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Empty Monochromatic Triangles∗
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Abstract

We consider a variation of a problem stated by Erdös
and Guy in 1973 about the number of convex k-gons
determined by any set S of n points in the plane. In
our setting the points of S are colored and we say that
a spanned polygon is monochromatic if all its points are
colored with the same color.

As a main result we show that any bi-colored set
of n points in R2 in general position determines a
super-linear number of empty monochromatic triangles,
namely Ω(n5/4).

1 Introduction

Erdös and Guy [6] asked the following question. “What
is the least number of convex k-gons determined by any
set of n points1 in the plane?” The trivial solution for
the case k = 3 is

(

n
3

)

. In addition, if we require the tri-
angles to be empty then Katchalski and Meir [8] showed
that for all n ≥ 3 a lower bound is given by

(

n−1
2

)

and that there exists a constant c > 0 such that cn2

is an upper bound. Around the same time Bárány and
Füredi [1] showed that any set of n points has at least
n2 − O(n log n) empty triangles and they also gave an
upper bound of 2n2 if n is a power of 2.

Valtr [12] described a configuration of n points re-
lated to Horton sets [7] with fewer than 1.8n2 empty
triangles and also provided upper bounds on the num-
ber of empty k-gons, e.g. 2.42n2 empty quadrilater-
als. Later Dumitrescu [5] improved the upper bound
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(Spain) and CONCYT of México, Proyecto SEP-2004-Co1-45876,
urrutia@matem.unam.mx

1Throughout, all considered point sets are in general position,
that is, they do not contain three collinear points.

for triangles to ≈ 1.68n2, which then consequently was
further improved by Bárány and Valtr [2] to ≈ 1.62n2,
the currently best bound. It is still unknown whether
the constant could be smaller than 1, that is, whether
there exists a family of n-element sets with fewer than
n2 empty triangles.

We consider a related problem, where the points of
the given set S are colored. A polygon spanned by
points in S is called monochromatic if all its points are
colored with the same color. In contrast to the above
described race for the best constant for the uncolored
case, we are interested in the asymptotic behavior of
the number of empty monochromatic triangles for bi-
colored point sets.

A result in this direction was obtained by Devillers
et al. [4]. They proved that any bi-colored point set
in the plane exhibits at least ⌈n

4 ⌉ − 2 interior disjoint
empty monochromatic triangles. In a generalization Ur-
rutia [11] showed that in any 4-colored point set in R3

there is at least a linear number of empty monochro-
matic tetrahedra.

One might be also interested in the minimum num-
ber of colors so that we can color any given set S of
n points in a way such that S does not determine an
empty monochromatic triangle (or in general an empty
monochromatic convex k-gon). In [4] (Theorem 3.3)
this question has been settled by showing that already
for three colors there are sets not spanning any empty
monochromatic triangle.

The remaining question is to determine the asymp-
totic behavior of the number of empty monochromatic
triangles for bi-colored sets. We show that any bi-
colored set of n points in R2 in general position de-
termines Ω(n5/4) empty monochromatic triangles. To
the best of our knowledge no non-trivial bounds have
been known before.

2 Lower Bound Construction

We start with a technical lemma which shows that for
point sets with a triangular convex hull there exists a
triangulation such that a sufficient fraction of its trian-
gles are incident to vertices of the convex hull.

Lemma 1 Let S be a set of n points in general position
in the plane with 3 extreme points, that is, with a trian-
gular convex hull and m = n − 3 interior points. Then
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S can be triangulated such that at least m+
√

m+1 tri-
angles have (at least) as one of their vertices an extreme
point of S.

Proof. Let ∆ be the convex hull of S, E(∆) the edges
of ∆, and M = S \ ∆ = {q1, ..., qm} the interior points
of S, |M | = m = n − 3.

We first define a partial order ≤e on the elements of
M . Two points p1, p2 ∈ M are comparable with respect
to an edge e ∈ E(∆) if the open triangle formed by e

and p1 is contained in the closed triangle formed by e

and p2 (p1 ≤e p2) or vice versa (p2 ≤e p1), see Figure 1
for an example.

e1

e3

e2

Figure 1: Two points are comparable w.r.t. e1 and e3,
but incomparable w.r.t. e2.

Observe that two fixed points p1, p2 ∈ M are com-
parable w.r.t. exactly 2 out of 3 edges of ∆. This can
be seen by considering the supporting line of the edge
p1, p2, see Figure 1. Two points are comparable w.r.t.
an edge e of ∆ if and only if this supporting line inter-
sects e. This implies that if two points are not compara-
ble w.r.t. e then they are comparable w.r.t. both other
edges.

A chain is an ordered set of (pairwise) comparable
points of M and an anti-chain is a set of pairwise incom-
parable points of M . By Dilworth’s Theorem [3] there
exists a chain or an anti-chain in M w.r.t. a given edge e

of ∆ of size
√

m. Because an anti-chain for e is a chain
for the other two edges of ∆, we may assume w.l.o.g
that there exists a chain qi1 ≤e · · · ≤e qi√m

w.r.t. e.
We obtain a triangulation of ∆ ∪ {qi1 , . . . , qi√m

} by

joining each qij , 1 ≤ j <
√

m, to qij+1
and to the end-

points of e, and qi√m
to the vertices of ∆, see Figure 2,

left. There are 2
√

m + 1 triangles in this triangulation
and all of them have at least one vertex on the convex
hull. We now extend the triangulation to cover the re-
maining points. For each point qi not in the chain there
is precisely one end-point p of e visible to qi and we add
the edge joining qi and p.

We have, so far, a collection of pairwise non-crossing
edges, and we complete this to a triangulation of ∆ ∪
{q1, . . . qm}, see Figure 2, right. There are 2

√
m + m −

√
m + 1 = m +

√
m + 1 triangles in this triangulation

with at least one of its vertices on the convex hull. �

We now generalize the above result to sets with larger
convex hulls. Let CH(S) denote the set of vertices of
the convex hull of S and |CH(S)| its cardinality, that
is, the number of extreme points of S.

Lemma 2 (Order Lemma) Let S be a set of n points in
general position in the plane with h = |CH(S)| extreme
points. Then S can be triangulated such that at least
n +

√
n − h− 2 triangles have (at least) as one of their

vertices an extreme point of S.

Proof. Consider an arbitrary triangulation of the h

convex hull points of S (ignoring inner points). Let
τ1, . . . , τh−2 be the obtained triangles and let si be the
number of points of S interior to τi. By Lemma 1
each triangle τi can be triangulated such that at least
si +

√
si + 1 triangles have one of its vertices on the

convex hull of τi and therefore on the convex hull of S.
Taking the sum over all τi we have:

∑h−2
i=1 (si+

√
si+1) =

∑h−2
i=1 si +

∑h−2
i=1

√
si +

∑h−2
i=1 1 = (n−h)+

∑h−2
i=1

√
si +

(h − 2) ≥ n +

√

∑h−2
i=1 si − 2 = n +

√
n − h − 2. �

For the next result we consider bi-colored sets. We
will show that if the cardinality of the two color classes
differs significantly then this implies the existence of a
large number of empty monochromatic triangles.

Lemma 3 (Discrepancy Lemma) Let S be a set of n

points in general position in the plane, partitioned in
a red set R and a blue set B with |R| = |B| + α,

α ≥ 2. Then S determines at least (α−2)
6 (n + α) empty

monochromatic triangles.

Proof. Consider a red point r ∈ R and the star con-
necting r to all vertices R \ r. Completing this star
to a triangulation of R gives at least |R| − 2 triangles
having r as a vertex. At least α − 2 of these triangles
are empty of points from B, as |B| = |R| − α. Repeat-
ing this process for all points in R we obtain at least
(α−2)

3 |R| = (α−2)
3

n+α
2 = (α−2)

6 (n + α) empty red trian-
gles, since we over-count a triangle at most 3 times. �

Note that for the monochromatic case the Discrep-
ancy Lemma implies the Ω(n2) bound on the number of
empty triangles given in [8], although the constants are
slightly worse.

We are now ready to prove our main result.

Theorem 4 Any bi-colored set of n points in the
plane in general position determines Ω(n5/4) empty
monochromatic triangles.
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Figure 2: A triangulation for a chain and its extended triangulation

Proof. The general idea behind the proof is to itera-
tively peel a monochromatic convex layer of the point
set. For each layer we use the Order Lemma to obtain
roughly

√
n empty monochromatic triangles. If at any

moment the difference of the cardinality of the two color
classes is too large we utilize the Discrepancy Lemma
and terminate the process. Otherwise we stop after at
most 1

3n3/4 steps.
Let S1 be the given bi-colored set of n points, with

R1 the set of red and B1 the set of blue points. Let
ñ = n

6 . For each iteration step we construct smaller
sets Si+1 ⊂ Si, Ri+1 ⊆ Ri, and Bi+1 ⊆ Bi, respectively,
with Si+1 = Ri+1 ∪ Bi+1. As an invariant we will have
that in any step |Si| ≥ 2ñ holds. The iteration stops
either if at some step the discrepancy between the two
sets is larger than ñ1/4 or after at most 1

3n3/4 steps.
Consider the i-th step of the iteration and w.l.o.g. let

|Ri| ≥ |Bi|. There are two possible cases.

(a) If |Ri| − |Bi| ≥ ñ1/4 we apply the Discrepancy

Lemma and get at least (ñ1/4−2)
6 (2 ∗ ñ + ñ1/4) =

Ω(n5/4) empty monochromatic triangles.

(b) Otherwise build the convex hull of the red points
and let B′

i ⊆ Bi be the blue points outside of
this convex hull. We denote by ri = |Ri| and
bi = |Bi \ B′

i|. We have ri ≥ ñ by our invariant as-
sumption, ri ≥ bi, and ri ≤ bi + ñ1/4, as otherwise
we apply the Discrepancy Lemma to Ri ∪ Bi \ B′

i

and terminate the iteration with Ω(n5/4) empty
monochromatic triangles as above. Note that the
latter inequality implies that |B′

i| < ñ1/4.

We apply the Order Lemma to Ri and get at least
ri +

√

ri − |CH(Ri)| − 2 monochromatic (red) tri-
angles which are by construction a subset of a tri-
angulation of Ri incident to CH(Ri). At most
bi of these triangles may contain a blue point, so
we get at least ri − bi +

√

ri − |CH(Ri)| − 2 ≥
√

ri − |CH(Ri)| − 2 empty monochromatic trian-
gles.

Now we show that |CH(Ri)| < 2ñ1/4. Assume to
the contrary that |CH(Ri)| ≥ 2ñ1/4 and consider

the set (Ri \ CH(Ri)) ∪ (Bi \ B′
i). This set has at

most ri − 2ñ1/4 red points and bi ≥ ri − ñ1/4 blue
points, so the difference is at least ñ1/4 and as above
we apply the Discrepancy Lemma and terminate.

Thus, if we don’t terminate, we get at least√
ñ − 2ñ1/4 − 2 ≥

√
ñ

2 empty monochromatic tri-
angles in step i. Note that the last inequality holds
for sufficiently large ñ.

For the next iteration step let Ri+1 = Ri \CH(Ri),
Bi+1 = Bi \B′

i, and Si+1 = Ri+1∪Bi+1. Note that
all the empty monochromatic triangles we have
constructed in step i had at least one vertex in
CH(Ri), that is, we will not use these vertices for
the next iterations, and therefore we do not over-
count.

The process ends either by applying the Discrepancy
Lemma or after 1

3n3/4 steps. As in each step we obtain

at least
√

ñ
2 empty monochromatic triangles, we get in

both cases a total of Ω(n5/4) empty monochromatic tri-
angles.

It remains to show that the invariant |Si| ≥ 2ñ holds.
In step i we remove |B′

i| + |CH(Ri)| < ñ1/4 + 2ñ1/4 =
3ñ1/4 points. Thus after 1

3n3/4 steps we have at least

n − 1
3n3/4 · 3ñ1/4 ≥ 2ñ points left. �

Note that the constants in the above proof could be
improved, but it is easy to see that the asymptotic be-
havior is tight within this approach.

3 Conclusions and Open Problems

We have not been able to construct a point set with
o(n2) empty monochromatic triangles. Usually Horton
sets are a good candidate to provide minimal examples
with respect to determining empty convex polygons.
But it turns out that every two-coloring of a Horton
set has Ω(n2) empty monochromatic triangles. A brief
sketch of that fact looks as follows. Take any bi-coloring
of the Horton set and note that the upper and lower
part must have a linear number of red and blue points,
as otherwise by the Discrepancy Lemma there would be
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a quadratic number of empty monochromatic triangles.
Now take any triangle of three consecutive points in the
upper part which form a cap. Any edge of this trian-
gle, where at least one is monochromatic, say red, and
any point from the lower part spans an empty triangle.
Thus, together with the Θ(n) red points from below,
it forms a linear number of empty red triangles. Since
there is a linear number of such caps we get a quadratic
number of empty monochromatic triangles for the Hor-
ton set.

Other interesting sets with O(n2) empty triangles,
which are not based on Horton sets, can be found in
the constructions of Katchalski and Meir [8].

Considering results in [2] and [10] one can see that
in the uncolored case and for sufficiently large n there
is always a quadratic number of empty triangles and
empty convex quadrilaterals, there is at least a linear
number of pentagons but the correct bound seems to
be quadratic. The status for convex empty hexagons
was a long-standing open problem and it has recently
been shown that at least one (and thus a linear number)
exists, but the best upper bound is again quadratic.
Finally no empty convex 7-gons may exist. So it seems
that either none, or a quadratic number of empty k-
gons exists, and we believe that somehow this translates
to colored point sets. We therefore state the following
conjecture.

Conjecture 1 Any bi-colored set of n points in R2

in general position determines a quadratic number of
empty monochromatic triangles.

In fact we did not obtain a single family of sets where
the asymptotics of the number of empty triangles and
empty monochromatic triangles differ. What we have
been able to construct are sets which have 5 times fewer
empty monochromatic triangles than empty triangles.
The idea behind the construction is to start with a set
S of n points with t(S) empty triangles. W.l.o.g. S has
no two points on a horizontal line. We then add a copy
of S which is shifted horizontally to the right by some
sufficiently small ε and color the points of S red and
their duplicates blue. For each ε-near pair we get 2n−2
empty bi-chromatic triangles. For each empty triangle
in S we get 3 new bi-chromatic triangles (not using an
ε-near pair of points), but only one empty monochro-
matic triangle. Thus the ratio of empty triangles to

monochromatic ones is 4+ 2n2−2n
t(S) . Taking the sets con-

structed by Bárány and Valtr [2] with t(S) = 1.62n2

empty triangles gives a factor of ≈ 5.23.

Another interesting question is to consider empty
monochromatic convex k-gons for k > 3. Devillers et
al. [4] (Theorem 3.4) showed that for k ≥ 5 and any
n there are bi-colored sets where no empty monochro-
matic convex k-gon exists. So the remaining case are

empty monochromatic convex quadrilaterals. For ex-
ample in [4] they showed that for n ≥ 64 any bi-
colored Horton set contains empty monochromatic con-
vex quadrilaterals. This leads to Conjecture 3.1 in [4]
which states that for sufficiently large n any bi-colored
set contains at least one monochromatic convex quadri-
lateral.

We recently learned that based on our approach the
lower bound on the number of empty monochromatic
triangles can be slightly improved [9].

Let us finally mention that we have been able to
prove an analogous lower bound on the number of empty
monochromatic simplices in Rd. We leave the details of
this extension for the full version of this paper.
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matic variants of the Erdös-Szekeres Theorem. Compu-

tational Geometry, Theory and Applications, 26(3):193–
208, 2003.

[5] A. Dumitrescu, Planar sets with few empty convex
polygons. Studia Scientiarum Mathematicarum Hun-

garica, 36(1-2):93-109, 2000.

[6] P. Erdös, R.K. Guy, Crossing number problems. Amer.

Math. Monthly, 88:52–58, 1973.

[7] J.D. Horton, Sets with no empty convex 7-gons. Canad.

Math. Bull., 26:482-484, 1983.

[8] M. Katchalski, A. Meir, On empty triangles determined
by points in the plane. Acta Math. Hung., 51(3-4):323–
328, 1988.

[9] J. Pach, G. Toth, personal communication 2008.

[10] R. Pinchasi, R. Radoicic, M. Sharir, On empty convex
polygons in a planar point set. J. Comb. Theory, Ser.

A, 113(3):385–419, 2006.

[11] J. Urrutia, Coloraciones, tetraedralizaciones, y tetrae-
dros vacios en coloraciones de conjuntos de puntos en
R

3. Proc. X Encuentros de geometria Computacional,
Sevilla, pp 95–100, 2003.

[12] P. Valtr, On the minimum number of empty polygons
in planar point sets. Studia. Sci. Math. Hungar. 30:155–
163, 1995.


