pi+j

and pm takes constant time since the L[∗, ∗]-value
of the paths between pi and pm, and pm and pi+j

already has been computed.
Otherwise, if one or both of the points are not

corners, it holds that there must be a pair of points
px and py along the perimeter of P between pi and
pi+j whose shortest geodesic path between them
contains the edge (pi, pi+j). Hence, in this case the
optimal solution has already been computed for P1.

There are O(n2) pairs of points and each pair
takes O(n) time to process. The space bound fol-
lows from the fact that for every pair of points pi

and pj we store L[pi, pj ]. When all the L[∗, ∗] have
been computed we can easily test every possible
pseudo-triangle in constant time, thus Lemma 4
follows.

3. A better approximation

In this section we will give an approximation
algorithm for the MWPT-problem. It is similar
to the approximation algorithm presented in Sec-
tion 1 in the sense that the two main steps are
the same; first a partition of the convex hull of
the point set into simple polygons followed by
a pseudo-triangulation of each polygon. In the
pseudo-triangulation step we will use the opti-
mal algorithm presented in the previous section.
As input we are given a set S of n points in the
plane, and as output we will produce a pseudo-
triangulation T of S.

Algorithm PseudoTriangulate(S)
(i) Construct the convex hull and the minimum

spanning tree of S. This partitions CH(S)
into simple (maybe degenerate) polygons de-
noted Q1, . . . , Qk.

(ii) Apply Theorem 4 to each of the k polygons.
The pseudo-triangulation obtained together
with the convex hull and the minimum span-
ning tree of S is reported.

The proof of the following theorem can be found
in the full version of the paper.
Theorem 5 Given a set of points S algorithm

PseudoTriangulate computes a pseudo-triang-

ulation T of S in time O(n3) using O(n2) space

such that wt(T ) = 4(1+4
√

2) ·wt(Topt), where Topt

is a minimum weight pseudo-triangulation of S.

4. Open problems and Acknowledgement

An obvious question is whether the minimum
weight pseudo-triangulation problem is as hard as
finding the minimum weight triangulation? The
MWT-problem is one of the few open problems
listed in Garey and Johnson’s 1979 book on NP-
completeness [1] that remain open today.

A second open problem concerning the weight
of a pseudo-triangulation is if there exists a min-
imum pseudo-triangulation of low weight. It was
shown by Streinu [10] that every point set al-
lows a minimum planar pseudo-triangulation
that has 2n − 3 edges. Neither of the two algo-
rithms presented in this paper produces minimum
pseudo-triangulations, although the dynamic pro-
gramming algorithm for simple polygons can be
modified to compute a minimum weight minimum
pseudo-triangulation.

The first author would like to thank Mark de
Berg and Bettina Speckmann for valuable discus-
sions during the work on this paper.
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