
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Computational Geometry 41 (2008) 167–187

www.elsevier.com/locate/comgeo

The BOXEL framework for 2.5D data with applications
to virtual drivethroughs and ray tracing

Nir Goldschmidt, Dan Gordon ∗

Department of Computer Science, University of Haifa, Haifa 31905, Israel

Received 5 January 2007; accepted 18 September 2007

Available online 21 November 2007

Communicated by T. Asano

Abstract

The framework of boxels is developed to represent 2.5D datasets, such as urban environments. Boxels are axis-aligned non-
intersecting boxes which can be used to directly represent objects in the scene or as bounding volumes. Guibas and Yao have
shown that axis-aligned disjoint rectangles in the plane can be ordered into four total orders so that any ray meets them in one
of the four orders. This is also applicable to boxels, and it is shown that there exist four different partitionings of the boxels into
ordered sequences of disjoint sets, called antichains, so that boxels in one antichain can act as occluders of the boxels in subsequent
antichains. The expected runtime for the antichain partitioning is O(n logn), where n is the number of boxels. This partitioning
can be used for the efficient implementation of virtual drivethroughs and ray tracing. Boxels can also be easily organized into
hierarchies to speed up the rendering. For drivethroughs, the antichains are processed in front-to-back order together with a run-
length encoding of the boxel horizon, yielding real-time rendering of scenes with up to 300,000 buildings. For ray tracing, a ray
intersects at most one boxel in an antichain, and the time to determine that boxel is O(1) for most “natural” scenes, and at worst,
logarithmic in the size of the antichain. Objects which are not axis-aligned can also be handled by a simple modification. Boxel
rendering can also be parallelized for multi-core machines.
© 2007 Published by Elsevier B.V.

Keywords: 2.5D data; Antichains; Axis-aligned; Boxels; Drivethrough; Front-to-back rendering; Horizon; Partial order; Ray-tracing; Rectangles;
Urban scene; Virtual reality; Walkthrough

1. Introduction

An active research area in occlusion techniques consists of methods of accelerating the display of urban scenes for
virtual walk/drivethroughs. For a recent survey of results in this area see Cohen-Or et al. [6]. Most current methods
employ the notion of occluders, which are real or virtual objects which can occlude large portions of a scene potentially
visible from a certain region. A recent example of such results is Downs et al. [7].

On the other hand, there exists a large body of results on space partitioning techniques and bounding volumes whose
purpose is to accelerate ray tracing or projection techniques. Regular spatial partitionings, such as voxels [16], can also

* Corresponding author.
E-mail addresses: goldschmidt_nir@emc.com (N. Goldschmidt), gordon@cs.haifa.ac.il (D. Gordon).

0925-7721/$ – see front matter © 2007 Published by Elsevier B.V.
doi:10.1016/j.comgeo.2007.09.003

Author's personal copy

168 N. Goldschmidt, D. Gordon / Computational Geometry 41 (2008) 167–187

serve as representations of the basic objects. Some of the partitioning schemes, e.g., octrees and their variants [22–24]
are also hierarchical in nature, while others, such as simple spatial subdivisions [10] are not.

A basic property common to many of the above-mentioned schemes is that of axis-order, which can be described
as follows: There exist eight different traversal orders so that a ray in any direction encounters the sub-volumes in
one of these orders. This property is useful both for ray tracing and projection methods. Projection methods using this
property can be in either back-to-front order [9,19], or in front-to-back order [18,21].

The useful property of axis-order is offset by several disadvantages. One of them is that the partitioning planes
cut through the entire volume or sub-volume. This means that some objects may be cut arbitrarily, increasing the
complexity of the partitioning and the rendering algorithms. In spatial subdivisions, both uniform and non-uniform,
all the partitioning planes run throughout the entire volume. Another disadvantage of some of these schemes (oc-
trees and uniform subdivisions) is that partitions can only occur at predetermined positions, again incurring a
penalty by not being adaptive to the objects in the scene. In the example of [7], a quadtree is used to partition the
scene.

A more generally useful scheme would be arbitrary, axis-aligned (disjoint) boxes in 3D space. Such a scheme does
not have the property of axis-order, because cyclic overlap is possible. A natural question is what happens when one
considers 2.5-dimensional data, i.e., can such data be organized so as to have the property of axis-order? 2.5D data
is usually defined as follows: If a point belongs to an object, then all points below it (and above the xy-plane) also
belong to the same object. Geographical data in general and urban scenes in particular are usually assumed to be 2.5D
in nature.

As a positive answer to the 2.5D problem, we introduce the notion of boxels. The term “boxel” is derived from
box-element or box-cell. Boxels have the following properties:

• Axis-order: Four different orders are sufficient for back-to-front or front-to-back traversal.
• There are no boundaries that extend beyond a boxel.
• Boxels can be hierarchical or not, depending on the application or on considerations of efficiency. The hierarchy

option is detailed in the rendering application.

Boxels are axis-aligned boxes with disjoint interiors, satisfying the 2.5D property. The boxels can be used as
bounding volumes of various types of objects, or they can serve as the basic building blocks of the actual data, just
like voxels. The above properties of boxels follow from the fact that disjoint, axis-aligned rectangles in the plane can
be organized so as to have the property of axis-order, as shown by Guibas and Yao [15], who studied these objects
with the purpose of translating sets of rectangles in the plane without intersections. The notion of boxels and their
basic properties were (independently) proposed by Gordon in [12,13] as potentially useful for rendering 2.5D and
some 3D scenes. Axis-aligned rectangles were also studied by Bellantoni et al. [4], and by Asano et al. [2].

In this paper we develop further theoretical and practical properties of boxels which make them extremely useful
for very rapid rendering of urban scenes. We show that there exist four different partitionings of the boxels into ordered
sequences of disjoint sets, called antichains, so that any ray interacts with one of the sequences as follows:

1. For every antichain in the sequence, the ray intersects at most one boxel in the antichain.
2. Given an antichain in the sequence, it takes at most logarithmic time to determine which boxel (if any) in the

antichain is intersected by the ray. For most “natural” scenes, this can even be done in O(1) time.
3. If the ray hits a boxel in a certain antichain, then it is obscured from all the boxels in subsequent antichains.
4. The partitioning into antichains takes an expected time of O(n logn), where n is the number of boxels.

A result of these properties is that from any viewpoint, a scene can be rendered in front-to-back order so that the
visible boxels act as occluders, resulting in output-sensitive display. Non-axis aligned objects can also be handled,
at a very slight increase in overhead. A hierarchy of boxels, together with a run-length encoding (RLE) of the boxel
horizon enables extremely fast rendering: datasets of 250,000 boxels can be rendered in real time on a standard PC
with standard graphics hardware. Our rendering method lends itself to very simple, image-driven parallelization, thus
it can take advantage of current multi-core processors. The antichain partitioning is also very useful for the acceleration
of ray tracing in 2.5D scenes. However, this topic has not yet been tested in practice.

Author's personal copy

N. Goldschmidt, D. Gordon / Computational Geometry 41 (2008) 167–187 169

Fig. 1. Axis-aligned rectangle A defined by its opposite corners.

The rest of this paper is organized as follows: Section 2 presents the basic theory of boxels and Section 3 presents
the antichain partitionings of boxels. Section 4 explains the front-to-back rendering of boxels with a horizon mecha-
nism, while Section 5 presents the runtime results. We conclude in Section 6 with some further research directions.

2. Previous work

The results in this section were obtained by Guibas and Yao [15], but we present them in some detail since they are
basic to our extensions and applications. They also appear in [13].

2.1. Definitions and basic properties

In the following, we assume that all rectangles in the xy-plane are axis-aligned, i.e., their sides are parallel to the
x and y coordinate axes. An axis-aligned rectangle A is defined by its lower-left corner (x1, y1) and its upper-right
corner (x2, y2). We assume throughout the following that such a rectangle satisfies x1 < x2 and y1 < y2, i.e., the
rectangles are not degenerate. Given a rectangle A as above, we denote xmin(A) = x1, ymin(A) = y1, xmax(A) = x2
and ymax(A) = y2. We also denote its minimal and maximal corners as min(A) = (x1, y1) and max(A) = (x2, y2).
Fig. 1 illustrates the above definitions.

In order to avoid ambiguous containment relations between rectangles, we henceforth assume that the lower left
corner together with its two incident edges are part of A, and the other corners and edges are not. This is shown
in Fig. 1, in which the edges forming part of A are enhanced. Formally, we have: A = {(x, y) | xmin(A) � x <

xmax(A), ymin(A) � y < ymax(A)}.
The concept of dominance is well-known in computational geometry [20], though here we use it with strict in-

equalities:

Definition 1. Let p1 = (x1, y1), p2 = (x2, y2) be two points in the plane. We say that p1 is dominated by p2, and
denote it by p1 ≺ p2, if x1 < x2 and y1 < y2.

We now use the notion of dominance to define a binary relation � between rectangles as follows:

Definition 2. Let A and B be two axis-aligned rectangles with disjoint interiors in the plane. We say that A precedes
B , and denote it by A � B , if min(A) ≺ max(B).

Fig. 2 shows an example of the � relation among various rectangles. The region dominated by the maximal corners
is delimited by the broken lines and the arrows are in the direction of the relation �. Clearly, if A � B , then any ray
in direction of non-decreasing x and y, if it meets both A and B , must meet A before B .

However, the relation � is not suitable for our purposes, since it is not total, and not even transitive, as shown
in Fig. 2: A � B � C, but A and C are incomparable with respect to �. We wish to extend the relation � to a
total order, but this cannot be done globally for all possible rectangles for a simple reason: Consider the incomparable
rectangles A and C of Fig. 2. If our set of rectangles includes a separating rectangle B as in the figure, then in any

Author's personal copy

170 N. Goldschmidt, D. Gordon / Computational Geometry 41 (2008) 167–187

Fig. 2. 4 rectangles, with the relation �, shown by the arrows, derived from the dominance relation. A � B � C, but A and C are incomparable
with respect to �.

Fig. 3. A set of rectangles with the total order <++ shown by the arrows. The diagonal (dashed) arrows are between elements which are incomparable

with respect to �. A ray meets the rectangles in the order <++ .

total order extending �, A must precede C. However, if A and C were separated by a long thin horizontal rectangle
B ′, then we would have C � B ′ � A, so in any total order extending �, C would have to precede A.

We therefore restrict our goal to that of extending � to a total order when the set of rectangles is fixed. Let
V be a set of axis-aligned rectangles with disjoint interiors. Assume that the relation � on the elements of V has
been extended to its transitive closure. We can define a digraph (directed graph) G = (V ,E) whose vertices are the
rectangles, and the arcs (directed edges) are defined as follows: E = {(A,B) | A,B ∈ V and A � B} The extension
of � to a total order on V follows from the following theorem, which is proved in [13,15].

Theorem 1. Let G = (V ,E) be a digraph as defined above. Then G is acyclic.

Since we have a directed acyclic graph, we can extend � to a total order by doing a topological sort [1,17]. Note
that the total order obtained is not necessarily unique. The problem of computing such a total order, which we call the
boxel ordering problem, is addressed in Section 2.2.

Given a set of rectangles V , we find some total order <++ extending �, and we denote by <−− the reverse total
order. Similarly, we find some total order <−+ extending the partial order of non-increasing x and non-decreasing y,
with <+− denoting its reverse order. Fig. 3 shows a set of rectangles with the total order <++ shown by the arrows. The
diagonal arrows join rectangles which are incomparable with respect to �.

Author's personal copy

N. Goldschmidt, D. Gordon / Computational Geometry 41 (2008) 167–187 171

2.2. Topological sorting of boxels

We now consider the following problem: Given a set V of axis-aligned rectangles (with disjoint interiors), find a
total order extending �. If we tried a naive implementation of the general topological sorting algorithm, we would first
need to compute E from V , and this would take �(n2) time, where n = |V |. To see this, consider a set of rectangles
stacked on top of each other—such a set is totally ordered by �, so |E| = n(n − 1)/2, from which it follows that just
producing E from V takes �(n2) time. Note that finding E is a special case of the dominance merge problem [20] in
two dimensions. Another problem with the naive approach is that even if E were available, we would still need �(n2)

time (and space) because the optimal time for topological sorting is O(|V | + |E|) [1,17].
For our purposes, we do not really need an explicit representation of E. It is sufficient to obtain the sequential order

in some linear data structure that can be traversed in both directions, e.g., a doubly-linked list. The following result
was shown in [15]; it also appears in [13].

Theorem 2. Let G = (V ,E) be a digraph as defined above. The boxel-ordering problem can be solved in time of
O(n logn) and optimal space O(n). The time is optimal in the decision-tree model of computation.

The O(n logn) optimality follows from the fact that sorting is linear-time reducible to the boxel-ordering problem.
The boxel-ordering algorithm is in the form of a plane-sweep, as detailed below.

Algorithm 1 (Boxel-ordering).

Input: A set V of n axis-aligned rectangles.
Output: A doubly-linked list of the rectangles whose order is an extension of the relation �.
Data Structures:

TREE: A balanced binary search tree containing the active rectangles, ordered by xmin.
LIST: A doubly-linked list, whose elements are always in some total order extending �.

begin
Let Y = {ymin(A) | A ∈ V } ∪ {ymax(A) | A ∈ V }.
(Y is a set and every value appears in it only once.)
Sort Y = {y1, . . . , yk}, where y1 < · · · < yk are all the different elements of Y in sorted order.
for (every yj ∈ Y) maintain 2 separate lists, one for rectangles starting at yj and one for those terminating at yj .
Initialize TREE and LIST to ∅.
for (j = 1 to k) (sweep stage)

Delete from TREE all rectangles whose ymax is � yj .
for (every A ∈ V with ymin(A) = yj)

Insert A into TREE.
Let B = A’s successor in TREE (if A is last, B = NIL).
Insert A into LIST before B (at end if B = NIL).

endfor
endfor
Output LIST.

end

The arrows in Fig. 3 show the total order that is obtained by applying the boxel-ordering algorithm to the given
set of boxels. Arrows connecting incomparable adjacent elements on LIST are shown as dashed. Two implementation
details are given below.

An element’s successor on a binary search tree is the last element on the search path from the root to the element’s
position, from which the left branch was taken during the search—see [11]. Thus, we can easily find a new element’s
successor (as required by algorithm 1) by initializing a pointer to NIL and changing its value at every node from which
the left branch is taken. At the end of the search, the pointer points at the inserted rectangle’s successor on TREE. If
the pointer remains NIL, then the inserted element is last on TREE.

Author's personal copy

172 N. Goldschmidt, D. Gordon / Computational Geometry 41 (2008) 167–187

Another implementation detail is the following: Algorithm 1 produces a list of the elements in an order <++ ex-
tending �, and the same list also gives us <−−. We can obtain the orders <−+ and <+− at a minimal additional cost as
follows: We use the same sorted set Y and the same TREE, but in addition to LIST, we maintain another list, LIST1,
for the order <−+. During the insertion of a new rectangle A, in addition to finding A’s successor on TREE, we also
find A’s predecessor on TREE and insert A into LIST1 immediately before that predecessor. If A is first on TREE,
we insert A at the end of LIST1. At the end, LIST1 holds the rectangles in a total order <−+ extending the relation of
non-increasing x and non-decreasing y; the reverse order on LIST1 is <+−.

3. The antichain partitioning

This section extends the previous boxel definitions and structures for the purposes of fast rendering. Given a set with
a non-reflexive binary relation, a subset is called an antichain if any two elements in it are pairwise incomparable w.r.t.
the relation. Consider a set of boxels V with the relation �: We want to partition it into subsets so that every subset is
an antichain. There may be several different such partitionings of V , but, for our purposes, we want the antichains to
form an ordered sequence so that the boxels in one antichain can act as occluders of boxels in subsequent antichains.
This is shown in the following two subsections.

3.1. Definitions and basic properties

Definition 3. Given a set of boxels V , we define

min(V ,�) = {
B ∈ V | ¬(∃A ∈ V)(A � B)

}
.

min(V ,�) is the set of all elements of V which are minimal w.r.t. �, i.e., they have no predecessors. The antichain
partitioning of V is given by:

Definition 4. Given a set of boxels V , the antichain partitioning of V w.r.t. � is the sequence V1, . . . , Vm of disjoint
subsets of V , defined by

V1 = min(V ,�);

For i > 1, Vi = min

(
V −

(
i−1⋃
j=1

Vj

)
,�

)
.

The number of elements, m, in the sequence is the number of non-empty sets obtained by the above rule.

Clearly, each Vi is an antichain w.r.t. �. Similar definitions to 3 and 4 also apply to the other three relations on V .
Fig. 4 shows an example of the antichain partitioning. The main properties of the partitioning are summarized in the
following theorem.

Theorem 3. Let V be a set of boxels, V1, . . . , Vm the antichain partitioning of V w.r.t. �, and R a ray in direction of
non-decreasing x and y. Then:

1. For 1 � i � m, any two boxels in Vi are incomparable with respect to �.
2. For 1 � i � m, R meets at most one boxel of Vi .
3. If 1 � i < j � m and R meets some boxel of Vi , then R is obscured from all boxels of Vj .
4. For 1 � i � m, the time to determine which boxel in Vi (if any) intersects R is logarithmic in the size of Vi .

The proof of items 1–3 of Theorem 3 follow immediately from the basic properties of the relation � and the
antichain definition. Item 4: Consider the minimal corners of the boxels of Vi . Clearly, they are strictly ordered in
order of increasing x (and also in order of increasing y). Hence, a binary search on these boxels will determine in
logarithmic time which boxel, if any, is intersected by the ray.

Author's personal copy

N. Goldschmidt, D. Gordon / Computational Geometry 41 (2008) 167–187 173

Fig. 4. The antichain partitioning V1, . . . , V8 of a set of boxels, w.r.t. to �. The boxels of Vi are marked with i.

3.2. Construction of the antichain partitioning

Clearly, the first boxel on LIST (denote it B) is a minimal element w.r.t. � (i.e., it has no predecessors), so
it belongs to the first antichain V1. The other elements of V1 (if any) will be some elements of LIST which have no
predecessors w.r.t. � on LIST. A naive search of LIST using this approach would require a total search time of O(n2).
Instead of proceeding in this manner, we utilize the information available to us from the boxel-ordering algorithm,
together with some additional data structures.

The total order <++ is an extension of the partial order �, so LIST can be broken up into t sublists of boxels,
B1

1 , . . . ,B1
k1

, B2
1 , . . . ,B2

k2
, . . . ,Bt

1, . . . ,B
t
kt

, such that:

• In every sublist, successive elements are strictly ordered by the relation �.
• The last element of every sublist is incomparable with the first element of the next sublist, i.e., for every 1 � i < t ,

Bi
ki

and Bi+1
1 are incomparable w.r.t. �.

We call the first elements of the sublists the headers of the sublists. Clearly, the elements of V1 can only be sublist
headers. As already noted, B1

1 ∈ V1. Whenever a header is added to an antichain, then next element on its sublist (if
any) becomes the sublist’s header.

It might seem as if the next element in V1 (after B1
1) is simply the first sublist header on LIST which is incomparable

with B1
1 , but this is not so: on the first sublist, B1

1 ,B1
2 , . . . ,B1

k1
, there might be elements which extend further to the

left than B1
1 . This means that even if B1

1 is incomparable with Bi
1 for some i > 1, we could have B1

j � Bi
1 for some

1 < j � k1. An example of this is shown in Fig. 5: the first sublist is B1
1 , . . . ,B1

6 , and the next sublist starts with B2
1 .

Even though B1
1 and B2

1 are incomparable, B2
1 cannot be on the same antichain as B1

1 because it is preceded by B1
5 in

the order �.
In order to resolve this problem, we add the following information to the boxels on LIST: every boxel B on a

sublist has a data field containing the minimal xmin of all boxels on the sublist from (and including) B to the end of
the sublist. We denote this value by sublist_xmin(B); it is found in linear time by working backwards on each sublist.
For this purpose, the sublists are organized as two-way linked lists. In the example of Fig. 5,

sublist_xmin(B1
1) = xmin(B1

5).

Since all elements of an antichain are sublist headers, we construct a list of pointers P = (p1, . . . , pt), such that
each pi points at Bi

1. P is organized as a two-way linked list, and it can be easily constructed from LIST in linear
time. Note that the sublist headers are in increasing order of xmin, so each antichain will be produced in sorted order
by the algorithm below.

Author's personal copy

174 N. Goldschmidt, D. Gordon / Computational Geometry 41 (2008) 167–187

Fig. 5. An example of searching for elements of an antichain.

Algorithm 2 (Antichain construction).

Input: The t sublists of LIST, each organized as a two-way list, as explained above.
Output: An ordered sequence of antichains V1,V2, . . . , each sorted by xmin.
Data Structure:

A two-way list of pointers P = (p1, . . . , pt), with pi pointing at Bi
1.

begin
for (i = 1 to t) [loop to set up sublist_xmin.]

current_xmin = ∞
for (j = ki downto 1)

current_xmin = min(current_xmin,xmin(Bi
j))

sublist_xmin(Bi
j) = current_xmin.

endfor
endfor
k = 0 [k will index the antichains.]
while (t > 1)

k = k + 1
Initialize Vk to an empty linked list.
current_xmin = ∞.
for (i = 1 to t) [loop on sublist headers.]

if (xmax(Bi
1) � current_xmin)

Place Bi
1 on antichain Vk .

Remove Bi
1 from its sublist and update pointers of P .

endif
current_xmin = min(current_xmin,xmin(Bi

1)).
endfor
for (every empty sublist) t = t − 1.

endwhile
if (t = 1) place every remaining boxel in a new (and separate) antichain.
Place every sorted antichain into an array.

end

Theorem 4. Let V be a set of boxels, LIST the list of boxels produced by Algorithm 1, and assume we are given the
sublists of LIST as described above. Then Algorithm 2 produces the antichain partitioning V1, . . . , Vm of V .

Proof. Let V ′
1 be the set of boxels produced by Algorithm 2 when its variable k is equal to 1. It is clearly sufficient to

show that V ′
1 = V1. As already noted, the elements of V1 can only consist of boxels which are sublist headers, therefore

Author's personal copy

N. Goldschmidt, D. Gordon / Computational Geometry 41 (2008) 167–187 175

Fig. 6. An example for which the antichain construction takes O(n2) time.

V1 ⊆ V ′
1. Assume that Algorithm 2 places some sublist header Bi

1 in V ′
1, but Bi

1 /∈ V1. Hence, Bi
1 has some predecessor

B ∈ V w.r.t. �, i.e., B � Bi
1. B cannot come after Bi

1 on LIST, because the order on LIST extends �, therefore B

precedes Bi
1 on LIST. From B � Bi

1, it follows that the point max(Bi
1) dominates the point min(B). Therefore, we

have

xmin(B) < xmax(Bi
1). (1)

Consider now the variable current_xmin used in Algorithm 2. When it is compared with xmax(Bi
1), its value is always

the minimal xmin of all the boxels preceding Bi
1 on LIST (because in every sublist, the header’s sublist_xmin is

minimal in the sublist, and current_xmin is the minimal sublist_xmin of all the headers preceding Bi
1 on LIST).

Therefore, when current_xmin was compared with xmax(Bi
1), the following inequality was true:

current_xmin � xmin(B). (2)

When Bi
1 was placed by Algorithm 2 in V ′

1, the following condition necessarily held (see Algorithm 2):

xmax(Bi
1) � current_xmin. (3)

Now, from inequalities (2) and (3), we have xmax(Bi
1) � xmin(B), contradicting inequality (1). Therefore, V ′

1 =
V1. �

The worst-case of the above algorithm takes O(n2), as can be seen from the example shown in Fig. 6. Each sublist,
except the topmost, consists of just two elements, and the sublist headers form a diagonal running from bottom-left
to top-right. Every element on the diagonal belongs to a separate antichain, but the antichain construction algorithm
compares every boxel on the diagonal with all the boxels above it on the diagonal (except the last), so the number of
comparisons is O(n2). Note that exchanging the roles of x and y in the boxel sorting and the antichain algorithms will
not change this worst-case. However, if we work in the direction of decreasing x and y, the time for this example will
be just O(n).

Unfortunately, a simple example (based on the above) can be constructed such that the time for the antichain
construction is O(n2) in any of the directions: consider a layout of boxels in which the above example is first reflected
about the center of the rightmost column, and the result is then reflected about the center of the topmost row. Any
chosen direction will now have the same worst-case behavior.

However, in practice, the antichain construction is extremely fast. This can be explained by considering an example
of n identical square boxels, arranged in a grid of m × m, where m = √

n, as shown in Fig. 7. The sublists are the
rows, and the antichains are the diagonals. It is easy to see that every diagonal from the lower left up to (and including)
the main diagonal, uses exactly m − 1 comparisons, and each successive diagonal needs one less than its predecessor.
Since we have 2m − 1 diagonals, the antichain construction (from LIST) takes O(m2) = O(n) time. It can be argued

Author's personal copy

176 N. Goldschmidt, D. Gordon / Computational Geometry 41 (2008) 167–187

Fig. 7. An example for which the antichain construction takes linear time.

that most “reasonable” examples of city environments are, in some sense, not too different from this example, so
the antichain construction is very fast in practice. In the next subsection, we propose a probabilistic model for the
distribution of boxels, and show that in this model, the expected time is also linear.

3.3. A probabilistic model for boxel distribution

We consider the following method for setting up boxels: An axis-aligned rectangle of dimensions L×W is consid-
ered as bounding all the boxels. Its lower-left corner is (0,0) and its upper-right corner is (L,W). Now, for any n � 2,
we set up n boxels as follows: The x-coordinate of the boxel’s center is chosen randomly according to some distrib-
ution in the open interval (0,L), and the y-coordinate is chosen according to some (possibly different) distribution in
the open interval (0,W). The choices of the x- and y-coordinates are made independently of each other.

We now choose the x and y extents of the boxel as two numbers a and b, respectively, from some distribution
functions, which may depend on n. The exact distribution is immaterial, but we stipulate the following restriction: a

may not have a lower bound a∗ > L/2. We select n boxels in this manner, independently of each other. If, after setting
up the n boxels, there are any boxel intersections, or if some boxel extends beyond the bounding rectangle, then the
entire set of boxels is rejected, and the process is repeated. Let {B1, . . . ,Bn} be a set of boxels selected in this manner.

For n � 2, we denote by pn the probability that for any ordered pair of boxels, (Bi,Bj), with i = j and 1 � i, j � n,
Bi is completely to the left of Bj (i.e., xmax(Bi) � xmin(Bj)). Note that according to our method for selecting the
set of n boxels, no order between the boxels is involved, so pn does not depend on the positions of i and j in the
sequence 1, . . . , n.

We can now state the following result.

Theorem 5. Assuming the above model for the distribution of boxels, the expected runtime of the antichain partitioning
algorithm is linear in the number of boxels n.

The proof is based on the following two lemmas:

Lemma 1. Assuming the above model for the distribution of boxels, 0 < p2 � pn � 0.5.

Proof. pn � 0.5 follows from the definition of pn by symmetry consideration. p2 > 0 follows from our restriction on a
possible lower bound on the choice of a (if we allow a lower bound a∗ > L/2, then we cannot place two boxels so that
one is to the left of the other, meaning that p2 = 0). We now show that pn is monotonically increasing. Denote by An

the average area of a boxel in all possible choices of n boxels. Since the boxels do not intersect and they do not extend
beyond the bounding rectangle, the sum of the boxel areas is bounded by LW , so An is a monotonically decreasing
sequence. It follows from this that if we denote by an the average x-extent of a boxel, then an is also monotonically
decreasing. Consider now two boxels Bi,Bj in a choice of n boxels. There are three mutually exclusive possibilities:

Author's personal copy

N. Goldschmidt, D. Gordon / Computational Geometry 41 (2008) 167–187 177

1. Bi lies to the left of Bj .
2. Bi lies to the right of Bj .
3. Their projections on the x-axis overlap.

The probabilities of cases 1 and 2 are both pn, so the probability of case 3 is 1−2pn. Since an decreases monotonically,
(1 − 2pn) also decreases monotonically. Therefore, pn is monotonically increasing. �
Lemma 2. Assuming the above model for the distribution of boxels, then in the antichain partitioning algorithm, the
expected number of comparisons required to place a boxel on an antichain is bounded by 1/pn.

Proof. After placing the first boxel on an antichain, each successive sublist header is placed on the antichain if it lies
to the left of a certain boxel in a previous sublist. The probability of this is 1/pn. If it is not placed, then the next
sublist header is examined, and so on. The number of boxels that are examined before the next boxel is added to an
antichain is at most n − 1. Hence, the expected number of comparisons to place a boxel on an antichain is bounded
by:

En � 1pn + 2(1 − pn)pn + 3(1 − pn)
2pn + · · · + (n − 1)(1 − pn)

n−2pn.

Note that we may be making all these comparisons without finding any sublist header to place on the antichain. In
this case, the antichain is terminated, and we “charge” these comparisons to the first element on the next antichain.
We thus get:

En � pn

n−1∑
i=1

i(1 − pn)
i−1 < pn

∞∑
i=1

i(1 − pn)
i−1. (4)

From Lemma 1, 0.5 � 1−pn � 1−p2 < 1. The sum on the right in Eq. (4) is easily evaluated by elementary calculus.
For 0 < x < 1,

∑∞
i=0 xi = 1/(1−x), and the sum converges uniformly on the closed interval [0.5,1−p2]. This allows

us to differentiate both sides w.r.t. x, yielding
∑∞

i=1 ixi−1 = 1/(1 − x)2, for x ∈ [0.5,1 − p2]. Taking x = 1 − pn, we
get

∑∞
i=1 i(1 − pn)

i−1 = 1/p2
n. Therefore, En < pn/p

2
n = 1/pn. �

Proof of Theorem 5. From Lemmas 1 and 2, the expected number of comparisons for each boxel placed on an
antichain is En < 1/pn � 1/p2. Since all the other times required by the algorithm are linear in n, the total expected
time is also linear in n. �
4. Boxel rendering

4.1. General comments

We will consider projection methods and ray tracing. By “projection methods” we mean rendering methods where
the objects are projected onto the screen. To obtain hidden surface removal, several techniques are available, such as
the Z-buffer, or rendering in a back-to-front or front-to-back order. Rendering a single boxel depends on the appli-
cation: If the boxels are the actual data, then we simply project the boxel on the screen. If the boxels are bounding
volumes of other objects, then we project the object(s) inside. We assume that we have routines for projecting a single
boxel, and this means that these routines can handle anything inside a single boxel.

Assume first that we are dealing with orthogonal projections only, and that the screen is orthogonal to a vector
whose projection on the (world) xy-plane is in direction of non-decreasing x and y. Clearly, all we have to do to
obtain hidden surface removal is to render the boxels in back-to-front order, i.e., in the order <−−. The boxels can also
be rendered in front-to-back order. This requires a data structure for the displayed pixels which will enable the rapid
elimination of hidden objects. Meagher [18] used quadtrees for the image, when the 3D objects were octrees. Data
structures that have been used for this purpose were quadtrees [18] (when the 3D objects were octrees), and run-length
encodings of scanlines for voxels [21] and BSP trees [14].

Perspective projections are slightly more complicated. Consider the projection of the view volume [8] on the world
xy-plane. If it does not contain a line parallel to the x or y axis, then back-to-front (or front-to-back) techniques will

Author's personal copy

178 N. Goldschmidt, D. Gordon / Computational Geometry 41 (2008) 167–187

Fig. 8. Perspective projection: The view volume is split in two. Each part of the scene is displayed by projecting according to a different total order.

achieve hidden surface removal. Otherwise, we need to split the view volume into two parts, and display the objects in
each part according to the relevant orders. This is demonstrated in Fig. 8. The view volume is split by a plane passing
through the viewpoint, perpendicular to the xy-plane, and parallel to the x or y axis (as may be required) of the world
coordinates. If the view angle is greater than 90◦, we may even need to split the view volume into three. We assume
that the rendering routines are capable of handling the display of a boxel which is only partially contained in one part
of a view volume.

Recent years have seen the emergence of multi-core processors for workstations, desktop PC’s and even notebook
computers. Our projection methods can utilize such processors very simply: we divide the view volume into several
subvolumes, in a manner similar to that shown in Fig. 8. Each core is assigned to one part of the volume and processes
it. Note that the dividing lines do not necessarily have to be parallel to the x- or y-axis.

4.2. Horizon-aided, front-to-back rendering

Our horizon approach to rendering boxels employs 2 main features:

• Front-to-back traversal of the antichains.
• A dynamic structure, maintaining at each stage the currently visible horizon.

Fig. 9 explains our rendering method. With each boxel, we associate two horizontal spans (in image space), deter-
mined as follows:

• The upper span is at the maximal height of the boxel’s projection on the screen. Any object which hides the upper
span necessarily hides the entire boxel.

• The lower span is at the maximal level such that any object behind the boxel, if it is below the lower span, then it
hidden by the boxel.

The horizon is maintained in image space, and it consists of a list of horizontal spans whose projections on the
bottom of the screen do not intersect, but they cover the entire bottom line of the screen. The antichain processing
progresses on the antichains in front-to-back order, and in each antichain, it processes the boxels in left-to-right order.
Each boxel (on the antichain) is either completely below the current horizon (this is determined by the boxel’s upper
span), or not. In the first case, the boxel is ignored, and in the second case, the boxel’s lower span is integrated into

Author's personal copy

N. Goldschmidt, D. Gordon / Computational Geometry 41 (2008) 167–187 179

Fig. 9. Two boxels with their upper and lower spans. Current horizon with spans S1–S5 hides B1 because its upper span is beneath S1 and S2. B2
is displayed. Part of S3 and S4 are replaced by S4*, which is part of the lower span of B2.

Fig. 10. An antichain of boxels and its corresponding spans on the screen.

the horizon and updates it. Also, in the second case, the boxel is displayed on the screen (or added to a display list to
be processed later).

Note that this method of display is approximate—it may happen that some boxel will be determined as “visible”
by this method even if it is completely hidden by other boxels. However, the vast majority of the hidden boxels will
be eliminated, and the hardware Z-buffer takes care of correct hidden surface removal.

We use run-length encoding (RLE) for maintaining the visible horizon. Downs et al. [7] also use short horizontal
spans with conservative estimates, but they use a binary tree for the spans, whereas we use a simple linked list. The
advantage of the linked list is that each antichain is also available as a linear structure in left-to-right (or right-to-left)
order. This allows us to process the two linear structures in a merge-type fashion, similarly to the merging of two
sorted sequences. After such processing, we get additional boxels to render and obtain an update of the horizon, as
shown in Fig. 9. The complexity of the merge-type operation is linear in the total number of objects in the two lists.
Fig. 10 shows (from above) how boxels in an antichain correspond to horizontal spans on the screen. We forgo the
technical description of the algorithm since it is essentially fairly straightforward.

To further speed up the antichain processing, we can use some fast search method to find the leftmost (or rightmost)
boxel of the antichain that falls in the viewing angle. Such a method can be a binary search on the antichain or the
“interpolation” method described in Section 4.5. The merge-type operation terminates either when a boxel falls outside
the viewing angle or when the end of the antichain is reached.

Author's personal copy

180 N. Goldschmidt, D. Gordon / Computational Geometry 41 (2008) 167–187

Fig. 11. Bounding boxes added to TREE.

4.3. Handling non-axis-aligned objects

Naturally, real scenes contain objects which are not necessarily axis-aligned. It turns out that this is easier to handle
than expected. First, we place a bounding, axis-aligned box around each object. These bounding boxes will usually
not form a set of boxels with disjoint interiors, but they can be used to generate such boxels.

This is done by modifying the boxel-sorting algorithm. The data structures TREE and LIST of the boxel-sorting
algorithm will contain only boxels (i.e., their interiors will be non-intersecting). Fig. 11 shows what happens when we
attempt to insert a new bounding box (outlined with thick lines) to TREE. The figure shows three different cases or
situations, A, B and C, which can arise when the box is added. In case A, the new box intersects several boxels which
are already on TREE. In cases B and C, xmax and xmin of the new box fall strictly inside a single boxel on TREE.
Note that according to our order of insertion, ymin of the new box cannot be smaller than the ymin of any element on
TREE. The modifications to the boxel-sorting algorithm can be described as follows:

• Search for the position of the box’s xmin and xmax on TREE.
• Create a list of all the boxels on TREE which are intersected by the new bounding box.
• Subdivide the new box into a sequence of boxes B1, . . . ,Bk by vertical lines corresponding to the intersections

of the box with the vertical edges of the boxels on TREE which it intersects. In case A of Fig. 11, the new box is
subdivided into seven boxes.

• For every boxel on TREE intersected by some Bi , subdivide it into two or three parts (as the case may be) by
horizontal lines corresponding to the horizontal edges of the new bounding box. Note the horizontal dividing lines
in Fig. 11. If ymin of the new box is equal to the ymin of some boxel, then there will be no lower part.

• For every subdivided boxel, output the lower part to LIST.
• If a subdivided boxel was divided into three parts, add the upper part to the list of boxels waiting to be inserted

(second and fourth boxels of case A and case C of Fig. 11).
• Consider the remaining boxels on TREE which have a non-empty intersection with some bi—see the shaded

boxels in Fig. 11. We have already cut away the bottom part and the top part (if it existed). The remaining parts
are now of two types:
◦ Type 1: Boxels contained entirely in some Bi (the second and third boxel of case A of Fig. 11).
◦ Type 2: Boxels which are divided into two (or three) parts by one (or both) vertical edge(s) of some Bi (the

first and fourth boxel of case A, and cases B and C of Fig. 11).
Boxels of type 2 are now divided by one (or two) vertical line(s) corresponding to the vertical edge(s) of the Bi

that intersects them.
• Every Bi intersecting an existing boxel of the type 2 may need to be subdivided into two parts by a horizontal line

corresponding to the top edge of the boxel it intersects (B1 of case A and case B of Fig. 11). The top part of this
Bi is added to the list of boxels waiting to be inserted into TREE.

• The structure of TREE is modified to reflect the boxels that were split.

Author's personal copy

N. Goldschmidt, D. Gordon / Computational Geometry 41 (2008) 167–187 181

• Those Bi ’s which did not intersect any boxel are now inserted into TREE in the regular manner.
• Any boxel formed from an intersection of a bounding box and a boxel now contains links to all the objects of the

boxes.

4.4. Hierarchical structure

In order to further speed up the display, we have also implemented a hierarchy on the boxels. Consider the boxels
as being at the bottom of the hierarchy, and consider a regular subdivision of the scene into a grid of n × m axis-
aligned squares. With each square, we associate a height which is equal to the tallest object intersected by the square.
The boxels in each grid square are subdivided into antichains independently of the boxels in other grid squares. The
rationale for this hierarchy is based on the fact that if the height of a grid square is lower than the spans of the current
horizon which cover the square, then the entire square can be eliminated from further processing. Furthermore, with
perspective projections, boxels that are closer to the viewpoint will have a greater height than further ones, so the rate
at which we eliminate far squares will (on average) increase as the horizon progresses from front to back.

The grid squares have a natural partitioning into antichains; these are simply successive diagonals on the grid.
Rendering with the grid proceeds by accessing the grid antichains in front-to-back order, as follows:

Algorithm 3 (Hierarchical boxel rendering).

begin
Set the current horizon to zero.
for (each grid antichain A in front-to-back order)

for (each grid square S ∈ A in left-to-right order)
if (S is not hidden by the current horizon)

Update the current horizon with the boxels of S by processing them in the usual manner.
endif

endfor
endfor

end

The above algorithm is specified just for a single level above the basic boxels, but extending it to a hierarchy
of any level is straightforward. The hierarchy is governed by two parameters which can be fine-tuned to maximize
performance: The height of the hierarchy tree, and the grid size. Note that a quadtree partitioning of the scene is
actually a special case of a hierarchical partitioning in which the grid size at every level is 2.

4.5. Ray tracing

Since the antichains act as occluders, they provide a simple and natural means for speeding up ray tracing of
boxels. Any ray is always in one of the primary directions. Assume that V1, . . . , Vk is the sequence of antichains (in
the antichain partitioning) containing a boxel which may be hit by a ray. Starting with V1, perform a search to find
if the ray hits a boxel in V1. If the ray passes between two boxels of V1, we continue with V2, and so on. Also, it is
possible that the projection of a ray on the ground intersects the projection of a boxel on the ground, but it misses the
object(s) in the boxel. In that case, the search also continues with V2.

Recall that the boxels of an antichain are stored in an array. Therefore, one can perform a binary search on the
antichain. However, this method can be improved, and there are other efficient methods which we describe below.

Bounded binary search
This method is demonstrated by Fig. 12. It is based on the observation that when a ray passes between two suc-

cessive boxels on an antichain, its direction is limited by two lines emanating from the edges of the two boxels, as
shown in Fig. 12. We can preprocess the antichains so that each edge of a boxel has “bounding links” pointing at the
relevant positions in the next antichain, as shown in the figure. These positions act as bounds on the binary search to
be performed on the next antichain. Note that if a ray’s projection meets a boxel’s projection but it does not meet any

Author's personal copy

182 N. Goldschmidt, D. Gordon / Computational Geometry 41 (2008) 167–187

Fig. 12. Ray passing between boxels in antichain. Links point at positions in next antichain limiting the next binary search.

Fig. 13. Searching for a boxel in an antichain using interpolation.

object bounded by the boxel, then similar links can also be used as bounds on the binary search to be performed on
the next antichain. When we consider all four directions in the plane, we can see that every boxel needs eight such
links—two from each of its four sides.

Interpolation search
This method is demonstrated in Fig. 13. It is based on performing an interpolation-based search on an antichain. Let

D be the distance between the extreme corners of the two extremal boxels of the antichain. Assume that the ray meets
the line segment joining these extreme corners at a distance d from the left (or right) end of the segment. Our search
starts by first examining boxel number �k × d/D� of the antichain, where k is the number of boxels in the antichain
(we consider the boxels to be numbered consecutively from 0 to k − 1). If it misses the boxel, the search continues
linearly along the antichain. This method is simpler than the link method and it does not require any preprocessing.
However, it can benefit somewhat from a preliminary calculation of the segments, but this preprocessing requires only
O(1) time and space per antichain. Clearly, this method is most efficient when the variation in the boxels’ sizes is
small and the boxels are evenly distributed. Note that the bounded binary search and the interpolation method can be
combined by restricting the interpolation search to the subsequence of boxels determined by the bounding links.

Author's personal copy

N. Goldschmidt, D. Gordon / Computational Geometry 41 (2008) 167–187 183

Fig. 14. The bucket method for determining a ray’s intersection with an antichain.

Bucket search
Our third method is based on the well-known fact that bucketing techniques are known to work very well in practice

for some geometric search problems—see for example [3,5]. Similarly to the interpolation method, we consider the
line segment joining the extremal corners of the boxels in the antichain, as shown in Fig. 14. We divide the line
segment into a number of equal-length segments which form the buckets. The boxels of the antichain are projected
on the line segment, and each bucket is linked to the boxel(s) whose projections intersect it (if there are none, we just
indicate the two nearest boxels). Given a ray, we can find the appropriate bucket and start our search from the boxel(s)
associated with the bucket. If we take the size of a bucket to be the shortest projection of a boxel, then each bucket
will be linked to no more than two boxels.

Two other issues need to be specified. The first one is the determination of the first object to be hit by a primary ray
(emanating from a pixel). The most efficient way to do this is to perform a hidden surface removal of the scene (using
the horizon method), and to maintain, for every pixel, the identity of the object that was displayed on the pixel. The
next issue is handling the reflected rays. Note that every reflected ray emanates from some surface in some boxel in one
of the four main directions (increasing x and y, etc.). The boxel belongs to two separate antichains, corresponding to
two different antichain partitionings. Also, each antichain containing the boxel will (generally) have two neighboring
antichains, so there is a total of four potential antichains to search. Clearly, the ray’s direction determines which of
these four antichain should be searched.

5. Experimental results

To test the performance of our method we have created synthetic scenes of cities with up to 400,000 buildings
of different sizes. Each building consists of about 120 texture-mapped polygons. The algorithm was implemented in
C++ with OpenGL. Occlusion testing was done with the antichain-horizon method, in which we implemented the RLE
method for coding the horizon. In addition, we implemented the RLE horizon with both axis-aligned buildings and
non-axis-aligned buildings. The differences in timings between the two modes was very small. We also implemented
various hierarchical partitionings superimposed on the basic scene, and this produced a marked improvement. All the
following methods were tested on non-axis-aligned buildings (except where noted otherwise):

1. Hierarchical boxel method, with RLE horizon.
2. Boxel method (no hierarchy), with RLE horizon, on axis-aligned buildings.
3. Quadtree method with binary tree coding for the horizon, (similar to [7]).
4. Boxel method (no hierarchy), with RLE horizon.
5. Boxel method (no hierarchy), with binary tree coding for the horizon.
6. Boxel method (no hierarchy), with column coding for the horizon.

Author's personal copy

184 N. Goldschmidt, D. Gordon / Computational Geometry 41 (2008) 167–187

Fig. 15. Overview of a synthetic city consisting of non-axis-aligned buildings. The black lines show the field-of-view, and the black buildings are
the only ones that are actually displayed by the boxel method.

In column coding, we maintain an array with one entry for every screen column. A value in the array represents, at
every stage, the highest pixel that was rendered in the corresponding column. Note that with this method, occlusion
is exact, so there is no need to use the hardware depth buffer. However, it turns out that it is more efficient to use
conservative occlusion testing together with the hardware depth buffer. The binary tree horizon encoding was used
by [7]. Instead of maintaining exact values for every column, it maintains short horizontal spans, similarly to our
RLE method. However, instead of a list of spans (as in our RLE method), this method uses a binary tree for the
spans.

The performance results of the various methods are based on the average number of FPS (frames per second) during
a 30 second drivethrough, including several turnings. The same path was used for all the algorithms. The image quality
and resolution (800) were the same for all tests. The algorithms were run on a 64-bit AMD Athlon 3500+ processor
with 1 GB memory, running at 2 GHz, with an Nvidia FX-5200 graphics card with 256 MB memory. Boxel ordering
and antichain partitioning on 300,000 buildings (non-axis-aligned) took about 10 seconds.

Fig. 15 shows an overview of a synthetic city, with non-axis-aligned buildings, marked in grey. The view volume
is delineated by the black lines, and the rendered buildings are marked in black. It can be seen that only a very
small proportion of the buildings are sent to the Z-buffer. Figs. 16 and 17 show typical scenes with axis-aligned and
non-axis-aligned buildings.

Table 1 shows the average rendering rates of all the tested methods. The last two lines show the exact hierarchy at
which the best times for the hierarchical boxel method with RLE horizon were obtained. Fig. 18 plots the rendering
rate of the various methods in frames-per-second, for data with up to 300,000 buildings (the largest dataset with which
we could achieve real-time). It can be seen that the hierarchical boxel method, combined with the RLE horizon, is
significantly better than all the other methods.

6. Conclusions and future research

Boxels are a new framework for 2.5D environments, extending the concepts of octrees and their variants, and other
known space partitioning methods. In common with those methods, boxels require just four different traversal orders

Author's personal copy

N. Goldschmidt, D. Gordon / Computational Geometry 41 (2008) 167–187 185

Table 1
Rendering rates of the various methods in frames per second

No. of buildings ×1000: 10 50 100 150 200 250 300 350 400

Occlusion method:
Boxel hierarchy + RLE horizon 261 208.1 142.5 92.8 61.1 43.4 28.1 14.9 7.8
Boxel + RLE horizon (aligned) 244.4 74.8 40.7 25.3 16.4 15.7 9.5 7 4.5
Quadtree + tree horizon 235 6436.8 21.7 16.1 14.5 8.5 6.5 2.9
Boxel + RLE horizon 216.9 63.3 36.7 21.4 14.4 13.4 7.8 7.3 3
Boxel + tree horizon 138.2 42.4 2212.6 9.7 7.2 2.8 1.5 1.4
Boxel + column horizon 120.4 3618.6 11.9 6.9 4.3 1.4 1.5 1.3

Best results: no. of levels: 1 1 2 2 3 3 2 2 2
subdivisions in each level: 2X2 3X3 2X2 2X2 2X2 2X2 3X3 3X3 3X3

Fig. 16. Urban scene (axis-aligned).

Fig. 17. Urban scene (non-axis-aligned).

Author's personal copy

186 N. Goldschmidt, D. Gordon / Computational Geometry 41 (2008) 167–187

Fig. 18. Rendering rates of the various methods in frames per second.

for ray tracing and for rendering in back-to-front or front-to-back order. The advantages of boxels over other methods
are that partitions are not determined a priori and boundaries do not extend throughout an entire volume or subvolume.
Boxels can be bounding volumes of other objects, or they can be the basic objects of the scene.

In particular, we have shown that boxels present many advantages for the rapid rendering of urban scenes, as
may be desired for virtual reality and game applications. The RLE horizon representation was shown to be the most
suitable method for working with the antichain partitioning of boxels. Non-axis-aligned objects can be handled, and a
hierarchical boxel structure produces marked improvements. Note that a small number of additional objects, such as
avatars in a virtual environment, can be easily handled by the Z-buffer.

Future work on boxels will concentrate on further applications, enhancements and generalizations, such as:

• Image-space parallelism on a multi-core computer. This can be easily done by allowing each processor to handle
a sector of the view angle.

• Implementation and testing of ray tracing using the acceleration methods described in this paper.
• Design and test algorithms for dynamic insertions and deletions of boxels. Occasional deletions are harmless, but

insertions of new boxels may alter the antichain partitioning.
• Apply and test the boxel framework on a real urban scene.
• Extend the boxel framework to 3D, by dividing 3D space into “slabs”, so that in each slab, the data will be 2.5D.

This extension could be useful for architectural scenes, in which the partitioning into 2.5D slabs should be simple.
• Extend the lighting model to include shadows. Note that a shadow cast by a boxel in an antichain can be considered

exactly like a view angle, so the antichain construction can be utilized.
• Application to radiosity: given a boxel face, the boxel data structures allow us to determine which faces of other

boxels are hidden from it, and which ones face it (and are not hidden). This information can be used for the
efficient computation of the form factors.

Acknowledgements

This research is based on the first author’s MSc thesis in Computer Science, carried out under the second author’s
supervision at the University of Haifa. Thanks are due to the Caesarea Rothschild Institute for its generous support.
This research was also supported in part by Grant No. 01-01-01509 from the Israel Ministry of Science and Technol-

Author's personal copy

N. Goldschmidt, D. Gordon / Computational Geometry 41 (2008) 167–187 187

ogy. The authors wish to thank Ilan Newman for helpful discussions concerning the probabilistic model. Thanks are
also due to the anonymous referees for their helpful comments.

References

[1] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, MA, 1974.
[2] T. Asano, M. de Berg, O. Cheong, H. Everett, H. Haverkort, N. Katoh, A. Wolff, Optimal spanners for axis-aligned rectangles, Computational

Geometry: Theory and Applications 30 (1) (2005) 59–77.
[3] T. Asano, M. Edahiro, H. Imai, M. Iri, K. Murota, Practical use of bucketing techniques in computational geometry, in: G.T. Toussaint (Ed.),

in: Computational Geometry, Machine Intelligence and Pattern Recognition, vol. 2, Elsevier, Amsterdam, 1985, pp. 153–195.
[4] S. Bellantoni, I. Ben-Arroyo Hartman, T. Przytycka, S. Whitesides, Grid intersection graphs and boxicity, Discrete Mathematics 114 (1993)

41–49.
[5] F. Cazals, P. Puech, Bucket-like partitioning data structures with applications to ray-tracing, in: Proceedings 13th Ann. Symp. on Computa-

tional Geometry, Annual Conference, Nice, France, ACM, 1997, pp. 11–20.
[6] D. Cohen-Or, Y. Chrysanthou, C. Silva, F. Durand, Survey of visibility for walkthrough applications, IEEE Trans. on Visualization and

Computer Graphics 9 (3) (2003) 412–431.
[7] L. Downs, T. Moller, C.H. Sequin, Occlusion horizons for driving through urban scenery, in: Proc. ACM Symposium on Interactive 3D

Graphics, Berkeley, CA, 2001, pp. 121–124.
[8] J.D. Foley, A. van Dam, S.K. Feiner, J. Hughes, Computer Graphics: Principles and Practice, second ed., Addison-Wesley, Reading, MA,

1990.
[9] G. Frieder, D. Gordon, R.A. Reynolds, Back-to-front display of voxel-based objects, IEEE Computer Graphics & Applications 5 (1) (1985)

52–60.
[10] A.S. Glassner (Ed.), An Introduction to Ray Tracing, Academic Press, London, 1989.
[11] D. Gordon, Eliminating the flag in threaded binary search trees, Information Processing Letters 23 (1986) 209–214.
[12] D. Gordon, Boxels: A new framework for 2.5D and 3D objects, in: Proc. Israel–Korea Conf. on New Themes in Computerized Geometrical

Modeling, Tel-Aviv, Israel, Feb. 1998, pp. 223–226.
[13] D. Gordon, Theoretical foundations of boxels—a new framework for 2.5D and 3D objects, Technical report, Dept. of Computer Science, The

Technion, December 1998.
[14] D. Gordon, S. Chen, Front-to-back display of BSP trees, IEEE Computer Graphics & Applications 11 (5) (1991) 79–85.
[15] L.J. Guibas, F.F. Yao, On translating a set of rectangles, Advances in Computing Research 1 (1983) 61–77; Also in: 12th ACM STOC, 1980,

pp. 154–160.
[16] A. Kaufman, Volume Visualization, IEEE Computer Society Press, Los Alamitos, CA, 1991.
[17] U. Manber, Introduction to Algorithms, Addison-Wesley, Reading, MA, 1989.
[18] D.J. Meagher, Efficient synthetic image generation of arbitrary 3D objects, in: Proceedings IEEE Computer Society Conference on Pattern

Recognition and Image Processing, Annual Conference, IEEE Computer Society Press, June, 1982, pp. 473–478.
[19] D.J. Meagher, Geometric modelling using octree encoding, Computer Graphics & Image Processing 19 (1982) 129–147.
[20] F.P. Preparata, M.I. Shamos, Computational Geometry, Springer-Verlag, New York, 1985.
[21] R.A. Reynolds, D. Gordon, L.-S. Chen, A dynamic screen technique for shaded graphics display of slice-represented objects, Computer

Vision, Graphics & Image Processing 38 (3) (1987) 275–298.
[22] H. Samet, Applications of Spatial Data Structures, Addison-Wesley, Reading, MA, 1990.
[23] H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley, Reading, MA, 1990.
[24] H. Samet, Foundations of Multidimensional and Metric Data Structures, Morgan-Kaufmann, San Francisco, CA, 2006.

