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Abstract

Mesh generation in regions in Euclidean space is a central task in computational
science, and especially for commonly used numerical methods for the solution of
partial differential equations, e.g., finite element and finite volume methods. We
focus on the uniform Delaunay triangulation of planar regions and, in particular,
on how one selects the positions of the vertices of the triangulation. We discuss
a recently developed method, based on the centroidal Voronoi tessellation (CVT)
concept, for effecting such triangulations and present two algorithms, including one
new one, for CVT-based grid generation. We also compare several methods, includ-
ing CVT-based methods, for triangulating planar domains. To this end, we define
several quantitative measures of the quality of uniform grids. We then generate tri-
angulations of several planar regions, including some having complexities that are
representative of what one may encounter in practice. We subject the resulting grids
to visual and quantitative comparisons and conclude that all the methods consid-
ered produce high-quality uniform grids and that the CVT-based grids are at least
as good as any of the others.
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1 Introduction

Grid generation involves two phases: point placement and connection. Once
the locations of points in a Euclidean domain are determined, we choose to
connect the points so they are the vertices of a Delaunay triangulation of the
domain, i.e., a triangulation for which no circumcircle of a triangle contains
points in its interior. This property guarantees that the Delaunay triangulation
maximizes the minimum angle among all possible triangulations of the point
set. Delaunay triangulation is the method of choice for triangulating two-
dimensional domains.

Even Delaunay triangulations can result in skinny triangles, i.e., triangles hav-
ing one or more small angles. The avoidance of such anomalies requires the
judicious selection of the locations of the points that become the vertices of
the triangulation. There may be other requirements that point locations must
satisfy in the grid generation setting. For example, some of the points should
be located on the boundary of the domain so that one may apply the specified
boundary conditions on the solution of the partial differential equation being
discretized. Delaunay triangulations corresponding to point sets that are con-
strained in this manner are referred to as constrained Delaunay triangulations.
In addition, the points may be required to satisfy some desired distributional
characteristics, i.e., to be non-uniformily distributed to achieve some specified
goal.

The focus of this paper is thus on how one selects the points that become
the vertices of uniform Delaunay triangulations of planar regions. For us, uni-
formity can be interpreted to mean that all the triangles in the triangulation
are close to the ideal case of congruent, equilateral triangles, or that the ver-
tices of the triangulation are equally spaced, are in some sense isotropically
distributed, and also cover the domain, i.e., there are no large subsets of the
domain that contain no vertices. Of course, in many application involving
the numerical solution of partial differential equations, one prefers to use non-
uniform grids. However, not only are there applications for which uniform grids
are preferable, but that setting can also serve to make baseline comparisons
between different methods for selecting the locations of the grid points.

Our first goal is to describe a recently introduced means for selecting points in
Euclidean regions, and especially for selecting grid points for mesh generation
purposes. This strategy is based on the centroidal Voronoi tessellation (CVT)
concept and, in particular, on generalizations that are useful for grid gener-
ation applications. Detailed discussions of the centroidal Voronoi tessellation
(CVT) and constrained centroidal Voronoi tessellation (CCVT) concept can
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be found in [6] and [9], respectively. In §2, in addition to defining and analyzing
CVT-based point-placement methods, we provide two algorithms, including
one new one, for effecting CVT-based grid generation.

Our second goal is to compare several methods for uniformly triangulating
planar regions. Since we want to make quantitative as well as visual compar-
isons, we gather together, in §3, several measures that can be used to assess
the uniformity of points sets and triangulations of those sets. Then, in §4, we
briefly describe the grid generation methods that we use in our comparative
studies. In that section, we also provide figures and tables resulting from the
application of the methods to several planar regions, including some having
complexities that are representative of what one may encounter in practice.
The figures may be used to visually compare the various methods; the tables,
which contain the results of applying the quality measures defined in §3 to the
computed grids, may be used for quantitative comparisons. We close §4 with
a discussion of the results obtained and of current and future directions for
CVT-based grid generation.

2 Constrained centroidal Voronoi tessellations

2.1 Centroidal Voronoi tessellations

Let | · | denote the Euclidean norm in RN . Given a bounded, open set Ω ⊂ RN

with boundary Γ and given an integer K > 1, a tessellation of Ω into K
subsets is a subdivision of Ω into K nonoverlapping open subsets, i.e, any set
{Vk}Kk=1 such that Vk ⊂ Ω, Vk ∩ V` = ∅ for k 6= `, and ∪Kk=1V k = Ω. Given a
set of points {zk}Kk=1 belonging to Ω, for k = 1, . . . , K, let

Vk = {x ∈ Ω : |x− zk| < |x− z`| for ` = 1, . . . , K, ` 6= k } . (1)

Note that {Vk}Kk=1 defines a tessellation of Ω. The set {Vk}Kk=1 satisfying (1)
is referred to as a Voronoi tessellation or Voronoi diagram of Ω, the points
of the set {zk}Kk=1 are referred to as the generating points or generators of
the Voronoi tessellation, and each Vk is referred to as the Voronoi region or
Voronoi cell corresponding to zk.

Given a nonnegative and almost everywhere continuous density function ρ(x)
defined on Ω and given any region V ⊂ Ω, we define its centroid or center of
mass by

z =

∫
Vi

xρ(x) dx∫
V
ρ(x) dx

. (2)
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Equivalently, z is the unique solution of the problem

min
z∈RN

F (z) , where F (z) =
∫
V
ρ(x)|x− z|2 dx . (3)

In particular, for each Voronoi region Vk, k = 1, . . . , K, we can define its
centroid zk by

zk =

∫
Vk

xρ(x) dx∫
Vk

ρ(x) dx
.

In general, the generators of a Voronoi tessellation do not coincide with the
centers of mass of the corresponding Voronoi cells.

If it so happens that

zk = zk for k = 1, . . . , K ,

i.e., for each Voronoi region Vk, its generator zk coincides with its center of
mass zk, we refer to the Voronoi tessellation as a centroidal Voronoi tessellation
(CVT). The existence of centroidal Voronoi tessellations of a given set has been
proved, but note that, in general, they are not uniquely defined; see [6].

Centroidal Voronoi tessellations can also be characterized as solutions of an
optimization problem. Let

F({zk, Vk}Kk=1) =
K∑
k=1

∫
Vk

ρ(x)|x− zk|2 dx . (4)

Then, we have the following result; see, e.g., [6].

Proposition 1 Given an integer K > 1 and a nonnegative and almost ev-
erywhere continuous density function ρ(x) defined on Ω. Let {Vk}Kk=1 denote
an arbitrary subdivision of Ω into K nonoverlapping, covering subsets and let
{zk}Kk=1 denote an arbitrary set of K points in Ω. Then, a necessary condi-
tion for F({zk, Vk}Kk=1) to be minimized is that {zk, Vk}Kk=1 define a centroidal
Voronoi tessellation of Ω.

We see that F(·) is a variance measure; we will refer to it as the CVT en-
ergy. The special nature of CVTs means that they have to be constructed.
Algorithms for determining CVTs are discussed in [5,6,8,9,11,14,15]

2.2 Constrained centroidal Voronoi tessellations

The notion of constraining CVTs was introduced in [7,9]. Here, we discuss
constrained CVTs for bounded, Lipschitz regions Ω ⊂ RN having piecewise
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smooth boundaries.

We define constrained centroidal Voronoi tessellations (CCVTs) as follows.
Given a constraint set Q, CCVTs are solutions, if they exist, of the problem

min
{zk,Vk}Kk=1

F({zk, Vk}Kk=1) subject to zk ∈ Q, i = 1, . . . , K , (5)

where F(·) is defined as in (4). The constraint set Q can take many different
forms. For example, all of the points zk, k = 1, . . . , K, could be constrained
to lie on a given surface in RN ; in this case, one obtains a centroidal Voronoi
tessellation of that surface. This case is treated in [9]. In the context of grid gen-
eration for regions in RN , one may want some of the points zk, k = 1, . . . , K,
to be on the boundary of the region Ω. In this setting, there are at least three
different ways to define the constraint set Q. One is a from the boundary out to
the interior method in which a boundary grid is specified and then an interior
grid is determined; see §2.2.1. Another is a from the interior to the boundary
method in which the boundary grid is determined simultaneously to the inte-
rior grid (see §2.2.3), and another method sits somewhere in between the other
two (see §2.2.2). Note that, depending on the case, points may be constrained
by the explicit specification of their coordinates or by the requirement that
their coordinates satisfy the formula defining (a portion of) the boundary.

2.2.1 Fixed points on the boundary

First, one could be given a surface mesh of M < K points {z∗m}Mm=1 on the
boundary Γ of Ω; this mesh could be the output of a CAD program or could
be determined as a CCVT of the surface Γ using the methods of [9]. These
points are then fixed during the generation of a CVT. In this case, the problem
(5) reduces to

min
{zk,Vk}Kk=1

F({zk, Vk}Kk=1) subject to zm = z∗m, m = 1, . . . ,M .

Thus, the points {zm}Mm=1 are fixed and the remaining points {zk}Kk=M+1 are
allowed to move freely in Ω. Note that the tessellation {Vk}Kk=1 is not explicitly
constrained.

In this type of CCVT, the boundary mesh is fixed and the quality of the
resulting CCVT is largely determined by the quality of the given boundary
mesh. Difficulties associated with controlling mesh quality when this approach
is used are discussed in [10].
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2.2.2 Sliding points along the boundary

Alternately, one could let some of the points {z∗m}Mm=1 move to more advan-
tageous positions, i.e., ones that result in a lower value of the CVT energy.
Thus, we have that a subset {z∗m}

M0
m=1, M0 < M , of the boundary points remain

fixed, e.g., at the corners of a domain in R2, while the rest of the boundary
points are allowed to “slide” along smooth segments of the boundary Γ. More
precisely, suppose that the boundary Γ of Ω can be subdivided into J smooth
disjoint segments Γj, j = 1, . . . , J , and that each Γj can be described by the
equation gj(x) = 0, where gj(·) is at least a C1 function. A segment Γj could
be connected to another segment by points (at a corner or vertex) or by curves
(along edges in R3).

Next, with MJ = M , without loss of generality, we divide the given boundary
mesh points {z∗m}Mm=1 as follows: for some positive integers M1, . . . ,MJ−1,

gj(z
∗
m) = 0 for m = Mj−1 + 1, . . . ,Mj . (6)

The remaining given boundary mesh points {z∗m}
M0
m=1 may be on any of the

segments Γj or be exceptional points such as corners. We then define a CCVT
by solving the following problem:

min{zk,Vk}Kk=1
F({zk, Vk}Kk=1) subject to zm = z∗m for m = 1, . . . ,M0 and

gj(zm) = 0 for m = Mj−1 + 1, . . . ,Mj, j = 1, . . . , J .

(7)

Thus, the boundary points zm, m = 1, . . . ,M0, are fixed while the points zm,
m = M0 + 1, . . . ,M are now allowed to slide along the boundary, but are
not allowed to leave the segment Γj on which they were initially located. The
remaining points {zk}Kk=M+1 are allowed to move freely in Ω. Note that the
tessellation {Vk}Kk=1 is not explicitly constrained.

In this type of CCVT, only a portion of the boundary points are fixed, e.g.,
at corners, and the remaining points on the boundary are allowed to find
more advantageous, in the sense of the problem (7), positions. However, the
number of points in each smooth boundary segment is predetermined by the
given point set {z∗m}Mm=1. The quality of the resulting CCVT is still affected
by the quality of the given boundary mesh, but to a lesser extent than that
for the first approach.

2.2.3 Automatically placed points on the boundary

The third CCVT we consider is one on which neither the number or positions
of the points on the boundary are predetermined. For the sake of simplicity, we
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describe this approach for domains in R2. We again assume that the boundary
Γ of Ω can be subdivided into J smooth disjoint segments Γj, j = 1, . . . , J ,
each of which can be specified as in (6). We assume that there are Mc ≥ 0
corners and that Γc = {z∗m}Mc

m=1 denotes the set of corner points. We label Vk,
where {Vk}Kk=1 is any tessellation of Ω, according to:

Vk is a corner region if V k ∩ Γc 6= ∅

Vk is a boundary region if V k ∩ Γj 6= ∅ for a single j

Vk is an interior region if V k ∩ Γ = ∅ .

The number of corner regions is equal to the number of corners Mc, unless the
boundaries of two of the regions Vk intersect at a corner or the boundary of a
region Vk includes more than one corner; the first happenstance will not occur
for CCVTs and the second can be excluded through sufficient refinement.
However, the number of boundary and interior regions can be arbitrary, so
long as they add up to K −Mc. See Fig. 1 for an illustration.

We define a CCVT by solving the following problem:

min
{zk,Vk}Kk=1

F({zk, Vk}Kk=1) subject to


zm = z∗m for m = 1, . . . ,Mc

gj(zk) = 0 if V k ∩ Γj 6= ∅ .
(8)

The subtle difference between the problems (7) and (8) is that for the former,
the number of points on each boundary segment Γj is predetermined, while
for the latter, they are determined as part of the solution of the optimization
problem.

Fig. 1. The corner regions (shaded), boundary regions (cross-hatched), and interior
regions (white) of a tessellation of the square.

This type of CCVT is the least constrained of the three types we have intro-
duced so that it is likely to produce the best distribution of points. Certainly,
the value of the CVT energy for this type is lower than for the other two. In
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the sequel we will only consider this type of CCVT, although one could easily
develop the other two types along the same lines.

2.3 Geometric view of CCVTs

CCVTs can also be defined geometrically. To this end, we need to define a
constrained centroid or a constrained center of mass of a region V ⊂ RN .
We use the notations introduced in §2.2. The standard center of mass z of
V is defined by (2) or, equivalently, (3). Given a C1 surface segment γ, the
constrained centroid zb of γ is defined to be the solution of the problem

min
z∈γ

F (z) , (9)

where F (·) is given as in (3). If γ can be described by the equation g(x) = 0,
then the problem (9) has the equivalent form

min
z∈V

F (z) subject to g(z) = 0 . (10)

The following proposition, proven in [9], relates the position of the constrained
mass centroid to that of the ordinary mass centroid.

Proposition 2 Let V ⊂ RN be a bounded measurable subset and let γ ⊂ RN

be a C1 surface. Let ρ(x) denote a given measurable density function defined
on V that is positive almost everywhere. Then, the constrained centroid zb of
V with respect to γ exists and is given by any point on γ such that the line
segment joining that point and the mass centroid z of V is normal to γ, i.e.,
zb is a projection of z onto γ.

Fig. 2 provides an illustration of a constrained mass centroid. Note that ac-
cording to Proposition 2, multiple choices may exist for the constrained mass
centroid, e.g., consider a circular region V . In such cases, we choose the one
closest to the ordinary centroid (breaking ties arbitrarily) that is also in V ,
and if no such point exists, we simply choose the one that is closest to the or-
dinary centroid. Note that Proposition 2 provides a framework for developing
algorithms for determining a constrained center of mass of a region in RN .

The following theorem gives a geometric characterization of the generators of
a CCVT as defined by the problem (8).

Theorem 1 Let Ω ⊂ RN denote a bounded, open domain with a C1 boundary
Γ that is defined by the points x ∈ RN such that g1(x) = 0. Let ρ(·) denote a
measurable density function defined on Ω that is positive almost everywhere.
For an integer K > 1, let {zk}Kk=1 denote any set of K points belonging to
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Fig. 2. The ordinary center of mass (open circle) of a region in R2 and its constrained
center of mass (filled circle) with respect to the curve. The line segment joining the
two centers of mass is perpendicular to the curve.

Ω and let {Vk}Kk=1 denote any tessellation of Ω into K open subregions for
which the number of tessellating subregions having a boundary that intersects
the boundary Γ is equal to M . Without loss of generality, we assume that
the subregions {Vk}Mk=1 are the ones that intersect Γ. A necessary condition
for {zk, Vk}Kk=1 to be a CCVT of Ω is that each Vk is the Voronoi region
corresponding to zk and, simultaneously, each zk is the constrained centroid
of Vk.

PROOF. In the case we consider here, CCVTs are solutions of the problem
(8) with Mc = 0 and J = 1. Solutions of that problem are stationary points
of the Lagrangian functional

L({(zi, Vi)}Ki=1 , {λm}Mm=1) =
K∑
i=1

∫
Vi

ρ(x)|x− zi|2 dx −
M∑
m=1

λmg1(zm)2,

with respect to variations in the points {zk}Kk=1, the tessellating subregions
{Vk}Kk=1, and the Lagrange multipliers {λm}Mm=1.

Suppose first that k > M so that Vk is an interior region, i.e., V k does not
intersect Γ. Then, as in [6], one easily finds that

zk = zk =

∫
Vk

xρ(x) dx∫
Vk

ρ(x) dx
for k = M + 1, . . . , K.

If k ≤ M so that Vk is a boundary region, we find, as in Proposition 2, that
zk = zbk, i.e.,

g1(zk) = 0 and zk = zbk = zk −
λk

2
∫
Vk

ρ(x) dx
∇zg1(zk) for k = 1, . . . ,M.
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The fact that Vk is the Voronoi region for zk can be proven in exactly the
same way as for the ordinary CVT case; see [6]. 2

For the sake of simplicity, we have assumed that the domain Ω has no corners
or edges; a similar result can easily be proved if indeed there are corners and
some of the points {zk}Kk=1 are constrained to lie on corners and other points
are forced to lie on edges if their Voronoi regions have boundaries that include
corners and edges.

2.4 Algorithms for constructing CCVTs

We consider two algorithms for constructing CCVTs. The first was discussed
in [8,9] and is a modification of Lloyd’s method for constructing ordinary
CVTs; see [6] for a discussion of Lloyd’s method in the latter context.

Algorithm 1 (CCVT) Given a bounded, open domain Ω ⊂ R2, a density
function ρ(x) defined for all x ∈ Ω, and a positive integer K,

0. select an initial set of K points {zi}Ki=1 in Ω, e.g., by uniform random
sampling or by sampling a superimposed equilateral triangular grid or by
constructing an ordinary CVT;

1. construct the Voronoi tessellation {Vi}Ki=1 of Ω associated with {zi}Ki=1;
2. compute the (ordinary) mass centroids of the Voronoi regions {Vi}ki=1 found

in step 1;
3. move the points {zi}ki=1 to the centroid positions;
4. determine the boundary and corner Voronoi regions;
5. if Vk is a boundary region, move zk to its projection onto the boundary Γ;
6. if Vk is a corner region, move zk to the corner;
7. if the new points meet some convergence criterion, terminate; otherwise,
return to step 1.

We have found that we obtain slightly better results if we amend this algorithm
by defining the Voronoi regions for an extension Ωε of the domain Ω instead
of for Ω itself. The centroids nearest the boundary of an unconstrained CVT
tend to line up with the boundary at a nearly uniform distance from the
boundary. In Algorithm 1, these centroids are pulled to the boundary resulting
in a certain amount of mesh distortion. By using a slightly larger domain, in
Algorithm 2 described below, an attempt is made to find a slightly larger
region for which the unconstrained centroids will nearly fall on the original
boundary.

The effect of using an extended domain is that the (ordinary) centroids of
the boundary Voronoi regions are located nearer the boundary of the original
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domain Ω than when one uses Algorithm 1. Of course, we still project those
centroids onto the boundary of Ω since that is where we want the boundary
points to be located. We now describe the amended algorithm.

Given ε > 0 and a bounded, closed domain Ω ⊂ R2, the ε-expansion Ωε of Ω is
a set of points whose distances to Ω are less than or equal to ε. In Algorithm
2, ε is determined adaptively. To keep things simple, we consider the case of
constant densities.

Algorithm 2 (Modified CCVT) Given a bounded domain Ω ⊂ RN and a
mesh size δ, set ε = 0 and Ωε = Ω. Then,

0. select an initial set of K points {zi}Ki=1 in Ω, e.g., by uniform random
sampling or by sampling a superimposed equilateral triangular grid;

1. construct the (ordinary) CVT of Ωε as follows:
i. determine the Voronoi tessellation {Vi}Ki=1 of Ωε corresponding to the
points {zi}Ki=1;

ii. determine the (ordinary) centers of mass of the Voronoi regions {Vi}Ki=1;
iii. move the points {zi}Ki=1 to the centroid positions;
iv. if the new points meet some convergence criteria, go to step 2; otherwise,

return to step 1i;
2. determine εnew, the average of the distances from the centroids of each

boundary Voronoi region of step 1 to the furthest point of that region;
3. if |εnew − ε| is less than a prescribed tolerance, go to step 4; otherwise, set
ε=εnew, determine the ε expansion Ωε of the domain Ω, and return to step
1;

4. use Algorithm 1 to construct the CCVT on the ε-expansion Ωε of Ω, ex-
cept that in step 5 of that algorithm, the centroids of the boundary Voronoi
regions are projected onto the boundary of Ω (and not the boundary of Ωε).

3 Measures of mesh quality

In order to effect comparisons between triangulations obtained using the al-
gorithms of §2 and §4, we use several quality measures of mesh uniformity
that have been suggested in the literature. Here, we briefly discuss the quality
measures we use, confining ourselves to the uniform grid case. All measures
apply to a given set of K points {zk}Kk=1 belonging to the region Ω ∈ R2. See
[1,3,13,18–20] for additional details. For any point set, all the mesh quality
measures we describe are non-negative and have an ideal value zero. Thus, in
all cases, the smaller the value of the measure, the more uniform is the point
distribution, at least according to the measure being used. Note that although
the definitions of some of the quality measures are given for the planar case
only, they can be extended to apply to meshes in higher dimensions.
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The definition of some of the quality measures of the uniformity of point
sets involve moments of regions in Euclidean space. Given a region V in N -
dimensional Euclidean space, the zeroth moment or volume of V (a scalar) is
defined by

|V | =
∫
V
dx,

the first moment or the center of mass or the centroid of V (a vector) is defined
by

z =
1

|V |

∫
V

x dx,

the second moment (relative to its center of mass) of V (a tensor) is defined
by

M =
1

|V |

∫
V

(x− z)(x− z)T dx .

The deviatoric tensor associated with V is given by

D = M−mI,

where I denotes the identity tensor, m = T/N , and T = trace(M).

3.1 Quality measures based on the coordinates of the points

We first consider measures that depend directly on the coordinates of the
points in the given set {zk}Kk=1.

The covariance (COV) measure λ. Given a set of K points {zi}Ki=1 in R2,
let

γk = min
j=1,...,K, j 6=k

|zk − zj| for k = 1, . . . , K and γ =
1

K

K∑
k=1

γk

so that γk is the minimum distance between the point zk and any of the other
points. Then, the COV (covariance) measure λ is given by

λ =
1

γ

(
1

K

K∑
k=1

(γk−γ)2
)1/2

=

(
−1+

1

γ2K

K∑
k=1

γ2
k

)1/2

=

K ∑K
k=1 γ

2
k(∑K

k=1 γk
)2−1

1/2

.

For an ideal uniform mesh, γ1 = γ2 = · · · = γK = γ so that λ = 0. Thus, the
smaller the value of λ, the more uniform the mesh.

The mesh ratio γ. Given a set of K points {zk}Kk=1 in R2, the mesh ratio γ
is given by

γ =

 max
k=1,...,K

γk

min
k=1,...,K

γk

− 1.
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For an ideal uniform mesh, γ1 = γ2 = · · · = γK so that, ideally, γ = 0. Thus,
the smaller the value of γ, the more uniform is the point distribution.

3.2 Quality measures based on the Voronoi regions

Given a set of K points {zk}Kk=1 in a region Ω, we can use those points to
generate a Voronoi tessellation {Vk}Kk=1 of Ω. We can then associate with
each point a corresponding Voronoi region and use those regions to determine
various quantities that can be used to measure the quality of the set of points.

The point distribution measure h. Given a Voronoi tessellation {zk, Vk}Kk=1,
let

h̃ = max
k=1,...,K

hk, where hk = max
y∈Vk

|zk − y| for k = 1, . . . , K.

Thus, hk gives the maximum distance between the particular generator zk and
the points in its associated cell Vk and h̃ gives the maximum distance between
any generator and the points in its associated Voronoi cell. The ideal value h∗

of h̃ is that for a tessellation into congruent regular hexagons in which case
h∗ = (

√
12|Ω|/9K)1/2 ≈ 0.6204(|Ω|/K)1/2, where |Ω| denotes the area of Ω.

The point distribution measure h is then given by

h =
h̃

h∗
− 1 =

( 9K√
12|Ω|

)1/2

h̃

− 1.

Ideally, h = 0 so that the smaller the value of h, the more uniform is the point
distribution.

The point distribution ratio µ. Given a Voronoi tessellation {zk, Vk}Ki=k,
the point distribution ratio µ is given by

µ =

 max
k=1,...,K

hk

min
k=1,...,K

hk

− 1.

For an ideal uniform point set, µ = 0 so that the smaller the value of µ, the
more uniform is the point distribution.

The regularity measure χ. Given a Voronoi tessellation {zk, Vk}Kk=1, the
regularity measure χ is given by

χ =
(

max
k=1,...,K

χk

)
− 1, where χk =

√
3hk
γk

for k = 1, . . . , K.

13



For an ideal uniform, regular hexagonal mesh, hk = h̃ and γk =
√

3h̃ for all k
and thus χk = 1 for all k so that, ideally, χ = 0. Thus, the smaller χ is, the
more uniform is the point distribution. In addition, the value of χ provides us
a measure of the mesh regularity, i.e., the local uniformity of a mesh. Again, if
a mesh is locally uniform in the sense that the cells in a neighborhood of any
cell are nearly congruent to that cell, then the value of χ will again be small.

Cell volume deviation ν. Given a Voronoi tessellation {zk, Vk}Kk=1, the cell
volume deviation ν is given by

ν =

 max
k=1,...,K

|Vk|

min
k=1,...,K

|Vk|

− 1,

where |Vk| denotes the volume of the Voronoi cell Vk. For an ideal uniform
mesh, the volumes |Vk| would all be equal, i.e., |V |1 = |V |2 = · · · = |V |K so
that ν = 0. Thus, the smaller the value of ν, the more uniform is the point
distribution. Note that both boundary and interior Voronoi cells are included
in the determination of ν; smaller values of ν can be obtained for all methods
if one discriminates between the two types of cells.

The second moment trace measure τ . Given a Voronoi tessellation {zk, Vk}Kk=1,
let τk denote the trace of the second moment tensor associated with each
Voronoi region Vk. Let τ = 1

K

∑K
k=1 τk denote the average of the trace over the

K regions. Then, the second moment trace measure τ is given by

τ = max
k=1,...,K

|τk − τ |.

For an ideal uniform mesh, τ1 = τ2 = · · · = τK = τ so that, ideally, τ = 0.
Thus, the smaller the value of τ , the more uniform is the point distribution.

The second moment determinant measure d. Given a Voronoi tessella-
tion {zk, Vk}Kk=1, let Dk denote the determinant of the deviatoric tensor as-
sociated with each Voronoi region Vk. Then, the second moment determinant
measure d is given by

d = max
k=1,...,K

|Dk|.

For an ideal uniform mesh, D1 = D2 = · · · = DK = 0 so that d = 0. Thus,
the smaller the value d, the more uniform is the mesh.

3.3 Quality measures based on the Delaunay triangulation

Given a set of K points {zk}Kk=1 in a region Ω, we can use those points to

generate a Delaunay triangulation {4j}K̃j=1 of Ω. We can use the triangles 4j,
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j = 1, . . . , K̃, to determine various quantities that can be used to measure
the quality of the set of points. If the points are to be used as nodes for, e.g.,
a finite element discretization of a partial differential equation, then perhaps
these measures are of the most direct relevance since they directly involve the
triangles.

Maximum area measure α. Given a Delaunay triangulation {4j}K̃j=1 cor-
responding to the point set {zk}Kk=1, let |4j| denote the area of the triangle
4j. Then, the maximum area measure is defined by

α =

(
K̃

|Ω|
max

j=1,...,K̃

|4j|
)
− 1.

For an ideal uniform mesh, |41| = |42| = · · · = |4
K̃
| = |Ω|/K̃ so that,

ideally, α = 0. Thus, the smaller the value of α, the more uniform is the point
distribution.

Minimum angle measure β. Given a Delaunay triangulation {4j}K̃j=1 cor-
responding to the point set {zk}Kk=1, let βj denote the minimum angle of the
triangle 4j. Note that βj ≤ π/3 radians. Then, the minimum angle measure
is defined by

β =

 π/3

min
j=1,...,K̃

βj

− 1.

For an ideal uniform mesh, β1 = β2 = · · · = β
K̃

= β = π/3 radians so that,
ideally, β = 0. Thus, the smaller the value of β, the more uniform is the point
distribution.

Circle ratio measure q. Given a Delaunay triangulation {4j}K̃j=1 corre-
sponding to the point set {zk}Kk=1, let qj denote half the ratio of the radius
rj of the inscribed circle to the radius Rj of the circumscribed circle of the
triangle 4j, i.e.,

qj =
Rj

2rj
=

abc

(b+ c− a)(c+ a− b)(a+ b− c)
for j = 1, . . . , K̃,

where a, b, and c denote the lengths of the sides of the triangle ∆j. Note that
qj ≥ 1. Then, the circle ratio measure is given by

q =

(
max

j=1,...,K̃

qj

)
− 1.

For an ideal uniform mesh, q1 = q2 = · · · = q
K̃

= 1 so that, ideally, q = 0.
Thus, the smaller the value of q, the more uniform is the point distribution.
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The normalized standard deviation measure p. Given a Delaunay tri-

angulation {4j}K̃j=1 corresponding to the point set {zk}Kk=1, let Rj denote the
radius of the circumscribed circle. Let

R =
1

K̃

K̃∑
j=1

Rj and Rstd = standard deviation of Rj over j = 1, . . . , K̃.

Then, the normalized standard deviation measure is given by

p =
Rstd

R
.

For an ideal uniform mesh, R1 = R2 = · · · = R
K̃

= R so that p = 0. Thus,
the smaller the value of p, the more uniform is the point distribution.

4 Computational experiments

We now turn to the second goal of the paper, namely, comparing several
methods for generating uniform triangular meshes on general regions in R2.
We will apply the methods to a variety of test problems, using several measures
of quality to evaluate their relative merits; the specific measures we use are
those described in §3. We first list the mesh generation methods we will test
in addition to, of course, CCVT.

TRIANGLE. A well-known triangular mesh generator is the TRIANGLE
method of [17–19]. An initial Delaunay triangulation is refined by halving
edges and/or inserting circumcenters in such a way that triangles having an
area greater than a specified area are subdivided and angles smaller than a
specified angle are eliminated.

DISTMESH. In the DISTMESH method, a Delaunay triangulation is viewed
as a system of point masses connected by springs. The point masses are moved
from an initial position so that a static equilibrium is achieved.

MESHGEN. The MESHGEN method is a variant of CVT methods; see
[14,16]. Voronoi regions are approximated by the easier-to-construct region
formed by joining the circumcenters of acute triangles and the mid-sides of
the longest sides of obtuse triangles that surround a vertex in the triangulation.

VTM. The variational tetrahedral meshing (VTM) method of [1] is another
variant of CVT methods. Instead of working with Voronoi regions associated
with the points, one instead considers patches of Delaunay triangles that sur-
round each point. Unlike the CVT case, the cells associated with the points
overlap.
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There are triangulation methods in addition to those listed above, e.g., the
Laplacian smoothing method proposed in [12] that is useful for improving
mesh quality and the ODT (optimal Delaunay triangulation) method pro-
posed in [4]. ODTs minimize the interpolation error among all triangulations
with the same number of vertices. It is very similar to CVTs, but there is
so far no convergence theory available for the local patch iteration used in
computing ODTs such as is available for Lloyd’s algorithm for CVTs [5]. The
same comment applies to the Laplace smoothing method; in this regard, only
CVT is a proven technology.

4.1 Results and discussion

Uniform triangulations of several regions in the plane have been determined
using the methods just listed as well as the two CVT algorithms presented
in §2.4. Many of these test cases were drawn from [17–20]. These examples
contain features, e.g., acute and obtuse corners, non-convexity, holes, etc., that
are representative of what one encounters in practice. Figures 3–7 provide
means for visually comparing the meshes produced by the various methods.
Quantitative comparison using the 12 grid-quality measures listed in §3 are
found in Tables 1–12. In the tables, K and K̃ refer to the number of vertices
and the number of triangles, respectively, in the triangulations. 3

From the figures and tables, one concludes that all the methods tested yield
good results. In most cases (with perhaps the TRIANGLE algorithm being
the exception), both visual and quantitative comparisons show that the qual-
ity of the grids produced by the methods is pretty much indistinguishable. If
one were to keep score of which method is best for each domain and for each
quality measure, one finds that DISTMESH and the second CCVT algorithm
do “best,” with the latter being slightly “better.” However, the differences be-
tween the performance of the methods (with again the TRIANGLE algorithm
being a possible exception) are statistically insignificant. What does seem to

3 In the figures and tables, the number of vertices for the results for TRIANGLE
are often different from those for the other methods. The cause of this difference is
that for TRIANGLE, unlike what is the case for the other methods, the user does
not have direct control of the number of vertices. We have endeavored to adjust
the parameters used in TRIANGLE so that the number of vertices is very close to
those used for the other methods. An additional note about TRIANGLE is that,
unlike the other methods, it implements a strategy that attempts to avoid having
three vertices of a triangle to all be boundary points so that no triangle is missed
in a finite element method. That is the reason for relatively high concentration of
points in the top-left figure in Figure 5. As the number of points gets larger and
larger, this feature will disappear. We point this out since it may account for the
unusually poor relative performance of TRIANGLE for this example; see Table 7.
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be clear is that CVT-based uniform triangulations of planar regions are at
least as good as those generated using the other methods considered.

In this paper, we presented two CVT-based algorithms for the triangulation of
general planar regions. The reason we have confined ourselves to examples in-
volving uniform triangulations is that, for this case, several quantitative mesh-
quality measures are available in the literature. This enabled us to not only
make visual comparisons between different triangulation methods, but to also
make perhaps more discriminating numerical comparisons. For more general
grid generation settings, e.g., non-uniform grids, such quantitative compar-
isons are much more difficult, if not impossible, to either make or interpret.
However, most (but not all) of the methods considered have been or can be ex-
tended to at least some additional settings such as three-dimensional grid gen-
eration, surface grid generation, non-uniform grid generation, and anisotropic
grid generation, including, in the last two cases, adaptive mesh refinement. It
is possible that noticeable quality differences between the methods may ap-
pear if one compares them for these settings. CVT-based grid generation has
been extended in all of these directions, with some results being presented in
[2,9–11,14,16]. Current efforts are being devoted to the further development
of CVT-based grid generation algorithms for all the settings just listed.

References

[1] P. Alliez, D. Cohen-Steiner, M. Yvinec, and M. Desbrun, Variational
tetrahedral meshing, Proc. ACM SIGGRAPH’05, 2005, pp. 617-625.

[2] P. Alliez, T. De Verdiere, O. Devillers O, and M. Isengurg,
Centroidal Voronol diagrams for isotropic surface remeshing, Graph. Model 67
2005, pp. 204-231.

[3] J. Burkardt, M. Gunzburger, Janet Peterson, and R. Brannon, User
manual and supporting information for library of codes for centroidal Voronoi
point placement and associated zeroth, first, and second moment determination,
SAND Report SAND2002-0099, Sandia National Laboratories, Albuquerque,
2002.

[4] L. Chen and J. Xu, Optimal Delaunay triangulation, J. Comp. Math. 22
2004, pp. 299-308.

[5] Q. Du, M. Emelianenko, and L. Ju, Convergence of the Lloyd algorithm
for computing centroidal Voronoi tessellations, SIAM J. Numer. Anal. 44 2006,
pp. 102-119.

[6] Q. Du, V. Faber, and M. Gunzburger, Centroidal Voronoi tessellations:
Applications and algorithms, SIAM Review 41 1999, pp. 637-676.

18



[7] Q. Du and M. Gunzburger, Grid generation and optimization based on
centroidal Voronoi tessellations, Appl. Math. Comptut. 133 2002, pp. 591-607.

[8] Q. Du, M. Gunzburger, and L. Ju, Voronoi-based finite volume methods,
optimal Voronoi meshes and PDEs on the sphere, Comp. Meth. Appl. Mech.
Engrg. 192 2003, pp. 3933-3957.

[9] Q. Du, M. Gunzburger, and L.-L. Ju, A constrained centroidal Voronoi
tessellations on surfaces, SIAM J. Sci. Comput. 24 2003, pp. 1488-1506.

[10] Q. Du and D. Wang, Tetrahedral mesh generation and optimization based
on centroidal Voronoi tessellations, Int. J. Numer. Meth. Engrg. 56 2003, pp.
1355-1373.

[11] Q. Du and D. Wang, Anisotropic centroidal Voronoi tessellations and their
applications, SIAM J. Sci. Comput. 26 2005, pp. 737-761.

[12] D. Field, Laplacian smoothing and Delaunay triangulation, Comm. Appl.
Numer. Meth. 4 1988, pp. 709-712.

[13] D. Field, Qualitative measures for initial meshes, Inter. J. Numer. Meth.
Engrg. 47 2000, pp. 887-906.

[14] L. Ju, Conforming centroidal Voronoi Delaunay triangulation for quality mesh
generation, Inter. J. Numer. Anal. Model., to appear.

[15] L. Ju, Q. Du, and M. Gunzburger, Meshfree, probabilistic determination of
point sets and support regions for meshless computing, Comput. Meths. Appl.
Mech. Engrg. 191 2002, pp. 1349-1366.

[16] L. Ju, M. Gunzburger, and W. Zhao, Adaptive finite element methods for
elliptic PDEs based on conforming centroidal Voronoi Delaunay triangulations,
SIAM J. Sci. Comput., to appear.

[17] J. Shewchuk, Triangle: Engineering a 2D quality mesh generator and
Delaunay triangulator, Lecture Notes in Comput. Sci. 1148, Springer, New
York, 1996, pp. 203-222

[18] J. Shewchuk, Delaunay refinement algorithms for triangular mesh generation,
Comput. Geom.: Theory Appl. 22 May 2002, pp. 21-74.

[19] J. Shewchuk, What is a good linear finite element? Interpolation,
conditioning, anisotropy and quality measures, Technical Report, Department
of Computer Science, University of California, Berkeley, 2003.

[20] P.-O. Persson and G. Strang, A simple mesh generator in Matlab, SIAM
Rev. 46 2004, pp. 329-345.

19



Fig. 3. Meshes for a unit circle; from top to bottom: TRIANGLE, DISTMESH,
MESHGEN, VTM, CCVT-Algorithm1, CCVT-Algorithm2.
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Fig. 4. Meshes for an anulus, a square with a circular hole, and hexagon with a
hexagonal hole: from top to bottom: TRIANGLE, DISTMESH, MESHGEN, VTM,
CCVT-Algorithm1, CCVT-Algorithm2.
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Fig. 5. Meshes for a “horn,” a super-ellipse, and a “bicycle seat;” from top to bot-
tom: TRIANGLE, DISTMESH, MESHGEN, VTM, CCVT-Algorithm1, CCVT-Al-
gorithm2.
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Fig. 6. Meshes for a “pie-slice” with a circular hole and a square with 2 hexag-
onal holes; from top to bottom: TRIANGLE, DISTMESH, MESHGEN, VTM,
CCVT-Algorithm1, CCVT-Algorithm2.
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Fig. 7. Meshes for a “lake” with an island; from left to right, top to bottom: TRI-
ANGLE, DISTMESH, MESHGEN, VTM, CCVT-Algorithm1, CCVT-Algorithm2.
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Table 1
Grid-quality measures for circle (coarsest mesh)

triangle distmesh meshgen vtm ccvt(1) ccvt(2)

K 18 19 19 19 19 19

K̃ 22 24 24 24 24 24

λ× 102 0.38 5.15 5.33 5.75 4.77 4.80

γ × 10 0.10 1.38 1.60 1.59 1.23 1.23

h× 10 6.12 2.83 2.89 2.83 2.86 2.87

µ× 10 2.08 1.26 1.07 1.38 1.14 1.13

χ× 10 4.05 2.30 2.37 2.40 2.23 2.24

ν 1.93 1.66 1.68 1.65 1.62 1.60

τ × 103 6.49 3.29 3.24 3.36 3.33 3.34

d× 106 2.50 3.41 3.90 3.33 3.31 3.30

α× 10 6.16 0.99 1.11 0.97 0.96 0.95

β × 10 3.41 2.40 2.68 2.41 2.27 2.25

q × 10 2.05 0.64 0.75 0.53 0.53 0.53

p× 102 11.50 3.60 3.70 3.50 3.70 3.70
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Table 2
Grid-quality measures for circle (medium mesh).

triangle distmesh meshgen vtm ccvt(1) ccvt(2)

K 86 88 88 88 88 88

K̃ 146 143 144 143 143 146

λ× 10 1.10 0.61 0.83 1.02 0.57 0.59

γ × 10 5.84 2.19 2.92 4.51 2.02 2.94

h× 10 4.93 2.66 2.32 2.66 2.35 2.47

µ× 10 5.21 2.12 1.48 2.71 1.68 2.15

χ× 10 7.45 3.48 4.01 4.54 3.02 3.35

ν 2.47 1.83 2.12 2.42 1.95 1.59

τ × 104 6.87 6.33 6.16 6.36 6.51 5.02

d× 107 2.29 0.91 1.05 0.98 1.00 1.30

α× 10 4.82 1.62 1.55 2.51 2.18 2.14

β 1.01 0.49 0.49 0.52 0.43 0.48

q 1.04 0.37 0.25 0.37 0.20 0.28

p× 102 12.30 4.00 3.60 4.30 3.50 3.80
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Table 3
Grid-quality measures for circle (finest mesh).

triangle distmesh meshgen vtm ccvt(1) ccvt(2)

K 362 362 362 362 362 362

K̃ 661 661 657 650 651 661

λ× 10 0.98 0.51 0.79 1.07 0.85 0.51

γ × 10 5.48 2.56 4.39 5.47 3.75 3.18

h× 10 4.85 1.42 1.87 1.65 1.80 1.66

µ× 10 8.75 1.48 2.42 3.84 2.10 1.86

χ× 10 8.89 3.04 4.76 5.46 5.26 2.82

ν 3.25 1.73 2.24 3.14 2.26 1.86

τ × 104 2.06 1.54 1.84 2.03 1.85 1.51

d× 108 1.09 0.60 0.63 0.47 0.45 0.63

α× 10 5.15 1.36 2.55 2.25 2.60 1.87

β 1.22 0.44 0.66 0.72 0.74 0.40

q × 10 9.61 2.66 3.51 5.15 3.70 2.20

p× 102 13.30 2.20 2.80 3.70 2.90 2.90
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Table 4
Grid-quality measures for an anulus.

triangle distmesh meshgen vtm ccvt(1) ccvt(2)

K 303 303 303 303 303 303

K̃ 520 520 519 507 508 524

λ× 10 0.75 0.49 0.72 1.00 0.94 0.39

γ × 10 5.21 3.03 5.77 6.18 5.81 2.81

h× 10 5.34 2.58 2.99 3.80 2.62 2.29

µ× 10 6.63 2.39 3.08 4.08 2.29 2.22

χ× 10 8.83 3.43 5.12 9.86 7.20 2.71

ν 3.46 1.90 2.35 3.30 2.03 1.75

τ × 104 2.34 1.59 1.98 1.93 1.70 1.36

d× 109 8.69 6.80 8.44 5.66 6.00 8.41

α× 10 4.93 2.30 1.91 4.68 1.98 2.36

β 1.00 0.51 0.71 1.32 1.02 0.40

q 7.54 3.33 4.49 9.61 3.16 2.20

p× 102 12.20 3.20 4.70 6.50 3.70 3.80
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Table 5
Grid-quality measures for a square with a circular hole.

triangle distmesh meshgen vtm ccvt(1) ccvt(2)

K 193 194 194 194 194 194

K̃ 313 315 308 308 308 320

λ× 10 0.83 0.64 0.99 0.96 1.02 0.50

γ × 10 4.51 3.19 5.32 6.80 4.91 3.57

h× 10 5.54 2.24 5.03 4.34 2.69 2.66

µ× 10 5.63 1.73 5.27 4.33 2.69 2.07

χ× 10 8.31 4.19 10.37 8.22 5.62 3.90

ν 6.03 4.87 5.87 6.60 5.71 4.77

τ × 103 2.50 2.39 2.48 2.44 2.39 2.35

d× 107 9.02 5.77 5.94 2.75 1.88 7.44

α× 10 5.18 1.84 1.24 5.65 2.77 2.33

β 1.13 0.65 0.72 0.86 0.77 0.55

q × 10 6.67 2.50 4.71 6.67 3.33 2.82

p× 102 12.90 2.90 4.60 7.10 3.60 4.20
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Table 6
Grid-quality measures for a hexagon with a hexagonal hole.

triangle distmesh meshgen vtm ccvt(1) ccvt(2)

K 242 240 240 240 240 240

K̃ 412 385 385 381 381 393

λ× 10 1.10 0.62 0.90 0.91 0.84 0.53

γ × 10 6.91 3.81 4.98 4.27 4.25 2.99

h× 10 6.91 3.81 4.98 4.27 4.25 2.99

µ× 10 5.45 2.07 2.29 3.89 1.96 2.62

χ× 10 9.45 5.17 6.06 7.46 5.62 4.90

ν 4.21 3.01 3.48 3.55 3.40 3.31

τ × 104 8.83 9.25 9.19 8.98 8.94 8.47

d× 107 3.36 1.53 1.09 0.94 0.72 1.72

α× 10 4.68 2.81 2.15 4.65 2.80 2.10

β 0.99 0.69 0.86 1.00 0.74 0.53

q 1.00 0.37 0.30 0.69 0.39 0.37

p× 102 11.60 3.60 4.60 6.00 4.30 4.20
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Table 7
Grid-quality measures for a “horn”-shaped region.

triangle distmesh meshgen vtm ccvt(1) ccvt(2)

K 137 138 138 138 138 138

K̃ 213 219 216 214 214 224

λ× 10 2.09 1.30 1.18 1.20 1.01 0.93

γ 4.42 3.99 1.21 1.22 1.24 1.32

h× 10 6.19 3.06 4.06 3.70 3.93 2.40

µ 4.23 0.26 0.51 0.51 0.48 0.22

χ 1.68 4.21 1.54 0.93 0.93 1.16

ν 78.65 13.80 7.44 8.17 7.66 6.74

τ × 103 1.37 1.09 1.13 1.09 1.09 1.08

d× 107 3.45 1.37 2.99 0.95 0.87 1.61

α× 10 7.24 2.90 4.79 3.42 3.27 2.58

β 0.96 5.16 1.90 1.10 1.12 1.37

q 1.08 2.57 0.89 0.61 0.64 0.49

p× 102 20.30 6.50 8.10 6.00 5.50 3.70
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Table 8
Grid-quality measures for a super-ellipse.

triangle distmesh meshgen vtm ccvt(1) ccvt(2)

K 505 505 505 505 505 505

K̃ 882 882 868 864 862 873

λ× 10 0.90 0.48 1.07 1.02 1.07 0.71

γ × 10 5.09 3.45 5.63 6.19 6.84 8.72

h× 10 4.88 2.07 2.67 4.21 3.10 2.64

µ× 10 6.20 1.83 2.70 4.59 2.87 2.47

χ× 10 7.93 3.82 7.28 8.35 8.45 9.90

ν 3.20 2.11 2.97 3.91 3.56 2.17

τ × 104 5.28 3.85 4.82 5.87 5.50 4.57

d× 108 5.54 5.24 3.44 4.76 3.27 5.00

α× 10 5.21 1.94 3.39 4.67 2.42 2.39

β 0.94 0.46 1.12 1.14 0.88 1.06

q 0.96 0.27 0.41 1.08 0.59 0.33

p× 102 11.40 3.00 4.30 6.00 4.00 3.80
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Table 9
Grid-quality measures for a “bike” seat-shaped region.

triangle distmesh meshgen vtm ccvt(1) ccvt(2)

K 137 136 136 136 136 136

K̃ 222 220 220 210 213 219

λ× 10 0.75 0.53 0.74 1.29 1.12 1.08

γ × 10 4.07 2.73 3.82 7.97 5.21 8.48

h 6.40 3.13 3.11 4.49 3.56 2.76

µ× 10 6.52 2.41 2.45 3.48 2.76 2.90

χ 0.82 0.39 0.48 1.04 0.65 0.86

ν 3.71 2.67 3.12 4.71 3.51 4.40

τ × 102 5.55 5.30 5.54 5.69 4.98 6.08

d× 104 3.99 3.83 4.51 3.26 2.78 3.46

α× 10 5.31 2.27 1.85 5.04 4.04 2.10

β 1.00 0.55 0.70 1.30 0.90 1.04

q × 10 8.87 2.66 3.16 6.67 4.71 4.08

p× 102 13.70 3.70 4.50 6.40 4.50 4.60
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Table 10
Grid-quality measures for a “pie slice”-shaped regions with a hole.

triangle distmesh meshgen vtm ccvt(1) ccvt(2)

K 285 287 287 287 287 287

K̃ 470 474 479 452 451 484

λ× 10 0.89 0.66 0.88 1.53 1.40 0.69

γ 0.44 0.38 0.63 1.13 0.81 0.57

h× 10 5.99 3.98 4.42 7.97 4.06 3.32

µ× 10 6.96 4.78 3.28 7.66 2.92 2.43

χ 0.84 0.42 0.59 1.87 0.95 0.58

ν 21.47 18.73 12.55 20.70 15.15 11.95

τ × 104 1.24 1.20 1.13 1.14 1.12 1.14

d× 109 2.81 1.84 1.19 0.97 0.51 1.37

α 0.71 0.36 0.66 1.04 0.49 0.54

β 1.00 1.00 1.00 2.42 1.28 1.00

q 1.13 1.13 0.75 1.08 1.04 0.56

p× 102 11.70 4.30 5.50 10.30 5.80 4.10
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Table 11
Grid-quality measures for a square with 2 hexagonal holes.

triangle distmesh meshgen vtm ccvt(1) ccvt(2)

K 202 203 203 203 203 203

K̃ 336 338 339 334 332 343

λ× 10 1.09 0.94 1.19 1.42 1.32 0.59

γ × 10 8.33 7.15 8.59 8.75 8.18 3.22

h× 10 5.65 3.86 2.88 3.34 3.62 3.16

µ 1.01 0.31 0.36 0.53 0.45 0.30

χ 1.07 0.82 1.05 1.17 0.95 0.47

ν 5.82 4.88 5.98 6.52 7.02 4.50

τ × 104 6.30 6.12 6.53 6.28 6.42 6.13

d× 108 5.80 8.56 3.56 4.49 5.79 8.27

α× 10 5.76 4.65 3.45 4.04 4.30 4.03

β 1.00 0.95 1.09 1.60 1.10 0.53

q × 10 5.38 3.70 4.08 8.18 5.15 2.50

p× 102 13.10 3.60 4.10 6.20 4.90 4.20
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Table 12
Grid-quality measures for a “lake” with an island.

triangle distmesh meshgen vtm ccvt(1) ccvt(2)

K 1109 1109 1109 1109 1109 1109

K̃ 2020 1979 2004 1948 1945 1986

λ× 10 1.02 0.89 0.94 1.51 1.35 0.80

γ 0.80 1.50 0.71 3.33 4.28 1.27

h× 10 5.43 3.03 3.20 4.26 3.52 2.73

µ× 10 8.60 3.15 3.53 8.67 4.70 3.52

χ 0.97 1.40 0.82 2.92 4.14 1.20

ν 5.07 5.50 3.55 9.65 8.50 4.46

τ 14.11 14.89 12.97 15.71 14.71 13.49

d 71.85 32.15 49.78 42.46 39.06 31.36

α× 10 5.43 3.03 3.40 7.49 5.69 2.80

β 1.16 1.77 1.15 3.74 5.15 1.58

q 1.18 0.73 0.44 2.02 2.71 0.73

p× 10 1.27 0.33 0.56 0.66 0.45 0.39
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