Exact Join Detection for Convex Polyhedra and Other Numerical Abstractions ${ }^{\text {AT }}$

Roberto Bagnara, Patricia M. Hill, Enea Zaffanella
Department of Mathematics, University of Parma, Italy

Abstract

Deciding whether the union of two convex polyhedra is itself a convex polyhedron is a basic problem in polyhedral computations; having important applications in the field of constrained control and in the synthesis, analysis, verification and optimization of hardware and software systems. In such application fields though, general convex polyhedra are just one among many, so-called, numerical abstractions, which range from restricted families of (not necessarily closed) convex polyhedra to non-convex geometrical objects. We thus tackle the problem from an abstract point of view: for a wide range of numerical abstractions that can be modeled as bounded join-semilattices - that is, partial orders where any finite set of elements has a least upper bound-, we show necessary and sufficient conditions for the equivalence between the lattice-theoretic join and the set-theoretic union. For the case of closed convex polyhedra -which, as far as we know, is the only one already studied in the literature - we improve upon the state-of-the-art by providing a new algorithm with a better worst-case complexity. The results and algorithms presented for the other numerical abstractions are new to this paper. All the algorithms have been implemented, experimentally validated, and made available in the Parma Polyhedra Library.

Key words: polyhedron, union, convexity, abstract interpretation, numerical abstraction, powerset domain.

1. Introduction

For $n \in \mathbb{N}$, let $\mathbb{D}_{n} \subset \wp\left(\mathbb{R}^{n}\right)$ be a set of finitely-representable sets such that $\left(\mathbb{D}_{n}, \subseteq\right)$ is a bounded join-semilattice, that is, a minimum element exists as well as the least upper bound for all $D_{1}, D_{2} \in \mathbb{D}_{n}$. Such a least upper bound -let us denote it by $D_{1} \uplus D_{2}$ and call it the join of D_{1} and D_{2} - is, of course, not

[^0]guaranteed to be equal to $D_{1} \cup D_{2}$. More generally, we refer to the problem of deciding, for each finite set $\left\{D_{1}, \ldots, D_{k}\right\} \subseteq \mathbb{D}_{n}$, whether $\biguplus_{i=1}^{k} D_{i}=\bigcup_{i=1}^{k} D_{i}$ as the exact join detection problem.

Examples of \mathbb{D}_{n} include n-dimensional convex polyhedra, either topologically closed or not necessarily so, restricted families of polyhedra characterized by interesting algorithmic complexities -such as bounded-difference and octagonal shapes-, Cartesian products of some families of intervals, and other "box-like" geometric objects where the intervals can have "holes" (for instance, Cartesian products of modulo intervals 37, 38] fall in this category). All these numerical abstractions allow to conveniently represent or approximate the constraints arising in constrained control (see, e.g., [28]) and, more generally, in the synthesis, analysis, verification and optimization of hardware and software systems (see, e.g., [8]).

The restrictions implied by convexity and/or by the "shapes" of the geometric objects in \mathbb{D}_{n} are sometimes inappropriate for the application at hand. In these cases, one possibility is to consider finite sets of elements of \mathbb{D}_{n}. For instance, many applications in the field of hardware/software verification use constructions like the finite powerset domain of [1]: this is a special case of disjunctive completion [24], where disjunctions are implemented by maintaining an explicit (hence finite) and non-redundant collection of elements of \mathbb{D}_{n}. Non-redundancy means that a collection is made of maximal elements with respect to subset inclusion, so that no element is contained in another element in the collection. The finite powerset and similar constructions are such that $Q_{1}=\left\{D_{1}, \ldots, D_{h-1}, D_{h}, \ldots, D_{k}\right\}$ and $Q_{2}=\left\{D_{1}, \ldots, D_{h-1}, D\right\}$ are two different representations for the same set, if $\bigcup_{i=h}^{k} D_{i}=\biguplus_{i=h}^{k} D_{i}=D$. The latter representation is clearly more desirable, and not just because -being more compact- it results in a better efficiency of all the involved algorithms. In the field of control engineering, the ability of efficiently simplifying Q_{1} into Q_{2} can be used to reduce the complexity of the solution to optimal control problems, thus allowing for the synthesis of cheaper control hardware 15, 44]. Similarly, the simplification of Q_{1} into Q_{2} can lead to improvements in loop optimizations obtained by automatic code generators such as CLooG [12]. In the same application area, this simplification allows for a reduction in the complexity of array data-flow analysis and for a simplification of quasi-affine selection trees (QUASTs). In loop optimization, dependencies between program statements are modeled by parametric linear systems, whose solutions can be represented by QUASTs and computed by tools like PIP [25], which, however, can generate non-simplified QUASTs. These can be simplified efficiently provided there is an efficient procedure for deciding the exact join property. Another application of exact join detection is the computation of under-approximations, which are useful, in particular, for the approximation of contra-variant operators such as set-theoretic difference. In fact, when the join is exact it is a safe underapproximation of the union. The exact join detection procedure can also be
used as a preprocessing step for the extended convex hull problem 1 27]. Another important application of exact join detection comes from the field of static analysis via abstract interpretation [23, 24]. In abstract interpretation, static analysis is usually conducted by performing a fixpoint computation. Suppose we use the finite powerset domain $\left(\wp \mathrm{fn}\left(\mathbb{D}_{n}\right), \sqsubseteq, \varnothing, \sqcup\right)$: this is the bounded joinsemilattice of the finite and non-redundant subsets of \mathbb{D}_{n} ordered by the relation given, for each $Q_{1}, Q_{2} \in \wp_{\mathrm{fn}}\left(\mathbb{D}_{n}\right)$, by

$$
Q_{1} \sqsubseteq Q_{2} \quad \Longleftrightarrow \quad \forall D_{1} \in Q_{1}: \exists D_{2} \in Q_{2} \cdot D_{1} \subseteq D_{2}
$$

and ' \sqcup ' is the least upper bound (join) operator induced by ' \square ' 4]. The system under analysis is approximated by a monotonic (so called) abstract semantic function $\mathcal{A}: \wp_{\mathrm{fn}}\left(\mathbb{D}_{n}\right) \rightarrow \wp_{\mathrm{fn}}\left(\mathbb{D}_{n}\right)$, and the limit of the ascending chain given by \mathcal{A} 's iterates,

$$
\begin{equation*}
\mathcal{A}^{0}(\varnothing), \mathcal{A}^{1}(\varnothing), \mathcal{A}^{2}(\varnothing), \ldots, \tag{1}
\end{equation*}
$$

is, by construction, a sound approximation of the analyzed system's behavior. Since $\wp_{\mathrm{fn}}\left(\mathbb{D}_{n}\right)$ has infinite ascending chains, the standard abstract iteration sequence (11) may converge very slowly or fail to converge altogether. For this reason, a widening operator $\nabla: \wp_{\mathrm{fn}}\left(\mathbb{D}_{n}\right)^{2} \rightarrow \wp_{\mathrm{fn}}\left(\mathbb{D}_{n}\right)$ is introduced. This ensures that the sequence

$$
\begin{equation*}
\mathcal{B}^{0}(\varnothing), \mathcal{B}^{1}(\varnothing), \mathcal{B}^{2}(\varnothing), \ldots \tag{2}
\end{equation*}
$$

where, for each $Q \in \wp_{\mathrm{fn}}\left(\mathbb{D}_{n}\right), \mathcal{B}(Q):=Q \nabla(Q \sqcup \mathcal{A}(Q))$, is ultimately stationary and that the (finitely computable) fixpoint of \mathcal{B} is a post-fixpoint of \mathcal{A}, i.e., a sound approximation of the behavior of the system under consideration. In [4] three generic widening methodologies are presented for finite powerset abstract domains. A common trait of these methodologies is given by the fact that the precision/efficiency trade-off of the resulting widening can be greatly improved if domain elements are "pairwise merged" or even "fully merged." Let the cardinality of a finite set S be denoted by $\# S$. An element $Q=\left\{D_{1}, \ldots, D_{h}\right\}$ of $\wp_{\mathrm{fn}}\left(\mathbb{D}_{n}\right)$ is said to be pairwise merged if, for each $R \subseteq Q$, \# $R=2$ implies $\bigcup R \neq \biguplus R$; the notion of being fully merged is obtained by replacing $\# R=2$ with $\# R \geq 2$ in the above.

In this paper, we tackle the problem of exact join detection for all the numerical abstractions that are in widespread use at the time of writing ${ }^{2}$ This problem has been studied for convex polyhedra in [14]. We are not aware of any work that addresses the problem for other numerical abstractions.

In (14] the authors provide theoretical results and algorithms for the exact join detection problem applied to a pair of topologically closed convex polyhedra. Three different specializations of the problem are considered, depending on the chosen representation for the input polyhedra: H-polyhedra, described by

[^1]constraints (half-spaces); V-polyhedra, described by generators (vertices); and VH-polyhedra, described by both constraints and generators 3 The algorithms for the H and V representations, which are based on Linear Programming techniques, enjoy a polynomial worst-case complexity bound; the algorithm for VHpolyhedra achieves a better, strongly polynomial bound. For the H-polyhedra case only, it is also shown how the algorithm can be generalized to more than two input polyhedra. An improved theoretical result for the case of more than two V-polytopes is stated in [11].

The first contribution of the present paper is a theoretical result for the VHpolyhedra case, leading to the specification of a new algorithm improving upon the worst-case complexity bound of [13].

The second contribution is constituted by original results and algorithms concerning the exact join detection problem for the other numerical abstractions. For those that are restricted classes of topologically closed convex polyhedra, one could of course use the same algorithms used for the general case, but the efficiency would be poor. Consider that the applications of finite powersets of numerical abstractions range between two extremes:

- those using small-cardinality powersets of complex abstractions such as general polyhedra (see, for instance [17]);
- those using large-cardinality powersets of simple abstractions (for instance, verification tasks like the one described in [26], can be tackled this way).

So, in general, the simplicity of the abstractions is countered by their average number in the powersets. It is thus clear that specialized, efficient algorithms are needed for all numerical abstractions. In this paper we present algorithms, each backed with the corresponding correctness result, for the following numerical abstractions: not necessarily closed convex polyhedra, "box-like" geometric objects; rational (resp., integer) bounded difference shapes; and rational (resp., integer) octagonal shapes.

The plan of the paper is as follows. In Section 2, we introduce the required technical notation and terminology. In Section 3, we discuss the results and algorithms for convex polyhedra. The specialized results for boxes, bounded difference shapes and octagonal shapes are provided in Sections 4. 5 and 6 respectively. Section 7 concludes.

2. Preliminaries

The set of non-negative reals is denoted by \mathbb{R}_{+}. In the present paper, all topological arguments refer to the Euclidean topological space \mathbb{R}^{n}, for any positive integer n. If $S \subseteq \mathbb{R}^{n}$, then the topological closure of S is defined as $\mathbb{C}(S):=\bigcap\left\{C \subseteq \mathbb{R}^{n} \mid S \subseteq C\right.$ and C is closed $\}$.

[^2]For each $i \in\{1, \ldots, n\}, v_{i}$ denotes the i-th component of the (column) vector $\mathbf{v} \in \mathbb{R}^{n}$; the projection on space dimension i for a set $S \subseteq \mathbb{R}^{n}$ is denoted by $\pi_{i}(S):=\left\{v_{i} \in \mathbb{R} \mid \mathbf{v} \in S\right\}$. We denote by $\mathbf{0}$ the vector of \mathbb{R}^{n} having all components equal to zero. A vector $\mathbf{v} \in \mathbb{R}^{n}$ can also be interpreted as a matrix in $\mathbb{R}^{n \times 1}$ and manipulated accordingly with the usual definitions for addition, multiplication (both by a scalar and by another matrix), and transposition, which is denoted by \mathbf{v}^{T}. The scalar product of $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$, denoted $\langle\mathbf{v}, \mathbf{w}\rangle$, is the real number $\mathbf{v}^{\mathrm{T}} \mathbf{w}=\sum_{i=1}^{n} v_{i} w_{i}$.

For any relational operator $\bowtie \in\{=, \leq, \geq,<,>\}$, we write $\mathbf{v} \bowtie \mathbf{w}$ to denote the conjunctive proposition $\bigwedge_{i=1}^{n}\left(v_{i} \bowtie w_{i}\right)$. Moreover, $\mathbf{v} \neq \mathbf{w}$ denotes the proposition $\neg(\mathbf{v}=\mathbf{w})$. We occasionally use the convenient notation $a \bowtie_{1} b \bowtie_{2} c$ to denote the conjunction $a \bowtie_{1} b \wedge b \bowtie_{2} c$ and do not distinguish conjunctions of propositions from sets of propositions.

2.1. Topologically Closed Convex Polyhedra

For each vector $\mathbf{a} \in \mathbb{R}^{n}$ and scalar $b \in \mathbb{R}$, where $\mathbf{a} \neq \mathbf{0}$, the linear non-strict inequality constraint $\beta=(\langle\mathbf{a}, \mathbf{x}\rangle \leq b)$ defines a topologically closed affine halfspace of \mathbb{R}^{n}. The linear equality constraint $\langle\mathbf{a}, \mathbf{x}\rangle=b$ defines an affine hyperplane. A topologically closed convex polyhedron is usually described as a finite system of linear equality and non-strict inequality constraints. Theoretically speaking, it is simpler to express each equality constraint as the intersection of the two half-spaces $\langle\mathbf{a}, \mathbf{x}\rangle \leq b$ and $\langle-\mathbf{a}, \mathbf{x}\rangle \leq-b$. We do not distinguish between syntactically different constraints defining the same affine half-space so that, e.g., $x \leq 2$ and $2 x \leq 4$ are considered to be the same constraint.

We write $\operatorname{con}(\mathcal{C})$ to denote the polyhedron $\mathcal{P} \subseteq \mathbb{R}^{n}$ described by the finite constraint system \mathcal{C}. Formally, we define

$$
\operatorname{con}(\mathcal{C}):=\left\{\mathbf{p} \in \mathbb{R}^{n} \mid \forall \beta=(\langle\mathbf{a}, \mathbf{x}\rangle \leq b) \in \mathcal{C}:\langle\mathbf{a}, \mathbf{p}\rangle \leq b\right\}
$$

The function 'con' enjoys an anti-monotonicity property, meaning that $\mathcal{C}_{1} \subseteq \mathcal{C}_{2}$ implies $\operatorname{con}\left(\mathcal{C}_{1}\right) \supseteq \operatorname{con}\left(\mathcal{C}_{2}\right)$.

Alternatively, the definition of a topologically closed convex polyhedron can be based on some of its geometric features. A vector $\mathbf{r} \in \mathbb{R}^{n}$ such that $\mathbf{r} \neq \mathbf{0}$ is a ray (or direction of infinity) of a non-empty polyhedron $\mathcal{P} \subseteq \mathbb{R}^{n}$ if, for every point $\mathbf{p} \in \mathcal{P}$ and every non-negative scalar $\rho \in \mathbb{R}_{+}$, we have $\mathbf{p}+\rho \mathbf{r} \in \mathcal{P}$; the set of all the rays of a polyhedron \mathcal{P} is denoted by $\operatorname{rays}(\mathcal{P})$. A vector $\mathbf{l} \in \mathbb{R}^{n}$ is a line of \mathcal{P} if both \mathbf{l} and $-\mathbf{l}$ are rays of \mathcal{P}. The empty polyhedron has no rays and no lines. As was the case for equality constraints, the theory can dispense with the use of lines by using the corresponding pair of rays. Moreover, when vectors are used to denote rays, no distinction is made between different vectors having the same direction so that, e.g., $\mathbf{r}_{1}=(1,3)^{\mathrm{T}}$ and $\mathbf{r}_{2}=(2,6)^{\mathrm{T}}$ are considered to be the same ray in \mathbb{R}^{2}. The following theorem is a simple consequence of well-known theorems by Minkowski and Weyl [43].

Theorem 2.1. The set $\mathcal{P} \subseteq \mathbb{R}^{n}$ is a closed polyhedron if and only if there exist finite sets $R, P \subseteq \mathbb{R}^{n}$ of cardinality r and p, respectively, such that $\mathbf{0} \notin R$ and

$$
\mathcal{P}=\operatorname{gen}((R, P)):=\left\{R \rho+P \sigma \in \mathbb{R}^{n} \mid \rho \in \mathbb{R}_{+}^{r}, \sigma \in \mathbb{R}_{+}^{p}, \sum_{i=1}^{p} \sigma_{i}=1\right\}
$$

When $\mathcal{P} \neq \varnothing$, we say that \mathcal{P} is described by the generator system $\mathcal{G}=(R, P)$. In particular, the vectors of R and P are rays and points of \mathcal{P}, respectively. Thus, each point of the generated polyhedron is obtained by adding a nonnegative combination of the rays in R and a convex combination of the points in P. Informally speaking, if no "supporting point" is provided then an empty polyhedron is obtained; formally, $\mathcal{P}=\varnothing$ if and only if $P=\varnothing$. By convention, the empty system (i.e., the system with $R=\varnothing$ and $P=\varnothing$) is the only generator system for the empty polyhedron. We define a partial order relation ' \sqsubseteq ' on generator systems, which is the component-wise extension of set inclusion. Namely, for any generator systems $\mathcal{G}_{1}=\left(R_{1}, P_{1}\right)$ and $\mathcal{G}_{2}=\left(R_{2}, P_{2}\right)$, we have $\mathcal{G}_{1} \sqsubseteq \mathcal{G}_{2}$ if and only if $R_{1} \subseteq R_{2}$ and $P_{1} \subseteq P_{2}$; if, in addition, $\mathcal{G}_{1} \neq \mathcal{G}_{2}$, we write $\mathcal{G}_{1} \sqsubset \mathcal{G}_{2}$. The function 'gen' enjoys a monotonicity property, as $\mathcal{G}_{1} \sqsubseteq \mathcal{G}_{2}$ implies $\operatorname{gen}\left(\mathcal{G}_{1}\right) \subseteq \operatorname{gen}\left(\mathcal{G}_{2}\right)$.

The vector $\mathbf{v} \in \mathcal{P}$ is an extreme point (or vertex) of the polyhedron \mathcal{P} if it cannot be expressed as a convex combination of some other points of \mathcal{P}. Similarly, $\mathbf{r} \in \operatorname{rays}(\mathcal{P})$ is an extreme ray of \mathcal{P} if it cannot be expressed as a non-negative combination of some other rays of \mathcal{P}. It is worth stressing that, in general, the vectors in R and P are not the extreme rays and the vertices of the polyhedron: for instance, any half-space of \mathbb{R}^{2} has two extreme rays and no vertices, but any generator system describing it will contain at least three rays and one point.

The combination of the two approaches outlined above is the basis of the double description method due to Motzkin et al. [36], which exploits the duality principle to compute each representation starting from the other one, possibly minimizing both descriptions. Clever implementations of this conversion procedure, such as those based on the extension by Le Verge [31] of Chernikova's algorithms [18, 19, 20], are the starting points for the development of software libraries based on the double description method. While being characterized by a worst-case computational cost that is exponential in the size of the input, these algorithms turn out to be practically useful for the purposes of many applications in the context of static analysis.

We denote by $\mathbb{C P}_{n}$ the set of all topologically closed polyhedra in \mathbb{R}^{n}, which is partially ordered by subset inclusion to form a non-complete lattice; the finitary greatest lower bound operator corresponds to intersection; the finitary least upper bound operator, denoted by ' \uplus ', corresponds to the convex polyhedral hull. Observe that if, for each $i \in\{1,2\}, \mathcal{P}_{i}=\operatorname{gen}\left(\left(R_{i}, P_{i}\right)\right)$, then the convex polyhedral hull is $\mathcal{P}_{1} \uplus \mathcal{P}_{2}=\operatorname{gen}\left(\left(R_{1} \cup R_{2}, P_{1} \cup P_{2}\right)\right)$.

2.2. Not Necessarily Closed Convex Polyhedra

The linear strict inequality constraint $\beta=(\langle\mathbf{a}, \mathbf{x}\rangle>b)$ defines a topologically open affine half-space of \mathbb{R}^{n}. A not necessarily closed (NNC) convex polyhedron is defined by a finite system of strict and non-strict inequality constraints. Since by using lines, rays and points we can only represent topologically closed polyhedra, the key step for a parametric description of NNC polyhedra is the introduction of a new kind of generator called a closure point [3].

Definition 2.2. (Closure point.) A vector $\mathbf{c} \in \mathbb{R}^{n}$ is a closure point of $S \subseteq \mathbb{R}^{n}$ if and only if $\mathbf{c} \in \mathbb{C}(S)$.

For a non-empty NNC polyhedron $\mathcal{P} \subseteq \mathbb{R}^{n}$, a vector $\mathbf{c} \in \mathbb{R}^{n}$ is a closure point of \mathcal{P} if and only if $\sigma \mathbf{p}+(1-\sigma) \mathbf{c} \in \mathcal{P}$ for every point $\mathbf{p} \in \mathcal{P}$ and every $\sigma \in \mathbb{R}$ such that $0<\sigma<1$. By excluding the case when $\sigma=0, \mathbf{c}$ is not forced to be in \mathcal{P}.

The following theorem taken from 3] is a generalisation of Theorem 2.1 to NNC polyhedra.

Theorem 2.3. The set $\mathcal{P} \subseteq \mathbb{R}^{n}$ is an $N N C$ polyhedron if and only if there exist finite sets $R, P, C \subseteq \mathbb{R}^{n}$ of cardinality r, p and c, respectively, such that $\mathbf{0} \notin R$ and

$$
\mathcal{P}=\operatorname{gen}((R, P, C)):=\left\{\begin{array}{l|l}
R \rho+P \sigma+C \tau \in \mathbb{R}^{n} & \begin{array}{l}
\rho \in \mathbb{R}_{+}^{r}, \sigma \in \mathbb{R}_{+}^{p}, \sigma \neq \mathbf{0} \\
\tau \in \mathbb{R}_{+}^{c} \\
\sum_{i=1}^{p} \sigma_{i}+\sum_{i=1}^{c} \tau_{i}=1
\end{array}
\end{array}\right\} .
$$

When $\mathcal{P} \neq \varnothing$, we say that \mathcal{P} is described by the extended generator system $\mathcal{G}=(R, P, C)$. As was the case for closed polyhedra, the vectors in R and P are rays and points of \mathcal{P}, respectively. The condition $\sigma \neq \mathbf{0}$ ensures that at least one of the points of P plays an active role in any convex combination of the vectors of P and C. The vectors of C are closure points of \mathcal{P}. Since both rays and closure points need a supporting point, we have $\mathcal{P}=\varnothing$ if and only if $P=\varnothing$. The partial order relation ' \square ' on generator systems is easily extended to also take into account the closure points component, so that the overloading of the function 'gen' still satisfies the monotonicity property.

The set of all NNC polyhedra in \mathbb{R}^{n}, denoted \mathbb{P}_{n}, is again a non-complete lattice partially ordered by subset inclusion, having $\mathbb{C P}_{n}$ as a sublattice. As for the set of closed polyhedra $\mathbb{C P}_{n}$, the finitary greatest lower bound operator corresponds to intersection; the finitary least upper bound operator, again denoted by ' \uplus ', corresponds to the not necessarily closed convex polyhedral hull. Observe that if, for each $i \in\{1,2\}, \mathcal{P}_{i}=\operatorname{gen}\left(\left(R_{i}, P_{i}, C_{i}\right)\right)$, then the convex polyhedral hull is $\mathcal{P}_{1} \uplus \mathcal{P}_{2}=\operatorname{gen}\left(\left(R_{1} \cup R_{2}, P_{1} \cup P_{2}, C_{1} \cup C_{2}\right)\right)$.

2.3. Subsumption and Saturation

A point (resp., ray, closure point) $\mathbf{v} \in \mathbb{R}^{n}$ is said to be subsumed by a polyhedron \mathcal{P} if and only if \mathbf{v} is a point (resp., ray, closure point) of \mathcal{P}.

Figure 1: Pictorial representations for Lemmas 3.1 and 3.5

A (closure) point $\mathbf{p} \in \mathbb{R}^{n}$ is said to saturate a constraint $\beta=(\langle\mathbf{a}, \mathbf{x}\rangle \bowtie b)$, where $\bowtie \in\{=, \leq, \geq,<,>\}$, if and only if $\langle\mathbf{a}, \mathbf{p}\rangle=b$; a ray $\mathbf{r} \in \mathbb{R}^{n}$ is said to saturate the same constraint β if and only if $\langle\mathbf{a}, \mathbf{r}\rangle=0$.

3. Exact Join Detection for Convex Polyhedra

In this section, we provide results for the exact join detection problem for convex polyhedra. Here we just consider the case when a double description representation is available; that is, in the proposed methods, we exploit both the constraint and the generator descriptions of the polyhedra.

3.1. Exact Join Detection for Topologically Closed Polyhedra

First we consider the exact join detection problem for closed polyhedra since, in this case, given any two closed polyhedra $\mathcal{P}_{1}, \mathcal{P}_{2} \in \mathbb{C P}_{n}$, we have that $\mathcal{P}_{1} \cup \mathcal{P}_{2}$ is convex if and only if $\mathcal{P}_{1} \uplus \mathcal{P}_{2}=\mathcal{P}_{1} \cup \mathcal{P}_{2}$. Before stating and proving the main result for this section, we present the following lemma that establishes some simple conditions that will ensure the union of two closed polyhedra is not convex.

Lemma 3.1. Let $\mathcal{P}_{1}, \mathcal{P}_{2} \in \mathbb{C P}_{n}$ be topologically closed non-empty polyhedra. Suppose there exist a constraint β and a vector \mathbf{p} such that (1) \mathbf{p} saturates β, (2) β is satisfied by \mathcal{P}_{1} but violated by \mathcal{P}_{2}, and (3) $\mathbf{p} \in \mathcal{P}_{1} \backslash \mathcal{P}_{2}$. Then, $\mathcal{P}_{1} \cup \mathcal{P}_{2}$ is not convex.

Proof. (See also Figure 1(a)]) By (2), there exists a point $\mathbf{p}_{2} \in \mathcal{P}_{2}$ that violates β. Consider the closed line segment $s:=\left[\mathbf{p}, \mathbf{p}_{2}\right]$; by (1), the one and only point on this segment that satisfies β is \mathbf{p}; by (3), $\mathbf{p} \in \mathcal{P}_{1}$ so that $s \subseteq \mathcal{P}_{1} \uplus \mathcal{P}_{2}$. Also by (3), $\mathbf{p} \notin \mathcal{P}_{2}$, so that there exists a non-strict constraint β_{2} that is satisfied by \mathcal{P}_{2} but violated by \mathbf{p}. Since $\mathbf{p}_{2} \in \mathcal{P}_{2}$, there exists a vector $\mathbf{q} \in s$ that saturates β_{2} and $\mathbf{q} \neq \mathbf{p}$. It follows that the open line segment $s_{1}:=(\mathbf{p}, \mathbf{q})$ is non-empty and every point in s_{1} violates both β and β_{2}; hence $s_{1} \cap \mathcal{P}_{1}=s_{1} \cap \mathcal{P}_{2}=\varnothing$. However, by construction,

$$
(\mathbf{p}, \mathbf{q}) \subset\left[\mathbf{p}, \mathbf{p}_{2}\right] \subseteq \mathcal{P}_{1} \uplus \mathcal{P}_{2}
$$

so that $\mathcal{P}_{1} \uplus \mathcal{P}_{2} \neq \mathcal{P}_{1} \cup \mathcal{P}_{2}$. Therefore $\mathcal{P}_{1} \cup \mathcal{P}_{2}$ is not convex.

Theorem 3.2. Let $\mathcal{P}_{1}, \mathcal{P}_{2} \in \mathbb{C P}_{n}$ be topologically closed non-empty polyhedra, where $\mathcal{P}_{1}=\operatorname{con}\left(\mathcal{C}_{1}\right)=\operatorname{gen}\left(\mathcal{G}_{1}\right)$. Then $\mathcal{P}_{1} \uplus \mathcal{P}_{2} \neq \mathcal{P}_{1} \cup \mathcal{P}_{2}$ if and only if there exist a constraint $\beta_{1} \in \mathcal{C}_{1}$ and a generator g_{1} in \mathcal{G}_{1} such that (1) g_{1} saturates β_{1}, (2) \mathcal{P}_{2} violates β_{1}, and (3) \mathcal{P}_{2} does not subsume g_{1}.

Proof. Suppose first that $\mathcal{P}_{1} \uplus \mathcal{P}_{2} \neq \mathcal{P}_{1} \cup \mathcal{P}_{2}$. As ' \uplus ' is the least upper bound operator for closed polyhedra, there exist points $\mathbf{p}_{1} \in \mathcal{P}_{1} \backslash \mathcal{P}_{2}$ and $\mathbf{p}_{2} \in \mathcal{P}_{2} \backslash \mathcal{P}_{1}$ such that

$$
\left[\mathbf{p}_{1}, \mathbf{p}_{2}\right] \nsubseteq\left(\mathcal{P}_{1} \cup \mathcal{P}_{2}\right)
$$

As $\mathbf{p}_{1} \in \mathcal{P}_{1}$, there exists a point

$$
\mathbf{p}:=(1-\sigma) \mathbf{p}_{1}+\sigma \mathbf{p}_{2} \in\left[\mathbf{p}_{1}, \mathbf{p}_{2}\right] \cap \mathcal{P}_{1}
$$

such that $\sigma \in \mathbb{R}_{+}$is maximal (note that, by convexity, $\sigma \leq 1$); then \mathbf{p} must saturate a constraint $\beta_{1} \in \mathcal{C}_{1}$. Moreover $\mathbf{p} \notin \mathcal{P}_{2}$ since, otherwise, we would have $\left[\mathbf{p}_{1}, \mathbf{p}\right] \subseteq \mathcal{P}_{1}$ and $\left[\mathbf{p}, \mathbf{p}_{2}\right] \subseteq \mathcal{P}_{2}$, contradicting $\left[\mathbf{p}_{1}, \mathbf{p}_{2}\right] \nsubseteq \mathcal{P}_{1} \cup \mathcal{P}_{2}$. Hence \mathbf{p}_{2} does not satisfy β_{1} so that \mathcal{P}_{2} violates β_{1}. Let \mathcal{G}_{1}^{\prime} be the generator system containing all the points and rays in \mathcal{G}_{1} that saturate β_{1}. Then $\mathbf{p} \in \operatorname{gen}\left(\mathcal{G}_{1}^{\prime}\right)$. By Theorem [2.1] as $\mathbf{p} \notin \mathcal{P}_{2}$, there is a point or ray g_{1} in \mathcal{G}_{1}^{\prime} that is not subsumed by \mathcal{P}_{2}. Hence conditions (1), (2) and (3) are all satisfied.

Suppose now that there exist a constraint $\beta_{1} \in \mathcal{C}_{1}$ and a generator g_{1} in \mathcal{G}_{1} such that conditions (1), (2) and (3) hold. Then, as $\mathcal{P}_{1}=\operatorname{con}\left(\mathcal{C}_{1}\right), \beta_{1}$ is satisfied by \mathcal{P}_{1}. If $g_{1}:=\mathbf{p}_{1}$ is a point, then, by letting $\beta:=\beta_{1}$ and $\mathbf{p}:=\mathbf{p}_{1}$ in Lemma3.1, the required three conditions hold so that $\mathcal{P}_{1} \cup \mathcal{P}_{2}$ is not convex. Now suppose that $g_{1}:=\mathbf{r}_{1}$ is a ray for \mathcal{P}_{1}. Suppose there exists a point $\mathbf{p}_{1}^{\prime} \in \mathcal{P}_{1}$ that saturates the constraint β_{1}. By condition (3), \mathbf{r}_{1} is not a ray for \mathcal{P}_{2}; hence for some $\rho \in \mathbb{R}_{+}$ there exists a point $\mathbf{p}_{1}:=\mathbf{p}_{1}^{\prime}+\rho \mathbf{r}_{1} \in \mathcal{P}_{1} \backslash \mathcal{P}_{2}$ that also saturates β_{1}. Hence, letting $\beta:=\beta_{1}$ and $\mathbf{p}:=\mathbf{p}_{1}$ in Lemma 3.1, the required three conditions hold so that $\mathcal{P}_{1} \cup \mathcal{P}_{2}$ is not convex. Otherwise, no point in \mathcal{P}_{1} saturates $\beta_{1} 4$ Suppose, for some $\mathbf{a} \in \mathbb{R}^{n}$ and $b \in \mathbb{R}, \beta_{1}=(\langle\mathbf{a}, \mathbf{x}\rangle \bowtie b)$; then, since $\mathcal{P}_{1} \neq \varnothing$, there exist a point $\mathbf{p}_{1}^{\prime} \in \mathcal{P}_{1}$ and a constraint $\beta_{1}^{\prime}:=\left(\langle\mathbf{a}, \mathbf{x}\rangle \bowtie b^{\prime}\right)$ such that \mathcal{P}_{1} satisfies β_{1}^{\prime} and \mathbf{p}_{1}^{\prime} saturates β_{1}^{\prime}; note that β_{1}^{\prime} is also saturated by ray \mathbf{r}_{1}. Thus we can construct, as done above, a point $\mathbf{p}_{1}:=\mathbf{p}_{1}^{\prime}+\rho \mathbf{r}_{1} \in \mathcal{P}_{1} \backslash \mathcal{P}_{2}$ that saturates β_{1}^{\prime}. Hence, letting $\beta:=\beta_{1}^{\prime}$ and $\mathbf{p}:=\mathbf{p}_{1}$ in Lemma 3.1, the required three conditions hold so that $\mathcal{P}_{1} \cup \mathcal{P}_{2}$ is not convex. Therefore, in all cases, $\mathcal{P}_{1} \uplus \mathcal{P}_{2} \neq \mathcal{P}_{1} \cup \mathcal{P}_{2}$.

Example 3.3. Consider the closed polyhedra

$$
\begin{aligned}
\mathcal{P}_{1} & =\operatorname{con}\left(\mathcal{C}_{1}\right)=\operatorname{con}\left(\left\{x_{1} \geq 0, x_{2} \geq 0, x_{1}+x_{2} \leq 2\right\}\right) \\
& =\operatorname{gen}\left(\mathcal{G}_{1}\right)=\operatorname{gen}((\varnothing, P)) \\
\mathcal{P}_{2} & =\operatorname{con}\left(\mathcal{C}_{2}\right)=\operatorname{con}\left(\left\{x_{1} \leq 2, x_{2} \geq 0, x_{1}-x_{2} \geq 0\right\}\right)
\end{aligned}
$$

[^3]

Figure 2: The convex polyhedral hull of NNC polyhedra
where $P=\left\{(0,0)^{\mathrm{T}},(2,0)^{\mathrm{T}},(0,2)^{\mathrm{T}}\right\}$. Then

$$
\mathcal{P}_{1} \uplus \mathcal{P}_{2}=\operatorname{con}\left(\left\{x_{1} \geq 0, x_{2} \geq 0, x_{1} \leq 2, x_{2} \leq 2\right\}\right)
$$

so that $(1,1)^{\mathrm{T}} \in\left(\mathcal{P}_{1} \uplus \mathcal{P}_{2}\right) \backslash\left(\mathcal{P}_{1} \cup \mathcal{P}_{2}\right)$ and, hence, $\mathcal{P}_{1} \uplus \mathcal{P}_{2} \neq \mathcal{P}_{1} \cup \mathcal{P}_{2}$. In Theorem 3.2, let $\beta_{1}=\left(x_{1}+x_{2} \leq 2\right)$ and $g_{1}=(0,2)^{\mathrm{T}}$. Then conditions (1), (2) and (3) are all satisfied.

For each $i \in\{1,2\}$, let l_{i} and m_{i} denote the number of constraints in \mathcal{C}_{i} and generators in \mathcal{G}_{i}, respectively. Then, the worst-case complexity of an algorithm based on Theorem 3.2, computed by summing the complexities for checking each of the conditions (1), (2) and (3), is in $\mathrm{O}\left(n\left(l_{1} m_{1}+l_{1} m_{2}+l_{2} m_{1}\right)\right)$. Notice that the complexity bound is not symmetric so that, if $l_{1} m_{1} \gg l_{2} m_{2}$ holds, then an efficiency improvement can be obtained by exchanging the roles of \mathcal{P}_{1} and \mathcal{P}_{2} in the theorem. In all cases, an improvement is obtained with respect to the $\left.\mathrm{O}\left(n\left(l_{1}+l_{2}\right) m_{1} m_{2}\right)\right)$ complexity bound of Algorithm 7.1 in 14].

3.2. Exact Join Detection for Not Necessarily Closed Polyhedra

We now consider the exact join detection problem for two NNC polyhedra $\mathcal{P}_{1}, \mathcal{P}_{2} \in \mathbb{P}_{n}$; in this case, it can happen that $\mathcal{P}_{1} \uplus \mathcal{P}_{2} \neq \mathcal{P}_{1} \cup \mathcal{P}_{2}$ although the union $\mathcal{P}_{1} \cup \mathcal{P}_{2}$ is convex.

Example 3.4. Consider the NNC polyhedra \mathcal{P} and \mathcal{Q} in Figure 2(a), where \mathcal{P} is the open rectangle $A B C D$ and \mathcal{Q} is the single point E. The union $\mathcal{P} \cup \mathcal{Q}$ is convex but it is not an NNC polyhedron: the convex polyhedral hull $\mathcal{P} \uplus \mathcal{Q}$ (see Figure $2(\mathrm{c})$) also contains the line segment (B, C) and hence $\mathcal{P} \uplus \mathcal{Q} \neq \mathcal{P} \cup \mathcal{Q}$. On the other hand, if we now consider \mathcal{P} and \mathcal{Q}^{\prime}, as shown in Figure 2(b), where \mathcal{Q}^{\prime} is the line segment (B, C), then the convex polyhedral hull $\mathcal{P} \uplus \mathcal{Q}^{\prime}$ is such that $\mathcal{P} \uplus \mathcal{Q}^{\prime}=\mathcal{P} \uplus \mathcal{Q}=\mathcal{P} \cup \mathcal{Q}^{\prime}$.

Before stating and proving the main result for this section, we present a lemma similar to Lemma 3.1 but generalized so as to apply to NNC polyhedra.

Lemma 3.5. Let $\mathcal{P}_{1}, \mathcal{P}_{2} \in \mathbb{P}_{n}$ be non-empty polyhedra. Suppose that there exist a constraint β and a vector \mathbf{p} such that (1) \mathbf{p} saturates β, (2) β is satisfied by \mathcal{P}_{1} but violated by \mathcal{P}_{2}, and (3) $\mathbf{p} \in \mathbb{C}\left(\mathcal{P}_{1}\right) \backslash \mathbb{C}\left(\mathcal{P}_{2}\right)$. Then $\mathcal{P}_{1} \uplus \mathcal{P}_{2} \neq \mathcal{P}_{1} \cup \mathcal{P}_{2}$.

Proof. (See also Figures 1(a) and 1(b) By (2), there exists a point $\mathbf{p}_{2} \in \mathcal{P}_{2}$ that violates β. Consider the line segment $s:=\left(\mathbf{p}, \mathbf{p}_{2}\right]$; by (1), no point on s satisfies β; by (3), $\mathbf{p} \in \mathbb{C}\left(\mathcal{P}_{1}\right)$ so that $s \subseteq \mathcal{P}_{1} \uplus \mathcal{P}_{2}$. Also, by (3), $\mathbf{p} \notin \mathbb{C}\left(\mathcal{P}_{2}\right)$ so that there exists a constraint β_{2} that is satisfied by $\mathbb{C}\left(\mathcal{P}_{2}\right)$ but violated by \mathbf{p}. Since $\mathbf{p} \notin \mathcal{P}_{2}$ and $\mathbf{p}_{2} \in \mathcal{P}_{2}$, there exists a vector $\mathbf{q} \in s$ that saturates β_{2}. It follows that, as $\mathbf{q} \neq \mathbf{p}$, the open line segment $s_{1}:=(\mathbf{p}, \mathbf{q})$ is non-empty and every point in s_{1} violates both β and β_{2}; hence $s_{1} \cap \mathcal{P}_{1}=s_{1} \cap \mathcal{P}_{2}=\varnothing$. However, by construction,

$$
(\mathbf{p}, \mathbf{q}) \subset\left(\mathbf{p}, \mathbf{p}_{2}\right] \subseteq\left(\mathcal{P}_{1} \uplus \mathcal{P}_{2}\right)
$$

so that $\mathcal{P}_{1} \uplus \mathcal{P}_{2} \neq \mathcal{P}_{1} \cup \mathcal{P}_{2}$.
Theorem 3.6. For $i \in\{1,2\}$, let $\mathcal{P}_{i}=\operatorname{con}\left(\mathcal{C}_{i}\right)=\operatorname{gen}\left(\mathcal{G}_{i}\right) \in \mathbb{P}_{n}$ be non-empty polyhedra. Then $\mathcal{P}_{1} \uplus \mathcal{P}_{2} \neq \mathcal{P}_{1} \cup \mathcal{P}_{2}$ if and only if, for some $i, j \in\{1,2\}, i \neq j$, there exists a generator g_{i} in \mathcal{G}_{i} that saturates a constraint $\beta_{i} \in \mathcal{C}_{i}$ violated by \mathcal{P}_{j} and at least one of the following hold:
(1) g_{i} is a ray or closure point in \mathcal{G}_{i} that is not subsumed by \mathcal{P}_{j};
(2) g_{i} is a point in $\mathcal{G}_{i}, \beta_{i}$ is non-strict and $g_{i} \notin \mathbb{C}\left(\mathcal{P}_{j}\right)$;
(3) β_{i} is strict and saturated by a point $\mathbf{p} \in\left(\mathcal{P}_{1} \uplus \mathcal{P}_{2}\right) \backslash \mathcal{P}_{j}$.

Proof. Suppose first that $\mathcal{P}_{1} \uplus \mathcal{P}_{2} \neq \mathcal{P}_{1} \cup \mathcal{P}_{2}$. As ' \uplus ' is the least upper bound operator for NNC polyhedra, it follows from the note following Definition 2.2 that, for some $i, j \in\{1,2\}, i \neq j$, there exists a closure point \mathbf{p}_{i} of \mathcal{P}_{i} and a point $\mathbf{p}_{j} \in \mathcal{P}_{j}$ such that

$$
\left(\mathbf{p}_{i}, \mathbf{p}_{j}\right] \nsubseteq \mathcal{P}_{1} \cup \mathcal{P}_{2}
$$

For ease of notation, we will assume that $i=1$ and $j=2$; the other case follows by a symmetrical argument. As $\mathbf{p}_{1} \in \mathbb{C}\left(\mathcal{P}_{1}\right)$, there exists a point

$$
\mathbf{p}:=(1-\sigma) \mathbf{p}_{1}+\sigma \mathbf{p}_{2} \in\left[\mathbf{p}_{1}, \mathbf{p}_{2}\right] \cap \mathbb{C}\left(\mathcal{P}_{1}\right)
$$

such that $\sigma \in \mathbb{R}_{+}$is maximal (note that, by convexity, $\sigma<1$); then $\mathbf{p} \in \mathcal{P}_{1} \uplus \mathcal{P}_{2}$ and saturates a constraint $\beta_{1} \in \mathcal{C}_{1}$ where β_{1} is strict if $\mathbf{p} \notin \mathcal{P}_{1}$. Note that $\mathbf{p} \notin \mathcal{P}_{2}$ since, otherwise, we would have $\left(\mathbf{p}_{1}, \mathbf{p}\right) \subseteq \mathcal{P}_{1}$ and $\left[\mathbf{p}, \mathbf{p}_{2}\right] \subseteq \mathcal{P}_{2}$, contradicting $\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right] \nsubseteq \mathcal{P}_{1} \cup \mathcal{P}_{2}$. Moreover, if $\mathbf{p} \in \mathcal{P}_{1}, \mathbf{p} \notin \mathbb{C}\left(\mathcal{P}_{2}\right)$ since, otherwise, we would have $\left(\mathbf{p}_{1}, \mathbf{p}\right] \subseteq \mathcal{P}_{1}$ and $\left(\mathbf{p}, \mathbf{p}_{2}\right] \subseteq \mathcal{P}_{2}$, again contradicting $\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right] \nsubseteq \mathcal{P}_{1} \cup \mathcal{P}_{2}$.

Let $\mathcal{G}_{1}^{\prime}=\left(R_{1}^{\prime}, P_{1}^{\prime}, C_{1}^{\prime}\right)$ be the system of all the generators in \mathcal{G}_{1} that saturate β_{1} so that $\mathbf{p} \in \operatorname{gen}\left(\left(R_{1}^{\prime}, P_{1}^{\prime} \cup C_{1}^{\prime}, \varnothing\right)\right)$. Suppose condition (1) does not hold; that is, suppose that all the rays in R_{1}^{\prime} are subsumed by \mathcal{P}_{2} and $C_{1}^{\prime} \subseteq \mathbb{C}\left(\mathcal{P}_{2}\right)$. If β_{1} is non-strict, $\mathbf{p} \in \mathcal{P}_{1}$ so that $\mathbf{p} \notin \mathbb{C}\left(\mathcal{P}_{2}\right)$; hence, by Theorem 2.3, there must exist a generator point $g_{1} \in P_{1}^{\prime} \backslash \mathbb{C}\left(\mathcal{P}_{2}\right)$ and condition (2) holds. If instead, β_{1} is strict, then, since $\mathbf{p} \in \mathcal{P}_{1} \uplus \mathcal{P}_{2}, \mathbf{p} \notin \mathcal{P}_{2}$ and \mathbf{p} saturates β_{1}, condition (3) holds.

Suppose now that, for some $i, j \in\{1,2\} i \neq j$, there exists a generator g_{i} in \mathcal{G}_{i} that saturates a constraint $\beta_{i} \in \mathcal{C}_{i}$ violated by \mathcal{P}_{j} and condition (1), (2) or (3) holds. As before, we assume that $i=1$ and $j=2$, since the other case follows by a symmetrical argument. Let $\beta_{1}:=(\langle\mathbf{a}, \mathbf{x}\rangle \bowtie b)$, where $\bowtie \in\{<, \leq\}$.

Suppose condition (1) holds; so that g_{1} is a closure point or ray that is not subsumed by \mathcal{P}_{2}, Consider first the case when g_{1} is a closure point in \mathcal{G}_{1} so that $g_{1} \notin \mathbb{C}\left(\mathcal{P}_{2}\right)$. Then, by letting $\beta:=\beta_{1}$ and $\mathbf{p}:=g_{1}$ in Lemma 3.5, it follows that $\mathcal{P}_{1} \uplus \mathcal{P}_{2} \neq \mathcal{P}_{1} \cup \mathcal{P}_{2}$. Consider now the case when g_{1} is a ray in \mathcal{G}_{1}. Since $\mathcal{P}_{1} \neq \varnothing$, there exist a point $\mathbf{p}_{1}^{\prime} \in \mathbb{C}\left(\mathcal{P}_{1}\right)$ and a constraint $\beta_{1}^{\prime}:=\left(\langle\mathbf{a}, \mathbf{x}\rangle \leq\left\langle\mathbf{a}, \mathbf{p}_{1}^{\prime}\right\rangle\right)$ such that \mathcal{P}_{1} satisfies β_{1}^{\prime}; note that, by definition, β_{1}^{\prime} is saturated by the point \mathbf{p}_{1}^{\prime} and the ray $g_{1} 5^{5}$ Therefore, for some $\rho \in \mathbb{R}_{+}$, the point $\mathbf{p}_{1}:=\mathbf{p}_{1}^{\prime}+\rho g_{1} \notin \mathbb{C}\left(\mathcal{P}_{2}\right)$; hence, as $\mathbf{p}_{1} \in \mathbb{C}\left(\mathcal{P}_{1}\right)$ and saturates β_{1}^{\prime}, by letting $\beta:=\beta_{1}^{\prime}$ and $\mathbf{p}:=\mathbf{p}_{1}$ in Lemma 3.5 it follows that $\mathcal{P}_{1} \uplus \mathcal{P}_{2} \neq \mathcal{P}_{1} \cup \mathcal{P}_{2}$. If condition (2) holds, then g_{1} is a point in \mathcal{G}_{1} (so that $g_{1} \in \mathcal{P}_{1}$) and $g_{1} \notin \mathbb{C}\left(\mathcal{P}_{2}\right)$. Then, by letting $\beta:=\beta_{1}$ and $\mathbf{p}:=g_{1}$ in Lemma 3.5, it follows that $\mathcal{P}_{1} \uplus \mathcal{P}_{2} \neq \mathcal{P}_{1} \cup \mathcal{P}_{2}$. Finally suppose that condition (3) holds. In this case β_{1} is strict, so that $\mathbf{p} \notin \mathcal{P}_{1}$, and hence $\mathbf{p} \in\left(\mathcal{P}_{1} \uplus \mathcal{P}_{2}\right) \backslash\left(\mathcal{P}_{1} \cup \mathcal{P}_{2}\right) ;$ therefore $\mathcal{P}_{1} \uplus \mathcal{P}_{2} \neq \mathcal{P}_{1} \cup \mathcal{P}_{2}$.

Observe that the conditions stated for the NNC case in Theorem 3.6 are more involved than the conditions stated for the topologically closed case in Theorem 3.2. In particular, a direct correspondence can only be found for condition (2) of Theorem 3.6. The added complexity, which naturally propagates to the corresponding implementation, is justified by the need to properly capture special cases where, as said above, convexity alone is not sufficient.

In particular, the check for condition (3) in Theorem 3.6 is more expensive than the other checks and hence should be delayed as much as possible. Writing $\mathcal{H}(\beta)$ to denote the affine hyperplane induced by constraint β. 6 condition (3) can be implemented by checking that $\left(\mathcal{P}_{1} \uplus \mathcal{P}_{2}\right) \cap \mathcal{H}\left(\beta_{i}\right) \subseteq \mathcal{P}_{j} \cap \mathcal{H}\left(\beta_{i}\right)$ does not hold. Even though it is possible to identify cases where optimizations apply, in the general case the inclusion test above will require the application of the (incremental) conversion procedure for NNC polyhedra representations.

In the following, we provide a few examples showing cases when conditions (1) and (3) of Theorem 3.6 come into play.

Example 3.7 (Condition (1) of Theorem 3.6). We first show how condition (1) of Theorem 3.6 where g_{1} is a closure point can properly discriminate between the two cases illustrated in Figures 2(a) and 2(b).

Consider the polyhedra \mathcal{P} and \mathcal{Q} in Figure 2(a) and assume that the line segment (B, C) satisfies the constraint $x_{1}=4$. In the statement of Theorem 3.6 let $\mathcal{P}_{1}=\mathcal{P}, \mathcal{P}_{2}=\mathcal{Q}, i=1, j=2, \beta_{1}=\left(x_{1}<4\right) \in \mathcal{C}_{1}$ and $g_{1}=B$ be a closure point in \mathcal{G}_{1}. Then β_{1} is violated by \mathcal{P}_{2} and saturated by g_{1}, but g_{1} is not subsumed by \mathcal{P}_{2}. Hence condition (1) of Theorem 3.6 holds and we correctly conclude that $\mathcal{P} \uplus \mathcal{Q} \neq \mathcal{P} \cup \mathcal{Q}$.

On the other hand, if we consider polyhedra \mathcal{P} and \mathcal{Q}^{\prime} in Figure 2(b) and let $\mathcal{P}_{1}=\mathcal{P}$ and $\mathcal{P}_{2}=\mathcal{Q}^{\prime}$, then the closure point $g_{1}=B$ is subsumed by \mathcal{P}_{2} so that condition (1) of Theorem 3.6 does not hold.

[^4]

Figure 3: More examples for the convex polyhedral hull of NNC polyhedra

Note that such a discrimination could not be obtained by checking only condition (2) of Theorem [3.6. If we swap the indices i and j so that $i=2$, $j=1$; letting $\beta_{2}=\left(x_{1} \geq 4\right) \in \mathcal{C}_{2}$ and $g_{2}=E$ be a point in \mathcal{G}_{2}, then $g_{2} \in \mathbb{C}(\mathcal{P})$ and β_{2} is a non-strict constraint of both \mathcal{Q} and \mathcal{Q}^{\prime} violated by \mathcal{P} and saturated by point g_{2}; hence condition (2) does not hold for both $\mathcal{P}_{2}=\mathcal{Q}$ and for $\mathcal{P}_{2}=\mathcal{Q}^{\prime}$.

For an example of an application of condition (1) of Theorem 3.6 when g_{1} is a ray, consider \mathcal{Q}_{1} and \mathcal{Q}_{2} in Figure $3(\mathrm{a})$ where $\mathcal{Q}_{1}=\operatorname{con}\left(\left\{2 \leq x_{1}<4\right\}\right)$ is an unbounded strip and $\mathcal{Q}_{2}=\{A\}$ is a singleton, with $A=(4,2)^{\mathrm{T}}$. It can be seen that $\mathcal{Q}_{1} \uplus \mathcal{Q}_{2}$, the polyhedron in Figure $3(\mathrm{~d})$, contains the point $B=(4,0)^{\mathrm{T}}$ which is not a point in \mathcal{Q}_{1} or \mathcal{Q}_{2}, so that $\mathcal{Q}_{1} \uplus \mathcal{Q}_{2} \neq \mathcal{Q}_{1} \cup \mathcal{Q}_{2}$. In the statement of Theorem 3.6. let $\mathcal{P}_{1}=\mathcal{Q}_{1}, \mathcal{P}_{2}=\mathcal{Q}_{2}, i=1, j=2, \beta_{1}=\left(x_{1}<4\right) \in \mathcal{C}_{1}$ and $g_{1}=(0,1)^{\mathrm{T}}$ be a ray in \mathcal{G}_{1}. Then β_{1} is violated by \mathcal{P}_{2} and saturated by the ray g_{1}; but g_{1} is not subsumed by \mathcal{P}_{2} so that condition (1) of Theorem 3.6 holds.

Example 3.8 (Condition (3) of Theorem 3.6). This example shows how condition (3) of Theorem 3.6 can properly discriminate between the two cases illustrated in Figures 3(b) and 3(c).

Consider the polyhedra \mathcal{Q}_{3} and \mathcal{Q}_{4} in Figure $3(\mathrm{~b})$ where \mathcal{Q}_{3} is the open rectangle $A B C D$, with the open bound (B, C) defined by the strict constraint $x_{1}<3$, whereas \mathcal{Q}_{4} is the open rectangle $B E F C$. Then $B=(3,1)^{\mathrm{T}}$ and $C=(3,5)^{\mathrm{T}}$ are closure points for both \mathcal{Q}_{3} and \mathcal{Q}_{4}. It can be seen that $\mathcal{Q}_{3} \uplus \mathcal{Q}_{4}$, the polyhedron in Figure $3(\mathrm{e})$, contains the open line segment (B, C) so that $\mathcal{Q}_{3} \uplus \mathcal{Q}_{4} \neq \mathcal{Q}_{3} \cup \mathcal{Q}_{4}$. In the statement of Theorem 3.6. let $\mathcal{P}_{1}=\mathcal{Q}_{3}, \mathcal{P}_{2}=\mathcal{Q}_{4}$, $i=1, j=2, \beta_{1}=\left(x_{1}<3\right) \in \mathcal{C}_{1}$ and $g_{1}=B$ be a closure point in \mathcal{G}_{1}. Then β_{1} is violated by \mathcal{P}_{2} and saturated by the closure point g_{1}. Although condition (1)
does not hold because g_{1} is subsumed by \mathcal{P}_{2}, condition (3) does hold since β_{1} is strict and, taking $\mathbf{p}=G \in(B, C)$, we have $\mathbf{p} \in\left(\mathcal{P}_{1} \uplus \mathcal{P}_{2}\right) \backslash \mathcal{P}_{2}$.

It is worth stressing that none of the (closure) points in the open segment (B, C) belong to the generator systems of \mathcal{P}_{1} and \mathcal{P}_{2}. The reader is also warned that, even though in this particular example $\mathcal{P}_{1}, \mathcal{P}_{2}$ and the segment (B, C) are pairwise disjoint (which trivially implies that the join $\mathcal{P}_{1} \uplus \mathcal{P}_{2}$ is inexact), such a property would not generalize to higher dimensional vector spaces and hence it cannot be used as a replacement for condition (3) in Theorem 3.6.

Consider the polyhedra \mathcal{Q}_{5} and \mathcal{Q}_{6} in Figure 3(c) where \mathcal{Q}_{5} is the quadrilateral $A B C D$ and \mathcal{Q}_{6} is the quadrilateral $E F G C$. Then the convex polyhedral hull $\mathcal{Q}_{5} \uplus \mathcal{Q}_{6}$ shown in Figure $3(\mathrm{f})$ is equal to their union $\mathcal{Q}_{5} \cup \mathcal{Q}_{6}$. In the statement of Theorem [3.6, let $\mathcal{P}_{1}=\mathcal{Q}_{5}, \mathcal{P}_{2}=\mathcal{Q}_{6}, i=1, j=2, \beta_{1} \in \mathcal{C}_{1}$ be the strict constraint defining the dashed line boundary (B, C) and g_{1} be the closure point C in both \mathcal{P}_{1} and \mathcal{P}_{2}. Then none of the conditions in Theorem 3.6 hold.

4. Exact Join Detection for Boxes and Other Cartesian Products

A rational interval constraint for a dimension $i \in\{1, \ldots, n\}$ has the form $x_{i} \bowtie b$, where $\bowtie \in\{<, \leq,=, \geq,>\}$ and $b \in \mathbb{Q}$. A finite system of rational interval constraints defines an NNC polyhedron in \mathbb{P}_{n} that we call a rational box; the set of all rational boxes in the n-dimensional vector space is denoted \mathbb{B}_{n} and is a meet-sublattice of \mathbb{P}_{n}. The domain \mathbb{B}_{n} so defined can be seen as the Cartesian product of n possibly infinite intervals with rational, possibly open boundaries. If we denote by \mathbb{I} the set of such intervals and by ' \oplus ' the binary join operator over the bounded join-semilattice (\mathbb{I}, \subseteq), we have, for each $B_{1}, B_{2} \in \mathbb{B}$,

$$
B_{1} \uplus B_{2}=\left(\pi_{1}\left(B_{1}\right) \oplus \pi_{1}\left(B_{2}\right)\right) \times \cdots \times\left(\pi_{n}\left(B_{1}\right) \oplus \pi_{n}\left(B_{2}\right)\right) .
$$

The following theorem defines a necessary and sufficient condition that is only based on ' \oplus ' and on the subset ordering over \mathbb{I}. Notice, in particular, that convexity does not play any role, neither in the statement, nor in the proof.

Theorem 4.1. Let $B_{1}, B_{2} \in \mathbb{B}_{n}$. Then $B_{1} \uplus B_{2} \neq B_{1} \cup B_{2}$ if and only if

1. $\exists i \in\{1, \ldots, n\} . \pi_{i}\left(B_{1}\right) \oplus \pi_{i}\left(B_{2}\right) \neq \pi_{i}\left(B_{1}\right) \cup \pi_{i}\left(B_{2}\right)$; or
2. $\exists i, j \in\{1, \ldots, n\} . i \neq j \wedge \pi_{i}\left(B_{1}\right) \nsubseteq \pi_{i}\left(B_{2}\right) \wedge \pi_{j}\left(B_{2}\right) \nsubseteq \pi_{j}\left(B_{1}\right)$.

Proof. Suppose that $B_{1}=\varnothing$ so that, for each $i \in\{1, \ldots, n\}, \pi_{i}\left(B_{1}\right)=\varnothing$. Then, neither condition (1) nor condition (2) can hold, so that the lemma holds. By a symmetric reasoning, the lemma holds if $B_{2}=\varnothing$. Hence, in the following we assume that both B_{1} and B_{2} are non-empty boxes.

Suppose first that $B_{1} \uplus B_{2} \neq B_{1} \cup B_{2}$; then there exists a point $\mathbf{p} \in B_{1} \uplus B_{2}$ such that $\mathbf{p} \notin B_{1}$ and $\mathbf{p} \notin B_{2}$. Hence, for some $i, j \in\{1, \ldots, n\}$, we have that $p_{i} \notin \pi_{i}\left(B_{1}\right)$ and $p_{j} \notin \pi_{j}\left(B_{2}\right)$. Note that as $\mathbf{p} \in B_{1} \uplus B_{2}$, we also have $p_{i} \in \pi_{i}\left(B_{1}\right) \oplus \pi_{i}\left(B_{2}\right)$ and $p_{j} \in \pi_{j}\left(B_{1}\right) \oplus \pi_{j}\left(B_{2}\right)$. Suppose that condition (1) does not hold. Then $p_{i} \in \pi_{i}\left(B_{2}\right)$ and $p_{j} \in \pi_{j}\left(B_{1}\right)$; hence we must have $i \neq j$ and
$p_{i} \in \pi_{i}\left(B_{1}\right) \backslash \pi_{i}\left(B_{2}\right)$ and $p_{j} \in \pi_{j}\left(B_{2}\right) \backslash \pi_{j}\left(B_{1}\right)$; implying that $\pi_{i}\left(B_{1}\right) \nsubseteq \pi_{i}\left(B_{2}\right)$ and $\pi_{j}\left(B_{2}\right) \nsubseteq \pi_{j}\left(B_{1}\right)$, so that condition (2) holds.

Assuming that condition (1) or (2) holds, we now prove $B_{1} \uplus B_{2} \neq B_{1} \cup B_{2}$. First, suppose that condition (1) holds. Then there exists $v \in \pi_{i}\left(B_{1} \uplus B_{2}\right)$ such that $v \notin \pi_{i}\left(B_{1}\right)$ and $v \notin \pi_{i}\left(B_{2}\right)$. By definition of π_{i}, there exist a point $\mathbf{p} \in B_{1} \uplus B_{2}$ such that $\pi_{i}(\mathbf{p})=v$, so that $\mathbf{p} \notin B_{1}$ and $\mathbf{p} \notin B_{2}$; therefore $B_{1} \uplus B_{2} \neq B_{1} \cup B_{2}$. Secondly, suppose that condition (2) holds. Then there exist values $v_{i} \in \pi_{i}\left(B_{1}\right) \backslash \pi_{i}\left(B_{2}\right)$ and $v_{j} \in \pi_{j}\left(B_{2}\right) \backslash \pi_{j}\left(B_{1}\right)$; hence, there exist points $\mathbf{p}_{i} \in B_{1}$ and $\mathbf{p}_{j} \in B_{2}$ such that $\pi_{i}\left(\mathbf{p}_{i}\right)=v_{i}$ and $\pi_{j}\left(\mathbf{p}_{j}\right)=v_{j}$. Let \mathbf{p} be such that $\pi_{k}(\mathbf{p})=\pi_{k}\left(\mathbf{p}_{i}\right)$, for all $k \in\{1, \ldots, n\} \backslash\{j\}$, and $\pi_{j}(\mathbf{p})=v_{j}$; then $\mathbf{p} \notin B_{1} \cup B_{2}$. By definition of the ' \uplus ' operator, $\mathbf{p} \in B_{1} \uplus B_{2}$, so that $B_{1} \uplus B_{2} \neq B_{1} \cup B_{2}$.

Example 4.2. Consider the topologically closed boxes

$$
\begin{aligned}
& B_{1}=\operatorname{con}\left(\left\{0 \leq x_{1} \leq 1,0 \leq x_{2} \leq 2\right\}\right) \\
& B_{2}=\operatorname{con}\left(\left\{3 \leq x_{1} \leq 4,0 \leq x_{2} \leq 2\right\}\right) \\
& B_{3}=\operatorname{con}\left(\left\{0 \leq x_{1} \leq 4,1 \leq x_{2} \leq 2\right\}\right)
\end{aligned}
$$

Then we obtain

$$
B_{1} \uplus B_{2}=B_{1} \uplus B_{3}=\operatorname{con}\left(\left\{0 \leq x_{1} \leq 4,0 \leq x_{2} \leq 2\right\}\right) .
$$

Letting $\mathbf{p}=(2,0)^{\mathrm{T}}$, we have $\mathbf{p} \in B_{1} \uplus B_{2}$ although $\mathbf{p} \notin B_{1} \cup B_{2} \cup B_{3}$; hence $B_{1} \uplus B_{2} \neq B_{1} \cup B_{2}$ and $B_{1} \uplus B_{3} \neq B_{1} \cup B_{3}$, i.e., both join computations are inexact. Observe that

$$
\pi_{1}\left(B_{1}\right) \oplus \pi_{1}\left(B_{2}\right) \neq \pi_{1}\left(B_{1}\right) \cup \pi_{1}\left(B_{2}\right)
$$

so that, for boxes B_{1} and B_{2}, condition (1) holds; on the other hand we have

$$
\pi_{1}\left(B_{3}\right) \nsubseteq \pi_{1}\left(B_{1}\right) \quad \text { and } \quad \pi_{2}\left(B_{1}\right) \nsubseteq \pi_{2}\left(B_{3}\right)
$$

so that, for boxes B_{1} and B_{3}, condition (2) holds.
This result has been introduced for rational boxes for simplicity only. Indeed, it trivially generalizes to any Cartesian product of 1-dimensional numerical abstractions, including: the well-known abstract domain of multi-dimensional, integer-valued intervals 22]; 1-dimensional congruence equations like $x=0$ (mod 2); modulo intervals [37, 38]; and circular linear progressions [40]. For full generality, for each $i \in\{1, \ldots, n\}$, let $(\mathbb{A}(i), \subseteq)$, with $\varnothing \in \mathbb{A}(i) \subseteq \wp(\mathbb{R})$, be a bounded join-semilattice where the binary join operator is denoted by ' \oplus_{i} '. $(\mathbb{A}(i), \subseteq)$ is thus an abstract domain suitable for approximating $\wp(\mathbb{R})$. Then, the trivial combination of the n domains $\mathbb{A}(i)$ by means of Cartesian product, $\mathbb{A}_{n}:=\mathbb{A}(1) \times \cdots \times \mathbb{A}(n)$, is an abstract domain suitable for approximating
$\left.\wp\left(\mathbb{R}^{n}\right)\right]^{7}$ Theorem 4.1 immediately generalizes to any domain \mathbb{A}_{n} so obtained.
An algorithm for the exact join detection on \mathbb{A}_{n} based on Theorem 4.1 will compute, in the worst case, a linear number of 1-dimensional joins (applying the ' \oplus_{i} ' operators) and a linear number of 1-dimensional inclusion tests. Since these 1-dimensional operations take constant time, the worst-case complexity bound for n-dimensional boxes is $\mathrm{O}(n)$.

5. Exact Join Detection for Bounded Difference Shapes

A (rational) bounded difference is a non-strict inequality constraint having one of the forms $\pm x_{i} \leq b$ or $x_{i}-x_{j} \leq b$, where $i, j \in\{1, \ldots, n\}, i \neq j$ and $b \in \mathbb{Q}$. A finite system of bounded differences defines a bounded difference shape (BD shape); the set of all BD shapes in the n-dimensional vector space is denoted $\mathbb{B D}_{n}$ and it is a meet-sublattice of $\mathbb{C P}_{n}$. In this section we specialize the result on topologically closed polyhedra to the case of BD shapes, which can be efficiently represented and manipulated as weighted graphs.

5.1. BD Shapes and their Graph Representation

We first introduce some notation and terminology (see also [2, 9, 33, 35]).
Let $\mathbb{Q}_{\infty}:=\mathbb{Q} \cup\{+\infty\}$ be totally ordered by the extension of ' $<$ ' such that $d<+\infty$ for each $d \in \mathbb{Q}$. Let \mathcal{N} be a finite set of nodes. A weighted directed graph (graph, for short) G in \mathcal{N} is a pair (\mathcal{N}, w), where $w: \mathcal{N} \times \mathcal{N} \rightarrow \mathbb{Q}_{\infty}$ is the weight function for G. A pair $\left(n_{i}, n_{j}\right) \in \mathcal{N} \times \mathcal{N}$ is an arc of G if $w\left(n_{i}, n_{j}\right)<+\infty$; the arc is proper if $n_{i} \neq n_{j}$. A path $\theta=n_{0} \cdots n_{p}$ in a graph $G=(\mathcal{N}, w)$ is a nonempty and finite sequence of nodes such that, for all $i \in\{1, \ldots, p\},\left(n_{i-1}, n_{i}\right)$ is an arc of G; each $\operatorname{arc}\left(n_{i-1}, n_{i}\right)$ is said to be in the path θ. If $\theta_{1}=n_{0} \cdots n_{h}$ and $\theta_{2}=n_{h} \cdots n_{p}$ are paths in G, where $0 \leq h \leq p$, then the path concatenation $\theta=n_{0} \cdots n_{h} \cdots n_{p}$ of θ_{1} and θ_{2} is denoted by $\theta_{1}:: \theta_{2}$; if $\theta_{1}=n_{0} n_{1}$ (so that $h=1$), then $\theta_{1}:: \theta_{2}$ will also be denoted by $n_{0} \cdot \theta_{2}$. Note that path concatenation is not the same as sequence concatenation. The path θ is simple if each node occurs at most once in θ; it is proper if all the arcs in it are proper; it is a proper cycle if it is a proper path and $n_{0}=n_{p}$ (so that $p \geq 2$). The path θ has weight $w(\theta):=\sum_{i=1}^{p} w\left(n_{i-1}, n_{i}\right)$. A graph is consistent if it has no negative weight cycles. The set \mathbb{G} of consistent graphs in \mathcal{N} is partially ordered by the relation ' \unlhd ' defined, for all $G_{1}=\left(\mathcal{N}, w_{1}\right)$ and $G_{2}=\left(\mathcal{N}, w_{2}\right)$, by

$$
G_{1} \unlhd G_{2} \quad \Longleftrightarrow \quad \forall i, j \in \mathcal{N}: w_{1}(i, j) \leq w_{2}(i, j)
$$

When augmented with a bottom element \perp representing inconsistency, this partially ordered set becomes a (non-complete) lattice $\mathbb{G}_{\perp}=\langle\mathbb{G} \cup\{\perp\}, \unlhd, \sqcap, \sqcup\rangle$, where ' \square ' and ' \sqcup ' denote the (finitary) greatest lower bound and least upper bound operators, respectively.

[^5]Definition 5.1. (Graph closure/reduction.) A consistent graph $G=(\mathcal{N}, w)$ is (shortest-path) closed if the following properties hold:

$$
\begin{align*}
\forall i & \in \mathcal{N}: w(i, i)=0 \tag{3}\\
\forall i, j, k & \in \mathcal{N}: w(i, j) \leq w(i, k)+w(k, j) . \tag{4}
\end{align*}
$$

The closure of a consistent graph G in \mathcal{N} is

$$
\text { closure }(G):=\bigsqcup\left\{G^{\mathrm{c}} \in \mathbb{G} \mid G^{\mathrm{c}} \unlhd G \text { and } G^{\mathrm{c}} \text { is closed }\right\}
$$

A consistent graph R in \mathcal{N} is (shortest-path) reduced if, for each graph $G \neq R$ such that $R \unlhd G$, closure $(R) \neq \operatorname{closure}(G)$. A reduction for the consistent graph G is any reduced graph R such that closure $(R)=\operatorname{closure}(G)$.

Note that a reduction R for a closed graph G is a subgraph of G, meaning that all the arcs in R are also arcs in G and have the same finite weight.

Any system of bounded differences in n dimensions defining a non-empty element bd $\in \mathbb{B D}_{n}$ can be represented by a consistent graph $G=(\mathcal{N}, w)$ where $\mathcal{N}=\{0, \ldots, n\}$ is the set of graph nodes; each node $i>0$ corresponds to the space dimension x_{i} of the vector space, while 0 (the special node) represents a further space dimension whose value is fixed to zero. Each $\operatorname{arc}(i, j)$ of G denotes the bounded difference $x_{i}-x_{j} \leq w(i, j)$ if $i, j>0, x_{i} \leq w(i, 0)$ if $j=0$ and $-x_{j} \leq w(0, j)$ if $i=0$. Conversely, it can be seen that, by inverting the above mapping, each consistent graph $G=(\mathcal{N}, w)$ where $\mathcal{N}=\{0, \ldots, n\}$ represents a non-empty element bd $\in \mathbb{B D}_{n}$. Graph closure provides a normal form for non-empty BD shapes. Informally, a closed (resp., reduced) graph encodes a system of bounded difference constraints which is closed by entailment (resp., contains no redundant constraint).

If the non-empty BD shapes $\mathrm{bd}_{1}, \mathrm{bd}_{2} \in \mathbb{B D}_{n}$ are represented by closed graphs $G_{1}=\left(\mathcal{N}, w_{1}\right)$ and $G_{2}=\left(\mathcal{N}, w_{2}\right)$, respectively, then the BD shape join $\mathrm{bd}_{1} \uplus \mathrm{bd}_{2}$ is represented by the graph least upper bound $G_{1} \sqcup G_{2}=(\mathcal{N}, w)$, where $w(i, j):=$ $\left.\max \left(w_{1}(i, j), w_{2}(i, j)\right)\right)$ for each $i, j \in \mathcal{N} ; G_{1} \sqcup G_{2}$ is also closed. Observe too that the set intersection $\mathrm{bd}_{1} \cap \mathrm{bd}_{2}$ is represented by the graph greatest lower bound $G_{1} \sqcap G_{2}$.

5.2. Exact Join Detection for Rational BD Shapes

The following result can be used as the specification of an exact join decision procedure specialized for rational BD shapes.

Theorem 5.2. For each $h \in\{1,2\}$, let $\mathrm{bd}_{h} \in \mathbb{B D}_{n}$ be a non-empty $B D$ shape represented by the closed graph $G_{h}=\left(\mathcal{N}, w_{h}\right)$ and let R_{h} be a subgraph of G_{h} such that closure $\left(R_{h}\right)=G_{h}$. Let also $G_{1} \sqcup G_{2}=(\mathcal{N}, w)$. Then $\mathrm{bd}_{1} \uplus \mathrm{bd}_{2} \neq$ $\mathrm{bd}_{1} \cup \mathrm{bd}_{2}$ if and only if there exist arcs (i, j) of R_{1} and (k, ℓ) of R_{2} such that
(1) $w_{1}(i, j)<w_{2}(i, j)$ and $w_{2}(k, \ell)<w_{1}(k, \ell)$; and
(2) $w_{1}(i, j)+w_{2}(k, \ell)<w(i, \ell)+w(k, j)$.

Proof. Suppose that $\mathrm{bd}_{1} \uplus \mathrm{bd}_{2} \neq \mathrm{bd}_{1} \cup \mathrm{bd}_{2}$, so that there exists $\mathbf{p} \in \mathrm{bd}_{1} \uplus \mathrm{bd}_{2}$ such that $\mathbf{p} \notin \mathrm{bd}_{1}$ and $\mathbf{p} \notin \mathrm{bd}_{2}$. Hence, there exist $i, j, k, \ell \in \mathcal{N}$ such that (i, j) is an arc of R_{1} satisfying $\pi_{i}(\mathbf{p})-\pi_{j}(\mathbf{p})>w_{1}(i, j)$ and (k, ℓ) is an arc of R_{2} satisfying $\pi_{k}(\mathbf{p})-\pi_{\ell}(\mathbf{p})>w_{2}(k, \ell)$. However, as $\mathbf{p} \in \mathrm{bd}_{1} \uplus \mathrm{bd}_{2}, \pi_{i}(\mathbf{p})-\pi_{j}(\mathbf{p}) \leq$ $w(i, j)$ and $\pi_{k}(\mathbf{p})-\pi_{\ell}(\mathbf{p}) \leq w(k, \ell)$ so that, by definition of $G_{1} \sqcup G_{2}$, we have $w_{1}(i, j)<w_{2}(i, j)$ and $w_{2}(k, \ell)<w_{1}(k, \ell)$; hence condition (1) holds. Since $\mathbf{p} \in \mathrm{bd}_{1} \uplus \mathrm{bd}_{2}$,

$$
\begin{aligned}
w(i, \ell)+w(k, j) & \geq \pi_{i}(\mathbf{p})-\pi_{\ell}(\mathbf{p})+\pi_{k}(\mathbf{p})-\pi_{j}(\mathbf{p}) \\
& =\pi_{i}(\mathbf{p})-\pi_{j}(\mathbf{p})+\pi_{k}(\mathbf{p})-\pi_{\ell}(\mathbf{p}) \\
& >w_{1}(i, j)+w_{2}(k, \ell)
\end{aligned}
$$

Therefore, condition (2) also holds.
We now suppose that there exist $\operatorname{arcs}(i, j)$ of R_{1} and (k, ℓ) of R_{2} such that conditions (1) and (2) hold. As G_{1} and G_{2} are closed, $w_{1}(i, i)=w_{2}(i, i)=0$ and $w_{1}(k, k)=w_{2}(k, k)=0$ so that condition (1) implies $i \neq j$ and $k \neq \ell$. As $G_{1} \sqcup G_{2}$ is closed, $w(i, i)=w(k, k)=0$ so that, if $i=\ell$ and $j=k$ both hold, condition (2) implies $w_{1}(i, j)+w_{2}(j, i)<0$; hence, the graph greatest lower bound $G_{1} \sqcap G_{2}$ contains the negative weight proper cycle $i \cdot j \cdot i$ and thus is inconsistent; hence $\mathrm{bd}_{1} \cap \mathrm{bd}_{2}=\varnothing$; and hence $\mathrm{bd}_{1} \uplus \mathrm{bd}_{2} \neq \mathrm{bd}_{1} \cup \mathrm{bd}_{2}$. Therefore, in the following we assume that $i \neq \ell$ or $j \neq k$ hold. If the right hand side of the inequalities in conditions (1) and (2) are all unbounded, let $\epsilon:=1$; otherwise let

$$
\epsilon:=\min \left\{\begin{array}{l}
w(i, j)-w_{1}(i, j) \\
w(k, \ell)-w_{2}(k, \ell) \\
\frac{1}{2}\left(w(i, \ell)+w(k, j)-w_{1}(i, j)-w_{2}(k, \ell)\right)
\end{array}\right\}
$$

Then, by conditions (1) and (2), $\epsilon>0$. Consider the graph $G^{\prime}=\left(\mathcal{N}, w^{\prime}\right)$ where, for each $r, s \in \mathcal{N}$,

$$
w^{\prime}(r, s):= \begin{cases}-w_{1}(i, j)-\epsilon, & \text { if }(r, s)=(j, i) \\ -w_{2}(k, \ell)-\epsilon, & \text { if }(r, s)=(\ell, k) \\ w(r, s), & \text { otherwise }\end{cases}
$$

We show that G^{\prime} is a consistent graph; to this end, since $G:=G_{1} \sqcup G_{2}$ is known to be consistent, it is sufficient to consider the proper cycles of G^{\prime} that contain $\operatorname{arcs}(j, i)$ or (ℓ, k). Let $\theta_{i j}=i \cdots j$ and $\theta_{k \ell}=k \cdots \ell$ be arbitrary simple paths from i to j and from k to ℓ, respectively. Then G^{\prime} is consistent if and only if $w^{\prime}\left(\theta_{i j} \cdot i\right) \geq 0$ and $w^{\prime}\left(\theta_{k \ell} \cdot k\right) \geq 0$. We only prove $w^{\prime}\left(\theta_{i j} \cdot i\right) \geq 0$ since the proof that $w^{\prime}\left(\theta_{k \ell} \cdot k\right) \geq 0$ follows by a symmetrical argument. As $\theta_{i j}$ is simple, it does not contain the $\operatorname{arc}(j, i)$. Suppose first that $\theta_{i j}$ does not contain the $\operatorname{arc}(\ell, k)$.

[^6]Then

$$
\begin{array}{rlrl}
w^{\prime}\left(\theta_{i j} \cdot i\right) & =w^{\prime}\left(\theta_{i j}\right)+w^{\prime}(j, i) & \\
& =w\left(\theta_{i j}\right)-w_{1}(i, j)-\epsilon & & {\left[\text { def. of } w^{\prime}\right]} \\
& \geq w(i, j)-w_{1}(i, j)-\epsilon & & {[G \text { closed }]} \\
& \geq 0 & & {[\text { def. of } \epsilon] .}
\end{array}
$$

Suppose now that $\theta_{i j}=\theta_{i \ell}::(\ell, k):: \theta_{k j}$, where $\theta_{i \ell}=i \cdots \ell$ and $\theta_{k j}=k \cdots j$ do not contain the $\operatorname{arcs}(j, i)$ and (k, ℓ). Then

$$
\begin{array}{rlrl}
w^{\prime}\left(\theta_{i j} \cdot i\right) & =w^{\prime}\left(\theta_{i \ell}\right)+w^{\prime}(\ell, k)+w^{\prime}\left(\theta_{k j}\right)+w^{\prime}(j, i) & \\
& =w\left(\theta_{i \ell}\right)-w_{2}(k, \ell)-\epsilon+w\left(\theta_{k j}\right)-w_{1}(i, j)-\epsilon & & \text { [def. of } \left.w^{\prime}\right] \\
& \geq w(i, \ell)-w_{2}(k, \ell)-\epsilon+w(k, j)-w_{1}(i, j)-\epsilon & & {[G \text { closed }]} \\
& =\left(w(i, \ell)+w(k, j)-w_{1}(i, j)-w_{2}(k, \ell)\right)-2 \epsilon & \\
& \geq 0 & & {[\text { def. of } \epsilon] .}
\end{array}
$$

Therefore G^{\prime} is consistent. Moreover, $G^{\prime} \unlhd G$ since

$$
\begin{array}{rlr}
w^{\prime}(j, i) & =-w_{1}(i, j)-\epsilon & {\left[\text { def. of } w^{\prime}\right]} \\
& \leq-w_{1}(i, j) & {[\epsilon \geq 0]} \\
& \leq w_{1}(j, i) & {\left[G_{1} \text { consistent }\right]} \\
& \leq w(j, i) & {[\text { def. } G] ;}
\end{array}
$$

similarly, $w^{\prime}(\ell, k) \leq w(\ell, k)$; hence, for all $r, s \in \mathcal{N}, w^{\prime}(r, s) \leq w(r, s)$.
Let $\mathrm{bd}^{\prime} \in \mathbb{B D}_{n}$ be represented by G^{\prime}, so that $\varnothing \neq \mathrm{bd}^{\prime} \subseteq \mathrm{bd}_{1} \uplus \mathrm{bd}_{2}$. Since $w^{\prime}(j, i)+w_{1}(i, j)<0$, we obtain $\mathrm{bd}^{\prime} \cap \operatorname{bd}_{1}=\varnothing$; since $w^{\prime}(\ell, k)+w_{2}(k, \ell)<0$, we obtain $\mathrm{bd}^{\prime} \cap \mathrm{bd}_{2}=\varnothing$. Hence, $\mathrm{bd}_{1} \uplus \mathrm{bd}_{2} \neq \mathrm{bd}_{1} \cup \mathrm{bd}_{2}$.

An algorithm for the exact join detection on $\mathbb{B D}_{n}$ based on Theorem 5.2 will have a worst-case complexity bound in $\mathrm{O}\left(n^{4}\right)$. Noting that the computation of graph closure and reduction are both in $\mathrm{O}\left(n^{3}\right)$ [2, 9, 30, 35], a more detailed complexity bound is $\mathrm{O}\left(n^{3}+r_{1} r_{2}\right)$, where r_{h} is the number of arcs in the subgraph R_{h}; hence, a good choice is to take each R_{h} to be a graph reduction for G_{h}, as it will have a minimal number of arcs.

Example 5.3. Consider the 2-dimensional BD shapes

$$
\begin{aligned}
& \operatorname{bd}_{1}=\operatorname{con}\left(\left\{0 \leq x_{1} \leq 3,0 \leq x_{2} \leq 2,\right\}\right) \\
& \operatorname{bd}_{2}=\operatorname{con}\left(\left\{0 \leq x_{2} \leq 2,0 \leq x_{1}-x_{2} \leq 3\right\}\right)
\end{aligned}
$$

shown in Figure $4(\mathrm{a})$. Then the join $\mathrm{bd}_{1} \uplus \mathrm{bd}_{2}$ is exact. Note that both conditions (1) and (2) in Theorem 5.2 play an active role in the decision procedure. For instance, when taking $i=1, j=0, k=2$ and $\ell=1$, condition (1) is satisfied but condition (2) does not hold:

$$
\begin{gathered}
w_{1}(1,0)=3<5=w_{2}(1,0), \quad w_{2}(2,1)=0<2=w_{1}(2,1) \\
w_{1}(1,0)+w_{2}(2,1)=3+0>0+2=w(1,1)+w(2,0)
\end{gathered}
$$

On the other hand, taking $i=1, j=1, k=0$ and $\ell=2$, it can be seen that condition (2) is satisfied but condition (1) does not hold:

$$
\begin{gathered}
w_{1}(1,1)=0=w_{2}(1,1), \quad w_{2}(0,2)=0=w_{1}(0,2) \\
w_{1}(1,1)+w_{2}(0,2)=0+0<3+0=w(1,2)+w(0,1)
\end{gathered}
$$

5.3. Exact Join Detection for Integer BD Shapes

We now consider the case of integer BD shapes, i.e., subsets of \mathbb{Z}^{n} that are delimited by BD constraints where the bounds are all integral. As for the rational case, these numerical abstractions can be encoded using weighted graphs, but restricting the codomain of the weight function to $\mathbb{Z}_{\infty}:=\mathbb{Z} \cup\{+\infty\}$. Since the set of all integer graphs is a sub-lattice of the set of rational graphs, the conditions in Theorem 5.2 can be easily strengthened so as to obtain the corresponding result for the domain $\mathbb{B D}_{n}^{\mathbb{Z}}$ of integer BD shapes. The complexity bound for the algorithm for the domain of integer BD shapes is the same as for the rational domain.

Theorem 5.4. For each $h \in\{1,2\}$, let $\operatorname{bd}_{h} \in \mathbb{B D}_{n}^{\mathbb{Z}}$ be a non-empty integer $B D$ shape represented by the closed integer graph $G_{h}=\left(\mathcal{N}, w_{h}\right)$ and let R_{h} be a subgraph of G_{h} such that closure $\left(R_{h}\right)=G_{h}$. Let also $G_{1} \sqcup G_{2}=(\mathcal{N}, w)$. Then $\mathrm{bd}_{1} \uplus \mathrm{bd}_{2} \neq \mathrm{bd}_{1} \cup \mathrm{bd}_{2}$ if and only if there exist $\operatorname{arcs}(i, j)$ of R_{1} and (k, ℓ) of R_{2} such that
(1) $w_{1}(i, j)<w_{2}(i, j)$ and $w_{2}(k, \ell)<w_{1}(k, \ell)$; and
(2) $w_{1}(i, j)+w_{2}(k, \ell)+2 \leq w(i, \ell)+w(k, j)$.

Proof. Suppose first that $\mathrm{bd}_{1} \uplus \mathrm{bd}_{2} \neq \mathrm{bd}_{1} \cup \mathrm{bd}_{2}$, so that there exists $\mathbf{p} \in \mathbb{Z}^{n}$ such that $\mathbf{p} \in \mathrm{bd}_{1} \uplus \mathrm{bd}_{2}$ but $\mathbf{p} \notin \mathrm{bd}_{1}$ and $\mathbf{p} \notin \mathrm{bd}_{2}$. Hence, there exist $i, j, k, \ell \in$ \mathcal{N} such that (i, j) is an arc of R_{1} satisfying $\pi_{i}(\mathbf{p})-\pi_{j}(\mathbf{p})>w_{1}(i, j)$ and (k, ℓ) is an arc of R_{2} satisfying $\pi_{k}(\mathbf{p})-\pi_{\ell}(\mathbf{p})>w_{2}(k, \ell)$. However, as $\mathbf{p} \in \mathrm{bd}_{1} \uplus \mathrm{bd}_{2}$, $\pi_{i}(\mathbf{p})-\pi_{j}(\mathbf{p}) \leq w(i, j)$ and $\pi_{k}(\mathbf{p})-\pi_{\ell}(\mathbf{p}) \leq w(k, \ell)$ so that, by definition of $G_{1} \sqcup G_{2}$, we have $w_{1}(i, j)<w_{2}(i, j)$ and $w_{2}(k, \ell)<w_{1}(k, \ell)$; hence condition (1) holds. Note also that $w_{1}(i, j)$ and $w_{2}(k, \ell)$ are both finite and hence in \mathbb{Z} so that $w_{1}(i, j)+1 \leq w_{2}(i, j)$ and $w_{2}(k, \ell)+1 \leq w_{1}(k, \ell)$. Since $\mathbf{p} \in \mathrm{bd}_{1} \uplus \mathrm{bd}_{2}$,

$$
\begin{aligned}
w(i, \ell)+w(k, j) & \geq \pi_{i}(\mathbf{p})-\pi_{\ell}(\mathbf{p})+\pi_{k}(\mathbf{p})-\pi_{j}(\mathbf{p}) \\
& =\pi_{i}(\mathbf{p})-\pi_{j}(\mathbf{p})+\pi_{k}(\mathbf{p})-\pi_{\ell}(\mathbf{p}) \\
& \geq w_{1}(i, j)+w_{2}(k, \ell)+2
\end{aligned}
$$

Therefore, condition (2) also holds.
We now suppose that there exist arcs (i, j) of R_{1} and (k, ℓ) of R_{2} such that conditions (1) and (2) hold. Let $G^{\prime}=\left(\mathcal{N}, w^{\prime}\right)$ be a graph defined as in the proof of Theorem 5.2, where however we just define $\epsilon:=1$, so that G^{\prime} is an integer graph. By using the same reasoning as in the proof of Theorem 5.2, it can be seen that G^{\prime} is consistent and $G^{\prime} \unlhd G_{1} \sqcup G_{2}$. Let $\mathrm{bd}^{\prime} \in \mathbb{B D}_{n}^{\mathbb{Z}}$ be represented by G^{\prime}, so that $\varnothing \neq \mathrm{bd}^{\prime} \subseteq \operatorname{bd}_{1} \uplus \mathrm{bd}_{2}$. Since $w^{\prime}(j, i)+w_{1}(i, j)<0$, we obtain

Figure 4: Examples for the join of rational and integer BD shapes
$\mathrm{bd}^{\prime} \cap \mathrm{bd}_{1}=\varnothing$; since $w^{\prime}(\ell, k)+w_{2}(k, \ell)<0$, we obtain $\mathrm{bd}^{\prime} \cap \mathrm{bd}_{2}=\varnothing$. Hence, $\mathrm{bd}_{1} \uplus \mathrm{bd}_{2} \neq \mathrm{bd}_{1} \cup \mathrm{bd}_{2}$.

Example 5.5. Consider the 2-dimensional BD shapes

$$
\begin{aligned}
& \operatorname{bd}_{3}=\operatorname{con}\left(\left\{0 \leq x_{1} \leq 3,0 \leq x_{2} \leq 2, x_{1}-x_{2} \leq 2\right\}\right) \\
& \operatorname{bd}_{4}=\operatorname{con}\left(\left\{3 \leq x_{1} \leq 6,0 \leq x_{2} \leq 2\right\}\right)
\end{aligned}
$$

shown in Figure 4(b). Then, in the case of rational BD shapes, the join $\mathrm{bd}_{3} \uplus \mathrm{bd}_{4}$ is not exact; for instance, letting $\mathbf{p}=(2.5,0)^{\mathrm{T}}$ be the point highlighted in Figure $4(\mathrm{~b})$, we have $\mathbf{p} \in \mathrm{bd}_{3} \uplus \mathrm{bd}_{4}$ although $\mathbf{p} \notin \mathrm{bd}_{3} \cup \mathrm{bd}_{4}$. Taking $i=1$, $j=2, k=0$ and $\ell=1$, it can be seen that both conditions in Theorem 5.2 are satisfied; in particular, for the second condition we have

$$
w_{1}(1,2)+w_{2}(0,1)=2-3 \leq 0+0=w(1,1)+w(0,2) .
$$

By contrast, in the case of integer BD shapes, the join is exact; all the integral points belonging to the join $\mathrm{bd}_{3} \uplus \mathrm{bd}_{4}$, denoted by small crosses in Figure 4 (b) also belong to the union $\mathrm{bd}_{3} \cup \mathrm{bd}_{4}$. In particular, with the above choice for indices i, j, k, ℓ, the second condition of Theorem 5.4 does not hold:

$$
w_{1}(1,2)+w_{2}(0,1)+2=2-3+2>0+0=w(1,1)+w(0,2)
$$

5.4. Generalizing to $k B D$ shapes

We conjecture that the above results for the exact join detection of two (rational or integer) BD shapes can be generalized to any number of component BD shapes. That is, given $k \mathrm{BD}$ shapes $\mathrm{bd}_{1}, \ldots, \mathrm{bd}_{k} \in \mathbb{B D}_{n}$, it is possible to provide a suitable set of conditions that determine whether or not $\mathrm{bd}_{1} \uplus \cdots \uplus$ $\mathrm{bd}_{k}=\mathrm{bd}_{1} \cup \cdots \cup \mathrm{bd}_{k}$. Here we just present the conjecture, for the rational case, when $k=3$.

Conjecture 5.6. For each $h \in\{1,2,3\}$, let $\operatorname{bd}_{h} \in \mathbb{B D}_{n}$ be a non-empty $B D$ shape represented by the closed graph $G_{h}=\left(\mathcal{N}, w_{h}\right)$ and let R_{h} be a subgraph of G_{h} such that closure $\left(R_{h}\right)=G_{h}$. Let also $G_{1} \sqcup G_{2} \sqcup G_{3}=(\mathcal{N}, w)$. Then $\mathrm{bd}_{1} \uplus \mathrm{bd}_{2} \uplus \mathrm{bd}_{3} \neq \mathrm{bd}_{1} \cup \mathrm{bd}_{2} \cup \mathrm{bd}_{3}$ if and only if there exist arcs $\left(i_{1}, j_{1}\right)$ of R_{1}, $\left(i_{2}, j_{2}\right)$ of R_{2} and $\left(i_{3}, j_{3}\right)$ of R_{3}, respectively, such that
(1) for each $h \in\{1,2,3\}$, $w_{h}\left(i_{h}, j_{h}\right)<w\left(i_{h}, j_{h}\right)$;
(2a) $w_{1}\left(i_{1}, j_{1}\right)+w_{2}\left(i_{2}, j_{2}\right)<w\left(i_{1}, j_{2}\right)+w\left(i_{2}, j_{1}\right)$;
$(2 \mathrm{~b}) w_{2}\left(i_{2}, j_{2}\right)+w_{3}\left(i_{3}, j_{3}\right)<w\left(i_{2}, j_{3}\right)+w\left(i_{3}, j_{2}\right)$;
$(2 \mathrm{c}) w_{3}\left(i_{3}, j_{3}\right)+w_{1}\left(i_{1}, j_{1}\right)<w\left(i_{3}, j_{1}\right)+w\left(i_{1}, j_{3}\right)$;
(3a) $w_{1}\left(i_{1}, j_{1}\right)+w_{2}\left(i_{2}, j_{2}\right)+w_{3}\left(i_{3}, j_{3}\right)<w\left(i_{1}, j_{2}\right)+w\left(i_{2}, j_{3}\right)+w\left(i_{3}, j_{1}\right)$;
(3b) $w_{1}\left(i_{1}, j_{1}\right)+w_{2}\left(i_{2}, j_{2}\right)+w_{3}\left(i_{3}, j_{3}\right)<w\left(i_{1}, j_{3}\right)+w\left(i_{2}, j_{1}\right)+w\left(i_{3}, j_{2}\right)$.
Even though the generalization is straightforward from a mathematical point of view, for larger values of k this will result in having to check a rather involved combinatorial combination of all the conditions.

6. Exact Join Detection for Octagonal Shapes

Octagonal constraints generalize BD constraints by also allowing for nonstrict inequalities having the form $x_{i}+x_{j} \leq b$ or $-x_{i}-x_{j} \leq b$. This class of constraints was first proposed in [10] and further elaborated in [34].

6.1. Octagonal Shapes and their Graph Representation

We first introduce the required notation and terminology (see also 2, 29, 35]). Octagonal constraints can be encoded using BD constraints by splitting each variable x_{i} into two forms: a positive form x_{i}^{+}, interpreted as $+x_{i}$; and a negative form x_{i}^{-}, interpreted as $-x_{i}$. For instance, an octagonal constraint such as $x_{i}+$ $x_{j} \leq b$ can be translated into the potential constraint $x_{i}^{+}-x_{j}^{-} \leq b$; alternatively, the same octagonal constraint can be translated into $x_{j}^{+}-x_{i}^{-} \leq b$. Unary (octagonal) constraints such as $x_{i} \leq b$ and $-x_{i} \leq b$ are encoded as $x_{i}^{+}-x_{i}^{-} \leq 2 b$ and $x_{i}^{-}-x_{i}^{+} \leq-2 b$, respectively.

From now on, we assume that the set of nodes is $\mathcal{N}:=\{0, \ldots, 2 n-1\}$. These will denote the positive and negative forms of the vector space dimensions x_{1}, \ldots, x_{n} : for all $i \in \mathcal{N}$, if $i=2 k$, then i represents the positive form x_{k+1}^{+}and, if $i=2 k+1$, then i represents the negative form x_{k+1}^{-}of the dimension x_{k+1}. To simplify the presentation, we let $\bar{\imath}$ denote $i+1$, if i is even, and $i-1$, if i is odd, so that, for all $i \in \mathcal{N}$, we also have $\bar{\imath} \in \mathcal{N}$ and $\overline{\bar{\imath}}=i$.

It follows from the above translations that any finite system of octagonal constraints, translated into a set of potential constraints in \mathcal{N} as above, can be encoded by a graph G in \mathcal{N}. In particular, any finite satisfiable system of octagonal constraints can be encoded by a consistent graph in \mathcal{N}. However, the converse does not hold since in any valuation ρ of an encoding of a set of octagonal constraints we must also have $\rho(i)=-\rho(\bar{\imath})$, so that the $\operatorname{arcs}(i, j)$ and $(\bar{\jmath}, \bar{\imath})$ should have the same weight. Therefore, to encode rational octagonal constraints, we restrict attention to consistent graphs over \mathcal{N} where the arcs in all such pairs are coherent.

Definition 6.1. (Octagonal graph.) A (rational) octagonal graph is any consistent graph $G=(\mathcal{N}, w)$ that satisfies the coherence assumption:

$$
\begin{equation*}
\forall i, j \in \mathcal{N}: w(i, j)=w(\bar{\jmath}, \bar{\imath}) \tag{5}
\end{equation*}
$$

The set \mathbb{O} of all octagonal graphs (with the usual addition of the bottom element, representing an unsatisfiable system of constraints) is a sub-lattice of \mathbb{G}_{\perp}, sharing the same least upper bound and greatest lower bound operators. Note that, at the implementation level, coherence can be automatically and efficiently enforced by letting arc (i, j) and $\operatorname{arc}(\bar{\jmath}, \bar{\imath})$ share the same representation.

The standard shortest-path closure algorithm is not enough to obtain a canonical form for octagonal graphs.

Definition 6.2. (Graph strong closure/reduction.) An octagonal graph $G=(\mathcal{N}, w)$ is strongly closed if it is closed and the following property holds:

$$
\begin{equation*}
\forall i, j \in \mathcal{N}: 2 w(i, j) \leq w(i, \bar{\imath})+w(\bar{\jmath}, j) \tag{6}
\end{equation*}
$$

The strong closure of an octagonal graph G in \mathcal{N} is

$$
\text { S-closure }(G):=\bigsqcup\left\{G^{\prime} \in \mathbb{O} \mid G^{\prime} \unlhd G \text { and } G^{\prime} \text { is strongly closed }\right\} .
$$

An octagonal graph R is strongly reduced if, for each octagonal graph $G \neq R$ such that $R \unlhd G$, we have S-closure $(R) \neq \operatorname{S-closure}(G)$. A strong reduction for the octagonal graph G is any strongly reduced octagonal graph R such that S-closure $(R)=$ S-closure (G).

Observe that, as was the case for shortest-path reduction, a strong reduction for a strongly closed graph G is a subgraph of G.

We denote by $\mathbb{O} \mathbb{C} \mathbb{T}_{n}$ the domain of octagonal shapes, whose non-empty elements can be represented by octagonal graphs: $\mathbb{B D}_{n}$ is a meet-sublattice of $\mathbb{O C T} \mathbb{T}_{n}$, which in turn is a meet-sublattice of $\mathbb{C P}_{n}$. A strongly closed (resp., strongly reduced) graph encodes a system of octagonal constraints which is closed by entailment (resp., contains no redundant constraint).

6.2. Exact Join Detection for Rational Octagonal Shapes

An exact join decision procedure specialized for rational octagonal shapes can be based on the following result.

Theorem 6.3. For each $h \in\{1,2\}$, let oct $_{h} \in \mathbb{O C T}_{n}$ be a non-empty octagonal shape represented by the strongly closed graph $G_{h}=\left(\mathcal{N}, w_{h}\right)$ and let R_{h} be a subgraph of G_{h} such that S -closure $\left(R_{h}\right)=G_{h}$. Let also $G_{1} \sqcup G_{2}=(\mathcal{N}, w)$. Then oct $_{1} \uplus$ oct $_{2} \neq$ oct $_{1} \cup$ oct $_{2}$ if and only if there exist arcs (i, j) of R_{1} and (k, ℓ) of R_{2} such that
(1a) $w_{1}(i, j)<w_{2}(i, j)$;
(1b) $w_{2}(k, \ell)<w_{1}(k, \ell)$;
(2a) $w_{1}(i, j)+w_{2}(k, \ell)<w(i, \ell)+w(k, j)$;
$(2 \mathrm{~b}) w_{1}(i, j)+w_{2}(k, \ell)<w(i, \bar{k})+w(\bar{\jmath}, \ell)$;
(3a) $2 w_{1}(i, j)+w_{2}(k, \ell)<w(i, \ell)+w(i, \bar{k})+w(\bar{\jmath}, j)$;
(3b) $2 w_{1}(i, j)+w_{2}(k, \ell)<w(k, j)+w(\bar{\jmath}, \ell)+w(i, \bar{\imath})$;
(4a) $w_{1}(i, j)+2 w_{2}(k, \ell)<w(i, \ell)+w(\bar{\jmath}, \ell)+w(k, \bar{k})$;
(4b) $w_{1}(i, j)+2 w_{2}(k, \ell)<w(k, j)+w(i, \bar{k})+w(\bar{\ell}, \ell)$.
Proof. For each $r \in \mathcal{N}=\{0, \ldots, 2 n-1\}$ and each $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)^{\mathrm{T}} \in \mathbb{R}^{n}$, we denote by $\tilde{\pi}_{r}(\mathbf{v})$ the projection of vector \mathbf{v} on the space dimension corresponding to the octagonal graph node r, defined as:

$$
\tilde{\pi}_{r}(\mathbf{v}):= \begin{cases}v_{s+1}, & \text { if } r=2 s \\ -v_{s+1}, & \text { if } r=2 s+1\end{cases}
$$

Suppose that oct ${ }_{1} \uplus$ oct $_{2} \neq$ oct $_{1} \cup$ oct $_{2}$, so that there exists $\mathbf{p} \in$ oct $_{1} \uplus$ oct $_{2}$ such that $\mathbf{p} \notin$ oct $_{1}$ and $\mathbf{p} \notin$ oct $_{2}$. Hence, there exist $\operatorname{arcs}(i, j)$ and (k, ℓ) of R_{1} and R_{2}, respectively, satisfying

$$
\begin{aligned}
w(i, j) & \geq \tilde{\pi}_{i}(\mathbf{p})-\tilde{\pi}_{j}(\mathbf{p})>w_{1}(i, j) \\
w(k, \ell) & \geq \tilde{\pi}_{k}(\mathbf{p})-\tilde{\pi}_{\ell}(\mathbf{p})>w_{2}(k, \ell)
\end{aligned}
$$

hence conditions (1a) and (1b) hold;

$$
\begin{aligned}
w(i, \ell)+w(k, j) & \geq \tilde{\pi}_{i}(\mathbf{p})-\tilde{\pi}_{\ell}(\mathbf{p})+\tilde{\pi}_{k}(\mathbf{p})-\tilde{\pi}_{j}(\mathbf{p}) \\
& =\tilde{\pi}_{i}(\mathbf{p})-\tilde{\pi}_{j}(\mathbf{p})+\tilde{\pi}_{k}(\mathbf{p})-\tilde{\pi}_{\ell}(\mathbf{p}) \\
& >w_{1}(i, j)+w_{2}(k, \ell)
\end{aligned}
$$

so that condition (2a) holds and, by a symmetric argument, condition (2b) holds;

$$
\begin{aligned}
w(i, \ell)+w(i, \bar{k})+w(\bar{\jmath}, j) & \geq\left(\tilde{\pi}_{i}(\mathbf{p})-\tilde{\pi}_{\ell}(\mathbf{p})\right)+\left(\tilde{\pi}_{i}(\mathbf{p})+\tilde{\pi}_{k}(\mathbf{p})\right)+\left(-2 \tilde{\pi}_{j}(\mathbf{p})\right) \\
& =2\left(\tilde{\pi}_{i}(\mathbf{p})-\tilde{\pi}_{j}(\mathbf{p})\right)+\tilde{\pi}_{k}(\mathbf{p})-\tilde{\pi}_{\ell}(\mathbf{p}) \\
& >2 w_{1}(i, j)+w_{2}(k, \ell)
\end{aligned}
$$

so that condition (3a) holds; conditions (3b), (4a) and (4b) follow by symmetric arguments.

We now suppose that, for some $i, j, k, \ell \in \mathcal{N}$, all conditions (1a) - (4b) hold. Note that, by (1a) and (1b), $i \neq j$ and $k \neq \ell$. Suppose first that $(i, j) \in$ $\{(\ell, k),(\bar{k}, \bar{\ell})\}$; then, conditions (2a) and (2b) imply $w_{1}(i, j)+w_{2}(j, i)<0$, so that the graph greatest lower bound $G_{1} \sqcap G_{2}$ is inconsistent, as it contains a negative weight proper cycle; hence, oct ${ }_{1}$ クoct $_{2}=\varnothing$, which implies oct ${ }_{1} \uplus$ oct $_{2} \neq$
oct $_{1} \cup$ oct $_{2}$. Therefore, in the following we assume that $(i, j) \notin\{(\ell, k),(\bar{k}, \bar{\ell})\}$ holds.

If the right hand sides of the inequalities in conditions (1a) - (4b) are all unbounded, let $\epsilon:=1$; otherwise let

$$
\epsilon:=\min \left\{\begin{array}{l}
w(i, j)-w_{1}(i, j), \\
w(k, \ell)-w_{2}(k, \ell), \\
\frac{1}{2}\left(w(i, \ell)+w(k, j)-w_{1}(i, j)-w_{2}(k, \ell)\right), \\
\frac{1}{2}\left(w(i, \bar{k})+w(\bar{\jmath}, \ell)-w_{1}(i, j)-w_{2}(k, \ell)\right), \\
\frac{1}{3}\left(w(i, \ell)+w(i, \bar{k})+w(\bar{\jmath}, j)-2 w_{1}(i, j)-w_{2}(k, \ell)\right), \\
\frac{1}{3}\left(w(k, j)+w(\bar{\jmath}, \ell)+w(i, \bar{\imath})-2 w_{1}(i, j)-w_{2}(k, \ell)\right), \\
\frac{1}{3}\left(w(i, \ell)+w(\bar{\jmath}, \ell)+w(k, \bar{k})-w_{1}(i, j)-2 w_{2}(k, \ell)\right), \\
\frac{1}{3}\left(w(k, j)+w(i, \bar{k})+w(\bar{\ell}, \ell)-w_{1}(i, j)-2 w_{2}(k, \ell)\right)
\end{array}\right\} .
$$

Then, by conditions (1a) - (4b) $\epsilon>0$. Consider the graph $G^{\prime}=\left(\mathcal{N}, w^{\prime}\right)$ where, for each $r, s \in \mathcal{N}$,

$$
w^{\prime}(r, s):= \begin{cases}-w_{1}(i, j)-\epsilon, & \text { if }(r, s) \in\{(j, i),(\bar{\imath}, \bar{\jmath})\} ; \\ -w_{2}(k, \ell)-\epsilon, & \text { if }(r, s) \in\{(\ell, k),(\bar{k}, \bar{\ell})\} ; \\ w(r, s), & \text { otherwise }\end{cases}
$$

Let $G:=G_{1} \sqcup G_{2}$; as G is coherent, G^{\prime} is coherent too. We now show that G^{\prime} is a consistent graph; to this end, since G is known to be consistent, it is sufficient to consider the proper cycles of G^{\prime} that contain arc (j, i) or $\operatorname{arc}(\ell, k) \cdot \mathfrak{Q}^{2}$ Let $\theta_{i j}=i \cdots j$ and $\theta_{k \ell}=k \cdots \ell$ be any simple paths from i to j and from k to ℓ, respectively. Then G^{\prime} is consistent if and only if $w^{\prime}\left(\theta_{i j} \cdot i\right) \geq 0$ and $w^{\prime}\left(\theta_{k \ell} \cdot k\right) \geq 0$. We only prove $w^{\prime}\left(\theta_{i j} \cdot i\right) \geq 0$ since the proof that $w^{\prime}\left(\theta_{k \ell} \cdot k\right) \geq 0$ follows by a symmetrical argument. Since $\theta_{i j}$ is simple, it does not contain the $\operatorname{arc}(j, i)$. In the following we consider in detail five cases, again noting that all the other cases can be proved by symmetrical arguments:

1. $\theta_{i j}$ contains none of the $\operatorname{arcs}(\ell, k),(\bar{k}, \bar{\ell})$ and $(\bar{\imath}, \bar{j})$;
2. $\theta_{i j}=\theta_{i \bar{\imath}}::(\bar{\imath}, \bar{\jmath}):: \theta_{\bar{\jmath} j}$;
3. $\theta_{i j}=\theta_{i \ell}::(\ell, k):: \theta_{k j}$;
4. $\theta_{i j}=\theta_{i \ell}::(\ell, k):: \theta_{k \bar{k}}::(\bar{k}, \bar{\ell}):: \theta_{\bar{\ell} j}$;

[^7]5. $\theta_{i j}=\theta_{i \ell}::(\ell, k):: \theta_{k \bar{k}}::(\bar{k}, \bar{\ell}):: \theta_{\overline{\bar{\imath}}}::(\bar{\imath}, \bar{\jmath}):: \theta_{\bar{J} j}$,
where the simple paths $\theta_{i \bar{\imath}}, \theta_{i \ell}, \theta_{k j}, \theta_{k \bar{k}}, \theta_{\bar{\ell} j}, \theta_{\overline{\ell_{\bar{\imath}}}}$ and $\theta_{\bar{\jmath} j}$ contain none of the arcs $(\ell, k),(\bar{k}, \bar{\ell})$ and $(\bar{\tau}, \bar{\jmath})$.

- Case (1).

$$
\begin{aligned}
w^{\prime}\left(\theta_{i j} \cdot i\right) & =w^{\prime}\left(\theta_{i j}\right)+w^{\prime}(j, i) & & \\
& =w\left(\theta_{i j}\right)-w_{1}(i, j)-\epsilon & & {\left[\text { def. of } w^{\prime}\right] } \\
& \geq w(i, j)-w_{1}(i, j)-\epsilon & & {[G \text { closed }] } \\
& \geq 0 & & {[\text { def. of } \epsilon] . }
\end{aligned}
$$

- Case (2).

$$
\begin{array}{rlr}
w^{\prime}\left(\theta_{i j} \cdot i\right) & =w^{\prime}\left(\theta_{i \bar{\imath}}\right)+w^{\prime}(\bar{\imath}, \bar{\jmath})+w^{\prime}\left(\theta_{\bar{\jmath} j}\right)+w^{\prime}(j, i) & \\
& =w^{\prime}\left(\theta_{i \bar{\imath}}\right)+w^{\prime}\left(\theta_{\bar{\jmath} j}\right)+2 w^{\prime}(j, i) & {\left[G^{\prime} \text { coherent }\right]} \\
& =w\left(\theta_{i \bar{\imath}}\right)+w\left(\theta_{\bar{\jmath} j}\right)-2 w_{1}(i, j)-2 \epsilon & {\left[\text { def. of } w^{\prime}\right]} \\
& \geq w(i, \bar{\imath})+w(\bar{\jmath}, j)-2 w_{1}(i, j)-2 \epsilon & {[G \text { closed }]} \\
& \geq 2 w(i, j)-2 w_{1}(i, j)-2 \epsilon & {[G \text { strongly closed }]} \\
& =2\left(w(i, j)-w_{1}(i, j)\right)-2 \epsilon & \\
& \geq 0 & \text { [def. of } \epsilon] .
\end{array}
$$

- Case (3).

$$
\begin{array}{rlrl}
w^{\prime}\left(\theta_{i j} \cdot i\right) & =w^{\prime}\left(\theta_{i \ell}\right)+w^{\prime}(\ell, k)+w^{\prime}\left(\theta_{k j}\right)+w^{\prime}(j, i) & \\
& =w\left(\theta_{i \ell}\right)-w_{2}(k, \ell)-\epsilon+w\left(\theta_{k j}\right)-w_{1}(i, j)-\epsilon & & {\left[\text { def. of } w^{\prime}\right]} \\
& \geq w(i, \ell)-w_{2}(k, \ell)-\epsilon+w(k, j)-w_{1}(i, j)-\epsilon & & {[G \text { closed }]} \\
& =\left(w(i, \ell)+w(k, j)-w_{1}(i, j)-w_{2}(k, \ell)\right)-2 \epsilon & \\
& \geq 0 & & {[\text { def. of } \epsilon] .}
\end{array}
$$

- Case (4).

$$
\begin{array}{lr}
w^{\prime}\left(\theta_{i j} \cdot i\right) & \\
=w^{\prime}\left(\theta_{i \ell}\right)+w^{\prime}(\ell, k)+w^{\prime}\left(\theta_{k \bar{k}}\right)+w^{\prime}(\bar{k}, \bar{\ell})+w^{\prime}\left(\theta_{\bar{\ell} j}\right)+w^{\prime}(j, i) & \\
=w^{\prime}\left(\theta_{i \ell}\right)+2 w^{\prime}(\ell, k)+w^{\prime}\left(\theta_{k \bar{k}}\right)+w^{\prime}\left(\theta_{\bar{\jmath} \ell}\right)+w^{\prime}(j, i) & {\left[G^{\prime}\right. \text { coherent] }} \\
=w\left(\theta_{i \ell}\right)-2 w_{2}(k, \ell)-2 \epsilon+w\left(\theta_{k \bar{k}}\right)+w\left(\theta_{\bar{\jmath} \ell}\right)-w_{1}(i, j)-\epsilon & \text { [def. of } \left.w^{\prime}\right] \\
\geq w(i, \ell)-2 w_{2}(k, \ell)-2 \epsilon+w(k, \bar{k})+w(\bar{\jmath}, \ell)-w_{1}(i, j)-\epsilon & {[G \text { closed] }} \\
=\left(w(i, \ell)+w(\bar{\jmath}, \ell)+w(k, \bar{k})-w_{1}(i, j)-2 w_{2}(k, \ell)\right)-3 \epsilon & \\
\geq 0 & \text { [def. of } \epsilon] .
\end{array}
$$

- Case (5).

$$
\begin{array}{rlr}
w^{\prime}\left(\theta_{i j} \cdot i\right)= & w^{\prime}\left(\theta_{i \ell}\right)+w^{\prime}(\ell, k)+w^{\prime}\left(\theta_{k \bar{k}}\right)+w^{\prime}(\bar{k}, \bar{\ell}) & \\
& +w^{\prime}\left(\theta_{\bar{\ell} \bar{\tau}}\right)+w^{\prime}(\bar{\imath}, \bar{\jmath})+w^{\prime}\left(\theta_{\bar{\jmath} j}\right)+w^{\prime}(j, i) & \\
=2 w^{\prime}\left(\theta_{i \ell}\right)+2 w^{\prime}(j, i) & \\
& +w^{\prime}\left(\theta_{k \bar{k}}\right)+w^{\prime}\left(\theta_{\bar{\jmath} j}\right)+2 w^{\prime}(\ell, k) & \\
= & 2 w\left(\theta_{i \ell}\right)-2 w_{1}(i, j)-2 \epsilon & G^{\prime} \text { coherent] } \\
& +w\left(\theta_{k \bar{k}}\right)+w\left(\theta_{\bar{\jmath} j}\right)-2 w_{2}(k, \ell)-2 \epsilon & \\
\geq & 2 w(i, \ell)-2 w_{1}(i, j)-2 \epsilon & \\
& +w(k, \bar{k})+w(\bar{\jmath}, j)-2 w_{2}(k, \ell)-2 \epsilon & \\
\geq & 2 w(i, \ell)-2 w_{1}(i, j)-2 \epsilon & \\
& +2 w(k, j)-2 w_{2}(k, \ell)-2 \epsilon & \\
= & 2\left(w(i, \ell)+w(k, j)-w_{1}(i, j)-w_{2}(k, \ell)\right)-4 \epsilon & \\
\geq & 0 &
\end{array}
$$

Therefore G^{\prime} is consistent. Moreover, $G^{\prime} \unlhd G$ since

$$
\begin{array}{rlr}
w^{\prime}(j, i) & =-w_{1}(i, j)-\epsilon & \text { [def. of } \left.w^{\prime}\right] \\
& \leq-w_{1}(i, j) & {[\epsilon \geq 0]} \\
& \leq w_{1}(j, i) & {\left[G_{1} \text { consistent }\right]} \\
& \leq w(j, i) & {[\text { def. } G] ;}
\end{array}
$$

similarly, $w^{\prime}(\ell, k) \leq w(\ell, k)$; hence, for all $r, s \in \mathcal{N}, w^{\prime}(r, s) \leq w(r, s)$.
Let oct ${ }^{\prime} \in \mathbb{O} \mathbb{C T}_{n}$ be represented by G^{\prime}, so that $\varnothing \neq$ oct $^{\prime} \subseteq$ oct $_{1} \uplus$ oct $_{2}$. Since $w^{\prime}(j, i)+w_{1}(i, j)<0$, we obtain oct ${ }^{\prime} \cap$ oct $_{1}=\varnothing$; since $w^{\prime}(\ell, k)+w_{2}(k, \ell)<0$, we obtain oct ${ }^{\prime} \cap$ oct $_{2}=\varnothing$. Hence, oct ${ }_{1} \uplus$ oct $_{2} \neq$ oct $_{1} \cup$ oct $_{2}$.

Since the computation of the strong closure and strong reduction of an octagonal graph are both in $\mathrm{O}\left(n^{3}\right)$ [2, 9, 35], an algorithm for the exact join detection on $\mathbb{O C T} \mathbb{T}_{n}$ based on Theorem 6.3 has the same asymptotic worst-case complexity as the corresponding algorithm for $\mathbb{B D}_{n}$.

Example 6.4. Consider the 2-dimensional octagonal shapes

$$
\begin{aligned}
& \text { oct }_{1}=\operatorname{con}\left(\left\{x_{1}+x_{2} \leq 0\right\}\right) \\
& \text { oct }_{2}=\operatorname{con}\left(\left\{x_{1} \leq 2\right\}\right\}
\end{aligned}
$$

Then the join oct ${ }_{1} \uplus$ oct $_{2}=\mathbb{R}^{2}$ is not exact. Taking the nodes $i=0, j=3$, $k=0$ and $\ell=1$ (which represent the signed form variables $x_{1}^{+}, x_{2}^{-}, x_{1}^{+}$and x_{1}^{-}, respectively), we have $w_{1}(i, j)=0$ (encoding $\left.x_{1}+x_{2} \leq 0\right)$ and $w_{2}(k, \ell)=4$ (encoding $x_{1}+x_{1} \leq 4$, i.e., $x_{1} \leq 2$). So all the left hand sides in conditions (1a) - (4b) are finite while all the corresponding right hand sides are infinite; and hence all the conditions will hold.

6.3. Exact Join Detection for Integer Octagonal Shapes

We now consider the case of integer octagonal constraints, i.e., octagonal constraints where the bounds are all integral and the variables are only allowed to take integral values. These can be encoded by suitably restricting the codomain of the weight function of octagonal graphs.

Definition 6.5. (Integer octagonal graph.) An integer octagonal graph is an octagonal graph $G=(\mathcal{N}, w)$ having an integral weight function:

$$
\forall i, j \in \mathcal{N}: w(i, j) \in \mathbb{Z} \cup\{+\infty\}
$$

As an integer octagonal graph is also a rational octagonal graph, the constraint system that it encodes will be satisfiable when interpreted to take values in \mathbb{Q}. However, when interpreted to take values in \mathbb{Z}, this system may be unsatisfiable since the arcs encoding unary constraints can have an odd weight; we say that an octagonal graph is \mathbb{Z}-consistent if its encoded integer constraint system is satisfiable. For the same reason, the strong closure of an integer octagonal graph does not provide a canonical form for the integer constraint system.

Definition 6.6. (Graph tight closure/reduction.) An octagonal graph $G=(\mathcal{N}, w)$ is tightly closed if it is a strongly closed integer octagonal graph and the following property holds:

$$
\begin{equation*}
\forall i \in \mathcal{N}: w(i, \bar{\imath}) \text { is even. } \tag{7}
\end{equation*}
$$

The tight closure of an octagonal graph G in \mathcal{N} is

$$
\text { T-closure }(G):=\bigsqcup\left\{G^{\prime} \in \mathbb{O} \mid G^{\prime} \unlhd G \text { and } G^{\prime} \text { is tightly closed }\right\}
$$

A \mathbb{Z}-consistent integer octagonal graph R is tightly reduced if, for each integer octagonal graph $G \neq R$ such that $R \unlhd G$, we have T-closure $(R) \neq$ T-closure (G). A tight reduction for the \mathbb{Z}-consistent integer octagonal graph G is any tightly reduced graph R such that T-closure $(R)=$ T-closure (G).

It follows from these definitions that any tightly closed integer octagonal graph encodes a satisfiable integer constraint system if and only if it is \mathbb{Z}-consistent 6 , 9]. Therefore, tight closure is a kernel operator on the lattice of octagonal graphs, as was the case for strong closure. Observe also that a tight reduction for a tightly closed graph G is a subgraph of $G[9]$. We denote by $\mathbb{O C} \mathbb{T}_{n}^{\mathbb{Z}}$ the domain of integer octagonal shapes.

To prove the Theorem 6.8 below, we will also use the following result proved in [29, Lemma 4].

Lemma 6.7. Let $G=(\mathcal{N}, w)$ be an integer octagonal graph with no negative weight cycles and $G_{\mathrm{t}}=\left(\mathcal{N}, w_{\mathrm{t}}\right)$ be a graph having a negative weight cycle and such that w_{t} satisfies

$$
w_{\mathrm{t}}(i, j):= \begin{cases}2\lfloor w(i, j) / 2\rfloor, & \text { if } j=\bar{\imath} \\ w(i, j), & \text { otherwise }\end{cases}
$$

Then there exist $i, \bar{\imath} \in \mathcal{N}$ and a cycle $\pi=\left(i \cdot \pi_{1} \cdot \bar{\imath}\right)::\left(\bar{\imath} \cdot \pi_{2} \cdot i\right)$ in G such that $w(\pi)=0$ and the weight of the shortest path in G from i to $\bar{\imath}$ is odd.

We are now ready to state the condition for exact join detection for integer octagonal shapes.

Theorem 6.8. For each $h \in\{1,2\}$, let oct $_{h} \in \mathbb{O} \mathbb{C} \mathbb{T}_{n}^{\mathbb{Z}}$ be a non-empty integer octagonal shape represented by the tightly closed graph $G_{h}=\left(\mathcal{N}, w_{h}\right)$ and let R_{h} be a subgraph of G_{h} such that T-closure $\left(R_{h}\right)=G_{h}$. Let also $G_{1} \sqcup G_{2}=(\mathcal{N}, w)$. Then oct $_{1} \uplus$ oct $_{2} \neq$ oct $_{1} \cup$ oct $_{2}$ if and only if there exists arcs (i, j) of R_{1} and (k, ℓ) of R_{2} such that, letting $\epsilon_{i j}=2$ if $j=\bar{\imath}$ and $\epsilon_{i j}=1$ otherwise and $\epsilon_{k \ell}=2$ if $\ell=\bar{k}$ and $\epsilon_{k \ell}=1$ otherwise, the following hold:
(1a) $w_{1}(i, j)+\epsilon_{i j} \leq w_{2}(i, j)$;
(1b) $w_{2}(k, \ell)+\epsilon_{k \ell} \leq w_{1}(k, \ell)$;
(2a) $w_{1}(i, j)+w_{2}(k, \ell)+\epsilon_{i j}+\epsilon_{k \ell} \leq w(i, \ell)+w(k, j)$;
(2b) $w_{1}(i, j)+w_{2}(k, \ell)+\epsilon_{i j}+\epsilon_{k \ell} \leq w(i, \bar{k})+w(\bar{\ell}, j)$;
(3a) $2 w_{1}(i, j)+w_{2}(k, \ell)+2 \epsilon_{i j}+\epsilon_{k \ell} \leq w(i, \ell)+w(k, \bar{\imath})+w(\bar{\jmath}, j)$;
(3b) $2 w_{1}(i, j)+w_{2}(k, \ell)+2 \epsilon_{i j}+\epsilon_{k \ell} \leq w(k, j)+w(\bar{\jmath}, \ell)+w(i, \bar{\imath})$;
(4a) $w_{1}(i, j)+2 w_{2}(k, \ell)+\epsilon_{i j}+2 \epsilon_{k \ell} \leq w(k, j)+w(i, \bar{k})+w(\bar{\ell}, \ell)$;
(4b) $w_{1}(i, j)+2 w_{2}(k, \ell)+\epsilon_{i j}+2 \epsilon_{k \ell} \leq w(i, \ell)+w(\bar{\ell}, j)+w(k, \bar{k})$.
Proof. We will use the notation $\tilde{\pi}$ as defined in the proof of Theorem 6.3. Suppose that oct ${ }_{1} \uplus$ oct $_{2} \neq$ oct $_{1} \cup$ oct $_{2}$, so that there exists $\mathbf{p} \in$ oct $_{1} \uplus$ oct $_{2}$ such that $\mathbf{p} \notin$ oct $_{1}$ and $\mathbf{p} \notin$ oct $_{2}$. Hence, letting $\tilde{p}_{i j}:=\tilde{\pi}_{i}(\mathbf{p})-\tilde{\pi}_{j}(\mathbf{p})$ and $\tilde{p}_{k \ell}:=\tilde{\pi}_{k}(\mathbf{p})-\tilde{\pi}_{\ell}(\mathbf{p})$, there exist $\operatorname{arcs}(i, j)$ and (k, ℓ) of R_{1} and R_{2}, respectively, satisfying $\tilde{p}_{i j}>w_{1}(i, j)$ and $\tilde{p}_{k \ell}>w_{2}(k, \ell)$; as $\mathbf{p} \in$ oct $_{1} \uplus$ oct $_{2}$, we also have $w_{2}(i, j) \geq \tilde{p}_{i j}$ and $w_{1}(k, \ell) \geq \tilde{p}_{k \ell}$. Note that $w_{1}(i, j)$ and $w_{2}(k, \ell)$ are both finite and hence in \mathbb{Z} so that $\tilde{p}_{i j} \geq w_{1}(i, j)+1$ and $\tilde{p}_{k \ell} \geq w_{2}(k, \ell)+1 ;$ also, by the tight coherence rule (7), if $j=\bar{\imath}, \tilde{p}_{i j} \geq w_{1}(i, j)+2$ and, if $k=\bar{\ell}, \tilde{p}_{k \ell} \geq w_{2}(k, \ell)+2$. Therefore, by definition of $\epsilon_{i j}$ and $\epsilon_{k \ell}$, we have

$$
\begin{aligned}
w_{2}(i, j) & \geq \tilde{\pi}_{i}(\mathbf{p})-\tilde{\pi}_{j}(\mathbf{p}) \\
& \geq w_{1}(i, j)+\epsilon_{i j} \\
w_{1}(k, \ell) & \geq \tilde{\pi}_{k}(\mathbf{p})-\tilde{\pi}_{\ell}(\mathbf{p}) \\
& \geq w_{2}(k, \ell)+\epsilon_{k \ell}
\end{aligned}
$$

so that conditions (1a) and (1b) hold. Moreover,

$$
\begin{aligned}
w(i, \ell)+w(k, j) & \geq \tilde{\pi}_{i}(\mathbf{p})-\tilde{\pi}_{\ell}(\mathbf{p})+\tilde{\pi}_{k}(\mathbf{p})-\tilde{\pi}_{j}(\mathbf{p}) \\
& =\tilde{\pi}_{i}(\mathbf{p})-\tilde{\pi}_{j}(\mathbf{p})+\tilde{\pi}_{k}(\mathbf{p})-\tilde{\pi}_{\ell}(\mathbf{p}) \\
& \geq w_{1}(i, j)+w_{2}(k, \ell)+\epsilon_{i j}+\epsilon_{k \ell}
\end{aligned}
$$

so that condition (2a) holds and, by a symmetrical argument, condition (2b) holds. Similarly,

$$
\begin{aligned}
w(i, \ell)+w(k, \bar{\imath})+w(\bar{\jmath}, j) & \geq\left(\tilde{\pi}_{i}(\mathbf{p})-\tilde{\pi}_{\ell}(\mathbf{p})\right)+\left(\tilde{\pi}_{k}(\mathbf{p})+\tilde{\pi}_{i}(\mathbf{p})\right)+\left(-2 \tilde{\pi}_{j}(\mathbf{p})\right) \\
& =2\left(\tilde{\pi}_{i}(\mathbf{p})-\tilde{\pi}_{j}(\mathbf{p})\right)+\tilde{\pi}_{k}(\mathbf{p})-\tilde{\pi}_{\ell}(\mathbf{p}) \\
& \geq 2 w_{1}(i, j)+w_{2}(k, \ell)+2 \epsilon_{i j}+\epsilon_{k \ell}
\end{aligned}
$$

so that condition (3a) holds; conditions (3b), (4a) and (4b) follow by a symmetrical argument.

We now suppose that, for some $i, j, k, \ell \in \mathcal{N}$, conditions (1a) - (4b) hold. Consider the graph $G^{\prime}=\left(\mathcal{N}, w^{\prime}\right)$ where, for each $r, s \in \mathcal{N}$,

$$
w^{\prime}(r, s):= \begin{cases}-w_{1}(i, j)-\epsilon_{i j}, & \text { if }(r, s) \in\{(j, i),(\bar{\imath}, \bar{\jmath})\} \\ -w_{2}(k, \ell)-\epsilon_{k \ell}, & \text { if }(r, s) \in\{(\ell, k),(\bar{k}, \bar{\ell})\} \\ w(r, s), & \text { otherwise }\end{cases}
$$

Let $G:=G_{1} \sqcup G_{2}$; as G is coherent, G^{\prime} is coherent too; as G is tightly closed, G^{\prime} satisfies property (77). Hence it follows from Lemma 6.7 that G^{\prime} is \mathbb{Z}-consistent if it has no negative weight cycles. By using a reasoning similar to that in the proof of Theorem 6.3 it can be seen that there are no negative weight cycles in G^{\prime} so that G^{\prime} is \mathbb{Z}-consistent and $G^{\prime} \unlhd G_{1} \sqcup G_{2}$. Let oct ${ }^{\prime} \in \mathbb{O} \mathbb{C} \mathbb{T}_{n}^{\mathbb{Z}}$ be represented by G^{\prime}, so that $\varnothing \neq$ oct $^{\prime} \subseteq$ oct $_{1} \uplus$ oct $_{2}$. Since $w^{\prime}(j, i)+w_{1}(i, j)<0$, we obtain oct $^{\prime} \cap$ oct $_{1}=\varnothing$; since $w^{\prime}(\ell, k)+w_{2}(k, \ell)<0$, we obtain oct ${ }^{\prime} \cap$ oct $_{2}=\varnothing$. Hence, oct $_{1} \uplus$ oct $_{2} \neq$ oct $_{1} \cup$ oct $_{2}$.

Since the tight closure and tight reduction procedures are both in $\mathrm{O}\left(n^{3}\right)$ [9], the exact join detection algorithm for integer octagonal shapes has the same asymptotic worst-case complexity of all the corresponding algorithms for the other weakly relational shapes.

7. Conclusion and Future Work

Several applications dealing with the synthesis, analysis, verification and optimization of hardware and software systems make use of numerical abstractions. These are sets of geometrical objects - with the structure of a bounded joinsemilattice - that are used to approximate the numerical quantities occurring in such systems. In order to improve the precision of the approximation, sets of such objects are often considered and, to limit redundancy and its negative effects, it is important to "merge" objects whose lattice-theoretic join corresponds to their set-theoretic union.

For a wide range of numerical abstractions, we have presented results that state the necessity and sufficiency of relatively simple conditions for the equivalence between join and union. These conditions immediately suggest algorithms that solve the corresponding decision problem. For the case of convex polyhedra, we improve upon one of the algorithms presented in [13, 14] by defining
an algorithm with better worst-case complexity. For all the other considered numerical abstractions, we believe the present paper is breaking new ground. In particular, for the case of NNC convex polyhedra, we show that dealing with non-closedness brings significant extra complications. For the other abstractions, the algorithms we propose have worst-case complexities that, in a sense, match the complexity of the abstraction, something that cannot be obtained, e.g., by applying an algorithm for general convex polyhedra to octagonal shapes.

All the above mentioned algorithms have been implemented in the Parma Polyhedra Library [7] 10 Besides being made directly available to the client applications, they are used internally in order to implement widening operators over powerset domains [4]. Our preliminary experimental evaluation, though not extensive, showed the efficiency of the algorithms is good, also thanks to a careful coding following the "first fail" principle ${ }^{11}$

In this paper we have studied exact join detection for the most popular abstract domains. However, due to the importance numerical domains have in the synthesis, analysis, verification and optimization of hardware and software systems, due to the need to face the complexity/precision trade-off in an application-dependent way, new domains are proposed on a regular basis. The fact that they may be not so popular today does not impede that they can prove their strength tomorrow. These domains include: the two variables per linear inequality abstract domain [41, 42], octahedra 21], template polyhedra 39], and pentagons [32]. It will be interesting to study exact join detection for these and other domains, the objective being the one of finding specializations with a complexity that matches the "inherent complexity" of the domain.

Even though preliminary experimentation suggests that -in practice, at least for some applications [4, 17]— pairwise joins allow the removal of most redundancies, work is still needed in the definition of efficient algorithms to decide the exactness of join for $k>2$ objects. Moreover, it would be useful to develop heuristics to mitigate the combinatorial explosion when attempting full redundancy removal from a set of m objects, as it is clearly impractical to invoke $2^{m}-m-1$ times the decision algorithm on $k=2, \ldots, m$ objects.

Acknowledgments. We are grateful to the participants of the Graphite Workshop (AMD's Lone Star Campus, Austin, Texas, November 16-17, 2008) for stimulating us to add efficient exact join detection algorithms to the Parma Polyhedra Library, something that led us to the research described in this paper.

We are also indebted to the anonymous referees for their careful and detailed reviews, which allowed us to significantly improve the paper.

[^8]
References

[1] Bagnara, R., 1998. A hierarchy of constraint systems for data-flow analysis of constraint logic-based languages. Science of Computer Programming 30 (1-2), 119-155.
[2] Bagnara, R., Hill, P. M., Mazzi, E., Zaffanella, E., 2005. Widening operators for weakly-relational numeric abstractions. In: Hankin, C., Siveroni, I. (Eds.), Static Analysis: Proceedings of the 12th International Symposium. Vol. 3672 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, London, UK, pp. 3-18.
[3] Bagnara, R., Hill, P. M., Zaffanella, E., 2005. Not necessarily closed convex polyhedra and the double description method. Formal Aspects of Computing 17 (2), 222-257.
[4] Bagnara, R., Hill, P. M., Zaffanella, E., 2006. Widening operators for powerset domains. Software Tools for Technology Transfer 8 (4/5), 449-466, in the printed version of this article, all the figures have been improperly printed (rendering them useless). See [5].
[5] Bagnara, R., Hill, P. M., Zaffanella, E., 2007. Widening operators for powerset domains. Software Tools for Technology Transfer 9 (3/4), 413-414, erratum to [4] containing all the figures properly printed.
[6] Bagnara, R., Hill, P. M., Zaffanella, E., 2008. An improved tight closure algorithm for integer octagonal constraints. In: Logozzo, F., Peled, D., Zuck, L. (Eds.), Verification, Model Checking and Abstract Interpretation: Proceedings of the 9th International Conference (VMCAI 2008). Vol. 4905 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, San Francisco, USA, pp. 8-21.
[7] Bagnara, R., Hill, P. M., Zaffanella, E., 2008. The Parma Polyhedra Library: Toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems. Science of Computer Programming 72 (1-2), 3-21.
[8] Bagnara, R., Hill, P. M., Zaffanella, E., 2009. Applications of polyhedral computations to the analysis and verification of hardware and software systems. Theoretical Computer Science. To appear in print. Available online at http://dx.doi.org/10.1016/j.tcs.2009.07.033.
[9] Bagnara, R., Hill, P. M., Zaffanella, E., 2009. Weakly-relational shapes for numeric abstractions: Improved algorithms and proofs of correctness. Formal Methods in System Design. To appear in print. Available online at http://www.springerlink.com/content/d40842574t1r5877/.
[10] Balasundaram, V., Kennedy, K., 1989. A technique for summarizing data access and its use in parallelism enhancing transformations. In: Knobe,
B. (Ed.), Proceedings of the ACM SIGPLAN'89 Conference on Programming Language Design and Implementation (PLDI). Vol. 24(7) of ACM SIGPLAN Notices. ACM Press, Portland, Oregon, USA, pp. 41-53.
[11] Bárány, I., Fukuda, K., 2005. A case when the union of polytopes is convex. Linear Algebra and its Applications 397, 381-388.
[12] Bastoul, C., 2004. Code generation in the polyhedral model is easier than you think. In: Proceedings of the 13th International Conference on Parallel Architectures and Compilation Techniques (PACT 2004). IEEE Computer Society, Antibes Juan-les-Pins, France, pp. 7-16.
[13] Bemporad, A., Fukuda, K., Torrisi, F. D., 2000. Convexity recognition of the union of polyhedra. Report AUT00-13, Automatic Control Laboratory, ETHZ, Zurich, Switzerland.
[14] Bemporad, A., Fukuda, K., Torrisi, F. D., 2001. Convexity recognition of the union of polyhedra. Computational Geometry: Theory and Applications 18 (3), 141-154.
[15] Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E. N., 2002. The explicit linear quadratic regulator for constrained systems. Automatica 38 (1), 320, corrected in 16].
[16] Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E. N., 2003. Corrigendum to: "The explicit linear quadratic regulator for constrained systems" [Automatica 38(1) (2002) 3-20]. Automatica 39 (10), 1845-1846, corrigendum to [15].
[17] Bultan, T., Gerber, R., Pugh, W., 1999. Model-checking concurrent systems with unbounded integer variables: Symbolic representations, approximations, and experimental results. ACM Transactions on Programming Languages and Systems 21 (4), 747-789.
[18] Chernikova, N. V., 1964. Algorithm for finding a general formula for the non-negative solutions of system of linear equations. U.S.S.R. Computational Mathematics and Mathematical Physics 4 (4), 151-158.
[19] Chernikova, N. V., 1965. Algorithm for finding a general formula for the non-negative solutions of system of linear inequalities. U.S.S.R. Computational Mathematics and Mathematical Physics 5 (2), 228-233.
[20] Chernikova, N. V., 1968. Algorithm for discovering the set of all solutions of a linear programming problem. U.S.S.R. Computational Mathematics and Mathematical Physics 8 (6), 282-293.
[21] Clarisó, R., Cortadella, J., 2004. The octahedron abstract domain. In: Giacobazzi, R. (Ed.), Static Analysis: Proceedings of the 11th International Symposium. Vol. 3148 of Lecture Notes in Computer Science. SpringerVerlag, Berlin, Verona, Italy, pp. 312-327.
[22] Cousot, P., Cousot, R., 1976. Static determination of dynamic properties of programs. In: Robinet, B. (Ed.), Proceedings of the Second International Symposium on Programming. Dunod, Paris, France, Paris, France, pp. 106-130.
[23] Cousot, P., Cousot, R., 1977. Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proceedings of the Fourth Annual ACM Symposium on Principles of Programming Languages. ACM Press, New York, pp. 238252.
[24] Cousot, P., Cousot, R., 1979. Systematic design of program analysis frameworks. In: Proceedings of the Sixth Annual ACM Symposium on Principles of Programming Languages. ACM Press, New York, pp. 269-282.
[25] Feautrier, P., 1988. Parametric integer programming. RAIRO Recherche Opérationnelle 22 (3), 243-268.
[26] Frehse, G., Krogh, B. H., Rutenbar, R. A., 2006. Verifying analog oscillator circuits using forward/backward refinement. In: Proceedings of the 9th Conference on Design, Automation and Test in Europe (DATE 06). ACM SIGDA, Munich, Germany, CD-ROM publication.
[27] Fukuda, K., Liebling, T. M., Lütolf, C., 2001. Extended convex hull. Computational Geometry: Theory and Applications 20 (1-2), 13-23.
[28] Jones, C. N., Jul. 2005. Polyhedral tools for control. Ph.D. thesis, Department of Engineering, University of Cambridge, Cambridge, U.K.
[29] Lahiri, S. K., Musuvathi, M., 2005. An efficient decision procedure for UTVPI constraints. In: Gramlich, B. (Ed.), Frontiers of Combining Systems: Proceedings of the 5th International Workshop, FroCoS 2005. Vol. 3717 of Lecture Notes in Artificial Intelligence. Springer-Verlag, Berlin, Vienna, Austria, pp. 168-183.
[30] Larsen, K., Larsson, F., Pettersson, P., Yi, W., 1997. Efficient verification of real-time systems: Compact data structure and state-space reduction. In: Proceedings of the 18th IEEE Real-Time Systems Symposium (RTSS'97). IEEE Computer Society Press, San Francisco, CA, pp. 14-24.
[31] Le Verge, H., 1992. A note on Chernikova's algorithm. Publication interne 635, IRISA, Campus de Beaulieu, Rennes, France.
[32] Logozzo, F., Fähndrich, M., 2008. Pentagons: A weakly relational abstract domain for the efficient validation of array accesses. In: Proceedings of the 2008 ACM Symposium on Applied Computing (SAC 2008). ACM Press, Fortaleza, Ceará, Brazil, pp. 184-188.
[33] Miné, A., 2001. A new numerical abstract domain based on differencebound matrices. In: Danvy, O., Filinski, A. (Eds.), Proceedings of the 2nd Symposium on Programs as Data Objects (PADO 2001). Vol. 2053 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Aarhus, Denmark, pp. 155-172.
[34] Miné, A., 2001. The octagon abstract domain. In: Proceedings of the Eighth Working Conference on Reverse Engineering (WCRE'01). IEEE Computer Society Press, Stuttgart, Germany, pp. 310-319.
[35] Miné, A., Mar. 2005. Weakly relational numerical abstract domains. Ph.D. thesis, École Polytechnique, Paris, France.
[36] Motzkin, T. S., Raiffa, H., Thompson, G. L., Thrall, R. M., 1953. The double description method. In: Kuhn, H. W., Tucker, A. W. (Eds.), Contributions to the Theory of Games - Volume II. No. 28 in Annals of Mathematics Studies. Princeton University Press, Princeton, New Jersey, pp. 51-73.
[37] Nakanishi, T., Fukuda, A., 2001. Modulo interval arithmetic and its application to program analysis. Transactions of Information Processing Society of Japan 42 (4), 829-837.
[38] Nakanishi, T., Joe, K., Polychronopoulos, C. D., Fukuda, A., 1999. The modulo interval: A simple and practical representation for program analysis. In: Proceedings of the 1999 International Conference on Parallel Architectures and Compilation Techniques. IEEE Computer Society, Newport Beach, California, USA, pp. 91-96.
[39] Sankaranarayanan, S., Dang, T., Ivančić, F., 2008. Symbolic model checking of hybrid systems using template polyhedra. In: Ramakrishnan, C. R., Rehof, J. (Eds.), Tools and Algorithms for the Construction and Analysis of Systems, 14th International Conference, TACAS 2008. Vol. 4963 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Budapest, Hungary, pp. 188-202.
[40] Sen, R., Srikant, Y. N., 2007. Executable analysis using abstract interpretation with circular linear progressions. In: Proceedings of the 5th IEEE/ACM International Conference on Formal Methods and Models for Co-Design (MEMOCODE 2007). IEEE Computer Society Press, Nice, France, pp. 39-48.
[41] Simon, A., 2008. Value-Range Analysis of C Programs: Towards Proving the Absence of Buffer Overflow Vulnerabilities. Springer-Verlag, Berlin.
[42] Simon, A., King, A., Howe, J. M., 2002. Two variables per linear inequality as an abstract domain. In: Leuschel, M. (Ed.), Logic Based Program Synthesis and Tranformation, 12th International Workshop. Vol. 2664 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Madrid, Spain, pp. 71-89.
[43] Stoer, J., Witzgall, C., 1970. Convexity and Optimization in Finite Dimensions I. Springer-Verlag, Berlin.
[44] Torrisi, F. D., 2003. Modeling and reach-set computation for analysis and optimal control of discrete hybrid automata. Doctoral thesis, Swiss Federal Institute of Technology, Zürich, Switzerland.

[^0]: *This work has been partly supported by PRIN project "AIDA2007 - Abstract Interpretation Design and Applications," and by EPSRC project "EP/G00109X/1 - Static Analysis Tools for Certifying and Debugging Programs."

 Email addresses: bagnara@cs.unipr.it (Roberto Bagnara), hill@cs.unipr.it (Patricia M. Hill), zaffanella@cs.unipr.it (Enea Zaffanella)

[^1]: ${ }^{1}$ This is the problem of computing a minimal set of constraints describing the convex hull of the union of k polytopes, each described by a set of constraints.
 ${ }^{2}$ Since numerical abstractions are so critical in the field of hardware and software analysis and verification, new ones are proposed on a regular basis.

[^2]: ${ }^{3}$ The algorithms in [14] for the V and VH representations only consider the case of bounded polyhedra, i.e., polytopes; the extension to the unbounded case can be found in [13].

[^3]: ${ }^{4}$ This may happen because we made no minimality assumption on the constraint system \mathcal{C}_{1}, so that β_{1} may be redundant.

[^4]: ${ }^{5}$ The $\left\langle\mathbf{a}, \mathbf{p}_{1}^{\prime}\right\rangle$ may differ from b because we made no minimality assumption on the constraint system \mathcal{C}_{1}, so that β_{1} may be redundant.
 ${ }^{6}$ Namely, if $\beta=(\langle\mathbf{a}, \mathbf{x}\rangle \bowtie b)$, then $\mathcal{H}(\beta)=\operatorname{con}(\{\langle\mathbf{a}, \mathbf{x}\rangle=b\})$.

[^5]: ${ }^{7}$ This construction is called a direct product in the field of abstract interpretation. The resulting domain is said to be attribute-independent, in the sense that relational information is not captured. In other words, the constraints on space dimension i are unrelated to those on space dimension j whenever $i \neq j$.

[^6]: ${ }^{8}$ We extend notation by letting $\pi_{0}(\mathbf{v}):=0$, for each vector $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)^{\mathrm{T}}$.

[^7]: ${ }^{9}$ Any cycle containing arc $(\bar{\imath}, \bar{\jmath})$ (resp., $(\bar{k}, \bar{\ell})$) can be transformed to the corresponding coherent cycle containing $\operatorname{arc}(j, i)$ (resp., (ℓ, k)), having the same weight.

[^8]: ${ }^{10}$ The Parma Polyhedra Library is free software distributed under the terms of the GNU General Public License. See http://www.cs.unipr.it/ppl/ for further details.
 ${ }^{11}$ This is a heuristics whereby, in the implementation of a predicate whose success depends on the success of many tests, those that are most likely to fail are tried first.

