
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Computational Geometry 41 (2008) 77–93

www.elsevier.com/locate/comgeo

On the performance of the ICP algorithm ✩

Esther Ezra a,∗, Micha Sharir a,b, Alon Efrat c

a School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
b Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA

c School of Computer Science, University of Arizona, Tucson, AZ 85721, USA

Received 18 May 2006; received in revised form 5 May 2007; accepted 11 October 2007

Available online 6 March 2008

Communicated by I.Z. Emiris and L. Palios

Abstract

We present upper and lower bounds for the number of iterations performed by the Iterative Closest Point (ICP) algorithm. This
algorithm has been proposed by Besl and McKay as a successful heuristic for matching of point sets in d-space under translation,
but so far it seems not to have been rigorously analyzed. We consider two standard measures of resemblance that the algorithm
attempts to optimize: The RMS (root mean squared distance) and the (one-sided) Hausdorff distance. We show that in both cases
the number of iterations performed by the algorithm is polynomial in the number of input points. In particular, this bound is
quadratic in the one-dimensional problem, under the RMS measure, for which we present a lower bound construction of �(n logn)

iterations, where n is the overall size of the input. Under the Hausdorff measure, this bound is only O(n) for input point sets whose
spread is polynomial in n, and this is tight in the worst case.

We also present several structural geometric properties of the algorithm under both measures. For the RMS measure, we show
that at each iteration of the algorithm the cost function monotonically and strictly decreases along the vector �t of the relative
translation. As a result, we conclude that the polygonal path π , obtained by concatenating all the relative translations that are
computed during the execution of the algorithm, does not intersect itself. In particular, in the one-dimensional problem all the
relative translations of the ICP algorithm are in the same (left or right) direction. For the Hausdorff measure, some of these
properties continue to hold (such as monotonicity in one dimension), whereas others do not.
© 2008 Elsevier B.V. All rights reserved.

Keywords: Pattern matching; ICP algorithm; Nearest neighbors; Voronoi diagrams; Hausdorff distance; RMS

✩ Work on this paper by the first two authors has been supported by NSF Grants CCR-00-98246 and CCF-05-14079, by a grant from the US–
Israeli Binational Science Foundation, work by the second author was also supported by Grant 155/05 from the Israel Science Fund, and by the
Hermann Minkowski–MINERVA Center for Geometry at Tel Aviv University. Work on this paper by the last author has been partially supported
by an NSF CAREER award (CCR-03-48000) and an ITR/Collaborative Research grant (03-12443). A preliminary version of this paper has been
presented in Proc. 22nd Annu. ACM Sympos. Comput. Geom. 2006, and in Proc. 22nd European Workshop on Computational Geometry, 2006.

* Corresponding author.
E-mail addresses: estere@tau.ac.il (E. Ezra), michas@tau.ac.il (M. Sharir), alon@cs.arizona.edu (A. Efrat).

0925-7721/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.comgeo.2007.10.007

Author's personal copy

78 E. Ezra et al. / Computational Geometry 41 (2008) 77–93

1. Introduction

The matching and analysis of geometric patterns and shapes is an important problem that arises in various applica-
tion areas, in particular in computer vision and pattern recognition [1]. In a typical scenario, we are given two objects
A and B , and we wish to determine how much they resemble each other. Usually one of the objects may undergo
certain transformations, like translation, rotation and/or scaling, in order to be matched with the other object as well
as possible. In many cases, the objects are represented as finite sets of (sampled) points in two or three dimensions
(they are then referred to as “point patterns” or “shapes”). In order to measure “resemblance”, various cost functions
have been used. Two prominent ones among them are the (one-sided) Hausdorff distance [1], and the sum of squared
distances or root mean square [2,5]. Under the first measure, the cost function is Φ∞(A,B) = maxa∈A ‖a − NB(a)‖,
and under the second measure, it is Φ2(A,B) = 1

m

∑
a∈A ‖a − NB(a)‖2, where ‖ · ‖ denotes the Euclidean norm,1

NB(a) denotes the nearest neighbor of a in B , and m = |A|. In what follows, we also use the notation

RMS(t) := 1

m

∑
a∈A

∥∥a + t − NB(a + t)
∥∥2

. (1)

A heuristic matching algorithm that is widely used, due to its simplicity (and its good performance in practice),
is the Iterative Closest Point algorithm, or the ICP algorithm for short, of Besl and McKay [2]. Given two point sets
A and B in R

d (also referred to as the data shape and the model shape, respectively), we wish to minimize a cost
function φ(A + t,B), over all translations t of A relative to B . The algorithm starts with an arbitrary translation
that aligns A to B (suboptimally), and then repeatedly performs local improvements that keep re-aligning A to B ,
while decreasing the given cost function φ(A + t,B), until no improvement is possible. (In the original version of
the ICP algorithm, the only cost function used is the sum of squared distances (see [2,4,7,8,10]), where the points of
A can also be rotated in order to be matched with the points of B . In this paper we analyze the ICP algorithm only
under translations though, but we also consider the (one-sided) Hausdorff distance cost function, as defined above,
and analyze the algorithm according to either of these two measures of resemblance.) This is done as follows.

At the ith iteration of the ICP algorithm, the set A has already been translated by some vector ti−1, where t0 = −→
0 .

We then apply the following two steps:
(i) We assign each (translated) point a + ti−1 ∈ A + ti−1 to its nearest neighbor b = NB(a + ti−1) ∈ B under the

Euclidean distance. (ii) We then compute the new relative translation �ti that minimizes the cost function φ (with
respect to the above fixed assignment). Specifically, under the one-sided Hausdorff distance, we find the �ti that
minimizes

φ∞(A + ti−1,�ti,B) = max
a∈A

∥∥a + ti−1 + �ti − NB(a + ti−1)
∥∥,

and under the sum of squared distances, we minimize

φ2(A + ti−1,�ti,B) = 1

m

∑
a∈A

∥∥a + ti−1 + �ti − NB(a + ti−1)
∥∥2

.

We then align the points of A to B by translating them by �ti , so the new (overall) translation is ti = ti−1 + �ti .
The ICP algorithm performs these two steps repeatedly and stops when the value of the cost function does not

decrease with respect to the previous step (as a matter of fact, the ICP algorithm in its original presentation stops
when the difference in the cost function falls below a given threshold τ > 0; however, in our analysis, we assume that
τ = 0). It is shown by Besl and McKay [2] that, when φ(·, ·) measures the sum of squared distances, this algorithm
always converges monotonically to a local minimum, moreover, the value of the cost function decreases at each
iteration (we definitely decrease it with respect to the present nearest-neighbor assignment, and the revised nearest-
neighbor assignment at the new placement can only decrease it further). An easy variant of their proof (noted below)
establishes convergence also when the cost function measures the (one-sided) Hausdorff distance.

In other words, in stage (i) of each iteration of the ICP algorithm we assign the points in (the current translated
copy of) A to their respective nearest neighbors in B , and in stage (ii) we translate the points of A in order to minimize
the value of the cost function with respect to the assignment computed in stage (i). This in turn may cause some of the

1 Of course, other distances can also be considered, but this paper treats only the Euclidean case.

Author's personal copy

E. Ezra et al. / Computational Geometry 41 (2008) 77–93 79

Fig. 1. A local minimum in R
1 of the ICP measures. The global minimum is attained when a1, a2, a3 are aligned on top of b2, b3, b4, respectively.

points in the new translated copy of A to acquire new nearest neighbors in B , which causes the algorithm to perform
further iterations. If no point of A changes its nearest neighbor in B , the value of the cost function does not change
in the next iteration (in fact, the next relative translation equals

−→
0) and, as a consequence, the algorithm terminates.

Note that the pattern matching performed by the algorithm is one-sided, that is, it aims to find a translation of A that
places the points of A near points of B , but not necessarily the other way around.

Since the value of the cost function is strictly reduced at each iteration of the algorithm, it follows that no nearest-
neighbor assignment arises more than once during the course of the algorithm, and thus it is sufficient to bound the
overall number of nearest-neighbor assignments (or, NNA’s, for short) that the algorithm reaches in order to bound
the number of its iterations.

Which minimum the algorithm converges to depends on the initial position of the input points (see [2] for details
and for a heuristic that “helps” the algorithm to converge in practice to the global minimum). There are simple
constructions, such as the one depicted in Fig. 1, that show that the algorithm may terminate at a local minimum that
is quite different (and far) from the global one, under either of the resemblance measures that we use. (Nevertheless, as
many practical experimentations indicate, the convergence to the (possibly local) minimum is rather fast in practice [2,
4,7,8].) Still, this is a disadvantage of the algorithm from a theoretical “worst-case” point of view, and the potential
convergence to a local minimum raises several interesting questions. The most obvious question is to obtain sharp
upper and lower bounds on the maximum possible number of local minima that the function can attain. Another is to
analyze the decomposition of space into “influence regions” of the local minima, where each such region consists of
all the translations from which the algorithm converges to a fixed local minimum.

Our results. In the next section we first show a (probably weak) upper bound of O(mdnd) on the number of iterations
of the algorithm in R

d under either of the two measures, for any d � 1. We then present, in Section 3, several
structural geometric properties of the algorithm under the RMS measure. Specifically, we show that at each iteration
of the algorithm the (real) cost function monotonically and strictly decreases, in a continuous manner, along the
vector �t of the relative translation; this is a much stronger property than the originally noted one, that the value
at the end of the translation is smaller than that at the beginning. As a result, we conclude that the polygonal path
π obtained by concatenating all the relative translations that are computed during the execution of the algorithm,
does not intersect itself. In particular, for d = 1, the ICP algorithm is monotone—all its translations are in the same
(left or right) direction. Next, in Section 4 we present a lower bound construction of �(n logn) iterations for the
one-dimensional problem under the RMS measure (assuming m ≈ n). The upper bound is quadratic, and closing the
substantial gap between the bounds remains a major open problem. In Section 5 we discuss the problem under the
(one-sided) Hausdorff distance measure. In particular, we present for the one-dimensional problem an upper bound of
O((m + n) log δB/ logn) on the number of iterations of the algorithm, where δB is the spread of the input point set
B (i.e., the ratio between the diameter of the set and the distance between its closest pair of points). We then present
a tight lower bound construction with 	(n) moves, for the case where the spread of B is polynomial in n. We also
study the problem under the Hausdorff measure in two and higher dimensions, and show that some of the structural
properties of the algorithm that hold for the RMS measure do not hold in this case. We present open problems and
give concluding remarks in Section 6.

Why study the ICP algorithm? The pattern matching problem is a central and important problem that arises in
many applications, ranging from surveillance to structural bioinformatics, and the ICP algorithm has been identified
and used as a practical heuristic solution over the past fifteen years. Many experimental reports on its performance,
including additional heuristic enhancements of it (e.g., in finding a good initial translation and using various techniques
for sampling points from the input model) have been published [2,4,8,10]. Still, to the best of our knowledge, this
technique has never before been subject to a serious and rigorous analysis of its worst-case behavior, which it definitely

Author's personal copy

80 E. Ezra et al. / Computational Geometry 41 (2008) 77–93

deserves. Another motivation, which has unfolded as work on the paper progressed, is that the problem possesses a
beautiful geometric structure, and has many surprising and subtle features.

The present work, though revealing many of these features, is only an initial step towards a fully comprehensive
understanding of the algorithm. We hope that it will trigger further research that will successfully tackle the remaining
open problems.

2. An upper bound for the number of iterations

Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two point sets in d-space, for d � 1, and, as above, suppose that the
ICP algorithm aligns A to B; that is, B is fixed and A is translated to best fit B . In what follows, we use the above
notation (unless stated otherwise).

Theorem 2.1. The maximum possible overall number of nearest-neighbor assignments, over all translated copies of
A, is 	(mdnd).

Sketch of proof. Let V(B) denote the Voronoi diagram of B , that is, the partition of R
d into d-dimensional cells

V(bi), for i = 1, . . . , n, such that each point p ∈ V(bi) satisfies ‖p − bi‖ � ‖p − bj‖, for each j �= i.
The global NNA (nearest-neighbor assignment) changes at critical values of the translation t , in which the nearest-

neighbor assignment of some point a+ t of the translated copy of A is changed; that is, a+ t crosses into a new Voronoi
cell of V(B). For each a ∈ A (this denotes the initial location of this point) consider the shifted copy V(B) − a =
V(B − a) of V(B); i.e., the Voronoi diagram of B − a = {b − a | b ∈ B}. Then a critical event that involves the point
ai occurs when the translation t lies on the boundary of some Voronoi cell of V(B − ai), for i = 1, . . . ,m. Hence we
need to consider the overlay M(A,B) of the m shifted diagrams V(B − a1), . . . ,V(B − am). Each cell of the overlay
consists of translations with a common NNA, and the number of assignments is in fact equal to the number of cells in
the overlay M(A,B). A recent result of Koltun and Sharir [6] implies that the complexity of the overlay is O(mdnd).
It is straightforward to give constructions that show that this bound is tight in the worst case, for any d � 1. �
Corollary 2.2. For any cost function that guarantees convergence (in the sense that the algorithm does not reach the
same NNA more than once), the ICP algorithm terminates after O(mdnd) iterations.

Remark. A major open problem is to determine whether this bound is tight in the worst case. So far we have been
unable to settle this question, under the RMS measure, even for d = 1; see below for details. In other words, while
there can be many NNA’s, we suspect that the ICP algorithm cannot step through many of them in a single execution.

3. General structural properties under the RMS measure

We first present a simple but crucial property of the relative translations that the algorithm generates.

Lemma 3.1. At each iteration i � 2 of the algorithm, the relative translation vector �ti satisfies

�ti = 1

m

∑
a∈A

(
NB(a + ti−1) − NB(a + ti−2)

)
, (2)

where tj = ∑j

k=1 �tk .

Proof. Follows using easy algebraic manipulations, based on the well-known fact that, for a fixed nearest-neighbor
assignment, the RMS cost is minimized when the two centroids 1

|A|
∑

a∈A(a + ti−1), 1
|A|

∑
a∈A NB(a + ti−1) coincide,

and thus

�ti = 1

m

∑
a∈A

(
NB(a + ti−1) − (a + ti−1)

)
. (3)

(See [5, Lemma 5.2] for similar considerations.) Applying (3) also to �ti−1, and subtracting the two equations,
yields (2). �

Author's personal copy

E. Ezra et al. / Computational Geometry 41 (2008) 77–93 81

Remark. The expression in (2) implies that the next relative translation is the average of the differences between the
new B-nearest neighbor and the old B-nearest neighbor of each point of (the current and preceding translations of) A.
This property does not hold for the first relative translation of the algorithm.

Theorem 3.2. Let �t be a move of the ICP algorithm from translation ti to ti + �t . Then RMS(ti + ξ�t) is a strictly
decreasing function of ξ ∈ [0,1].

First proof. We present two (related) proofs. In the first proof, put

RMS0(ξ) := 1

m

∑
a∈A

∥∥a + ti + ξ�t − NB(a + ti)
∥∥2

.

Note that, by the definition of the ICP algorithm, the graph of RMS0(ξ) is a parabola that attains its minimum at
ξ = 1. Hence, its derivative is negative for ξ ∈ [0,1). That is,

1

2
RMS′

0(ξ) = 1

m

∑
a∈A

(
a + ti + ξ�t − NB(a + ti)

) · �t < 0,

or

1

2
RMS′

0(ξ) = ξ‖�t‖2 + 1

m

∑
a∈A

(
a + ti − NB(a + ti)

) · �t < 0.

On the other hand, for any ξ ∈ [0,1], the function

RMS1(ξ) := RMS(ti + ξ�t) = 1

m

∑
a∈A

∥∥a + ti + ξ�t − NB(a + ti + ξ�t)
∥∥2

is the (real) RMS-distance from A to B at the translation ti + ξ�t , i.e., the distance with the real nearest-neighbor
assignment at ti + ξ�t , rather than the “frozen” assignment at ti . Our goal is to show that RMS′

1(ξ) < 0, for any
ξ ∈ [0,1], in which the function RMS1(ξ) is smooth (note that RMS1(ξ) is non-smooth exactly at points where some
a changes its nearest neighbor in B). As above, we have, at points ξ where RMS1(ξ) is smooth,

1

2
RMS′

1(ξ) = ξ‖�t‖2 + 1

m

∑
a∈A

(
a + ti − NB(a + ti + ξ�t)

) · �t.

It follows that

RMS′
0(ξ) − RMS′

1(ξ) = 2

m

∑
a∈A

(
NB(a + ti + ξ�t) − NB(a + ti)

) · �t.

We claim that each of the terms in the latter sum is non-negative. Indeed, consider a fixed point a. When a changes
its nearest neighbor from some b to another b′, it has to cross the bisector of b and b′ from the side of b to the side
of b′. This is easily seen to imply that (see also Fig. 2)

(b′ − b) · �t � 0.

Adding up all these inequalities that arise at bisector crossings during the motion of a, we obtain the claimed inequal-
ity. Hence RMS′

0(ξ) � RMS′
1(ξ) throughout the motion, and since RMS′

0(ξ) is negative, so must be RMS′
1(ξ). �

Fig. 2. The new nearest neighbor lies ahead of the old one in the direction �t .

Author's personal copy

82 E. Ezra et al. / Computational Geometry 41 (2008) 77–93

Fig. 3. Illustrating the proof that RMS(ti + ξ�t) is a strictly decreasing function of ξ ∈ [0,1].

Second proof. (This can be regarded as a geometric interpretation of the first proof.) The function

RMS(t) = 1

m

∑
a∈A

∥∥a + t − NB(a + t)
∥∥2

= 1

m

∑
a∈A

(‖t‖2 + 2t · (a − NB(a + t)
) + ∥∥a − NB(a + t)

∥∥2)
is the average of m Voronoi surfaces SB−a(t), whose respective minimization diagrams are V(B − a), for each a ∈ A.
That is,

SB−a(t) = min
b∈B

‖a + t − b‖2 = min
b∈B

(‖t‖2 + 2t · (a − b) + ‖a − b‖2),
for each a ∈ A. Subtracting the term ‖t‖2, we obtain that each resulting Voronoi surface SB−a(t) − ‖t‖2 is the lower
envelope of n hyperplanes, and its graph is thus the boundary of a concave polyhedron. Hence Q(t) := RMS(t)−‖t‖2

is equal to the average of these concave polyhedral functions, and is thus itself the boundary of a concave polyhedron
(see also the proof of Theorem 2.1).

Consider the NNA that corresponds to the translation ti . It defines a facet f (t) of Q(t), which contains the point
(ti ,Q(ti)). We now replace f (t) by the hyperplane h(t) containing it, and note that h(t) is tangent to the polyhedron
Q(t) at ti ; see Fig. 3 for an illustration. The graph of RMS0(ξ), as defined above, is the image of the relative translation
vector �t on the paraboloid ‖t‖2 +h(t). Since Q(t) � h(t), for any t ∈ R

d , the concavity of Q(t) implies that for any
0 � ξ1 < ξ2 � 1, Q(ti + ξ1�t)−Q(ti + ξ2�t) � h(ti + ξ1�t)−h(ti + ξ2�t). Since ‖t‖2 +h(t) is (strictly) monotone
decreasing along �t (by definition, �t moves from ti to the minimum of the fixed paraboloid ‖t‖2 + h(t)), we obtain

RMS(ti + ξ1�t) − RMS(ti + ξ2�t)

= ‖ti + ξ1�t‖2 + Q(ti + ξ1�t) − ‖ti + ξ2�t‖2 − Q(ti + ξ2�t)

� ‖ti + ξ1�t‖2 − ‖ti + ξ2�t‖2 + h(ti + ξ1�t) − h(ti + ξ2�t) > 0,

which implies that RMS(ti + ξ�t) is a strictly decreasing function of ξ ∈ [0,1]. �
Let π be the connected polygonal path obtained by concatenating the ICP relative translations �tj . That is, π starts

at the origin and its j th edge is the vector �tj . Theorem 3.2 implies:

Theorem 3.3. The ICP path π does not intersect itself.

In particular, Theorem 3.3 implies that, on the line, the points of A are always translated in the same direction at
each iteration of the algorithm. We thus obtain:

Corollary 3.4 (Monotonicity). In the one-dimensional case, the ICP algorithm moves the points of A always in the
same (left or right) direction. That is, either �ti � 0 for each i � 0, or �ti � 0 for each i � 0.

Corollary 3.5. In any dimension d � 1, the angle between any two consecutive edges of π is obtuse.

Author's personal copy

E. Ezra et al. / Computational Geometry 41 (2008) 77–93 83

Proof. Consider two consecutive edges �ti , �ti+1 of π . Using Lemma 3.1 we have �ti+1 = 1
m

∑
a∈A(NB(a + ti) −

NB(a + ti−1)). As follows from the first proof of Theorem 3.2 (see once again Fig. 2),(
NB(a + ti) − NB(a + ti−1)

) · �ti � 0,

for each i � 1, where equally holds if and only if a does not change its B-nearest neighbor. Hence �ti+1 · �ti � 0. It
is easily checked that equality is possible only after the last step (where �ti+1 = 0). �
Lemma 3.6. At each iteration i � 1 of the algorithm, RMS(ti−1) − RMS(ti) � ‖�ti‖2.

Proof. As in the proof of Theorem 3.2, consider the function

RMS0(ξ) := 1

m

∑
a∈A

∥∥a + ti−1 + ξ�ti − NB(a + ti−1)
∥∥2

.

This is a parabola, with minimum at ξ = 1 (i.e., at �ti), whose quadratic term is ξ2‖�ti‖2. Hence, its value at ξ = 0
is ‖�ti‖2. That is,

RMS(ti−1) − RMS(ti) � RMS0(0) − RMS0(1) = ‖�ti‖2,

where the first inequality follows from RMS(ti) � RMS0(1), since both expressions are computed at ti , where
RMS0(1) uses the old NNA, and RMS(ti) uses the new NNA, which makes its value smaller. �
Corollary 3.7. If the relative translations computed by the algorithm are �t1, . . . ,�tk , then

1

k

(
k∑

i=1

‖�ti‖
)2

�
k∑

i=1

‖�ti‖2 � RMS(t0) − RMS(tk). (4)

Proof. Use the Cauchy–Schwarz inequality, applied to the result of Lemma 3.6. �
Lemma 3.8. At each iteration i � 0 of the algorithm

RMS(t0) − RMS(ti) � ‖ti+1‖2 − ‖�ti+1‖2. (5)

Proof. We have

RMS(ti) − RMS(t0) = 1

m

∑
a∈A

(‖NB(a + ti) − a − ti‖2 − ‖NB(a) − a‖2)

= 1

m

∑
a∈A

(‖NB(a + ti) − a − ti‖2 − ‖NB(a + ti) − a‖2)

+ 1

m

∑
a∈A

(‖NB(a + ti) − a‖2 − ‖NB(a) − a‖2).
The second sum is non-negative, since ‖NB(a) − a‖2 � ‖NB(a + ti) − a‖2, for each a ∈ A, and the first sum is

1

m

∑
a∈A

(−ti · (2(NB(a + ti) − a − ti) + ti)
) = −‖ti‖2 − 2ti · �ti+1,

by Eq. (3). That is, we have

RMS(ti) − RMS(t0) � −‖ti‖2 − 2ti · �ti+1 = −‖ti + �ti+1‖2 + ‖�ti+1‖2 = −‖ti+1‖2 + ‖�ti+1‖2,

as asserted. �
Combining inequalities (4) and (5), we obtain,

Author's personal copy

84 E. Ezra et al. / Computational Geometry 41 (2008) 77–93

Corollary 3.9. For any k � 1,

k∑
i=1

‖�ti‖2 � RMS(t0) − RMS(tk) � ‖tk+1‖2 − ‖�tk+1‖2.

In particular, we have, rearranging terms and replacing k + 1 by k,
∑k

i=1 ‖�ti‖2 � ‖tk‖2.

Remarks. (1) Note that, for d = 1, this inequality is trivial (and weak), due to the monotonicity of the ICP translations.
For d � 2, the inequality means, informally, that as the ICP is rambling around, the path π that it traces does not get
too close to itself. In particular, if each �ti is of length at least δ then, after k steps, the distance between the initial
and final endpoints of the ICP path is at least δ

√
k. This also holds for any pair of intermediate translations, k apart in

the order.
(2) Specializing Remark (1) to the case k = 1, we obtain ‖�t1‖2 � RMS(t0) − RMS(t1) � ‖t2‖2 − ‖�t2‖2. This

provides an alternative proof that the angle between �t1 and �t2 is non-acute. Moreover, the closer this angle is to
π/2 the sharper is the estimate on the decrease in the RMS function.

4. The ICP algorithm on the line under the RMS measure

In this section we consider the special case d = 1, and analyze the performance of the ICP algorithm on the line
under the RMS measure. Theorem 2.1 implies that in this case the number of NNA’s, and thus the number of iterations
of the algorithm, is O(mn). In general, we do not know whether this bound is sharp in the worst case (we strongly
believe that it is not). However, in the worst case, the number of iterations can be super-linear:

Theorem 4.1. There exist point sets A, B on the real line of arbitrarily large common size n, for which the number of
iterations of the ICP algorithm, under the RMS measure, is 	(n logn).

Proof. We construct two point sets A, B on the real line, where |A| = |B| = n. The set A consists of the points
a1 < · · · < an, where a1 = −n − δ(n − 1), ai = 2(i−1)−n

2n
+ δ, for i = 2, . . . , n, and δ = o(1/n) is some sufficiently

small parameter. The set B consists of the points bi = i − 1, for i = 1, . . . , n. See Fig. 4.
Initially, all the points of A are assigned to b1. As the algorithm progresses, it keeps translating A to the right. The

first translation satisfies

�t1 = 1

n

n∑
i=1

(b1 − ai) = 1

n
(b1 − a1) − n − 1

n
δ = 1,

which implies that after the first iteration of the algorithm all the points of A, except for its leftmost point, are assigned
to b2. Using (2), we have �t2 = 1

n

∑n−1
i=1 (b2 − b1) = n−1

n
, which implies that the n − 1 rightmost points of A move

to the next Voronoi cell V(b3) after the second iteration, so that the distance between the new position of an from the
right boundary of V(b3) is 2

n
− δ, and the distance between the new position of a2 and the left boundary of V(b3) is δ,

as is easily verified.
In the next iteration �t3 = n−1

n
(arguing as above). However, due to the current position of the points of A in V(b3),

only the n − 2 rightmost points of A cross the right Voronoi boundary of V(b3) (into V(b4)), and the nearest neighbor
of a2 remains unchanged (equal to b3).

Fig. 4. The lower bound construction. Only the two leftmost cells of V(B) are depicted.

Author's personal copy

E. Ezra et al. / Computational Geometry 41 (2008) 77–93 85

Fig. 5. At the last iteration of round j , after shifting the points of A by �t = j
n to the right, the points al+2, . . . , an−(j−l−1) (represented in the

figure as black bullets) still remain in V(bn−j+2).

We next show, using induction on the number of Voronoi cells the points of A have crossed so far, the following
property. Assume that the points of A, except for the leftmost one, are assigned to bn−j+1 and bn−j+2, for some
1 � j � n (clearly, these assignments can involve only two consecutive Voronoi cells), and consider all iterations
of the algorithm, in which some points of A cross the common Voronoi boundary βn−j+1 of the cells V(bn−j+1),
V(bn−j+2). We call the sequence of these iterations round j of the algorithm. Then, (i) at each such iteration the
relative translation is j

n
, (ii) at each iteration in this round, other than the last one, the overall number of points of A

that cross βn−j+1 is exactly j , and no point crosses any other boundary, and (iii) at the last iteration of the round, the
overall number of points of A that cross either βn−j+1 or βn−j+2 is exactly j − 1. In fact, in the induction step we
assume that properties (i), (ii) hold, and then show that property (iii) follows, for j , and that (i) and (ii) hold for j − 1.

To prove this property, we first note, using (2), that the relative translation at each iteration of the algorithm is k
n

, for
some integer 1 � k � n. The preceding discussion shows that the induction hypothesis holds for j = n and j = n − 1.
Suppose that it holds for all j ′ � j , for some 2 � j � n − 1, and consider round j − 1 of the algorithm, during which
points of A cross βn−j+2 (that is, we consider all iterations with that property). Thus, at each iteration of round j

(except for the last one), in which there are points of A that remain in the cell V(bn−j+1), the j rightmost points of
A (among those contained in V(bn−j+1)) cross βn−j+1. Let us now consider the last such iteration. In this case, all
the points of A, except l of them, for some 0 � l < j (and the leftmost point, which we ignore), have crossed βn−j+1
in previous iterations. The key observation is that the distance from the current position of an to the next Voronoi
boundary βn−j+2 is l+2

n
− δ (this follows since we shift in total n − 1 points of A that are equally spaced apart by

1
n

), and since the next translation �t satisfies �t = j
n

(using the induction hypothesis and (2)), it follows that only
j − 1 points of A cross a Voronoi boundary in the next iteration. Moreover, the points a2, . . . , al+1 cross the boundary
βn−j+1, and the points an−(j−l−2), . . . , an cross the boundary βn−j+2 (this is the first move in which this boundary is
crossed at all); see Fig. 5 for an illustration.

Thus, at the next iteration, since only j − 1 points have just crossed between Voronoi cells, (2) implies that the next
translation is j−1

n
, and, as is easily verified, at each further iteration, as long as there are at least j − 1 points of A to

the left of βn−j+2, this property must continue to hold, and thus j − 1 points will cross βn−j+2. This establishes the
induction step.

It now follows, using the above properties, that the number of iterations required for all the points of A to cross
βn−j+1 is �n

j
�, where in the first (last) such iteration some of the points may cross βn−j (βn−j+2) as well. This implies

that the number of such iterations, in which the points of A cross only βn−j+1 (and none of the two neighboring
Voronoi boundaries), is at least �n

j
�−2 (but not more than �n

j
�). Thus the overall number of iterations of the algorithm

is 	(
∑n

j=1�n
j
�) = 	(n logn). �

5. The problem under the Hausdorff distance measure

5.1. General structural properties of the ICP algorithm

Lemma 5.1. The ICP algorithm converges under the (one-sided) Hausdorff distance measure in at most O(mdnd)

steps.

Proof. At each iteration i, we compute �ti that minimizes maxa∈A ‖a + ti−1 +�ti −NB(a + ti−1)‖. Since ‖a + ti −
NB(a + ti)‖ � ‖a + ti −NB(a + ti−1)‖, for each a ∈ A, the cost function decreases after each iteration (the algorithm
terminates if there is no decrease). The lemma then follows from Corollary 2.2. �

Author's personal copy

86 E. Ezra et al. / Computational Geometry 41 (2008) 77–93

Fig. 6. Proof of Lemma 5.2.

The following lemma provides a simple tool to compute the relative translations that the algorithm executes.

Lemma 5.2. Let Di−1 be the smallest enclosing ball of the points {a + ti−1 − NB(a + ti−1) | a ∈ A}. Then the next
relative translation �ti of the ICP algorithm is the vector from the center of Di−1 to the origin.

Proof. The proof follows from the (easy) observation that since Di−1 is a minimum enclosing ball, all points appear-
ing on its boundary are not contained in the same halfspace bounded by a hyperplane that passes through its center,
and thus any further infinitesimal translation of the points a + ti−1 +�ti , for a ∈ A, from their current position causes
at least one of the points on the boundary of (the translated ball) Di−1 + �ti to get further from the origin (which is
also the center of Di−1 +�ti). Therefore the Hausdorff distance measure is minimized (with respect to the above fixed
NNA) after translating by �ti . Note that it follows by definition that the cost obtained after the relative translation
by �ti is smaller than (or equal to) the radius of Di−1 (it may become strictly smaller, when the NNA changes after
translating by �ti). See Fig. 6 for an illustration. �

In contrast with Theorem 3.2, we have:

Lemma 5.3. In any dimension d , there exist finite point sets A, B with the following property. Define the cost function
H(t) = maxa∈A ‖a + t − NB(a + t)‖. Then H(t0 + ξ�t), for ξ ∈ [0,1], is not monotonically decreasing along the
relative translation vector �t that the algorithm executes from translation t0.

Proof. A planar example (which can be lifted to any dimension d � 3) is depicted in Fig. 7. Initially, all three points
a0, a1, a2, are closer to b. By Lemma 5.2, the translation �t moves the center c of the circumcircle of �a0a1a2 to b,
so the final distance of all three ai ’s from b is equal to the radius r of this circle. As we translate each of them by �t ,
a0 crosses into V(b′), its distance to its nearest neighbor (first b and then b′) keeps decreasing, and its final value is
strictly smaller than r . In contrast, the distances of a1, a2 from b (their nearest neighbor throughout the translation)
both increase towards the end of the translation, and their final values are both r . Hence, towards the end of the
translation H(t0 + ξ�t) is increasing. �
Remark. We do not know whether non-monotonicity can arise at any step of the algorithm. Perhaps only the first step
might have this property.

Lemma 5.4. Let H(t) be as above. At each iteration i � 1 of the algorithm

H(ti−1)
2 − H(ti)

2 � ‖�ti‖2.

Proof. Using Lemma 5.2, the next relative translation �ti is the vector ci−1o, where ci−1 is the center of the minimum
enclosing ball Di−1 of the set A∗ = {a + ti−1 − NB(a + ti−1) | a ∈ A}, and o is the origin.

Author's personal copy

E. Ezra et al. / Computational Geometry 41 (2008) 77–93 87

Fig. 7. Proof of Lemma 5.3. The point b is placed at the origin, the center of the minimum enclosing disc of the points a0, a1, a2 is c, and its radius
is r . Initially, ‖a0 − b‖ = max‖ai − b‖ > r , for i = 0,1,2 (a), and after translating by �t , ‖a0 + �t − b′‖ < r (b).

Fig. 8. The angle �a∗
0ci−1o is obtuse.

The argument in the proof of Lemma 5.2 implies that the cost H(ti) (obtained after the relative translation by �ti)
is smaller than or equal to the radius of Di−1. (It is equal the radius under the former NNA, and can only become
smaller under the new NNA, after the translation.) Let A∗

0 denote the set of all points a∗ ∈ A∗ that appear on ∂Di−1,
and let a∗

0 be the point of A∗
0 farthest from the origin.

As above, since Di−1 is a minimum enclosing ball, it follows that all points of A∗
0 cannot be contained in the

same halfspace bounded by a hyperplane through ci−1, which, in particular, implies that a∗
0 and o are separated by

the hyperplane λ, perpendicular to the segment connecting ci−1 and o, and passing through ci−1; see Fig. 8 for an
illustration. Clearly, the cost H(ti−1) is at least ‖a∗

0‖ (the maximum distance may be obtained by another point of A∗
that lies in the interior of Di−1). Hence the angle �a∗

0ci−1o is at least π/2, and thus

H(ti−1)
2 − H(ti)

2 � ‖a∗
0‖2 − ‖a∗

0 − ci−1‖2 � ‖ci−1 − o‖2 = ‖�ti‖2. �

Author's personal copy

88 E. Ezra et al. / Computational Geometry 41 (2008) 77–93

Fig. 9. Proof of Lemma 5.6. The points a − NB(a), for a ∈ A, before translating by �t1 (top), and after the translation (bottom).

Using the Cauchy–Schwarz inequality, we obtain the following corollary, which is the analogue of Corollary 3.7:

Corollary 5.5. If the relative translations computed by the algorithm are �t1, . . . ,�tk , then

1

k

(
k∑

i=1

‖�ti‖
)2

�
k∑

i=1

‖�ti‖2 � H(t0)
2 − H(tk)

2. (6)

5.2. The one-dimensional problem

Let A, B be two point sets on the real line, with |A| = m, |B| = n.

Lemma 5.6 (Monotonicity). The points of A are always translated in the same direction, over all iterations of the
algorithm. That is, either �ti � 0 for each i � 1, or �ti � 0 for each i � 1.

Proof. Let a∗ ∈ A, b∗ = NB(a∗), be the pair (which is unique if we assume initial general position2) that satisfies
initially ξ = |b∗ − a∗| = maxa∈A |NB(a) − a|. Suppose without loss of generality that a∗ < b∗. By Lemma 5.2,
the initial “ball” (i.e., interval) D0 has a∗ − b∗ = −ξ as its left endpoint, and its right endpoint is smaller than ξ

(otherwise, the algorithm terminates; following the observations of Lemma 5.2, the next relative translation is
−→
0).

Hence the center (midpoint) of D0 is negative, so the first translation �t1 of the algorithm is to the right. See Fig. 9.
After translating, a∗ + �t1 is still to the left of b∗ (since �t1 < ξ) and is closer to b∗, so b∗ is still the nearest

neighbor of a∗ + �t1, and |a∗ + �t1 − b∗| = maxa∈A{|a + �t1 − NB(a)|} � maxa∈A{|a + �t1 − NB(a + �t1)|},
since right after the translation by �t1, the left and the right endpoints of D0 are at the same distance from the origin,
but then the reassignment may modify the right endpoint of D0. Thus a∗ + �t1 − b∗ is still the left endpoint of the
new interval D1, whose right endpoint is closer to the origin (or at the same distance, in which case the algorithm
terminates). Hence, the preceding argument implies that �t2 will also be to the right, and, using induction, the lemma
follows. �
Remarks. (1) The proof implies that the pair a∗, b∗, which attains the maximum value of the cost function at the
initial position of A continues to do so over all iterations of the algorithm. The point a∗ gets closer to b∗, and can
never exit its cell V(b∗) (actually, it never passes over b∗).

(2) The relative translation �ti is always determined by a∗, b∗, and by another pair of points a′, b′, which determine
the other endpoint of Di−1. Note that in the next iteration NB(a′) must change, or else the algorithm terminates.

(3) While monotonicity holds in R
1, we do not know (in view of Lemma 5.3) whether the analog of Theorem 3.3

holds for the Hausdorff distance measure in two (and higher) dimensions.

Recall that the spread of a point set P is the ratio between the diameter of P and the distance between its closest
pair of points. Our main result on the ICP algorithm under the Hausdorff distance measure is given in the following
theorem.

2 If there are several such pairs then either (i) some of the differences b∗ − a∗ are positive and some are negative, and then the algorithm
terminates right away, or (ii) all the differences b∗ − a∗ have the same sign, and then the same argument given in the proof continues to apply.

Author's personal copy

E. Ezra et al. / Computational Geometry 41 (2008) 77–93 89

Theorem 5.7. Let A and B be two point sets on the real line, with |A| = m, |B| = n, and let δB be the spread of B .
Then the number of iterations that the ICP algorithm executes is O((m + n) log δB/ logn).

Proof. Let the elements of A be a1 < a2 < · · · < am, and those of B be b1 < b2 < · · · < bn. Put �A = am − a1,
�B = bn − b1. Assume, without loss of generality, that, initially, maxa∈A |NB(a) − a| � �A (otherwise, this is the
case after the first translation), and that b1 − a1 = maxa∈A |NB(a) − a| (in particular, a1 < b1). The initial interval D0
(in the notation of Lemma 5.2) is [a1 − b1,0]. As shown in Lemma 5.6, all translations will be to the right, and a1 will
stay to the left of b1. Thus the overall length of all translations is at most b1 − a1 � �A. Put Ik−1 = b1 − (a1 + tk−1),
for each iteration k � 1 of the algorithm.

A relative translation �tk , computed at the kth iteration of the algorithm, for k � 0, is said to be short if �tk <
Ik−1

2n/ logn
, otherwise, �tk is long. We first claim that the overall number of (short and long) relative translations that the

algorithm executes is O(m log(�A

�B
δB)/ logn).

We say that a pair (a′, b′) of points, a′ ∈ A, b′ ∈ B , a′ �= a1, is a configuration of the algorithm, if, at some iteration
k, a′ − b′ is the right endpoint of Dk−1 (so (a1, b1), (a′, b′) determine the kth relative translation of the algorithm).
Due to monotonicity, each configuration can arise at most once, and thus an upper bound on the overall number of
such configurations also applies to the actual number of iterations performed by the algorithm.

The idea of the proof is as follows. The overall number of long relative translations is relatively small, since, after
performing each of them, the distance between b1 and the translated copy of a1, which measures the cost function,
significantly decreases. As to the number of short relative translations, if there are at least two configurations involv-
ing the same point a′ �= a1 in A, which determine short relative translations, then the cost function must significantly
decrease (since a′ has changed its nearest neighbor, and becomes significantly further from its previous nearest neigh-
bor), and, as a result, each such point a′ cannot be involved in too many configurations that determine short relative
translations.

Let S be the sequence of all configurations produced by the algorithm (sorted by the “chronological” order of their
creation), which determine short relative translations. We next bound the number of a-configurations in S , namely,
those that involve the same point a ∈ A.

Fix some a �= a1 ∈ A. Let (a, bj), (a, bl), 1 � j �= l � n, be two consecutive a-configurations in S , so each config-
uration that appears between (a, bj), (a, bl) does not involve a. Due to the monotonicity of the relative translations,
we must have j < l. Suppose that (a, bj) arises at the kth iteration, and (a, bl) arises at the k′th iteration (k′ > k).
Since (a, bj) determines a short relative translation (the translated copy of) a must lie to the right of bj before the kth

step, for otherwise �tk would be at least Ik−1
2 , and thus would not be short. Furthermore, we have, by construction,

�tk = 1

2

(
Ik−1 + (

bj − (a + tk−1)
))

<
Ik−1

2n/ logn
,

and thus∣∣bj − (a + tk−1)
∣∣ � Ik−1 − Ik−1

n/ logn
.

Since a + tk−1 ∈ V(bj), we have

∣∣bj+1 − (a + tk−1)
∣∣ �

∣∣bj − (a + tk−1)
∣∣ � Ik−1 − Ik−1

n/ logn
.

Thus a can pass over bj+1 only if we further translate it by at least Ik−1 − Ik−1
n/ logn

; see Fig. 10 for an illustration. Since
(a, bl) determines a short relative translation at the k′th iteration (and thus a lies to the right of bl at that time), it
follows that

∑k′−1
r=k �tr > Ik−1 − Ik−1

n/ logn
. But then, |b1 − (a1 + tk′−1)| < Ik−1

n/ logn
. Thus the cost function is reduced by

a factor of at least n/ logn between each two consecutive configurations of S that involve the same point a �= a1 of A.
We now show that the overall number of such configurations is O(log(�A

�B
δB)/ logn), for a fixed point a �= a1 ∈ A.

Let CB be the distance between the closest pair in B; that is, CB = �B

δB
. We claim that when Ik−1 becomes smaller than

CB

4 (at some iteration k � 1), the algorithm terminates. Indeed, since Ik−1 = maxa∈A{|NB(a + tk−1) − (a + tk−1)|},
this implies that the next relative translation satisfies |�tk| < CB

4 . On the other hand, the distance between each

Author's personal copy

90 E. Ezra et al. / Computational Geometry 41 (2008) 77–93

Fig. 10. Proof of Theorem 5.7.

(translated) point a + tk−1, a ∈ A, to its nearest Voronoi boundary is at least CB

4 (since the distance between any b ∈ B

and the (left or right) boundary of its Voronoi cell V(b) is at least CB

2), and thus, after shifting the points by �tk , the
nearest-neighbor assignments do not change. This easily implies that the overall number of iterations, in which I0 is
reduced by a factor of at least n/ logn until it becomes smaller than CB

4 , is

O(logn �A − logn CB) = O

(
log

(
�A

�B

δB

)
/ logn

)
,

as asserted. Thus the overall number of iterations of the algorithm that involve short relative translations, over all
points of A, is O(m log(�A

�B
δB)/ logn).

We next show that the overall number of long relative translations is O(n log(�A

�B
δB)/ logn). A long relative trans-

lation �tk reduces Ik−1 by a factor of at least 1 − 1
2n/ logn

, so if j long relative translations occur before the kth

iteration then Ik−1 � �A(1 − 1
2n/ logn

)j . Arguing as above, and, using the fact that (1 − x) < e−x , for 0 < x < 1, the

largest value of j for which �A(1 − logn
2n

)j � CB

4 satisfies j = O(n log(�A

�B
δB)/ logn).

In order to remove the factor log �A

�B
from the bound, we argue that when �A � 5�B , the algorithm terminates

after at most two iterations. Indeed, after the first iteration of the algorithm, the next relative translation is determined
by (a1, b1), (am, bn), and these two pairs of points maintain this property in any further iteration, so the algorithm
will terminate at the next iteration, as claimed. Hence, the actual bound on the overall number of iterations is O((m +
n) log δB/ logn), which completes the proof of the theorem. �
Corollary 5.8. The number of iterations of the ICP algorithm is O(m + n) when the spread of the point set B is
polynomial in n, where the constant of proportionality is linear in the degree of that polynomial bound.

Our second main result of this section is a matching linear lower bound construction, for the case where the spread
of B is linear in n.

Theorem 5.9. There exist point sets A, B of arbitrarily large common size n, such that the spread of B is linear, and
the number of iterations of the algorithm is 	(n).

Proof. We construct two point sets A, B on the real line, with |A| = |B| = n. For simplicity of the analysis, we
implicitly define the two point sets by the following relations:

(1) a1 = 0,
(2) a1 − b1 = n,
(3) aj − bj = −(n − ∑j−2

k=0
1
2k), for each 2 � j � n,

(4) a1 − b1+b2
2 = 2n, aj − bj +bj+1

2 = ∑j−1
k=1

1
2k − ε, for each 2 � j � n − 1, where ε = o(1

2n).

It is easy to verify that the above conditions determine uniquely the sets A and B , and that 2(n−1) < |bj −bj+1| � 2n,
for each j = 1, . . . , n−1, and thus the spread of B is O(n). Note that in this construction each point aj ∈ A is initially
located in the respective Voronoi cell V(bj), for j = 1, . . . , n; see Fig. 11 for an illustration. (Note that in this notation
the points are indexed in increasing order from right to left.)

We now claim, using induction on the number of iterations of the algorithm, that the relative translation at the ith
iteration �ti is − 1

2i , for i = 1, . . . , n−2. As a consequence, each point aj ∈ A progresses to the left towards V(bj+1),

Author's personal copy

E. Ezra et al. / Computational Geometry 41 (2008) 77–93 91

Fig. 11. The lower bound construction.

and, in particular, ai+1 crosses, at the ith iteration, the Voronoi boundary common to V(bi+1) and V(bi+2), as follows
easily from property (4). In addition, all the remaining nearest neighbors remain the same at that iteration, and the
nearest neighbor of ai+1 remains bi+2 at any subsequent iteration—see below. This would imply that the overall
number of iterations is n − 2, which establishes our bound.

The pair a1, b1 satisfies b1 = NB(a1) and |a1 −b1| = maxa∈A |a−NB(a)|, as is easily verified, and, by Lemma 5.6,
this pair attains the maximum value of the cost function at every subsequent iteration of the algorithm. Thus at the
first iteration of the algorithm a1 − b1 is the right endpoint of the interval D0, and a2 − b2 is its left endpoint. Hence

�t1 = (b1 − a1) + (b2 − a2)

2
= −1

2
,

and, as a consequence, all the points of A move to the left. Moreover, due to property (4) of the construction, the
nearest neighbor of a2 becomes b3, and the nearest neighbors of all the remaining points do not change. Suppose
now, for the induction hypothesis, that at the (i − 1)th iteration �ti−1 = − 1

2i−1 , and, as a consequence, the overall

translation so far ti−1 is −∑i−1
j=1

1
2j . It can be easily verified, using property (4), that the current nearest neighbor of

each point aj , j = 2, . . . , i, is now bj+1, and that aj is located to the right of bj+1. We next claim, using properties
(3) and (4), that each of these points satisfies

aj + ti−1 − bj+1 = n − 2ε −
i−1∑
k=1

1

2k
< a1 + ti−1 − b1 = n −

i−1∑
k=1

1

2k
. (7)

In addition, due to property (3),

ai+1 + ti−1 − bi+1 = −(n − 1) < aj + ti−1 − bj ,

for each j = i + 2, . . . , n. That is, ai+1 + ti−1 − bi+1 is the left endpoint of the interval Di−1. Thus, at the ith step we
have

�ti = (b1 − (a1 + ti−1)) + (bi+1 − (ai+1 + ti−1))

2
= −1 − ∑i−1

k=1
1
2k

2
= − 1

2i
,

as asserted, which, using property (4), implies that the new nearest neighbor of ai+1 is bi+2. Note that it can be
easily verified, using (7) and properties (3), (4), that all the remaining points remain in their previous cells, and, in
particular, that none of the points aj , for j = 2, . . . , i can exit the cell V(bj+1) in any further iteration (since the
overall translation length is less than 1). This completes the induction step. Note that, the nearest neighbors of the
points a1, an do not change during the execution of the algorithm, and thus the overall number of iterations is n − 2,
as asserted. �
Remark. In the above construction, the number of bits that is required in order to represent each input point is 	(n).
We are not aware of any construction in which this number is O(logn) and the number of iterations is �(n). We
would therefore like to conjecture that in the latter case the overall number of iterations that the algorithm performs is
sublinear.

6. Concluding remarks

One major open problem that this paper raises is to improve the upper bound, or, alternatively, present a tight lower
bound construction, on the number of iterations performed by the algorithm under each of the above measures. This

Author's personal copy

92 E. Ezra et al. / Computational Geometry 41 (2008) 77–93

problem is challenging even in the one-dimensional case. As an intermediate goal, we offer the following conjecture:
Under the RMS measure, the number of iterations of the ICP algorithm is at most O(n log δB), where δB is the spread
of B .

Another problem concerns the running time of the algorithm. The algorithm has to reassign the points in A to
their (new) nearest neighbors in B at each iteration. This can be done by searching with each point of A in V(B),
but this will take time that is more than linear in m for each iteration. Thus, for points in R

1, when the number of
iterations is linear or super-linear, we face a super-quadratic running time. The irony is that we can solve the pattern
matching problem (for the RMS measure) directly, without using the ICP algorithm, in O(mn logm) time, as follows.
(i) Compute the overlay M(A,B) of the Voronoi diagrams V(B − a), for a ∈ A, in O(mn logm) time. (ii) Process
the intervals of M(A,B) from left to right. (iii) For each interval I , compute the corresponding NNA by updating, in
O(1) time, the NNA of the previous interval (only one point changes its nearest neighbor). (iv) Obtain, in O(1) time,
the minimizing translation of this NNA, using (3) for the leftmost interval, and (2) for any subsequent interval, and
the corresponding value of the cost function. (v) Collect those I for which the minimizing translation lies in I ; these
are the local minima of the cost function. (vi) Output the global minimum from among those minima. The problem
can also be solved for the Hausdorff distance measure in O(mn logm) time, by computing the upper envelope of the
m Voronoi surfaces S(B − a), for a ∈ A, and reporting its global minimum (see, e.g., [9]).

Of course, in practice the ICP algorithm tends to perform much fewer steps, so it performs much faster than this
worst case bound. We remark that a variant of the preceding algorithm (for points in R

1) can be employed in the ICP
algorithm, so that the overall cost of updating the NNA’s remains O(mn logn), regardless of how many iterations it
performs. Many interesting open problems arise in this connection, such as finding a faster procedure to handle the
NNA updates, analyzing the performance under the Hausdorff distance and in higher dimensions, and so on.

Moreover, inspired by a comment of D. Kozlow, if we contend ourselves with finding a local minimum of the cost
function, this can be found in near-linear time, using binary search over the intervals of M(A,B), which we keep
implicit. Specifically, we proceed as follow. At each step of the search, there are three previously tested translations
t1 < t2 < t3, for which we have computed the corresponding values RMS(ti), and the indices ji (numbering from left
to right) of the intervals of M(A,B) containing ti , for i = 1,2,3, and the translation we are looking for lies in the
interval [t1, t3]. We inductively assume that RMS(t2) � min{RMS(t1),RMS(t3)}. Assume, without loss of generality,
that j2 − j1 � j3 − j2. We compute j− =
(j1 + j2)/2�, and find a point t− in the j−th interval of M(A,B). By
definition, this is a point t− that has exactly j− Voronoi boundaries to its left, that is, exactly j− differences of the
form bi+bi+1

2 − al are smaller than t−. Finding such a t− is a special case of the slope selection problem (see [3]), and
can thus be solved in O((m+n) log(m+n)) time. We now compute RMS(t−). If RMS(t−) � RMS(t2), we continue
the search with the triple (t1, t

−, t2); otherwise, we continue the search with (t−, t2, t3). Clearly, the process converges
after logarithmically many steps, to a local minimum of RMS(T), in overall time O((m + n) log2 (m + n) time.

Clearly, one expects the algorithm to converge faster (say, under the RMS measure) when the initial placement of
A is sufficiently close to B , in the sense that RMS(t0) is small. Attempts to exploit such heuristics in practice are
reported in [4,8]. It would be interesting to quantify this “belief”, and show that when RMS(t0) is smaller than some
threshold that depends on the layout of B , the algorithm converges after very few iterations.

Finally, we note that recent variants of the ICP technique [4,8] cater to situations where the point sets A and B

are samples of points on two respective curves (or surfaces) γA, γB . Then each point of A finds its nearest neighbor
along γB (rather than in B), using some polygonal (or polyhedral) approximation of γB . This tends to speed up the
algorithm in practice, as reported e.g. in [4,8]. It would be interesting to extend the worst-case analysis of this paper
to this scenario.

Acknowledgements

The authors wish to thank Boris Aronov for useful discussions concerning the problem. In particular, during these
discussions, the second proof of Theorem 3.2 has been obtained, and the parameterization given in the construction
presented in Section 4 has been simplified (from the original construction given by the authors). The authors also wish
to thank Leo Guibas, Pankaj Agarwal, Jie Gao, and Vladlen Koltun for helpful discussions concerning this problem.
In particular, the first proof of Theorem 3.2 has been obtained during these discussions. We also thank Emo Welzl,
Dmitri Kozlow, and Sariel Har-Peled for helpful comments on the problem. Last, but not least, we thank the two
anonymous referees for their very careful reading of the manuscript, and for their valuable comments.

Author's personal copy

E. Ezra et al. / Computational Geometry 41 (2008) 77–93 93

References

[1] H. Alt, L. Guibas, Discrete geometric shapes: matching, interpolation, and approximation, in: J.-R. Sack, J. Urrutia (Eds.), Handbook of
Computational Geometry, Elsevier, Amsterdam, 1999, pp. 121–153.

[2] P.J. Besl, N.D. McKay, A method for registration of 3-d shapes, IEEE Trans. Pattern Anal. Mach. Intell. 14 (2) (1992) 239–256.
[3] R. Cole, J. Salowe, W. Steiger, E. Szemerédi, Optimal slope selection, SIAM J. Comput. 18 (1989) 792–810.
[4] N. Gelfand, L. Ikemoto, S. Rusinkiewicz, M. Levoy, Geometrically stable sampling for the ICP algorithm, in: Fourth International Conference

on 3D Digital Imaging and Modeling (3DIM), Oct. 2003, pp. 260–267.
[5] S. Har-Peled, B. Sadri, How fast is the k-means method? Algorithmica 41 (3) (2005) 185–202.
[6] V. Koltun, M. Sharir, On overlays and minimization diagrams, in: Proc. 22nd Annu. ACM Sympos. Comput. Geom., 2006, pp. 395–401.
[7] H. Pottmann, Q.-X. Huang, Y.-L. Yang, S.-M. Hu, Geometry and convergence analysis of algorithms for registration of 3D shapes, Technical

Report 117, Geometry Preprint Series, TU Wien, June 2004.
[8] S. Rusinkiewicz, M. Levoy, Efficient variants of the ICP algorithm, in: Third Internat. Conf. 3D Digital Imag. Model. (3DIM), June 2001,

pp. 145–152.
[9] M. Sharir, P. Agarwal, Davenport–Schinzel Sequences and their Geometric Applications, Cambridge University Press, New York, 1995.

[10] G.C. Sharp, S.W. Lee, D.K. Wehe, ICP registration using invariant features, IEEE Trans. Pattern Anal. Mach. Intell. 24 (1) (2002) 90–102.

