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Abstract

We study the problem of fitting a two-joint orthogonal polygonal chain to a set S of n points
in the plane, where the objective function is to minimize the maximum orthogonal distance
from S to the chain. We show that this problem can be solved in Θ(n) time if the orientation
of the chain is fixed, and in Θ(n log n) time when the orientation is not a priori known. We
also consider some variations of the problem in three-dimensions where a polygonal chain is
interpreted as a configuration of orthogonal planes. In this case we obtain O(n) and O(n log n)
time algorithms depending on which plane orientations are fixed.

1 Introduction and definitions

Fitting a curve of a certain type to a given point set in the plane is a fundamental problem
with applications in fields as diverse as statistics, computer graphics, and artificial intelligence. A
special case of this problem is the so called polygonal approximation problem or polygonal fitting
problem, where a polygonal chain with k corners or joints is fitted to a data set so as to minimize the
approximation error according to some agreed upon metric. This problem is closely related to that of
approximating a piecewise-linear curve with n edges by one with fewer edges, except that the input is
now also a chain. Applications of this problem arise in cartography, pattern recognition, and graphic
design [6, 9, 22], and has received much attention in computational geometry [2, 7, 15, 18, 24].

In the Min-Max problem a polygonal chain with k joints is fitted to a data set with the goal of
minimizing the maximum vertical distance from the input points to the chain. This problem was
first posed by Hakimi and Schmeichel [16] and solved in O(n2 log n) time. The complexity has since
been improved, first by Wang et al. [27] to O(n2) time and then by Goodrich [13] to O(n log n)
time.

We consider the case in which the approximating curve is an orthogonal polygonal chain, i.e., a chain
of consecutive orthogonal line segments where the extreme segments are half-lines with the same
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Supported by projects MEC MTM2009-07242 and Gen. Cat. DGR 2009GR1040.
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slope, the slope of the orthogonal polygonal chain. The case in which this slope is given was first
solved by Dı́az-Báñez and Mesa [11] in O(n2 log n) time, and subsequently improved by Wang [26]
to O(n2) time, and by Lopez and Mayster [21] to min{n2, nk log n} time. Very recently, Fournier
and Vigneron [12] give an O(n) time algorithm if the points are sorted by their x-coordinates, and
an O(n log n) time algorithm for the unsorted case. These authors give an Ω(n log k) lower bound
for the decision problem and thus prove the optimality of their algorithm for the unsorted case
when k = Θ(n)

Let S = {p1, . . . , pn} be a set of n points in the plane in general position, i.e., no three points on
a line. When k ≥ 1 and 0 ≤ θ < 180, a k-orthogonal polygonal chain with orientation θ, Ok,θ,
is a chain of 2k − 1 consecutive orthogonal segments such that the extreme segments are in fact
half-lines with slope tan(θ). Thus, Ok,θ consists of k segments with slope tan(θ) and k−1 segments
with slope tan(θ + 90) (Figure 1). Clearly, Ok,θ is always monotone with respect to its orientation.
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Figure 1: A 6-orthogonal polygonal chain dividing the plane into 6 strips.

We deal with the problem of fitting a k-orthogonal polygonal chain Ok,θ to the set S. Fitting Ok,θ

to S means to locate θ-oriented segments si(θ), i = 1, . . . , k, according to a given optimization
criterion. We consider the Min-Max criterion, illustrated in Figure 1 and defined as follows. Let
li(θ) be the line passing through pi ∈ S with orientation θ + 90. The fitting distance between pi

and Ok,θ, denoted by df (pi,Ok,θ), is given by

df (pi,Ok,θ) = min
p∈li(θ)∩Ok,θ

d(pi, p).

Notice that df is not the Euclidean distance. However, we can assume that this distance is the
Euclidean distance between pi and a point on a segment with orientation θ in Ok,θ. The error
tolerance of Ok,θ with respect to S, denoted by µ(Ok,θ, S), is the maximum fitting distance between
the points of S and Ok,θ, i.e.,

µ(Ok,θ, S) = max
pi∈S

df (pi,Ok,θ).

Definition 1 The k-fitting problem for S with the Min-Max criterion consists of finding an or-
thogonal polygonal chain Ok,θ such that its error tolerance µ(Ok,θ, S) is minimized.

Notice that if the orientation of Ok,θ is fixed, for example θ = 0, then the k-fitting problem consists
of finding an x-monotone rectilinear path formed by 2k−1 segments with minimum error tolerance
where the fitting distance is just the vertical distance [11].
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We focus here on the case where k is small, in fact k = 2, and the points in S are not sorted.
We study the 2-fitting problem for S with fixed orientation (the oriented 2-fitting problem) and
the problem of finding the best orientation for fitting a two-joint orthogonal polygonal chain to
S (the un-oriented 2-fitting problem). We also consider the extension of the problem to three-
dimensions where an orthogonal polygonal chain is a configuration of orthogonal planes. See Chen
and Wang [8] for recent results on some variants of this problem including NP-hardness results in
three dimensions.

Outline of the paper. In Section 2 we study the oriented fitting problem in the plane. In Section 3
we study the un-oriented 2-fitting problem in the plane. Finally, in Section 4, we study the oriented
2-fitting problem in three-dimensions.

2 The oriented fitting problem

In this section we consider the oriented k-fitting problem for S, i.e., the case where the orientation
θ of the k-orthogonal chain that fits S is fixed. Without loss of generality we assume that θ = 0.
Thus, we are looking for an x-monotone rectilinear path, Ok,0 or Ok, consisting of an alternating
sequence of k horizontal and k − 1 vertical segments with minimum error tolerance.

Often, the algorithms proposed in the literature for these kind of fitting problem assume that the
input points are given in sorted order. Recently, Fournier and Vigneron [12] give an O(n log n)
time algorithm for the oriented k-fitting problem when the points are unsorted and prove its
optimality when k = Θ(n). The running time of the algorithm from Lopez and Mayster [21] is
min{n2, nk log n} which is O(n log n) when k is a constant. For the sorted case, Fournier and
Vigneron [12] present an optimal O(n) time algorithm, and an Ω(n log k) time lower bound for the
decision problem for the unsorted case. Here we consider the oriented k-fitting problem for the
case k = 2 for the unsorted case.

Let S = {p1, . . . , pn}, where pi = (xi, yi). We can compute ymax = max{y1, . . . , yn} and ymin =
min{y1, . . . , yn} in linear time. The oriented 1-fitting problem then is solved in O(n) time by finding
the horizontal line y = (ymax + ymin)/2.

Let O2 denote an optimal solution to the oriented 2-fitting problem for a set S. Then O2 consists of
two horizontal half-lines joined by a vertical segment contained in a vertical line `∗ which partitions
S into subsets S1 and S2, namely the points of S to the left and to the right of `∗ respectively.
Since `∗ must minimize the maximum error tolerance of S1 and S2, the following is apparent.

Lemma 1 Line `∗ separates the two points in S with y-coordinates ymin and ymax.

Linear time algorithm for oriented 2-fitting.

Any vertical line ` between two points of S induces a candidate solution to the oriented 2-fitting
problem whose cost is given by max{ε1, ε2}, where ε1 (resp. ε2) denotes the tolerance of the subset
of S to the left (resp. right) of `. Our algorithm performs a binary search based on the following
observation:

Lemma 2 If ` is not optimal and ε1 < ε2 (resp. ε1 > ε2) then `∗ lies to the right (resp. left) of `.

We now outline the algorithm. Let ` denote the vertical line through the median x-coordinate
of S. Partition S into subsets S1 and S2 to the left and right of `, respectively. Compute also
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the tolerances ε1 of S1 and ε2 of S2, and store the two witness pairs of points responsible for the
tolerances. All this can be computed in O(n) time [10]. If ε1 = ε2, stop the algorithm, as `∗ = `. If
ε1 < ε2, in O(n/2) time compute the median of S2, reset ` as the vertical line at this median value,
compute the subsets S′2 and S′′2 of the bipartition of S2 produced by the new median, and compute
the tolerances ε′2 and ε′′2 of S′2 and S′′2 . The next move of ` (left or right) is determined based on
the maximum of ε′′2 and ε where ε is the error tolerance of all points to the left of `, which can be
obtained in constant time by the two witness points for ε1 and the two witness points for ε′2. Store
the tolerance values and the corresponding witness pairs as temporary values. Next compute and
update the tolerances once we know the next move of `. (If ε1 > ε2 we proceed in a symmetric
way). Compare the new tolerance values and continue recursively translating the line ` left or right
by computing the new median of a subset with half of the points and updating the new tolerance
values (left and right) from the old ones. At all times we have two unions at the extremes and an
unknown zone in between containing at most two strips. The points in the zone are known but, in
general, are not sorted.

Clearly, the time complexity of the algorithm is T (n) = T (n/2)+O(n) = O(n), using a linear time
median finding algorithm [10]. By Lemma 1 the optimal line `∗ will be located between the two
points in S with y-coordinates ymin and ymax. The algorithm stops when either the tolerance values
ε1 and ε2 are equal, or when translating ` left and right the bigger of the two tolerances switches
sides. In this last case the solution will be the best of the two. Since the algorithm performs a
binary search on a unimodal function, the method is correct. Notice that the solution (position
of line ` or bipartition of S) is not unique because in an optimal solution some points can belong
to S1 or S2 without changing the solution. Notice also that our algorithm does not sort the input
points. We have the following result.

Theorem 1 The oriented 2-fitting problem can be solved in Θ(n) time and space.

By the Ω(n log k) lower bound for the decisional oriented k-fitting problem [12] in the unsorted
case, it is clear that if k = ω(1) there is no linear time algorithm. Thus, we raise the following open
question more from a theoretical than from a practical point of view.

Open problem 1 For which values of k ≥ 3 does there exist a linear time algorithm for the
oriented k-fitting problem?

2.1 An O(n log n)-time algorithm

We now describe an O(n log n)-time algorithm for the oriented 2-fitting problem whose interest
derives not from its time complexity but from the fact that it will be used as a preprocessing step
in the O(n log n)-time algorithm for the un-oriented 2-fitting problem discussed in Section 3. We
start by introducing a basic tool.

In [19, 23] the maxima problem for a point set S in the plane is considered. Concretely, given
two points pi, pj ∈ S, the following dominance relation is established: pi dominates pj (pj ≺ pi), if
xj ≤ xi and yj ≤ yi. The relation ≺ is a partial order in S. A point pi ∈ S is called maximal if there
does not exists pj ∈ S such that i 6= j and pi ≺ pj . The maxima problem consists of finding all the
maximal points of S under dominance. One can formulate maxima problems for each quadrant in
the plane. We are interested in the set of maximal points for S with respect to the four quadrants
which form the rectilinear convex hull of S, also known as orthogonal convex hull (Figure 2). Each
set of maximal points has a total ordering that can be stored in a height balanced search tree [23].

4



Theorem 2 [19] The maxima problem for S with respect to any of the four quadrants can be solved
optimally in Θ(n log n) time and O(n) space.

O(n log n)-time algorithm for oriented 2-fitting.

1. Let xmax, xmin, ymax, and ymin denote the respective maximum and minimum of the x and y-
coordinates of the points in S. Without loss of generality assume xmin = ymin = 0, xmax = c,
and p1 = (0, y1), pn = (c, yn), pi = (xi, ymax), and pj = (xj , 0) (Figure 2), i.e., the rectangle
with corners at (0, 0) and (c, ymax) is the axis-parallel bounding box for S. Assume further
that pi is strictly to the left of pj and thus, by Lemma 1, the vertical line ` lies between pi

and pj . (If both have the same x-coordinate the solution is trivial.)

By Theorem 2, in O(n log n) time we can compute the rectilinear convex hull of S formed
by the staircases structure as in Figure 2. Notice that staircases of opposite quadrants can
intersect. Since pi is to the left of pj , then the third quadrant staircase gives the lower point
on the left of ` and the first quadrant staircase gives the upper point on the right of `.

2. By Lemma 1 the vertical line ` := (x = a) is between xi and xj . In order to find its correct
location we do a binary search over the points in the staircase structure (first and third
quadrant) in O(log n) time getting the best balance between the error tolerance on the left
and on the right side of `, i.e.,

min
xi≤a<xj

a subject to max
xk≤a

{ymax − yk} ≥ max
xm>a

ym (1)

or
max

xi<a≤xj

a subject to max
xk≤a

{ymax − yk} ≤ max
xm>a

ym (2)

For at least one of the equations (1) or (2) there exists a solution. In case (1), the error
tolerance of S is given by the points to the left of ` and, in case (2), by the points to the
right of `. In constant time compute this error tolerance given by the difference between the
bigger and smaller y-coordinates of the points to the left or right of line `.

..................................................................................

p1 = (0, y1)

pn = (c, yn)

`pi

pj

Figure 2: A rectilinear convex hull of S formed by the maximal points of S.

If pi is to the right of pj , then the algorithm is similar with the obvious changes: the second
quadrant staircase gives the upper point to the left of ` and the fourth quadrant staircase gives the
lower point to the right of `.

Notice that once the rectilinear convex hull of S is obtained, the oriented 2-fitting problem can be
solved in O(log n) time; this is a key component for the algorithm of Section 3.

The above staircase structure can be used to design O(n log n) time algorithms for the oriented 3-
fitting and 4-fitting problems as well. We consider 3-fitting first. Let `1 and `2 denote, respectively,
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the two vertical lines containing the two vertical segments of the solution. By Lemma 1, at least
one of `1 and `2 must lie between ymax and ymin. Assume that `1 is to the left of `2. There are at
most a linear number of locations for `1 between two consecutive points of the staircase structure.
For each of these locations a binary search over the staircase structure to the right of `1 yields the
optimal location for `2 in O(log n) time. Details are omitted but the binary search depends on
whether the location of `2 is either between ymax and ymin or to the right of ymin.

It is clear that for the oriented 4-fitting problem with three vertical lines `1, `2, and `3, we can
proceed in a similar way, first fixing the location of the median line, say `2, in each of the linear
number of possible locations, and then finding the locations of `1 (to the left of `2) and `3 (to the
right of `2) by binary search on the staircase structure.

As a consequence of the discussion above, both the oriented 3- and 4-fitting problems can be solved
in O(n log n) time and O(n) space. The same result but using different techniques can be achieved
by the proposals in [12, 14, 21].

3 The un-oriented 2-fitting problem

In this section we consider the problem of fitting S using an un-oriented 2-orthogonal polygonal
chain O2,θ with free orientation θ. Notice that the un-oriented 1-fitting problem for S is equivalent
to the problem of computing the width of S. If we know the convex hull of S, this problem can
be solved in O(n) time using rotating calipers [17]. Otherwise, computing the width of S has an
Ω(n log n)-time lower bound [20]. Therefore the un-oriented 1-fitting problem for S can be solved
optimally in Θ(n log n) time.

Before studying the un-oriented 2-fitting problem we introduce some notation and tools which will
be useful later. We start by reviewing some definitions and results from Avis et al. [3] concerning
the computation of un-oriented Θ-maximal points of a planar point set S.

Definition 2 [3] A ray from a point p ∈ S is called a maximal ray if it passes through another
point q ∈ S. A cone is defined by a point p and two rays C and D emanating from p. A point
p ∈ S is an un-oriented Θ-maximal with respect to S if and only if there exist two maximal rays, C
and D, emanating from p with an angle at least Θ between them so that the points of S lie outside
the (Θ-angle) cone defined by p, C and D (Figure 3(a)).

p

C

D

M

-

x

y

Lp

Rp

p

....................
...
...
...

......
.....................

..

L′

p

(b)(a)

R′

p

Figure 3: Un-oriented Θ-maximum with respect to S.
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Theorem 3 [3] All un-oriented Θ-maximal points of S for Θ ≥ π/2 can be computed in O(n log n)
time and O(n) space, and the algorithm is optimal for fixed values of Θ.

For Θ = 90, the output of the algorithm of Theorem 3 is the list of all the un-oriented 90-maximal
points that are apices of the wedges that have bounding rays (crossing an edge of CH(S)) with
aperture angle at least 90. For every such maximal point p the output also contains the two rays Lp

and Rp bounding the widest empty wedge on the left and on the right, respectively (Figure 3(b)).
Since the aperture angle is at least 90, then each maximal point p can have at most three disjoint
wedges. In constant time we can compute the set of orientations of the bisectors of the (90-angle)
cones with apex in p contained in the wedge defined by p, Lp and Rp: compute the ray R′

p (resp.
L′p) from p which is perpendicular to Lp (resp. Rp), the bisectors of the (90-angle) cones formed
by Rp, p, L′p and by R′

p, p, Lp are the extremes of the set of orientations of bisectors (Figure 3(b)).
This set of orientations can be translated into an orientation interval in S1. Thus, each maximal
point p ∈ S can have at most three disjoint orientation intervals in S1 such that for each orientation
inside these intervals the point p is 90-maximal. Notice that all the points in the boundary of the
convex hull of S are 90-maximal, and that the total number of orientation intervals is linear.

Now we consider the un-oriented 2-fitting problem. An optimal solution for this problem is given
by an orthogonal polygonal chain O2,θ with orientation θ such that the error tolerance of S with
respect to O2,θ is minimum. Clearly, this is equivalent to the problem of determining a line `θ with
slope tan(90+θ) that splits S into subsets Slθ and Srθ

, where eu
lθ

and eb
lθ

(eu
rθ

and eb
rθ

) are the points
responsible for the error tolerance of Slθ (Srθ

) and such that O2,θ minimizes the error tolerance of
S over all values of θ. Accordingly, the error tolerance is given by the following formula, where
dθ(p, q) denotes the distance between parallel lines through p and q with orientation θ.

µ(O2,θ, S) = max
pi∈S

d(pi,O2,θ) = max{dθ(eu
lθ
, eb

lθ
), dθ(eu

rθ
, eb

rθ
)}.

Let ymin,θ and ymax,θ be the minimum and maximum y-coordinates of the points in S when the
coordinate system is rotated by angle θ. The following lemma is a generalization of Lemma 1.

Lemma 3 Given an orientation θ, an optimal solution for the un-oriented 2-fitting problem with
orientation θ is defined by a line `θ passing through a point of S which separates the points of S
with y-coordinates ymin,θ and ymax,θ.

Description of the un-oriented 2-fitting algorithm. The goal of our approach is to adapt the
O(n log n)-time algorithm for the oriented 2-fitting problem described earlier to account for con-
tinuous changes in the orientation θ, looking for the optimal O2,θ chain in the process. To do this
we update the staircase structure as θ varies and use Lemma 3 to look for an optimal solution.

• Initialization: The starting situation is the staircase structure formed by the four sets of maximal
points with respect to the four quadrants of the coordinate system when θ = 0. Analogously
to [19, 23], we use a height-balanced search tree to store and compute each of the four sets of
maximal points with insertions or deletions in optimal O(n log n) time. Thus, we compute the
staircase structure and its corresponding optimal solution in O(n log n) time as we did for the
oriented case.

• Update as θ sweeps over [0, 90]: As we rotate the coordinate system according to the orientation
θ in discrete steps from θ = 0 to θ = 90 to compute the un-oriented optimal solution, we identify
the four quadrants by its oriented bisectors, i.e., by the oriented lines with slopes tan(θ + 45),
tan(θ +135), tan(θ +225), and tan(θ +315). The staircases are formed by the four sets of maximal
points in S with respect to the bisectors of the current four quadrants. Notice that for any θ, a
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point is in the staircases if and only if it is a 90-maximal point for some of the four orientations
above, i.e., when at least one of these four orientations lies in the orientation intervals defined by
the point.

The main idea of the algorithm is to rotate the coordinate system by θ, and update the staircase
structure by inserting or deleting points to each of the staircases as the orientation θ changes. To do
this we maintain four ordered lists of the current un-oriented 90-maximal points of S with respect
to the bisectors with orientations θ + 45, θ + 135, θ + 225, and θ + 315. The lists correspond to the
sequences of points in the four staircases. More precisely, the staircase structure will be maintained
with insertions and deletions of points induced by the changes in θ. Notice that for any orientation
θ the staircase structure has linear size, and updating a point on it can be done in O(log n) time
as in the θ = 0 case [19, 23].

As θ changes, the four staircases can be modified because either a new point of S becomes 90-
maximal or some current 90-maximal point of S has to be deleted. To determine the sequence of
events, as θ changes, we use Theorem 3 to pre-compute in O(n log n) time the set of all un-oriented
90-maximal points of S together with their respective orientation intervals in S1. These orientation
intervals are the intervals where each point is an un-oriented 90-maximal point for S. Notice that a
point can be 90-maximal for at most 3 (disjoint) orientation intervals and, consequently, the total
number of changes in the staircase structure is linear.

To know in advance the sequences of events, i.e., the values of θ where insertions or deletions of
points occur, we proceed as follows. Suppose that we have computed the orientation intervals for
each point pi ∈ S. Figure 4 represents the set of these orientation intervals. A point p ∈ S can
have at most 3 disjoint orientation intervals. We sweep the set of these intervals from 0 to 360◦,
keeping track, for each orientation θ, of the set of 90-maximal points for that orientation which is
the set of intervals intersected by the sweep line.

p1

pi

pn

.........................................................

.........................................................

θ θ + 180

0

.........................................................

.........................................................

θ + 90 θ + 270

pj

360

Figure 4: Sweeping the orientation intervals of the 90-maximal points of S.

Thus, the algorithm performs a sweep of these intervals from θ = 0 to θ = 90 by vertical lines
corresponding to orientations θ, θ + 90, θ + 180, and θ + 270, stopping at each event (interval
endpoint) and updating the staircase structure. Since the points in S are in general position, only
a constant number of updates can occur at each event. We compute the optimal solution for the
staircase structure between two consecutive events by computing a line `θ with slope tan(θ + 90),
as explained below. In order to cover all the orientations of the plane, we also run the algorithm
as θ changes from 90◦ to 180◦, which can be handled analogously.

Consider consecutive events θ1 and θ2. Lemma 3 implies that for a fixed value θ ∈ [θ1, θ2], the line `θ

that gives the optimal solution has to separate the points with the current y-coordinates ymin,θ and
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ymax,θ. Thus, the optimal solution is determined by two pairs of points, either (i) (ymax,θ, e
b
lθ
) and

(eu
rθ

, ymin,θ) if ymax,θ is to the left of ymin,θ, or (ii) (eu
lθ
, ymin,θ) and (ymax,θ, e

u
rθ

) if ymax,θ is to the right
of ymin,θ, giving the error tolerance in Slθ , the left error tolerance, and the error tolerance in Srθ

,
the right error tolerance, respectively. To compute the optimal solution between two consecutive
events we use the following lemma.

Lemma 4 Let [θ1, θ2] be an orientation interval corresponding to consecutive events. The optimal
solution for the un-oriented 2-fitting problem in this interval occurs found either at an endpoint,
i.e., at θ1 or θ2, or at an orientation θ0 ∈ [θ1, θ2] where the left and right error tolerances are equal.

Proof. Let θ0 ∈ [θ1, θ2] be the orientation of the optimal solution in [θ1, θ2]. Assume that the
left and right error tolerances of the optimal solution for θ0 are given by the point pairs (pi, pk)
and (pj , pm), respectively. Let pi and pj be the points with maximum and minimum y-coordinate,
respectively, for any orientation in [θ1, θ2]. The identify of these points does not change in the
interval, as otherwise we would get a new orientation interval. Assume that pi is to the left of pj .
Other cases can be handled analogously.

The left error tolerance can be written as a function w1(θ) = d(pi, pk) cos(θik − θ), where θik is the
orientation of the line passing through pi and pk, and θ is the current orientation in the rotation
process. This function increases or decreases, and the unique increasing/decreasing change can
occur if, during the rotation, pk passes from one side to the other side of line `θ,i with orientation
θ going through pi, a predictable event (Figure 5(a), and (b)). An entirely analogous situation
occurs with the right error tolerance with the function w2(θ) = d(pj , pm) cos(θjm − θ) (Figure 5(c)
and (d)).

(a) (b) (c) (d)

pi

pj

pk

pm

pi

pk

pj

pm

Figure 5: (a) and (b) Variation of the left error tolerance depending on whether pk is on the right
or left side of `θ,i, (c) and (d) variation of the right error tolerance depending on whether pm is on
the left or right side of `θ,j .

If both functions w1(θ) and w2(θ) increase, the optimal solution is found at the endpoint θ1, as
otherwise we can rotate clockwise, decreasing both error tolerances in the process (Figure 6(a)).
If both functions w1(θ) and w2(θ) decrease, the optimal solution is found at the endpoint θ2 as a
counterclockwise rotation decreases both error tolerances (Figure 6(c)). Analogous is the case when
w1(θ) increases and w2(θ) decreases, or viceversa, but both functions do not intersect. Otherwise,
the intersection of both functions gives the optimal solution in an orientation θ0 when the left and
right error tolerances are equal (Figure 6(b)). This can be detected because there is a change of
the maximum error tolerance from the right error tolerance in θ1 to the left error tolerance in θ2

or viceversa. 2

As a consequence of Lemma 4, the optimal solution for a (non-starting) interval orientation [θ1, θ2]
can be computed in O(log n) time. Summarizing: (1) the number of events for the staircase
structure as θ changes from 0 to 90◦ is linear, (2) any update can be done in O(log n) time, (3)
for a fixed value of θ an O(log n) binary search produces the optimal location of the line `θ, its
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Figure 6: Variations of the left and right error tolerances.

corresponding error tolerance, and allows us to maintain the minimum one. We conclude that the
un-oriented 2-fitting problem can be solved in O(n log n) time and O(n) space.

The un-oriented-2-fitting-algorithm.

We assume that for the current orientation θ the point with y-coordinate ymax,θ is to the left of
the point with y-coordinate ymin,θ; otherwise, we only update the changes in the staircase structure
without computing the optimal solution. We repeat the algorithm for the alternative case.

1. Use the algorithm from Avis et al. [3] to compute in O(n log n) time the list of the un-oriented
90-maximal points of S and their orientation intervals in S1 where each point is un-oriented
90-maximal. Sort the arrangement of the orientation intervals according to their endpoints
in such a way that when we sweep the arrangement we know which 90-maximal points are
active in a current sweeping orientation, and which is the next incoming endpoint (Figure 4).

2. In O(n log n) time compute the horizontal/vertical staircase structure for S and the optimal
solution as we did in the oriented 2-fitting problem. The staircase structure is formed by the
90-maximal points for S with orientations 0 + 45, 90 + 45, 180 + 45, and 270 + 45.

3. Sweep the arrangement of the orientation intervals with the four vertical lines. Each time
that we reach an endpoint, either (1) a new un-oriented 90-maximal point enters the staircase
structure, or (2) an active un-oriented 90-maximal point is deleted from the staircases. We
update the changes in the staircases in O(log n) time, including also the possible changes of
the points with minimum and maximum y-coordinates for the current orientation. Since we
consider the points in general position, at most two aligned points are updated at the same
time producing a constant number of changes. We use binary search to compute the separating
line of the new optimal solution in O(log n) time, and store and update the information of
the optimal solution.

Notice that a point enters one of the staircases at most once, so a point is updated a constant
number times and the overall running time for updating changes is O(n log n) time. The running
time of the algorithm is O(n log n) and the space is O(n) since the lists and the arrangement of
orientation intervals have linear size1.

1Notice that the algorithm can maintain the rectilinear convex hull of S during the rotation in O(n log n) time
and O(n) space, improving on a recent result by Bae et al [5] who present an O(n2) time and O(n) space algorithm
for this problem. In their paper, the authors derive a space/time trade-off: O(n3/2 log7/3(n)) time and O(n3/2 log n)
space are also possible.

10



Next, we show a reduction for the un-oriented 2-fitting problem from a MAX-GAP problem for
points on the first quadrant of the unit circle [1, 20], establishing in the process a Ω(n log n)-time
lower bound.

We reduce the MAX-GAP problem for points on the first quadrant of the unit circle centered at
the origin of the coordinates system to our problem. This MAX-GAP problem has an Ω(n log n)
time lower bound in the algebraic decision tree model [1, 20]. Let P = {(x1, y1), . . . , (xn, yn)} be
the set of points of an instance of MAX-GAP. Consider a symmetric copy of points in the third
quadrant and new copies of the overall circle in other positions as in Figure 7. It is easy to see that
the optimal un-oriented 2-fitting orthogonal chain defines the maximum gap for P and viceversa.
This construction can be generalized to work with the un-oriented k-fitting problem, k ≥ 3, using
k − 1 copies of the initial circle with the centers located with adequate distances between them.

Theorem 4 The un-oriented 2-fitting problem can be solved in optimal Θ(n log n) time and O(n)
space.
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Figure 7: Construction in the proof of the lower bound for the un-oriented 2-fitting problem.

4 The oriented 2-fitting problem in 3D

In this section we consider the oriented 2-fitting problem in three-dimensions where a polygonal
chain is interpreted as a configuration of two parallel half-planes, joined with an orthogonal strip.
First, we give a short discussion of the 1-fitting problem.

To solve the oriented 1-fitting problem for S in R3 we proceed according to how much information
about the solution plane we have, distinguishing between two cases: Case i: the orientation of the
solution plane is fixed. Assume that the solution plane has normal −→u = (0, 0, 1) ∈ S2. We solve this
problem in Θ(n) time by computing the points with maximum and minimum z-coordinates. Case
ii: the orientation of the solution plane has one degree of freedom. Assume that the orientation
of the solution plane is orthogonal to −→u = (0, 1, 0) ∈ S2. We solve this problem by projecting the
points onto a plane with normal −→u and computing the width of the convex hull of the projected
points with a rotating caliper. The total running time is Θ(n log n). The Ω(n log n) time lower
bound comes from the computation of the width of a set of points in two-dimensions.

The oriented 2-fitting problem can be defined by three consecutive orthogonal planes. We refer to
the plane Π producing the bipartition of S as the separating plane and to the two parallel planes
that induce the error tolerances on either side of Π as the supporting planes. We distinguish among
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three cases depending on how the orientation for the solution is constrained: (1) the orientation of
both the separating plane and the parallel supporting planes are fixed; (2) the orientation of the
separating plane is fixed; and (3) the orientation of the parallel supporting planes is fixed. Next,
we consider the three cases.

Case 1: the orientation of both the separating plane and the parallel supporting planes are fixed.
Assume that the separating plane has normal −→u1 = (0, 1, 0) and that the parallel supporting planes
have normal −→u2 = (0, 0, 1)). We reduce the problem to two-dimensions as follows. Let −→u3 = −→u1×−→u2.
We project the points in S onto a plane with normal −→u3 = (1, 0, 0) and solve it optimally in O(n)
time using the algorithm of Section 2.

Theorem 5 The oriented 2-fitting problem in 3D can be solved in Θ(n) time and space if the
orientations of both the separating plane and the parallel supported planes are fixed.

Case 2: the orientation of the separating plane is fixed. Assume that the separating plane has
normal −→u = (0, 1, 0). In O(n log n) time, sort the points in S along −→u , i.e., by −→u · pi (e.g., by
y-coordinate). According to this order, let Si = {p1, . . . , pi} and Sn−i = {pi+1, . . . , pn} be the
bipartition of S given by the separating plane passing through pi. In order to compute the parallel
supporting planes of Si and Sn−i for determining which bipartition of S gives the optimal solution,
we project the points of Si and the points of Sn−i onto two planes parallel to the separating plane.
We work with the convex hulls of the projected points. Let S′i and S′n−i be the projected points of
Si and Sn−i, and let CH(S′i) and CH(S′n−i) be their respective convex hulls (Figure 8).

-

6�
K

pi

Si

Sn−i

Figure 8: Sample configuration for case (2).

To find the optimal 2-fitting solution, we use two clockwise rotating calipers which rotate simul-
taneously over CH(S′i) and CH(S′n−i) in discrete steps. Each step is defined by the minimum
rotating angle of the two calipers on antipodal pairs. Suppose that at some step, the rotating
caliper over CH(S′i) (resp. CH(S′n−i)) has antipodal points q1 and q2 (resp. q3 and q4). Let α
(resp. α′) be the angle of rotation with respect to the parallel supporting lines passing through q1

and q2 (resp. q3 and q4). Let w1 (resp. w2) be the width function of CH(S′i) (resp. CH(S′n−i))
in the rotation interval and d1 = d(q1, q2) (resp. d2 = d(q3, q4)). The continuous and monotone
width function w1 (resp. w2) depends on d1 (resp. d2) and cos(α) (resp. cos(α′)). The minimum
of the maximum of the two width values is a minimum of the upper envelope of the two functions
w1 and w2. Thus, we compute the minimum of the upper envelope in the rotation interval and the
corresponding width (at most a linear number of intervals) and maintain the best solution. Next
we describe the complete algorithm.

Algorithm for case 2. Take the median point pi of S. Let Si, Sn−i, S′i, S′n−i, CH(S′i) and CH(S′n−i)
be defined as above. In linear time find the minimum of the upper envelope of the two functions
w1 and w2. Denote this minimum value by w. If w is determined by the intersection of w1 and w2,
then the current separation plane is optimal and the algorithm can stop since the left and right
error tolerances are equal. Otherwise, if w is determined by w1, then the separation plane should
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move to the right (i.e., towards Sn−i). Now we let the new separating plane pass through the
median point of Si and repeat the above procedure; if w is determined by w2, we move to the left
and proceed similarly. The high-level framework is essentially a binary search. Thus, the optimal
separating plane can be found in O(log n) steps. In each step, the running time is dominated
by the computation of the convex hulls CH(S′i) and CH(S′n−i), which is O(n log n) time. Hence,
the running time of the whole algorithm is O(n log2 n). A more sophisticated algorithm solves
the problem in O(n log n) time. The idea is as follows. We can update CH(S′i) and CH(S′n−i)
in O(log n) time per point pi changing from Sn−i to Si or viceversa [4]. Because we are doing
essentially a binary search, a point can change a certain number of times from CH(S′i) to CH(S′n−i)
or viceversa while we compute the median point to the left or to the right, and at some step it will
be fixed for the remainder of the algorithm. Thus, we spend O((n+n/2+n/4+n/8+ · · · ) log n) =
O(n log n) amortized time in the total updating process of the convex hulls. Notice that deleting
points in the convex hulls can be considered as inserting points in the reverse process.

The Ω(n log n) time lower bound comes from the following construction for a point set not in general
position. Consider a set P of n points in the unit circle centered at the origin on the plane XZ
of the coordinate system. Make two copies P1 and P2 of P putting their respective centers in the
points (0, 1, 0) and (0,−1, 0). Let P3 be a set of n equidistant points in the y-axis between the
points (0, 1, 0) and (0,−1, 0). Let S = P1 ∪ P2 ∪ P3 be the set of those 3n points. Assume that
the separating plane has normal −→u = (0, 1, 0). It is easy to see that an optimal solution for our
2-fitting problem for S gives the the minimum width of the set P and viceversa.

Theorem 6 The oriented 2-fitting problem in 3D can be solved in Θ(n log n) time and O(n) space
if the orientation of the separating plane is fixed.

Case 3: the orientation of the parallel supporting planes is fixed. Assume that the parallel support-
ing planes have normal −→u = (0, 0, 1). Sort the points in S by increasing z-coordinate and store the
results in list A. Let zmin (resp. zmax) be the first (resp. last) element of A. An optimal separating
plane, produces a bipartition of S that separates the points with extreme projections along −→u , i.e.,
zmax and zmin. Let Smax (resp. Smin) be the subset of points of S in the same half-space as zmax

(resp. zmin) in an optimal solution. Then, the projections of Smax and Smin on the XY plane are
separable by the line resulting from the intersection between the separating plane and the plane
XY (Figure 9).
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Smin

Figure 9: Sample configuration for case (3).

Algorithm for case 3. Let Smax and Smin be empty sets initially. We add zmax to Smax and remove
it from A. Similarly, add zmin to Smin and remove it from A. The key observation is that we try
to move as many elements from the front of A to Smin and from the rear of A to Smax as possible
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while keeping the two sets Smin and Smax separable by a plane parallel to the z-axis, and keeping
the best current solution. To do so we proceed as follows.

While A is not empty do the following. Suppose the current two sets are separable (i.e., they can
be separated by a plane parallel to the z-axis) and the first (resp. last) element of the current list
A is Al (resp. Ar). If zmax − Al ≤ Ar − zmin, then we put Ar into Smax and check whether the
new set Smax can be separated from Smin. If they are still separable, then we remove Ar from A
and continue the above procedure; otherwise, any plane parallel to the z-axis which can separate
the two sets Smax\{Ar} and Smin is an optimal separating plane and the algorithm can stop. If
zmax −Al > Ar − zmin, we proceed similarly.

To determine whether the two sets above are separable, we can compute the convex hull of their
projections on the XY plane. By using a dynamic convex hull data structure (with insertion
only), each insertion can be updated in O(log n) time. Thus, the running time of the algorithm is
O(n log n).

Theorem 7 The oriented 2-fitting problem in 3D can be solved in O(n log n) time and O(n) space
if the orientation of the parallel supporting planes is fixed.

Open problem 2 Does the oriented 2-fitting problem for case 3 have an Ω(n log n) time lower
bound?
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like to thank the other workshop participants for helpful comments. Three anonymous referees
deserve our gratitude for their comments and useful suggestions which allowed us to improve the
last two results in three-dimensions.

References

[1] E. M. Arkin, F. Hurtado, J. S. B. Mitchell, C. Seara, and S. S. Skiena. Some lower bounds
on geometric separability problems. International Journal of Computational Geometry and
Applications, Vol. 16, No. 1, (2006) pp. 1–26.

[2] B. Aronov, T. Asano, N. Katoh, K. Melhorn, and T. Tokuyama. Polyline fitting of planar points
under min-sum criteria. International Journal of Computational Geometry and Aplications,
Vol. 16, Nos. 2 and 3, 2006, pp. 97–116.

[3] D. Avis, B. Beresford-Smith, L. Devroye, H. Elgindy, E. Guvremont, F. Hurtado, and B. Zhu.
Unoriented Θ-maxima in the plane: complexity and algorithms. SIAM Journal of Computing,
Vol. 28, No. 1, 1999, pp. 278–296.

[4] D. Avis, H. Elgindy, and R. Seidel. Simple on-line algorithms for convex polygons. Computa-
tional Geometry, G. T. Toussaint, ed., North-Holland, Amsterdam, 1985, pp. 23–42.

[5] S. W. Bae, C. Lee, H-K. Ahn, S. Choi, and K-Y. Chwa. Computing minimum-area rectilinear
convex hull and L-shape. Computational Geometry: Theory and Applications, Vol. 42, 2009,
pp. 903–912.

[6] P. J. Burt. Fast filter transforms for image processing. Computer Graphics and Image Process-
ing, Vol. 16, 1979, pp. 20–51.

14



[7] W. S. Chan and F. Chin. Approximation of polygonal curves with minimum number of line seg-
ments or minimun error. International Journal of Computational Geometry and Applications,
Vol. 6, 1996, pp. 59–77.

[8] D. Z. Chen and H. Wang. Approximating points by piecewise linear functions. Manuscript.

[9] F. Chin, A. Choi, and Y. Luo. Optimal generating kernel for image pyramids by piecewise
fitting. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, 1992, pp.
1190–1198.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT
Press, 2001.
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