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Abstract

One of the earliest and most well known problems in computational geometry is the so-
called art gallery problem. The goal is to compute the minimum possible number guards
placed on the vertices of a simple polygon in such a way that they cover the interior of
the polygon.

In this paper we consider the problem of guarding an art gallery which is modeled
as a polygon with curvilinear walls. Our main focus is on polygons the edges of which
are convex arcs pointing towards the exterior or interior of the polygon (but not both),
named piecewise-convex and piecewise-concave polygons. We prove that, in the case of
piecewise-convex polygons, if we only allow vertex guards, ⌊ 4n

7
⌋− 1 guards are sometimes

necessary, and ⌊ 2n

3
⌋ guards are always sufficient. Moreover, an O(n logn) time and O(n)

space algorithm is described that produces a vertex guarding set of size at most ⌊ 2n

3
⌋.

When we allow point guards the afore-mentioned lower bound drops down to ⌊n

2
⌋. In the

special case of monotone piecewise-convex polygons we can show that ⌊n

2
⌋ vertex guards

are always sufficient and sometimes necessary; these bounds remain valid even if we allow
point guards.

In the case of piecewise-concave polygons, we show that 2n − 4 point guards are
always sufficient and sometimes necessary, whereas it might not be possible to guard
such polygons by vertex guards. We conclude with bounds for other types of curvilinear
polygons and future work.
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1 Introduction

Consider a simple polygon P with n vertices. How many points with omnidirectional visi-
bility are required in order to see every point in the interior of P? This problem, known as
the art gallery problem has been one of the earliest problems in Computational Geometry.
Applications areas include robotics [20, 35], motion planning [23, 27], computer vision and
pattern recognition [31, 36, 2, 32], graphics [25, 7], CAD/CAM [4, 15] and wireless networks
[16]. In the late 1980’s to mid 1990’s interest moved from linear polygonal objects to curvi-
linear objects [34, 9, 11, 10] — see also the paper by Dobkin and Souvaine [13] that extends
linear polygon algorithms to curvilinear polygons, as well as the recent book by Boissonnat
and Teillaud [3] for a collection of results on non-linear computational geometry beyond art
gallery related problems. In this context this paper addresses the classical art gallery problem
for various classes of polygonal regions the edges of which are arcs of curves. To the best of
our knowledge this is the first time that the art gallery problem is considered in this context.

The first results on the art gallery problem or its variations date back to the 1970’s.
Chvátal [8] was the first to prove that a simple polygon with n vertices can be always guarded
with ⌊n3 ⌋ vertices; this bound is tight in the worst case. The proof by Chvátal was quite te-
dious and Fisk [18] gave a much simpler proof by means of triangulating the polygon and
coloring its vertices using three colors in such a way so that every triangle in the triangulation
of the polygon does not contain two vertices of the same color. The algorithm proposed by
Fisk runs in O(T (n)+n) time, where T (n) is the time to triangulate a simple polygon. Follow-
ing Chazelle’s linear-time algorithm for triangulating a simple polygon [5, 6], the algorithm
proposed by Fisk runs in O(n) time. Lee and Lin [21] showed that computing the minimum
number of vertex guards for a simple polygon is NP-hard, which was extended to point guards
by Aggarwal [1]. Soon afterwards other types of polygons were considered. Kahn, Klawe and
Kleitman [19] showed that orthogonal polygons of size n, i.e., polygons with axes-aligned
edges, can be guarded with ⌊n4 ⌋ vertex guards, which is also a lower bound. Several O(n)
algorithms have been proposed for this variation of the problem, notably by Sack [29], who
gave the first such algorithm, and later on by Lubiw [24]. Edelsbrunner, O’Rourke and Welzl
[14] gave a linear time algorithm for guarding orthogonal polygons with ⌊n4 ⌋ point guards.

Beside simple polygons and simple orthogonal polygons, polygons with holes, and orthog-
onal polygons with holes have been investigated. As far as the type of guards is concerned,
edge guards and mobile guards have been considered. An edge guard is an edge of the polygon,
and a point is visible from it if it is visible from at least one point on the edge; mobile guards
are essentially either edges of the polygon, or diagonals of the polygon. Other types of guard-
ing problems have also been studied in the literature, notably, the fortress problem (guard
the exterior of the polygon against enemy raids) and the prison yard problem (guard both the
interior and the exterior of the polygon which represents a prison: prisoners must be guarded
in the interior of the prison and should not be allowed to escape out of the prison). For
a detailed discussion of these variations and the corresponding results the interested reader
should refer to the book by O’Rourke [28], the survey paper by Shermer [30] and the book
chapter by Urrutia [33].

In this paper we consider the original problem, that is the problem of guarding a simple
polygon. We are primarily interested in the case of vertex guards, although results about
point guards are also described. In our case, polygons are not required to have linear edges.
On the contrary we consider polygons that have smooth curvilinear edges. Clearly, these
problems are NP-hard, since they are direct generalizations of the corresponding original art
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gallery problems. In the most general setting where we impose no restriction on the type of
edges of the polygon, it is very easy to see that there exist curvilinear polygons that cannot
be guarded with vertex guards, or require an infinite number of point guards (see Fig. 23(b)).
Restricting the edges of the polygon to be locally convex curves, pointing towards the exterior
of the polygon (i.e., the polygon is a locally convex set, except possibly at the vertices) we can
construct polygons that require a minimum of n vertex or point guards, where n is the number
of vertices of the polygon (see Fig. 23(a)); in fact such polygons can always be guarded with
their n vertices. The main focus of this paper is the class of polygons that are either locally
convex or locally concave (except possibly at the vertices), the edges of which are convex arcs;
we call such polygons piecewise-convex and piecewise-concave polygons, respectively.

For the first class of polygons we show that it is always possible to guard them with ⌊2n3 ⌋
vertex guards, where n is the number of polygon vertices. On the other hand we describe
families of piecewise-convex polygons that require a minimum of ⌊4n7 ⌋ − 1 vertex guards and
⌊n2 ⌋ point guards. Aside from the combinatorial complexity type of results, we describe an
O(n log n) time and O(n) space algorithm which, given a piecewise-convex polygon, computes
a guarding set of size at most ⌊2n3 ⌋. Our algorithm should be viewed as a generalization of
Fisk’s algorithm [18]; in fact, when applied to polygons with linear edges, it produces a
guarding set of size at most ⌊n3 ⌋. For the purposes of our complexity analysis and results, we
assume, throughout the paper, that the curvilinear edges of our polygons are arcs of algebraic
curves of constant degree; as a result all predicates required by the algorithms described
in this paper take O(1) time in the Real RAM computation model. The central idea for
both obtaining the upper bound as well as for designing our algorithm is to approximate
the piecewise-convex polygon by a linear polygon (a polygon with line segments as edges).
Additional auxiliary vertices are added on the boundary of the curvilinear polygon in order to
achieve this. The resulting linear polygon has the same topology as the original polygon and
captures the essentials of the geometry of the piecewise-convex polygon; for obvious reasons
we term this linear polygon the polygonal approximation. Once the polygonal approximation
has been constructed, we compute a guarding set for it by applying a slight modification of
Fisk’s algorithm [18]. The guarding set just computed for the polygonal approximation turns
out to be a guarding set for the original curvilinear polygon. The final step of both the proof
and our algorithm consists in mapping the guarding set of the polygonal approximation to
another vertex guarding set consisting of vertices of the original polygon only.

If we further restrict ourselves to monotone piecewise-convex polygons, i.e., piecewise-
convex polygons that have the property that there exists a line L, such that any line L⊥

perpendicular to L intersects the polygon at most twice, we can show that ⌊n2 ⌋ + 1 vertex
or ⌊n2 ⌋ point guards are always sufficient and sometimes necessary. Such a line L can be
computed in O(n) time (cf. [13]). Given L, it is very easy to compute a vertex guarding set
of size ⌊n2 ⌋+1, or a point guarding set of size ⌊n2 ⌋: the problem of computing such a guarding
set essentially reduces to merging two sorted arrays, thus taking O(n) time and O(n) space.
This result should be contrasted against the case of monotone linear polygons where the
corresponding upper and lower bound on the number of vertex or point guards required to
guard the polygon matches that of general (i.e., not necessarily monotone) linear polygons.
In other words, monotonicity seems to play a crucial role in the case of piecewise-convex
polygons, which is not the case for linear polygons.

For the second class of polygons, i.e., the class of piecewise-concave polygons, vertex
guards may not be sufficient in order to guard the interior of the polygon (see Fig. 22(a)).
We thus turn our attention to point guards, and we show that 2n−4 point guards are always
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sufficient and sometimes necessary. Our method for showing the sufficiency result is similar
to the technique used to illuminate sets of disjoint convex objects on the plane [17]. Given a
piecewise-concave polygon P , we construct a new locally concave polygon Q, contained inside
P , and such that the tangencies between edges of Q are maximized. The problem of guarding
P then reduces to the problem of guarding Q, which essentially consists of a number of faces
with pairwise disjoint interiors. The faces of Q require, each, two point guards in order to
be guarded, and are in 1–1 correspondence with the triangles of an appropriately defined
triangulation graph T (R) of a polygon R with n vertices. Thus the number point guards
required to guard P is at most two times the number of faces of T (R), i.e., 2n− 4.

The rest of the paper is structured as follows. In Section 2 we introduce some notation and
provide various definitions. In Section 3 we present our algorithm for computing a guarding
set, of size ⌊2n3 ⌋, for a piecewise-convex polygon with n vertices. Section 3 is further subdi-
vided into five subsections. In Subsection 3.1 we define the polygonal approximation of our
curvilinear polygon and prove some geometric and combinatorial properties. In Subsection
3.2 we show how to construct a, properly chosen, constrained triangulation of the polygonal
approximation. In Subsection 3.3 we describe how to compute the guarding set for the orig-
inal curvilinear polygon from the guarding set of the polygonal approximation due to Fisk’s
algorithm and prove the upper bound on the cardinality of the guarding set. In Subsection
3.4 we show how to compute the guarding set in O(n log n) time and O(n) space. Finally, in
Subsection 3.5 is devoted to the presentation of the family of polygons that attains the lower
bound of ⌊4n7 ⌋ − 1 vertex guards. The special case of guarding monotone piecewise-convex
polygons is discussed in Section 4. We show that ⌊n2 ⌋+1 vertex (or ⌊n2 ⌋ point) guards are al-
ways necessary and sometimes sufficient, and present an O(n) time and O(n) space algorithm
for computing such a guarding set. In Section 5 we present our results for piecewise-concave
polygons, namely, that 2n− 4 point guards are always necessary and sometimes sufficient for
this class of polygons. Section 6 contains further results. More precisely, we present bounds
for locally convex polygons, monotone locally convex polygons and general polygons. The
final section of the paper, Section 7, summarizes our results and discusses open problems.

2 Definitions

Curvilinear arcs. Let S be a sequence of points v1, . . . , vn and E a set of curvilinear arcs
a1, . . . , an, such that ai has as endpoints the points vi and vi+1

1. We will assume that the
arcs ai and aj , i 6= j, do not intersect, except when j = i− 1 or j = i+ 1, in which case they
intersect only at the points vi and vi+1, respectively . We define a curvilinear polygon P to be
the closed region delimited by the arcs ai. The points vi are called the vertices of P . An arc
ai is a convex arc if every line on the plane intersects ai at either at most two points or along
a linear segment. If q is a point in the interior of ai, an ε-neighborhood nε(q) of q is defined to
be the intersection of ai with a disk centered at q with radius ε. An arc ai is a locally convex
arc if for every point q in the interior of ai, there exists an εq such that for every 0 < ε ≤ εq,
the ε-neighborhood of q lies entirely in one of the two halfspaces defined by the line ℓ tangent
to ai at q; note that if ℓ is not uniquely defined, then the containment-in-halfspace property
mentioned just above has to hold for any such line ℓ. Finally, note that a convex arc is also
a locally convex arc.

Our definition does not really require that the arcs ai are smooth. In fact the arcs ai can

1Indices are considered to be evaluated modulo n.
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(a) (b) (c)

(d) (e) (f)

Figure 1: Different types of curvilinear polygons: (a) a linear polygon, (b) a convex polygon,
(c) a piecewise-convex polygon, (d) a locally convex polygon, (e) a piecewise-concave polygon
and (f) a general polygon.

be polylines, in which case the results presented in this paper are still valid. What might
be different, however, is our complexity analyses, since we have assumed that the ai’s have
constant complexity. In the remainder of this paper, and unless otherwise stated, we will
assume that the arcs ai are G1-continuous and have constant complexity.
Curvilinear polygons. A polygon P is a linear polygon if its edges are line segments (see
Fig. 1(a)). A polygon P consisting of curvilinear arcs as edges is called a convex polygon if
every line on the plane intersects its boundary at either at most two points or along a line
segment (see Fig. 1(b)). A polygon is called a piecewise-convex polygon, if every arc is a
convex arc and for every point q in the interior of an arc ai of the polygon, the interior of the
polygon is locally on the same side as the arc ai with respect to the line tangent to ai at q

(see Fig. 1(c)). A polygon is called a locally convex polygon if the boundary of the polygon
is a locally convex curve, except possibly at its vertices (see Fig. 1(d)). Note that a convex
polygon is a piecewise-convex polygon and that a piecewise-convex polygon is also a locally
convex polygon. A polygon P is called a piecewise-concave polygon, if every arc of P is convex
and for every point q in the interior of a non-linear arc ai, the interior of P lies locally on
both sides of the line tangent to ai at q (see Fig. 1(e)). Finally, a polygon is said to be a
general polygon if we impose no restrictions on the type of its edges (see Fig. 1(f)). We will
use the term curvilinear polygon to refer to a polygon the edges of which are either line or
curve segments.
Guards and guarding sets. In our setting, a guard or point guard is a point in the
interior or on the boundary of a curvilinear polygon P . A guard of P that is also a vertex
of P is called a vertex guard. We say that a curvilinear polygon P is guarded by a set G of
guards if every point in P is visible from at least one point in G. The set G that has this
property is called a guarding set for P . A guarding set that consists solely of vertices of P is
called a vertex guarding set.
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r′e

r′′ne

r′′e

Figure 2: The two types of rooms in a piecewise-convex polygon: r′e and r′′e are empty rooms,
whereas r′ne and r′′ne are non-empty rooms.

3 Piecewise-convex polygons

In this section we present an algorithm which, given a piecewise-convex polygon P of size n,
it computes a vertex guarding set G of size ⌊2n3 ⌋. The basic steps of the algorithm are as
follows:

1. Compute the polygonal approximation P̃ of P .

2. Compute a constrained triangulation T (P̃ ) of P̃ .

3. Compute a guarding set GP̃ for P̃ , by coloring the vertices of T (P̃ ) using three colors.

4. Compute a guarding set GP for P from the guarding set GP̃ .

3.1 Polygonalization of a piecewise-convex polygon

Let ai be a convex arc with endpoints vi and vi+1. We call the convex region ri delimited
by ai and the line segment vivi+1 a room. A room is called degenerate if the arc ai is a line
segment. A line segment pq, where p, q ∈ ai is called a chord, and the region delimited by the
chord pq and ai is called a sector. The chord of a room ri is defined to be the line segment
vivi+1 connecting the endpoints of the corresponding arc ai. A degenerate sector is a sector
with empty interior. We distinguish between two types of rooms (see Fig. 2):

1. empty rooms: these are non-degenerate rooms that do not contain any vertex of P in
the interior of ri or in the interior of the chord vivi+1.

2. non-empty rooms: these are non-degenerate rooms that contain at least one vertex of
P in the interior of ri or in the interior of the chord vivi+1.

In order to polygonalize P we are going to add new vertices in the interior of non-linear
convex arcs. To distinguish between the two types of vertices, the n vertices of P will be
called original vertices, whereas the additional vertices will be called auxiliary vertices.

More specifically, for each empty room ri we add a vertex wi,1 (anywhere) in the interior
of the arc ai (see Fig. 3). For each non-empty room ri, let Xi be the set of vertices of P
that lie in the interior of the chord vivi+1 of ri, and Ri be the set of vertices of P that are
contained in the interior of ri or belong to Xi (by assumption Ri 6= ∅). If Ri 6= Xi, let Ci be
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m5
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r3
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w3,1
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Figure 3: The auxiliary vertices (white points) for rooms r3 (empty) and r5 (non-empty).
w3,1 is a point in the interior of a3. m5 is the midpoint of v5 and v6, whereas w5,1 and w5,2

are the intersections of the lines m5v2 and m5v1 with the arc a5, respectively. In this example
R5 = {v1, v2, v7}, whereas C

∗
5 = {v1, v2}.

the set of vertices on the convex hull of the vertex set (Ri \Xi) ∪ {vi, vi+1}; if Ri = Xi, let
Ci = Xi ∪ {vi, vi+1}. Finally, let C∗

i = Ci \ {vi, vi+1}. Clearly, vi and vi+1 belong to the set
Ci and, furthermore, C∗

i 6= ∅.
Let mi be the midpoint of vivi+1 and ℓ⊥i (p) the line perpendicular to vivi+1 passing

through a point p. If C∗
i 6= Xi, then, for each vk ∈ C∗

i , let wi,jk , 1 ≤ jk ≤ |C∗
i |, be the

(unique) intersection of the line mivk with the arc ai; if C
∗
i = Xi, then, for each vk ∈ C∗

i , let
wi,jk , 1 ≤ jk ≤ |C∗

i |, be the (unique) intersection of the line ℓ⊥i (vk) with the arc ai.
Now consider the sequence S̃ of the original vertices of P augmented by the auxiliary

vertices added to empty and non-empty rooms; the order of the vertices in S̃ is the order in
which we encounter them as we traverse the boundary of P in the counterclockwise order.
The linear polygon defined by the sequence S̃ of vertices is denoted by P̃ (see Fig. 4(a)). It
is easy to show that:

Lemma 1 The linear polygon P̃ is a simple polygon.

Proof. It suffices show that the line segments replacing the curvilinear segments of P do not
intersect other edges of P or P̃ .

Let ri be an empty room, and let wi,1 be the point added in the interior of ai. The interior
of the line segments viwi,1 and wi,1vi+1 lie in the interior of ri. Since P is a piecewise-convex
polygon, and ri is an empty room, no edge of P could potentially intersect viwi,1 or wi,1vi+1.
Hence replacing ai by the polyline viwi,1vi+1 gives us a new piecewise-convex polygon.

Let ri be a non-empty room. Let wi,1, . . . , wi,Ki
be the points added on ai, where Ki is the

cardinality of C∗
i . By construction, every point wi,k is visible from wi,k+1, k = 1, . . . Ki−1, and

every point wi,k is visible from wi,k−1, k = 2, . . . Ki. Moreover, wi,1 is visible from vi and wi,Ki

is visible from vi+1. Therefore, the interior of the segments in the polyline viwi,1 . . . wi,Ki
vi+1

lie in the interior of ri and do not intersect any arc in P . Hence, substituting ai by the
polyline viwi,1 . . . wi,Ki

vi+1 gives us a new piecewise-convex polygon.
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Figure 4: (a) The polygonal approximation P̃ , shown in gray, of the piecewise-convex polygon
P with vertices vi, i = 1, . . . , 7. (b) The constrained triangulation T (P̃ ) of P̃ . The dark gray
triangles are the constrained triangles. The polygonal region v5w5,1w5,2v6v1v2v5 is a crescent.
The triangles w5,1v2v5 and v1w5,2v6 are boundary crescent triangles. The triangle v2w5,2v1 is
an upper crescent triangle, whereas the triangle v2w5,1w5,2 is a lower crescent triangle.

As a result, the linear polygon P̃ is a simple polygon. �

We call the linear polygon P̃ , defined by S̃, the straight-line polygonal approximation of
P , or simply the polygonal approximation of P . An obvious result for P̃ is the following:

Corollary 2 If P is a piecewise-convex polygon the polygonal approximation P̃ of P is a
linear polygon that is contained inside P .

We end this section by proving a tight upper bound on the size of the polygonal ap-
proximation of a piecewise-convex polygon. We start by stating and proving an intermediate
result, namely that the sets C∗

i are pairwise disjoint.

Lemma 3 Let i, j, with 1 ≤ i < j ≤ n. Then C∗
i ∩ C∗

j = ∅.

Proof. If one of the rooms ri and rj is a degenerate or an empty room, the result is obvious.
Consider two non-empty rooms ri and rj . For simplicity of presentation we assume that

Ri 6= Xi and Rj 6= Xj ; the proof easily carries on to the case Ri = Xi or Rj = Xj .
Suppose that there exists a vertex u ∈ P that is contained in C∗

i ∩ C∗
j . Let vi, vi+1,

and vj , vj+1 be the endpoints of the arcs ai and aj , and mi, mj the midpoints of the chords
vivi+1, vjvj+1, respectively. Let ui be the intersection of the line miu with the convex arc ai
and uj be the intersection of the line mju with the convex arc aj, respectively. Consider the
following cases.

vj, vj+1 6∈ Ri, vi, vi+1 6∈ Rj. This is the easy case (see Fig. 5). Since u ∈ C∗
i ∩C∗

j we have
that ri ∩ rj 6= ∅. Moreover, it is either the case that aj intersects the chord vivi+1 or ai

8



intersects the chord vjvj+1. Without loss of generality we can assume that aj intersects
the chord vivi+1. In this case the boundary of ri ∩ rj that lies in the interior of ri is a
subarc of aj . But then the segment uui has to intersect aj , which contradicts the fact
that u ∈ C∗

i .

vj, vj+1 ∈ Ri. Since u belongs to C∗
i , the line segment uui cannot contain any vertices of

P and it cannot intersect any edge of P (since otherwise u would not belong to C∗
i ).

For this reason, and since u belongs to C∗
j , uui has to intersect the chord of rj. We

distinguish between the following two cases (see Fig. 6):

1. The chord vjvj+1 intersects the interior of uui. Depending on whether the support-
ing line of vjvj+1 intersects the chord vivi+1 of ri or not, u will be either contained
in the interior of one of the triangles vivi+1vj and vivi+1vj+1 (this happens if the
supporting line of vjvj+1 intersects vivi+1 — see Fig. 6(a)), or inside the convex
quadrilateral vivi+1vjvj+1 (this happens if the supporting line of vjvj+1 does not
intersect vivi+1 — see Fig. 6(b)). In either case, u is in the interior of a convex
polygon, the vertices of which are in Ri ∪ {vi, vi+1}, and, thus, it cannot belong to
C∗
i , hence a contradiction.

2. The chord vjvj+1 intersects uui at u. We can assume without loss of generality
that vi+1, vj are to the right and vi, vj+1 to the left of the oriented line uiu (see
Fig. 6(c)). Notice that both vj and vj+1 have to belong to C∗

i , since otherwise
u would not belong to C∗

i . Let v′j and v′j+1 be the intersections of the lines mivj
and mivj+1 with ai. Consider the path π from u to vi on the boundary ∂P of
P , that does not contain the edge aj. π has to intersect either the interior of the
line segment vjv

′
j or the interior of the line segment vj+1v

′
j+1; either case yields a

contradiction with the fact that both vj and vj+1 belong to C∗
i .

vi, vi+1 ∈ Rj. This case is symmetric to the previous one.

|{vj, vj+1} ∩ Ri| = 1. Without loss of generality we may assume that vj ∈ Ri and vj+1 6∈
Ri. Consider the following two cases (see Fig. 7):

1. The chord vjvj+1 intersects the chord vivi+1. If vjvj+1 intersects the interior of
vivi+1 (see Fig. 7(a)), then u has to lie in the interior of the triangle vivi+1vj ,
which contradicts the fact that u ∈ C∗

i .
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Figure 5: Proof of Lemma 3. The case vj , vj+1 6∈ Ri, vi, vi+1 6∈ Rj .
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Figure 6: Proof of Lemma 3. The case vj , vj+1 ∈ Ri. (a) the chord vjvj+1 intersects the
interior of uui and u is contained inside the triangle vivi+1vj . (b) the chord vjvj+1 intersects
the interior of uui and u is contained inside the convex quadrilateral vivi+1vjvj+1. (c) the
chord vjvj+1 intersects uui at u.
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Figure 7: Proof of Lemma 3. The case |{vj , vj+1} ∩ Ri| = 1. (a) the chord vjvj+1 intersects
the chord vivi+1 and vjvj+1 intersects the interior of vivi+1. (b) the chord vjvj+1 intersects
the chord vivi+1 and vjvj+1 intersects vivi+1 at vi. (c) the chord vjvj+1 intersects ai.

Suppose now that vjvj+1 intersects one of the endpoints of vivi+1, and let us
assume that this endpoint is vi (see Fig. 7(b)). u has to lie in the interior of vivj ,
since otherwise it would have been in the interior of the triangle vivi+1vj , which
contradicts the fact that u ∈ C∗

i . Moreover, vi (resp., vj) has to belong to Rj

(resp., Ri), since otherwise u 6∈ C∗
j (resp., u 6∈ C∗

i ). Let v′j be the intersection of
mivj with ai and v′i be the intersection with aj of the line perpendicular to vjvj+1

at vi. Consider the paths π1 and π2 on ∂P from u to vi+1 and vj+1, respectively.
One of these two paths has to intersect either the interior of the line segment viv

′
i

or the interior of line segment vjv
′
j; either case yields a contradiction with the fact

that vi belongs to C∗
j and vj belongs to C∗

i .

2. The chord vjvj+1 intersects the edge ai. In this case we also have that either
vi ∈ Rj or vi+1 ∈ Rj , but not both. Without loss of generality we may assume
that vi+1 ∈ Rj (see Fig. 7(c)). Since u belongs to both C∗

i and C∗
j , it has to lie on

the line segment vi+1vj+1. Moreover, vj+1 (resp., vi+1) has to belong to C∗
i (resp.,

C∗
j ), since otherwise u would not belong to C∗

i (resp., C∗
j ). Let v

′
i+1 and v′j+1 be the

intersections of the lines mjvi+1 and mivj+1 with the arcs aj and ai, respectively.

10
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Figure 8: A piecewise-convex polygon P of size n (solid curve), the polygonal approximation
P̃ of which consists of 3n − 3 vertices (dashed polyline).

Consider the paths π1 and π2 on ∂P from u to vi and vj , respectively. One of these
two paths has to intersect either the interior of the line segment vi+1v

′
i+1 or the

interior of the line segment vj+1v
′
j+1. In the former case, we get a contradiction

with the fact that vi+1 belongs to C∗
j ; in the latter case we get a contradiction with

the fact that vj+1 belongs to C∗
i .

|{vi, vi+1} ∩ Rj| = 1. This case is symmetric to the previous one. �

An immediate consequence of Lemma 3 is the following corollary that gives us a tight
bound on the size of the polygonal approximation P̃ of P .

Corollary 4 If n is the size of a piecewise-convex polygon P , the size of its polygonal ap-
proximation P̃ is at most 3n. This bound is tight (up to a constant).

Proof. Let ai be a convex arc of P , and let ri be the corresponding room. If ai is an empty
room, then P̃ contains one auxiliary vertex due to ai. Hence P̃ contains at most n auxiliary
vertices attributed to empty rooms in P . If ai is a non-empty room, then P̃ contains |C∗

i |
auxiliary vertices due to ai. By Lemma 3 the sets C∗

i , i = 1, . . . , n are pairwise disjoint, which
implies that

∑n
i=1 |C

∗
i | ≤ |P | = n. Therefore P̃ contains the n vertices of P , contains at most

n vertices due to empty rooms in P and at most n vertices due to non-empty rooms in P .
We thus conclude that the size of P̃ is at most 3n.

The upper bound of the paragraph above is tight up to a constant. Consider the piecewise-
convex polygon P of Fig. 8. It consists of n − 1 empty rooms and one non-empty room r1,
such that |C∗

1 | = n− 2. It is easy to see that |P̃ | = 3n− 3. �

3.2 Triangulating the polygonal approximation

Let P be a piecewise-convex polygon and P̃ is its polygonal approximation. We are going to
construct a constrained triangulation of P̃ , i.e., we are going to triangulate P̃ , while enforcing
some triangles to be part of this triangulation. Let Pα = P̃ \P be the set of auxiliary vertices
in P̃ . The main idea behind the way this particular triangulation is constructed is to enforce
that:

1. all triangles of T (P̃ ), that contain a vertex in Pα, also contain at least one vertex of P ,
i.e., no triangles contain only auxiliary vertices,

11



2. every vertex in Pα belongs to at least one triangle in T (P̃ ) the other two vertices of
which are both vertices of P , and

3. the triangles of T (P̃ ) that contain vertices of P̃ can be guarded by vertices of P .

These properties are going to be exploited in Step 4 of the algorithm presented in Section 3.
More precisely, we are going to enforce the way the triangles of T (P̃ ) are created in the

neighborhoods of the vertices in Pα. By enforcing the triangles in these neighborhoods, we
effectively triangulate parts of P̃ . The remaining untriangulated parts of P̃ consist of one of
more disjoint polygons, which can then be triangulated by means of any O(n log n) polygon
triangulation algorithm. In other words, the triangulation of P̃ that we want to construct
is a constrained triangulation, in the sense that we pre-specify some of the edges of the
triangulation. In fact, as we will see below we pre-specify triangles, rather than edges, which
are going to be referred to as constrained triangles.

Let us proceed to define the constrained triangles in T (P̃ ). If ri is an empty room, and
wi,1 is the point added on ai, add the edges vivi+1, viwi,1 and wi,1vi+1, thus formulating the
constrained triangle viwi,1vi+1 (see Fig. 4(b)). If ri is a non-empty room, {c1, . . . , cKi

} the
vertices in C∗

i , Ki = |C∗
i |, and {wi,1, . . . , wi,Ki

} the vertices added on ai, add the following
edges, if they do not already exist:

1. ck, ck+1, k = 1, . . . ,Ki − 1; vic1; cKi
vi+1;

2. ciwi,k, k = 1, . . . ,Ki;

3. ciwi,k+1, k = 1, . . . ,Ki − 1;

4. wi,k, wi,k+1, k = 1, . . . ,Ki − 1; viwi,1; wi,Ki
vi+1.

These edges formulate 2Ki constrained triangles, namely, ckck+1wi,k+1, k = 1, . . . ,Ki − 1,
ckwi,kwi,k+1, k = 1, . . . ,Ki − 1, vic1wi,1 and vi+1cKi

wi,Ki
. We call the polygonal region

delimited by these triangles a crescent. The triangles vic1wi,1 and vi+1cKi
wi,Ki

are called
boundary crescent triangles, the triangles ckck+1wi,k+1, k = 1, . . . ,Ki − 1 are called upper
crescent triangles and the triangles ckwi,kwi,k+1, k = 1, . . . ,Ki − 1 are called lower crescent
triangles.

Note that almost all points in Pα belong to exactly one triangle the other two points of
which are in P ; the only exception are the points wi,Ki

which belong to exactly two such
triangles.

As we have already mentioned, having created the constrained triangles mentioned above,
there may exist additional possibly disjoint polygonal non-triangulated regions of P̃ . The tri-
angulation procedure continues by triangulating these additional polygonal non-triangulated
regions; any O(n log n) polygon triangulation algorithm may be used.

3.3 Computing a guarding set for the original polygon

To compute a guarding set for P we will perform the following two steps:

1. Compute a guarding set GP̃ for P̃ .

2. From the guarding set GP̃ for P̃ compute a guarding set GP for P of size at most ⌊2n3 ⌋,
consisting of vertices of P only.

12



PSfrag replacements

v1

v2

v3
v4

v5

v6
v7

w1,1

w2,1

w3,1

w5,1

w5,2

Figure 9: The three guarding sets for P̃ , are also guarding sets for P , as Theorem 5 suggests.

Assume that we have colored the vertices of P̃ with three colors, so that every triangle in
T (P̃ ) does not contain two vertices of the same color. This can be easily done by the standard
three-coloring algorithm for linear polygons presented in [26, 18]. Let red, green and blue be
the three colors, and let KA be the set of vertices of red color, ΠA be the set of vertices of
green color and MA be the set of vertices of blue color in a subset A of P̃ . Clearly, all three
sets KP̃ , ΠP̃ and MP̃ are guarding sets for P̃ . In fact, they are also guarding sets for P , as
the following theorem suggests (see also Fig. 9).

Theorem 5 Each one of the sets KP̃ , ΠP̃ and MP̃ is a guarding set for P .

Proof. Let GP̃ be one of KP̃ , ΠP̃ and MP̃ . By construction, GP̃ guards all triangles in

T (P̃ ). To show that GP̃ is a guarding set for P , it suffices to show that GP̃ also guards the

non-degenerate sectors defined by the edges of P̃ and the corresponding convex subarcs of P .
Let si be a non-degenerate sector associated with the convex arc ai. We consider the

following two cases:

1. The room ri is an empty room. Then si is adjacent to the triangle viwi,1vi+1 of T (P̃ ).
Note that since ai is a convex arc, all three points vi, vi+1 and wi,1 guard si. Since one
of them has to be in GP̃ , we conclude that GP̃ guards si.

2. The room ri is a non-empty room. Then si is adjacent to either a boundary crescent
triangle or a lower crescent triangle in T (P̃ ) . Let T be this triangle, and let x, y and z

be its vertices. Since ai is a convex arc, all three x, y and z guard si. Therefore, since
one of the three vertices x, y and z is in GP̃ , we conclude that GP̃ guards si.

Therefore every non-degenerate sector in Pα is guarded by at least one vertex in GP̃ , which
implies that G

P̃
is a guarding set for P . �

Let as now assume, without loss of generality that, among KP , ΠP and MP , KP has the
smallest cardinality and that ΠP has the second smallest cardinality, i.e., |KP | ≤ |ΠP | ≤ |MP |.
We are going to define a mapping f from KPα to the power set 2ΠP of ΠP . Intuitively, f
maps a vertex x in KPα to all the neighboring vertices of x in T (P̃ ) that belong to ΠP . We
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are going to give a more precise definition of f below (consult Fig. 10). Let x ∈ KPα . We
distinguish between the following cases:

1. x is an auxiliary vertex added to an empty room ri (see Fig. 10(a)). Then x is one of
the vertices of the constrained triangle vivi+1x contained inside ri. One of vi, vi+1 must
be a vertex in ΠP , say vi+1. Then we set f(x) = {vi+1}.

2. x is an auxiliary vertex added to a non-empty room ri. Consider the following subcases:

(a) x is not the last auxiliary vertex on ai, as we walk along ai in the counterclockwise
sense (see Fig. 10(b)). Then x is incident to a single triangle in T (P̃ ) the other
two vertices of which are vertices in P . Let y and z be these other two vertices.
One of y and z has to be a green vertex, say y. Then we set f(x) = {y}.

(b) x is the last auxiliary vertex on ai as we walk along ai in the counterclockwise sense
(see Figs. 10(c) and 10(d)). Then x is incident to a boundary crescent triangle and
an upper crescent triangle. Let xvi+1y be the boundary crescent triangle and xyz

the upper crescent triangle. Clearly, all three vertices vi+1, y and z are vertices of
P . If y ∈ ΠP (this is the case in Fig. 10(c)), then we set f(x) = {y}. Otherwise
(this is the case in Fig. 10(d)), both vi+1 and z have to be green vertices, in which
case we set f(x) = {vi+1, z}.

Now define the set GP = KP ∪
(

⋃

x∈KPα
f(x)

)

. We claim that GP is a guarding set for

P .

Lemma 6 The set GP = KP ∪
(

⋃

x∈KPα
f(x)

)

is a guarding set for P .

Proof. Let us consider the triangulation T (P̃ ) of P̃ . The regions in Pα are sectors defined by
a curvilinear arc, which is a subarc of an edge of P and the corresponding chord connecting
the endpoints of this subarc. Let us consider the set of triangles in T (P̃ ) and the set S(P ) of
sectors in Pα. To show that GP is a guarding set for P , it suffices show that every triangle
in T (P̃ ) and every sector in S(P ) is guarded by at least one vertex in GP .

If T is a triangle in T (P̃ ) that is defined over vertices of P , one of its vertices is colored
red and belongs to KP ⊆ GP . Hence, T is guarded.

Consider now a triangle T that is defined inside an empty room ri. If the auxiliary vertex
of T is not red, then one of the two endpoints of ai has to be red, and thus it belongs to GP .
Hence both T and the two sectors adjacent to it in ri are guarded. If the auxiliary vertex is
red, then one of the other two vertices of T is green and belongs to GP ; again, T is guarded.

Suppose now that T is a boundary crescent triangle, and let s be the sector adjacent to
it (consult Fig. 11(a)). Let x be the endpoint of ai contained in T , y be the second point of
T that belongs to P and z the point in Pα. Note that all three vertices guard the sector s.
If x (resp., y) is a red vertex it will also be a vertex in GP . Hence, in this case both T and s

are guarded by x (resp., y). If z is the red vertex in T , either x or y has to be a green vertex.
Hence either x or y will be in GP , and thus again both T and s will be guarded.

If T is a lower crescent triangle, let s be the sector adjacent to it (consult Fig. 11(b)).
Let x, y be the endpoints of the chord of s on ai and let z be the point of P in T . Let us
also assume we encounter x and y in that order as we walk along ai in the counterclockwise
sense, which implies that x is the intersection of the line zmi and the arc ai. Finally, let T ′
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Figure 10: The three cases in the definition of the mapping f . Case (a): x is a auxiliary vertex
in an empty room. Case (b): x is an auxiliary vertex in a non-empty room and is not the
last auxiliary vertex added on the curvilinear arc. Cases (c) and (d): x is the last auxiliary
vertex added on the curvilinear arc of a non-empty room (in (c) only one of its neighbors in
P is green, whereas in (d) two of its neighbors in P are green).

be the upper crescent triangle incident to the edge yz, and let w be the third vertex of T ′,
beyond y and z. It is interesting to note that all four vertices x, y, z and w guard T , T ′ and s.
Moreover, x and w have to be of the same color. In order to show that T and s are guarded
by GP , it suffices to show that one of x, y, z and w belongs to GP . Consider the following
cases:

1. z is a red vertex. Since z ∈ KP , we get that z ∈ GP .

2. x is a red vertex. But then w is also a red vertex. Since w ∈ KP , we conclude that w
belongs to GP as well.

3. y is a red vertex. Then either z is a green vertex or both x and w are green vertices. If
z is a green vertex, then {z} ⊆ f(y), which implies that z ∈ GP . If z is a blue vertex,
then both x and w are green vertices, and in particular {w} ⊆ f(y). Hence w ∈ GP .

Finally, consider the case that T is an upper crescent triangle, let x and y be the vertices
of P in T and let z be the vertex of T in Pα (consult Fig. 11(c)). Let us also assume that
z is the intersection of the line ymi with ai. To show that T is guarded by GP , it suffices to
show that one of x and y belongs to GP . Consider the following cases:
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Figure 11: Three of the five cases in the proof of Lemma 6: (a) the triangle T is a boundary
crescent triangle; (b) the triangle T is a lower crescent triangle; (c) the triangle T is an upper
crescent triangle.

1. x is red vertex. Since x ∈ KP we have that x ∈ GP .

2. y is red vertex. Since y ∈ KP we have that y ∈ GP .

3. z is a red vertex. If x is a green vertex, then {x} ⊆ f(z). Hence x ∈ GP . If x is blue
vertex, then y has to be a green vertex, and {y} ⊆ f(z). Therefore, y ∈ GP . �

Since f(x) ⊆ ΠP for every x in KPα we get that
⋃

x∈KPα
f(x) ⊆ ΠP . But this, in turn

implies that GP ⊆ KP ∪ΠP . Since KP and ΠP are the two sets of smallest cardinality among
KP , ΠP and MP , we can easily verify that |KP |+ |ΠP | ≤ ⌊2n3 ⌋. Hence, |GP | ≤ |KP |+ |ΠP | ≤
⌊2n3 ⌋, which yields the following theorem.

Theorem 7 Let P be a piecewise-convex polygon with n ≥ 2 vertices. P can be guarded with
at most ⌊2n3 ⌋ vertex guards.

We close this subsection by making two remarks:

Remark 1 The bound on the size of the vertex guarding set in Theorem 7 is tight: our
algorithm will produce a vertex guarding set of size exactly ⌊2n3 ⌋ when applied to the piecewise-
convex polygon of Fig. 8 or the crescent-like piecewise-convex polygon of Fig. 15.

Remark 2 When the input to our algorithm is a linear polygon all rooms are degenerate;
consequently, no auxiliary vertices are created, and the guarding set computed corresponds
to the set of colored vertices of smallest cardinality, hence producing a vertex guarding set of
size at most ⌊n3 ⌋. In that respect, it can be considered as a generalization of Fisk’s algorithm
[18] to the class of piecewise-convex polygons.

3.4 Time and space complexity

In this section we will show how to compute a vertex guarding set GP , of size at most ⌊2n3 ⌋,
for P , in O(n log n) time and O(n) space. The algorithm presented at the beginning of this
section consists of four phases:

1. The computation of the polygonal approximation P̃ of P .

2. The computation of the constrained triangulation T (P̃ ) of P̃ .
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3. The computation of a guarding set GP̃ for P̃ .

4. The computation of a guarding set GP for P from the guarding set GP̃ .

Step 2 of the algorithm presented above can be done in O(T (n)) time and O(n) space,
where T (n) is the time complexity of any O(n log n) polygon triangulation algorithm: we need
linear time and space to create the constrained triangles of T (P̃ ), whereas the subpolygons
created after the introduction of the constrained triangles may be triangulated in O(T (n))
time and linear space.

Step 3 of the algorithm takes also linear time and space with respect to the size of the
polygon P̃ . By Corollary 4, |P̃ | ≤ 3n, which implies that the guarding set GP̃ can be computed
in O(n) time and space.

Step 4 also requires O(n) time. Computing GP from GP̃ requires determining for each
vertex v of KPα all the vertices of ΠP adjacent to it. This takes time proportional to the
degree deg(v) of v in T (P̃ ), i.e., a total of

∑

v∈KPα
deg(v) = O(|P̃ |) = O(n) time. The space

requirements for performing Step 4 is O(n).
To complete our time and space complexity analysis, we need to show how to compute the

polygonal approximation P̃ of P in O(n log n) time and linear space. In order to compute the
polygonal approximation P̃ or P , it suffices to compute for each room ri the set of vertices
C∗
i . If C∗

i = ∅, then ri is empty, otherwise we have the set of vertices we wanted. From C∗
i

we can compute the points wi,k and the linear polygon P̃ in O(n) time and space.
The underlying idea is to split P into y-monotone piecewise-convex subpolygons. For

each room ri within each such y-monotone subpolygon, corresponding to a convex arc ai with
endpoints vi and vi+1, we will then compute the corresponding set C∗

i . This will be done by
first computing a subset Si of the set Ri of the points inside the room ri, such that Si ⊇ C∗

i ,
and then apply an optimal time and space convex hull algorithm to the set Si ∪ {vi, vi+1}
in order to compute Ci, and subsequently from that C∗

i . In the discussion that follows, we
assume that for each convex arc ai of P we associate a set Si, which is initialized to be the
empty set. The sets Si will be progressively filled with vertices of P , so that in the end they
fulfill the containment property mentioned above.

Splitting P into y-monotone piecewise-convex subpolygons can be done in two steps:

1. First we need to split each convex arc ai into y-monotone pieces. Let P ′ be the piecewise-
convex polygon we get by introducing the y-extremal points for each ai. Since each ai
can yield up to three y-monotone convex pieces, we conclude that |P ′| ≤ 3n. Obviously
splitting the convex arcs ai into y-monotone pieces takes O(n) time and space. A vertex
added to split a convex arc into y-monotone pieces will be called an added extremal
vertex.

2. Second, we need to apply the standard algorithm for computing y-monotone subpoly-
gons out of a linear polygon to P ′ (cf. [22] or [12]). The algorithm in [22] (or [12])
is valid not only for line segments, but also for piecewise-convex polygons consisting
of y-monotone arcs (such as P ′). Since |P ′| ≤ 3n, we conclude that computing the
y-monotone subpolygons of P ′ takes O(n log n) time and requires O(n) space.

Note that a non-split arc of P belongs to exactly one y-monotone subpolygon. y-monotone
pieces of a split arc of P may belong to at most three y-monotone subpolygons (see Fig. 12).

At the beginning of our algorithm we associate to each arc ai of P a set of vertices Si,
which is initialized to the empty set. Suppose now that we have a y-monotone polygon Q.
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Figure 12: Decomposition of a piecewise-convex polygon into ten y-monotone subpolygons.
The white points are added extremal vertices that have been added in order to split non-y-
monotone arcs to y-monotone pieces. The bridges are shown as dashed segments.

The edges of Q are either convex arcs of P , or pieces of convex arcs of P , or line segments
between mutually visible vertices of P , added in order to form the y-monotone subpolygons
of P ; we call these line segments bridges (see Fig. 12). For each non-bridge edge ei of Q,
we want to compute the set C∗

i . This can be done by sweeping Q in the negative y-direction
(i.e., by moving the sweep line from +∞ to −∞). The events of the sweep correspond to
the y coordinates of the vertices of Q, which are all known before-hand and can be put in a
decreasing sorted list. The first event of the sweep corresponds to the top-most vertex of Q:
since Q consists of y-monotone convex arcs, the y-maximal point of Q is necessarily a vertex.
The last event of the sweep corresponds to the bottom-most vertex of Q, which is also the
y-minimal point of Q. We distinguish between four different types of events:

1. the first event: corresponds to the top-most vertex of Q,

2. the last event: corresponds to the bottom-most vertex of Q,

3. a left event: corresponds to a vertex of the left y-monotone chain of Q, and

4. a right event: corresponds to a vertex of the right y-monotone chain of Q.

Our sweep algorithm proceeds as follows. Let ℓ be the sweep line parallel to the x-axis at
some y. For each y in between the y-maximal and y-minimal values of Q, ℓ intersects Q at
two points which belong to either a left edge el (i.e., an edge on the left y-monotone chain of
Q) or is a left vertex vl (i.e., a vertex on the left y-monotone chain of Q), and either a right
edge er (i.e., an arc on the right y-monotone chain of Q) or a right vertex vr (i.e., a vertex
on the right y-monotone chain of Q). We are going to associate the current left edge el at
position y to a point set SL and the current right edge at position y to a point set SR. If the
edge el (resp., er) is a non-bridge edge, the set SL (resp., SR) will contain vertices of Q that
are inside the room of the convex arc of P corresponding el (resp., er).
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When the y-maximal vertex vmax is encountered, i.e., during the first event, we initialize
SL and SR to be the empty set. When a left event is encountered due a vertex v, let el,up
be the left edge above v and el,down be the left edge below v and let er be the current right
edge (i.e., the right edge at the y-position of v). If el,up is an non-bridge edge, and ai is
the corresponding convex arc of P , we augment the set Si by the vertices in SL. Then,
irrespectively of whether or not el,up is a bridge edge, we re-initialize SL to be the empty set.
Finally, if er is a non-bridge edge, and ak is the corresponding convex arc in P , we check if
v is inside the room rk or lies in the interior of the chord of rk; if this is the case we add
v to SR. When a right event is encountered our sweep algorithm behaves symmetrically. If
the right event is due to a vertex v, let er,up be right edge of Q above v and er,down be the
right edge of Q below v and let el be the current left edge of Q. If el,up is a non-bridge edge,
and ai is the corresponding convex arc of P , we augment Si by the vertices in SR. Then,
irrespectively of whether or not er,up is a bridge edge or not, we re-initialize SR to be the
empty set. Finally, If el is a non-bridge edge, and ak is the corresponding convex arc of P ,
we check if v is inside the room rk or lies in the interior of the chord of rk; if this is the case
we add v to SL. When the last event is encountered due to the y-minimal vertex vmin, let el
and er be the left and right edges of Q above vmin, respectively. If el is a non-bridge edge, let
ai be the corresponding convex arc in P . In this case we simply augment Si by the vertices
in SL. Symmetrically, if er is a non-bridge edge, let aj be the corresponding convex arc in P .
In this case we simply augment Sj by the vertices in SR.

We claim that our sweep-line algorithm computes a set Si such that Si ⊇ C∗
i . To prove

this we need the following intermediate result:

Lemma 8 Given a non-empty room ri of P , with ai the corresponding convex arc, the vertices
of the set C∗

i belong to the y-monotone subpolygons of P ′ computed via the algorithm in [22]
(or [12]), which either contain the entire arc ai or y-monotone pieces of ai.

Proof. Let ri be a non-empty room, ai the corresponding convex arc and let u be a vertex
of P in C∗

i that is not a vertex of any of the y-monotone subpolygons of P ′ (computed by
the algorithm in [22] or [12]) that contain either the entire arc ai or y-monotone pieces of ai.
Let vmax (resp., vmin) be the vertex of P of maximum (resp., minimum) y-coordinate in Ci

(ties are broken lexicographically). Let ℓu be the line parallel to the x-axis passing through
u. Consider the following cases:

1. u ∈ C∗
i \{vmin, vmax}. In this case u will be a vertex in either the left y-monotone chain

of Ci or a vertex in the right y-monotone chain of Ci. Without loss of generality we
can assume that u is a vertex in the right y-monotone chain of Ci (see Figs. 13(a) and
13(b)). Let u′ be the intersection of ℓu with ai. Let Q (resp., Q′) be the y-monotone
subpolygon of P ′ that contains u (resp., u′); by our assumption Q 6= Q′. Finally, let u+
(resp., u−) be the vertex of Ci above (resp., below) u in the right y-monotone chain of
Ci.

The line segment uu′ cannot intersect any edges of P , since this would contradict the
fact that u ∈ C∗

i . Similarly, uu′ cannot contain any vertices of P ′: if v is a vertex of P
in the interior of uu′, u would be inside the triangle vu+u−, which contradicts the fact
that u ∈ C∗

i , whereas if v is a vertex of P ′ \ P in the interior of uu′, P would not be
locally convex at v, a contradiction with the fact that P is a piecewise-convex polygon.
As a result, and since Q 6= Q′, there exists a bridge edge e intersecting uu′. Let w+,
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Figure 13: Proof of Lemma 8. (a) The case u ∈ C∗
i \{vmin, vmax}, with w+ ∈ s. (b) The case

u ∈ C∗
i \ {vmin, vmax}, with w+, w− 6∈ s. (c) The case u ≡ vmax.

w− be the two endpoints of e in P ′, where w+ lies above the line ℓu and w− lies below
the line ℓu. In fact neither w+ nor w− can be a vertex in P ′ \ P , since the algorithm in
[22] (or [12]) will connect a vertex in P ′ \P inside a room rk with either the y-maximal
or the y-minimal vertex of Ck only. Let ℓ+ (resp., ℓ−) be the line passing through the
vertices u and u+ (resp., u and u−). Finally, let s be the sector delimited by the lines
ℓ+, ℓ− and ai. Now, if w+ lies inside s, then u will be inside the triangle w+u+u− (see
Fig. 13(a)). Analogously, if w− lies inside s, then u will be inside the triangle w−u+u−.
In both cases we get a contradiction with the fact that u ∈ C∗

i . If neither w+ nor w−

lie inside s, then both w+ and w− have to be vertices inside ri, and moreover u will lie
inside the convex quadrilateral w+u+u−w−; again this contradicts the fact that u ∈ C∗

i

(see Fig. 13(b)).

2. u ≡ vmax. By the maximality of the y-coordinate of u in Ci, we have that the y-
coordinate of u is larger than or equal to the y-coordinates of both vi and vi+1. There-
fore, the line ℓu intersects the arc ai exactly twice, and, moreover, ai has a y-maximal
vertex of P ′ \ P in its interior, which we denote by v′max (see Fig. 13(c)). Let u′ be
the intersection of ℓu with ai that lies to the right of u, and let Q (resp., Q′) be the
y-monotone subpolygon of P ′ that contains u (resp., u′). By assumption Q 6= Q′, which
implies that there exists a bridge edge e intersecting the line segment uu′. Notice, that,
as in the case u ∈ C∗

i \ {vmin, vmax}, the line segment uu′ cannot intersect any edges of
P , or cannot contain any vertex v of P ′ \ P ; the former would contradict the fact that
u ∈ C∗

i , whereas as the latter would contradict the fact that P is piecewise-convex. Fur-
thermore, uu′ cannot contain vertices of P since this would contradict the maximality
of the y-coordinate of u in Ci.

Let w+ and w− be the endpoints of e above and below ℓu, respectively. Notice that
e cannot have v′max as endpoint, since the only bridge edge that has v′max as endpoint
is the bridge edge v′maxu. But then w+ must be a vertex of P lying inside ri; this
contradicts the maximality of the y-coordinate of u among the vertices in Ci.

3. u ≡ vmin. This case is entirely symmetric to the case u ≡ vmax. �

An immediate corollary of the above lemma is the following:
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Corollary 9 For each convex arc ai of P , the set Si computed by the sweep algorithm de-
scribed above is a superset of the set C∗

i .

Let us now analyze the time and space complexity of Step 1 of the algorithm sketched at
the beginning of this subsection. Computing the polygonal approximation P̃ of P requires
subdividing P into y-monotone subpolygons. This subdivision takes O(n log n) time and O(n)
space. Once we have the subdivision of P into y-monotone subpolygons we need to compute
the sets Si for each convex arc ai of P . The sets Si can be implemented as red-black trees.
Inserting an element in some Si takes O(log n) time. During the course of our algorithm
we perform only insertions on the Si’s. A vertex v of P is inserted at most deg(v) times in
some Si, where deg(v) is the degree of v in the y-monotone decomposition of P . Since the
sum of the degrees of the vertices of P in the y-monotone decomposition of P is O(n), we
conclude that the total size of the Si’s is O(n) and that we perform O(n) insertions on the
Si’s. Therefore we need O(n log n) time and O(n) space to compute the Si’s. Finally, since
∑n

i=1 |Si| = O(n), the sets C∗
i can also be computed in total O(n log n) time and O(n) space.

The analysis above thus yields the following:

Theorem 10 Let P be a piecewise-convex polygon with n ≥ 2 vertices. We can compute a
guarding set for P of size at most ⌊2n3 ⌋ in O(n log n) time and O(n) space.

3.5 The lower bound construction

In this section we are going to present a piecewise-convex polygon which requires a minimum
of ⌊4n7 ⌋ − 1 vertex guards in order to be guarded.

Let us first consider the windmill-like piecewise-convex polygon W with seven vertices of
Fig. 14(a), a detail of which is shown in Fig. 14(b). The double ear defined by the vertices
v3, v4 and v5 and the convex arcs a3 and a4 is constructed in such a way so that neither v3
nor v5 can guard both rooms r3 and r4 by itself. This is achieved by ensuring that a3 (resp.,
a4) intersects the line v4v5 (resp., v3v4) twice. Note that both a3 and a4 intersect the line
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Figure 14: The windmill-like piecewise-convex polygon W that requires at least three vertex
guards in order to be guarded. The only triplets of guards that guard W are {v3, v4, v6},
{v3, v5, v6}, {v3, v5, v7}, {v4, v5, v7} and {v4, v6, v7}.
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least ⌊n2 ⌋ vertex guards.

mv4 only at v4, where m is the midpoint of the line segment v3v5. The double ear defined
by the vertices v5, v6 and v7 and the convex arcs a5 and a6 is constructed in an analogous
way. Moreover, the vertices v1, v2, v4 and v6 are placed in such a way so that they do not
(collectively) guard the interior of the triangle v3v5v7 (for example the lengths of the edges
v1v7 and v2v3 are considered to be big enough, so that v2 does not see too much of the triangle
v3v5v7). As a result of this construction, W cannot be guarded by two vertex guards, but can
be guarded with three. There are actually only five possible guarding triplets: {v3, v4, v6},
{v3, v5, v6}, {v3, v5, v7}, {v4, v5, v7} and {v4, v6, v7}. Any guarding set that contains either v1
or v2 has cardinality at least four. The vertices v1 and v2 will be referred to as base vertices.

Consider now the crescent-like polygon C with n vertices of Fig. 15. The vertices of C
are in strictly convex position. This fact has the following implication: if vi, vi+1, vi+2 and
vi+3 are four consecutive vertices of C, and u is the point of intersection of the lines vivi+1

and vi+2vi+3, then the triangle vi+1uvi+2 is guarded if and only if either vi+1 or vi+2 is in the
guarding set of C. As a result, it is easy to see that C cannot be guarded with less than ⌊n2 ⌋
vertices, since in this case there will be at least one edge both endpoints of which would not
be in the guarding set for C.

In order to construct the piecewise-convex polygon that gives us the lower bound men-
tioned at the beginning of this section, we are going to merge several copies of W with C.
More precisely, consider the piecewise-convex polygon P of Fig. 16 with n = 7k vertices. It
consists of copies of the polygon W merged with C at every other linear edge of C, through
the base points of the W ’s.

In order to guard any of the windmill-like subpolygons, we need at least three vertices per
such polygon, none which can be a base point. This gives a total of 3k vertices. On the other
hand, in order to guard the crescent-like part of P we need at least k − 1 guards among the
base points. To see that, notice that there are k − 1 linear segments connecting base points;
if we were to use less than k− 1 guards, we would have at least one such line segment e, both
endpoints of which would not participate in the guarding set of G. But then, as in the case
of C, there would be a triangle, adjacent to e, which would not be guarded. Therefore, in
order to guard P we need a minimum of 4k− 1 = ⌊4n7 ⌋− 1 guards, which yields the following
theorem.

Theorem 11 There exists a family of piecewise-convex polygons with n vertices any vertex
guarding set of which has cardinality at least ⌊4n7 ⌋ − 1.
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Figure 16: The lower bound construction.

4 Monotone piecewise-convex polygons

In this section we focus on the subclass of piecewise-convex polygons that are monotone. Let
us recall the definition of monotone polygons from Section 1: a curvilinear polygon P is called
monotone if there exists a line L such that any line L⊥ perpendicular to L intersects P at
most twice.

In the case of linear polygons monotonicity does not yield better bounds on the worst
case number of point or vertex guards needed in order to guard the polygon. In both cases,
monotone or possibly non-monotone linear polygons, ⌊n3 ⌋ point or vertex guards are always
sufficient and sometimes necessary. In the context of piecewise-convex polygons the situation
is different. Unlike general (i.e., not necessarily monotone) piecewise-convex polygons, which
require at least ⌊4n7 ⌋ − 1 vertex guards and can always be guarded with ⌊2n3 ⌋ vertex guards,
monotone piecewise-convex polygons can always be guarded with ⌊n2 ⌋+1 vertex or ⌊n2 ⌋ point
guards. These bounds are tight, since there exist monotone piecewise-convex polygons that
require that many vertex (see Figs. 18 and 19) or point guards (see Fig. 20). This section is
devoted to the presentation of these tight bounds.
Vertex guards. Let us consider a monotone piecewise-convex polygon P , and let us assume
without loss of generality that P is monotone with respect to the x-axis (see also Fig. 17).
Let uj, 1 ≤ j ≤ n, be the j-th vertex of P when considered in the list of vertices sorted with
respect to their x-coordinate (ties are broken lexicographically). Let also u0 (resp., un+1)
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Figure 17: A monotone piecewise-convex polygon P with n = 9 vertices and its vertical
decomposition into four-sided convex slabs. The points u0 and u10 are the left-most and right-
most points of P ; u′2 is the projection of u2 ≡ v9, along ℓ2, on the opposite chain of P . P can
be either guarded with: (1) ⌊n2 ⌋+ 1 = 5 vertices, namely the vertex set {u1, u3, u5, u7, u9} ≡
{v1, v8, v3, v7, v6}, or ⌊

n
2 ⌋ = 4 points, namely the point set {u′2, u4, u6, u8} ≡ {u′2, v2, v4, v5}.

be the left-most (resp., right-most) point of P . Let ℓj, 0 ≤ j ≤ n + 1 be the vertical line
passing through the point uj of P , and let L = {ℓ0, ℓ1, ℓ2, . . . , ℓn+1} be the collection of these
lines. An immediate consequence of the fact that P is monotone and piecewise-convex is the
following corollary:

Corollary 12 The collection of lines L decomposes the interior of P into at most n + 1
convex regions κj , j = 0, . . . , n, that are free of vertices or edges of P .

In addition to the fact that the region κj , 1 ≤ j ≤ n−1, is convex, κj has on its boundary
both vertices uj and uj+1. This immediately implies that both uj and uj+1 see the entire
region κj . As far as κ0 and κn are concerned, they have u1 and un on their boundary,
respectively. As a result, u1 sees κ0, whereas un sees κn. Hence, in order to guard P it
suffices to take every other vertex uj , starting from u1, plus un (if not already taken). The
set G = {u2m−1, 1 ≤ m ≤ ⌊n2 ⌋} ∪ {un} is, thus, a vertex guarding set for P of size ⌊n2 ⌋+ 1.

A line L with respect to which P is monotone can be computed in O(n) time if it exists
[13]. Given L, we can compute the vertex guarding set G for P in O(n) time and O(n) space:
project the vertices of P on L and merge the two sorted (with respect to their ordering on
L) lists of vertices in the upper and lower chain of P ; then report every other vertex in the
merged sorted list starting from the first vertex, plus the last vertex of P , if it has not already
been reported.

The polygons M1 and M2 yielding the lower bound are shown in Figs. 18 and 19. M1 has
an odd number of vertices, whereas M2 has an even number of vertices. Let G1 (resp., G2) be
the vertex guarding set for M1 (resp., M2). Let us first consider M1 (see Fig. 18). Notice that
each prong of M1 is fully guarded by either of its two endpoints; the other vertices of M1 can
only partially guard the prongs that they are not adjacent to. Moreover, the shaded regions
of M1 can only be guarded by u1 or un. Suppose, now, we can guard M1 with less than
⌊n2 ⌋+1 vertex guards. Then either two consecutive vertices ui and ui+1 of M1, 1 ≤ i ≤ n− 1,
will not belong to G1, or u1 and un will not belong to G1. In the former case, the prong that
has ui and ui+1 as endpoints is only partially guarded by the vertices in G1, a contradiction.
In the latter case, the shaded regions of M1 are not guarded by the vertices in G1, again a
contradiction.
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Figure 18: A monotone piecewise-convex polygon M1 with an odd number of vertices that
requires ⌊n2 ⌋+1 vertex guards in order to be guarded: the shaded regions require that at least
one of the two endpoints of the bottom-most edge of the polygon to be in the guarding set.
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Figure 19: A monotone piecewise-convex polygon M2 with an even number of vertices that
requires ⌊n2 ⌋+ 1 vertex guards in order to be guarded.

Consider now the polygon M2 (see Fig. 19). The number of vertices of M2 between x1 and
x2 is equal to the number of vertices between x7 and x8, and even in number. Every prong of
M2 between x1 and x2 (resp., between x7 and x8) can be guarded by its two endpoints only;
all other vertices of M2 guard each such prong only partially. The shaded region s1 (resp.,
s5) is guarded only if either x1 or x3 (resp., either x6 or x8) belongs to G2. The prong with
endpoints x2 and x4 can be guarded by either both x2 and x4, or by x3. If x2 is the only
vertex in G2 among x2, x3 and x4, then the shaded region s4 is not guarded. Similarly, if
x4 is the only vertex in G2 among x2, x3 and x4, then the shaded region s2 is not guarded.
Finally, if neither x4 nor x5 belong to G2, then the shaded prong s3 is not guarded. Let us
suppose now that M2 can be guarded by less than ⌊n2 ⌋+1 vertex guards. By our observations
above, it is not possible that two consecutive vertices ui and ui+1 of M2, 1 ≤ i ≤ n−1, do not
belong to G2. Hence G2 will be a subset of the set G′

2 = {u2m−1, 1 ≤ m ≤ ⌊n2 ⌋} or a subset
of the set G′′

2 = {u2m, 1 ≤ m ≤ ⌊n2 ⌋}. In the former case, i.e., if G2 ⊆ G′
2, neither x6 nor x8

belong to G2, and thus the region s5 is not guarded, a contradiction. Similarly, if G2 ⊆ G′′
2 ,

neither x1 nor x3 belong to G2, and thus the region s1 is not guarded, again a contradiction.
We thus conclude that |G2| ≥ ⌊n2 ⌋+ 1.
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Point guards. We now turn our attention to guarding P with point guards (refer again
to Fig. 17). Define Geven to be the vertex set Geven = {u2m, 1 ≤ m ≤ ⌊n2 ⌋}. If u0 6= u1, i.e.,
if κ0 6= ∅, let ef be the first (left-most) edge of P , and uµ, µ > 1, the right-most endpoint of
ef (the left-most endpoint of ef is necessarily u1). If un+1 6= un, i.e., if κn+1 6= ∅, let el be
the last (right-most) edge of P , and uν , ν < n, the left-most endpoint of el (the right-most
endpoint of el is necessarily un). Finally, let u

′
i, 2 ≤ i ≤ n−1 be the projection along L⊥ of ui

on the opposite monotone chain of P . Define the set G according to the following procedure:

1. Set G equal to Geven.

2. If u0 6= u1 and µ > 2, replace u2 in G by u′2.

3. If un+1 6= un and n is odd and ν < n− 1, replace u2⌊n
2
⌋ by u′2⌊n

2
⌋.

As in the case of vertex guards, the set G can be computed in linear time and space: Geven

can be computed in linear time and space, whereas determining if u2 (resp., u2⌊n
2
⌋) is to be

replaced in G by u′2 (resp., u′2⌊n
2
⌋) takes O(1) time. The following lemma establishes that G

is indeed a point guarding set for P .

Lemma 13 The set G defined according to the procedure above is a point guarding set for P .

Proof. Every convex region κi, 3 ≤ i ≤ n − 3 is guarded by either ui or ui+1, since one of
the two is in G.

Now consider the convex regions κ0, κ1 and κ2. Both u2 and u′2 lie on the common
boundary of κ1 and κ2. Since either u2 or u

′
2 is in G, we conclude that κ1 and κ2 are guarded.

If κ0 = ∅, i.e., if u0 ≡ u1, κ0 is vacuously guarded. Suppose κ0 6= ∅, i.e., u0 6= u1. Let rf be
the room of P corresponding to the edge ef . Clearly, κ0 ⊆ rf . We distinguish between the
cases µ = 2 and µ > 2. If µ = 2, then u2 ∈ G guards rf and thus κ0. If µ > 2, the point
u′2 ∈ G is a point on ef . Therefore, u

′
2 guards rf and thus κ0.

Finally, we consider the convex regions κn−2, κn−1 and κn. If κn = ∅, i.e., un+1 ≡ un, κn
is vacuously guarded. Suppose, now, that κn 6= ∅, i.e., un+1 6= un. Let rl be the room of P
corresponding to the edge el. Clearly, κn ⊆ rl. We distinguish between the cases “n even”
and “n odd”. If n is even, then both un−2 ≡ u2⌊n

2
⌋−2 and un ≡ u2⌊n

2
⌋ belong to G. This

immediately implies that all three κn−2, κn−1 and κn are guarded: κn−2 is guarded by un−2,
whereas κn−1 and κn are guarded by un. If n is odd, either un−1 ≡ u2⌊n

2
⌋ or u′n−1 ≡ u′2⌊n

2
⌋

belongs to G. Since both un−1 and u′n−1 lie on the common boundary of κn−2 and κn−1,
we conclude that both κn−2 and κn−1 are guarded. To prove that κn is guarded, we further
distinguish between the cases ν = n − 1 and ν < n − 1. If ν = n − 1, then un−1 ∈ G is
an endpoint of rl, and thus guards κn. If ν < n − 1, the point u′n−1 ∈ G is a point on el.
Therefore, u′n−1 guards rl and thus κn. �

As far as the minimum number of point guards required to guard a monotone piecewise-
convex polygon is concerned, the polygon M , shown in Fig. 20, yields the sought for lower
bound. Notice that is very similar to the well known comb-like linear polygon that establishes
the lower bound on the number of point or vertex guards required to guard a linear polygon.
In our case it is easy to see that we need at least one point guard per prong of the polygon,
and since there are ⌊n2 ⌋ prongs we conclude that we need at least ⌊n2 ⌋ point guards in order
to guard M .

We are now ready to state the following theorem that summarizes the results of this
section.
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Figure 20: A comb-like monotone piecewise-convex polygon that requires ⌊n2 ⌋ point guards
in order to be guarded: one point guard is required per prong.

Theorem 14 Given a monotone piecewise-convex polygon P with n ≥ 2 vertices, ⌊n2 ⌋ + 1
vertex (resp., ⌊n2 ⌋ point) guards are always sufficient and sometimes necessary in order to
guard P . Moreover, we can compute a vertex (resp., point) guarding set for P of size ⌊n2 ⌋+1
(resp., ⌊n2 ⌋) in O(n) time and O(n) space.

5 Piecewise-concave polygons

In this section we deal with the problem of guarding piecewise-concave polygons using point
guards. Guarding a piecewise-concave polygon with vertex guards may be impossible even
for very simple configurations (see Fig. 22(a)). In particular we prove the following:

Theorem 15 Let P be a piecewise-concave polygon with n vertices. 2n− 4 point guards are
always sufficient and sometimes necessary in order to guard P .

Proof. To prove the sufficiency of 2n− 4 point guards we essentially apply the technique in
[17] for illuminating disjoint compact convex sets — please refer to Fig. 21. We denote by Ai

the convex object delimited by ai and the chord vivi+1 of ai. Let ti(vj) be the tangent line to
ai at vj , j = i, i+ 1, and let bi+1 be the bisecting ray of ti(vi+1), ti+1(vi+1) pointing towards
the interior of P .

Construct a set of locally convex arcs K = {κ1, κ2, . . . , κn} that lie entirely inside P as
such that (cf. [17]):

(a) the endpoints of κi are vi, vi+1,

(b) κi is tangent to bi (resp., bi+1) at vi (resp., vi+1),

(c) if Si is the locally convex object defined by κi and its chord vivi+1, then Ai ⊆ Si,
1 ≤ i ≤ n,

(d) the arcs κi are pairwise non-crossing, and

(e) the number of tangencies between the elements of K is maximized.

Let Q be the piecewise-concave polygon defined by the sequence of the arcs in K.

27



PSfrag replacements

v1

v2

v3

v4

v5

v6

v7

v8v9

v10

v11

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

Figure 21: The proof for the upper bound of Theorem 15. The polygon P is shown with
thick solid curvilinear arcs. The arcs κi are shown as thin solid arcs. The dotted rays are
the bisecting rays bi, whereas the dashed ray is the ray r8(v9). The regions A8, S8 \ A8 and
Π8 \ S8 are also shown using three levels of gray; note that Π8 has one reflex vertex at v9.
The graph Γ (i.e., the triangulation graph T (R)) is shown in red: the node ui corresponds to
the arc ai and the polygon R is depicted via thick segments.

Suppose now that κi and κσ(j) are tangent, 1 ≤ j ≤ m, and let ℓi,σ(j) be the common
tangent to κi and κσ(j). Let si,σ(j) be the line segment on ℓi,σ(j) between the points of
intersection of ℓi,σ(j) with ℓi,σ(j−1) and ℓi,σ(j+1). Let Πi be the polygonal region defined by
the chord vivi+1 and the line segments si,σ(j). Πi is a linear polygon with at most two reflex
vertices (at vi and/or vi+1). It is easy to see that placing guards on the vertices of the Πi’s
guards both P and Q. Let GQ be the guard set of P constructed this way. Construct, now,
a planar graph Γ with vertex set K. Two vertices κi and κj of Γ are connected via an edge
if κi and κj are tangent. The graph Γ is a planar graph combinatorially equivalent to the
triangulation graph T (R) of a polygon R with n vertices. The edges of Γ connecting the arcs
κi, κi+1, 1 ≤ i ≤ n, are the boundary edges of R, whereas all other edges of Γ correspond
to diagonals in T (R). Let Q◦ denote the interior of Q. Observing that Q◦ consists of a
number of faces that are in 1–1 correspondence with the triangles in T (R), we conclude that
Q◦ consists of n − 2 faces, each containing three guards of GQ. It fact, each face of Q◦ can
actually be guarded by only two of the three guards it contains and thus we can eliminate
one of them per face of Q◦. The new guard set G of Q constructed above is also a guard set
for P and contains 2(n− 2) point guards.
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Figure 22: (a) A piecewise-concave polygon P that cannot be guarded solely by vertex guards.
Two consecutive edges of P have a common tangent at the common vertex and as a result the
three vertices of P see only the points along the dashed segments. (b) A piecewise-concave
polygon P that requires 2n− 4 point guards in order to be guarded.

To prove the necessity, refer to the piecewise-concave polygon P in Fig. 22(b). Each one
of the pseudo-triangular regions in the interior of P requires exactly two point guards in order
to be guarded. Consider for example the pseudo-triangle τ shown in gray in Fig. 22(b). We
need one point along each one of the lines l1, l2 and l3 in order to guard the regions near the
corners of τ , which implies that we need at least two points in order to guard τ (two out of the
three points of intersection of the lines l1, l2 and l3). The number of such pseudo-triangular
regions is exactly n− 2, thus we need a total of 2n − 4 point guards to guard P . �

6 Locally convex and general polygons

We have so far been dealing with the cases of piecewise-convex and piecewise-concave poly-
gons. In this section we will present results about locally convex, monotone locally convex
and general polygons.
Locally convex polygons. The situation for locally convex polygons is much less inter-
esting, as compared to piecewise-convex polygons, in the sense that there exist locally convex
polygons that require n vertex guards in order to be guarded. Consider for example the
locally convex polygon of Fig. 23(a). Every room in this polygon cannot be guarded by a
single guard, but rather it requires both vertices of every locally convex edge to be in any
guarding set in order for the corresponding room to be guarded. As a result it requires n

vertex guards. Clearly, these n guards are also sufficient, since any one of them guards also
the central convex part of the polygon. More interestingly, even if we do not restrict ourselves
to vertex guards, but rather allow guards to be any point in the interior or the boundary of
the polygon, then the locally convex polygon in Fig. 23(a) still requires n guards. This stems
from the fact that the rooms of this polygon have been constructed in such a way so that the
kernel of each room is the empty set (i.e., they are not star-shaped objects). However, we
can guard each room with two guards, which can actually be chosen to be the endpoints of
the locally convex arcs.

In fact the n vertices of a locally convex polygon are not only necessary (in the worst
case), but also always sufficient. Consider a point q inside a locally convex polygon P and let
ρq be an arbitrary ray emanating from q. Let wq be the first point of intersection of ρq with
the boundary of P as we walk on ρq away from q. If wq is a vertex of P we are done: q is
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Figure 23: (a) A locally convex polygon with n vertices that requires n vertex or point guards
in order to be guarded. (b) A non-convex polygon that cannot be guarded by vertex guards,
and which requires an infinite number of point guards.

visible by one of the vertices of P . Otherwise, rotate ρq around q in the, say, counterclockwise
direction, until the line segment qwq hits a feature f of P (if multiple features of P are hit
at the same time, consider the one closest to q along ρq). f cannot be a point in the interior
of an edge of P since then P would have to be locally concave at f . Therefore, f has to be a
vertex of P , i.e., q is guarded by f . We can thus state the following theorem:

Theorem 16 Let P be a locally convex polygon with n ≥ 2 vertices. Then n vertex (the n

vertices of P ) or point guards are always sufficient and sometimes necessary in order to guard
P .

Monotone locally convex polygons. As far as monotone locally convex polygons are
concerned, it easy to see that ⌊n2 ⌋+ 1 vertex or point guards are always sufficient. Let P be
a locally convex polygon. As in the case of piecewise-convex polygons, assume without loss
of generality that P is monotone with respect to the x-axis. Let u1, . . . , un be the vertices
of P sorted with respect to their x-coordinate. To prove our sufficiency result, it suffices to
consider the vertical decomposition of P into at most n + 1 convex regions κi, 0 ≤ i ≤ n.
Corollary 12 remains valid. As a result, the vertex set G = {u2m−1, 1 ≤ m ≤ ⌊n2 ⌋} ∪ {un}
is a guarding set for P of size ⌊n2 ⌋ + 1: every convex region κi, 1 ≤ i ≤ n − 1 is guarded by
either ui or ui+1, since at least one of ui, ui+1 is in G; moreover, u1 and un guard κ0 and κn,
respectively. As in the case of piecewise-convex polygons, G can be computed in linear time
and space.

In fact, the upper bound on the number of vertex/point guards for P just presented is
also a worst case lower bound. Consider the locally convex polygons T1 and T2 of Fig. 24,
each consisting of n vertices. T1 has an odd number of vertices, while the number of vertices
of T2 is even. It is readily seen that both T1 and T2 need at least one point guard per prong
(including the right-most prong of T1 and both the left-most and right-most prongs of T2).
Since the number of prongs in either T1 or T2 is ⌊

n
2 ⌋+1, we conclude that T1 and T2 require at

least ⌊n2 ⌋+ 1 point guards in order to be guarded. Summarizing our results about monotone
locally convex polygons:
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Figure 24: Two comb-like monotone locally convex polygons T1 (top) and T2 (bottom) with
an odd and even number of vertices, respectively. Both polygons require ⌊n2 ⌋+1 point guards
in order to be guarded: one point guard is required per prong.

Theorem 17 Given a monotone locally convex polygon P with n ≥ 2 vertices, ⌊n2 ⌋+1 vertex
or point guards are always sufficient and sometimes necessary in order to guard P . Moreover,
we can compute a vertex guarding set for P of size ⌊n2 ⌋+ 1 in O(n) time and O(n) space.

Remark 3 The results presented in this section about locally convex polygons are in essence
the same with known results on the number of reflex vertices required to guard linear polygons.
In particular, it is known that if a linear polygon P has r ≥ 1 reflex vertices, r vertex guards
placed on these vertices are always sufficient and sometimes necessary in order to guard P

[28], whereas if P is a monotone linear polygon, ⌊ r2⌋+1 among its r reflex vertices are always
sufficient and sometimes necessary in order to guard P [1]. In our setting, the r reflex vertices
of the linear polygon P are the n vertices of our locally convex polygons, and the locally
convex polylines connecting the reflex vertices of P are our locally convex edges. Clearly, the
analogy only refers to the combinatorial complexity of guarding sets, since for our algorithmic
analysis we have assumed that the polygon edges have constant complexity.

In the context we have just described, i.e., seeing linear polygons as locally convex polygons
the vertices of which are the reflex vertices of the linear polygons, it also possible to “translate”
the results of Section 3 as follows:

Consider a linear polygon P with r ≥ 2 reflex vertices. If P can be decomposed
into c ≥ r convex polylines pointing towards the exterior of the polygon, then P

can be guarded with at most ⌊2c3 ⌋ vertex guards.

The analogous “translation” for the results of Section 5 is as follows:
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Consider a linear polygon P with n vertices, r of which are reflex. If P can be
decomposed into c ≥ n − r convex polylines pointing towards the interior of the
polygon, then P can be guarded with at most 2c− 4 point guards.

General polygons. The class of general polygons poses difficulties. Consider the non-
convex polygon N of Fig. 23(b), which consists of two vertices v1 and v2 and two convex arcs
a1 and a2. The two arcs are tangent to a common line ℓ at v1. It is readily visible that v1 and
v2 cannot guard the interior of N . In fact, v1 cannot guard any point of N other than itself.
Even worse, any finite number of guards, placed anywhere in N , cannot guard the polygon.
To see that, consider the vicinity of v1. Assume that N can be guarded by a finite number
of guards, and let g 6= v1 be the guard closest to v1 with respect to shortest paths within N .
Consider the line ℓg passing through g that is tangent to a2 (among the two possible tangents
we are interested in the one the point of tangency of which is closer to v1). Let sg be the
sector of N delimited by a1, a2 and ℓg. sg cannot contain any guarding point, since such a
vertex would be closer to v1 than g. Since sg is not guarded by v1, we conclude that sg is not
guarded at all, which contradicts our assumption that N is guarded by a finite set of guards.

7 Summary and future work

In this paper we have considered the problem of guarding a polygonal art gallery, the walls
of which are allowed to be arcs of curves (our results are summarized in Table 1). We have
demonstrated that if we allow these arcs to be locally convex arcs, n (vertex or point) guards
are always sufficient and sometimes necessary. If these arcs are allowed to be non-convex,
then an infinite number of guards may be required. In the case of piecewise-convex polygons
with n vertices, we have shown that it is always possible to guard the polygon with ⌊2n3 ⌋
vertex guards, whereas ⌊4n7 ⌋ − 1 vertex guards are sometimes necessary. Furthermore, we
have described an O(n log n) time and O(n) space algorithm for computing a vertex guarding
set of size at most ⌊2n3 ⌋. For piecewise-concave polygons, we have shown that 2n − 4 point
guards are always sufficient and sometimes necessary. Finally, in the special case of monotone
piecewise-convex polygons, ⌊n2 ⌋ + 1 vertex or ⌊n2 ⌋ point guards are always sufficient and
sometimes necessary, whereas for monotone locally convex polygons ⌊n2 ⌋ + 1 vertex or point
guards are always sufficient and sometimes necessary.

Up to now we have not found a piecewise-convex polygon that requires more than ⌊4n7 ⌋+
O(1) vertex guards, nor have we devised a polynomial time algorithm for guarding a piecewise-
convex polygon with less than ⌊2n3 ⌋ vertex guards. Closing the gap between then two com-
plexities remains an open problem. Another open problem is the worst case maximum number
of point guards required to guard a piecewise-convex polygon. In this case our lower bound
construction fails, since it is possible to guard the corresponding polygon with ⌊3n7 ⌋ + O(1)
point guards. On the other hand, the comb-like polygon shown in Fig. 20, requires ⌊n2 ⌋ point
guards. Clearly, our algorithm that computes a guarding set of at most ⌊2n3 ⌋ vertex guards
is still applicable.

Other types of guarding problems have been studied in the literature, which either differ
on the type of guards (e.g., edge or mobile guards), the topology of the polygons considered
(e.g., polygons with holes) or the guarding model (e.g., the fortress problem or the prison
yard problem, mentioned in Section 1); see the book by O’Rourke [28], the survey paper by
Shermer [30] of the book chapter by Urrutia [33] for an extensive list of the variations of the
art gallery problem with respect to the types of guards or the guarding model. It would be
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Bounds by guard type
Polygon type Vertex Point

Upper Lower Upper Lower

Piecewise-convex ⌊ 2n

3
⌋ ⌊ 4n

7
⌋ − 1 ⌊ 2n

3
⌋ ⌊n

2
⌋

Monotone piecewise-convex ⌊n

2
⌋+ 1 ⌊n

2
⌋

Locally convex n

Monotone locally convex ⌊n2 ⌋+ 1

Piecewise-concave not always possible 2n− 4

General not always possible ∞

Table 1: The results in this paper: worst case upper and lower bounds on the number of
vertex or point guards needed in order to guard different types of curvilinear polygons.

interesting to extend these results to the families of curvilinear polygons presented in this
paper.

Last but not least, in the case of general polygons, is it possible to devise an algorithm
for computing a guarding set of finite cardinality, if the polygon does not contain cusp-like
configurations such as the one in Fig. 23(b)?
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