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On Graph Thickness, Geometric Thickness, and Separator Theorems
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Abstract

We investigate the relationship between geometric
thickness and the thickness, outerthickness, and ar-
boricity of graphs. In particular, we prove that all
graphs with arboricity two or outerthickness two have
geometric thickness O(logn). The technique used can
be extended to other classes of graphs so long as a stan-
dard separator theorem exists. For example, we can
apply it to show the known bound that thickness two
graphs have geometric thickness O(y/n), yielding a sim-
ple construction in the process.

1 Introduction

In many applications of graph visualization and graph
theory, it is often useful to draw the edges of a graph
with multiple colors or in multiple layers. The gen-
eral class of thickness problems deals with determining
the minimum number of these colors needed under vari-
ous conditions. Traditionally, the (graph) thickness of a
graph G is defined to be the minimal number of planar
subgraphs whose union forms G. From an edge coloring
perspective, we can also define the thickness to be the
smallest number of edge colors needed so that we can
draw the graph in the plane with no intersections be-
tween two edges having the same color. In this variant,
the only constraint on how a graph’s edges are drawn
is continuity. FEssentially, the thickness of a graph is
a minimum edge coloring of the graph such that each
color represents a planar graph. Initially, the notion of
thickness derived from early work on biplanar graphs,
graphs with thickness two [18, 20, 28]. Generalized by
Tutte [29], the research in graph thickness problems is
too rich to summarize here. The interested reader is
referred to the survey by Mutzel et al. [24].

By adding the constraint that all edges must be rep-
resented by straight-line segments, we arrive at the ge-
ometric thickness problem [10, 21]. If we further con-
strain the problem such that the vertices must lie in con-
vex position, the edge coloring number is known as the
book thickness [8]. Although the values of graph, geo-
metric, and book thickness are related, there are graphs
that have different values for each [13, 14].

We can also constrain the graph thickness in other
ways. For example, the arboricity of a graph G is de-
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fined to be the smallest number of forests whose union
is G [25, 26, 27]. In other words, the minimum number
of edge colors such that the subgraph induced by each
color is a forest of trees. In linear arboricity the result-
ing colored subgraphs must be collections of paths [2, 3].
In outerthickness, the resulting colored subgraphs must
be outerplanar graphs [16, 17]. Outerplanar graphs are
analogous to graphs with book thickness one; however,
outerthickness and book thickness are not identical.

Another way to look at the problem is to divide the
edges of the graphs into different layers and draw the
layers independently as planar graphs such that the ver-
tex positions are identical in each layer. In this case,
the problem is to minimize the number of layers. A
common related application of this problem is in VLSI
design where wires are placed in various layers to avoid
crossings, see for example [1]. Minimizing the number
of layers reduces cost and improves performance of the
created circuits.

Another related problem is the area of simultaneous
embeddings. In simultaneous embedding problems, the
edges are already assigned to various layers, and one
must determine a placement of vertices to realize each
drawing without crossings, if possible [9].

1.1 Related Work

Our work is motivated by and related to recent results
in characterizing the geometric thickness of graphs. In
particular, Eppstein [14] characterizes a class of graphs
having arboricity three and thickness three, for which
the geometric thickness grows as a function of n, the
number of vertices. The proof relies on Ramsey theory
and so the lower bound on the geometric thickness is
a very slow growing function of n. Eppstein [13] also
characterizes a class of graphs with arboricity two and
geometric thickness two having a book thickness that
grows as another slow function of n.

Using results on the simultaneous embedding of two
paths [9], Duncan et al. [12] proved that graphs with
linear arboricity two have geometric thickness two.
Arboricity-two graphs are not as simple. Geyer et
al. [15] show two trees which cannot be embedded si-
multaneously. In the context of geometric thickness,
this would imply that one cannot simply take a graph
of arboricity two, decompose it into two forests arbi-
trarily, and then embed the two graphs simultaneously.
However, because the union of the two trees described
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does have geometric thickness two, it is still in fact open
as to whether arboricity two implies geometric thickness
two.

In [23], Malitz characterizes the book thickness of
graphs with E edges to be O(V/E). This result imme-
diately implies that thickness-t graphs have geometric
thickness O(y/tn). There has also been work on charac-
terizing the geometric thickness of a graph in terms of
its degree. In particular, graphs with degree less than
two trivially have geometric thickness one, graphs with
degree three and four have geometric thickness two [12],
and there exist graphs with degree § > 9 having geomet-
ric thickness at least ¢v/dn'/2=4/9=¢ for sufficiently large
n and constants ¢ and € > 0 [7].

Dujmovié and Wood [11] discuss the relationship be-
tween geometric thickness and graph treewidth. In par-
ticular, they show that graphs with treewidth £ have ge-
ometric thickness at most [k/2]. This is complementary
to our work as even planar graphs can have arbitrarily
large treewidth. For example, the n x n grid graph has
treewidth n. However, the treewidth is known for many
types of graphs.

1.2 Our Results

In this paper, we provide further analysis into the re-
lationship between geometric thickness and thickness.
In particular, we show that graphs with arboricity two
and outerthickness two have a geometric thickness of
O(logn). We show these by providing a more gen-
eralized solution for graphs that can be decomposed
into two subgraphs having some separation property.
This allows for further relations between the two thick-
ness measures. For example, we can also show that
graphs with thickness two have a geometric thickness of
O(+/n), which is also immediately implied by the results
from [23]. Additionally, if the graph can be decomposed
into two Kj-minor free graphs, then the graph has ge-
ometric thickness O(h%/2/n).

2 Using a Separator Theorem

A cut set for a graph G = (V, E) is a set of vertices
C' C V(G) such that the subgraph of G induced by
the removal of the vertices in C' consists of at least two
connected components GG; and G,. Note, if the cut set
produces more than two connected components, we can
treat multiple components as one subgraph. Therefore,
we assume that the removal of the cut set creates two
subgraphs GG; and G5 such that there are no edges in
E(G) between vertices in Gy and G3. We refer to G¢ as
G — G1 — G4, which consequently is the set of all edges
having at least one endpoint in C. For convenience, we
also let Vi =V (Gy), Vo = V(G3).

For two functions f and g and constant ¢, let G be a
class of graphs having a separator property on f and g

that states for any graph G € G with n = |V(G)| > ¢,
there exists a cut set C' such that G1,G3 € G and |V;| <
f(n) for i = 1,2 and |C| < g(n). Our primary result
uses the following key lemma:

Lemma 1 Let G be a graph in G with n vertices. There
exists an assignment of colors to e € E(G) in the range
1 to F(n), and unique x-coordinate values to v € V(G),
in the range 1 to n, such that for any assignment of y-
coordinates to v, with all vertex points being in general
position, no two edges with the same color assignment
intersect, except at common endpoints, when drawn as
straight-line segments from their respective endpoints.
Here F(n) is defined by the following recurrence rela-
tion:

_ c ifn<ec
F(n) = { F(f(n))+g(n) otherwise.

Proof. In our arguments, we shall also color each ver-
tex as ¢(v) so that an edge e = (u,v) € E(G) has color
either ¢(u) or ¢(v).

We prove this lemma inductively. If n < ¢, we simply
(arbitrarily) assign the vertices v € V(G) with increas-
ing z-coordinates from 1 to n and the colors ¢(v) as 1 to
n. We then assign each edge (u,v) € G withu,v € V(G)
as color c(u), the choice of u or v is arbitrary. This pro-
cess requires the assignment of at most ¢ colors. Since
edges with similar colors also share a common endpoint,
the only color crossings possible are between adjacent
edges but if the points are in general position, the only
intersection is at the endpoints. Therefore, our lemma
holds for the base case.

Assume now that the lemma holds for all graphs with
size less than n. Let G have size n. Since G belongs to
the class G with the separator property, we can partition
V(G) into the three sets Vi, Vo, C. Let ny = |V4],
ng = |Va|, n. = |C|.

We then compute color and z-coordinate assignments
separately for G; and G3. From our inductive assump-
tion, both G; and G5 can be assigned values indepen-
dently without any invalid crossings in their respective
graphs.

To combine the two assignments and provide assign-
ments for the remaining vertices and edges, we proceed
as follows. Let V; have z-coordinate assignments rang-
ing from 1 to n; and V5 have z-coordinate assignments
ranging from 1 to ny. We assign the z-coordinates of C'
in (arbitrary) order from ny 4+ 1 to nq + n.. We shift
the z-coordinates of V5 over by n; + n.. Notice that
shifting the values of V5 does not affect the intersection
properties of G, as the entire graph is moved. Let ¢;
and ¢y be the number of colors assigned to G and Gs.
Let ¢/ = max(c1, ). We color the vertices of G¢ with
n. distinct colors ranging from ¢’ +1 to ¢/ +n.. We then
color the edges in F as follows. If ¢ € E(G1 U G3), we
use the color assigned during the construction of G; and
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G2. Otherwise, e € E(G¢) and let v € C be an end-
point of e, because the separation property guarantees
that there are no edges between V; and V5. We then
color the edge e with the value ¢(v). If both endpoints
are in C, the choice of v is arbitrary.

This assignment process guarantees that the vertices
have z-coordinates in the range of 1 to n. To see that
there are no crossing violations, observe that from our
inductive assumption there are no crossing violations
between edges in GG; or between edges in G5. In addi-
tion, because of the placement of the vertices for V; and
V5, there can be no edge crossings between an edge in
G1 and an edge in G5. Therefore, any crossing viola-
tions must involve at least one edge in G¢. Since edges
in G¢ are colored differently than edges in G; or Ga,
the other edge must also be in G¢. However, two edges
in G¢ with the same color must also have a common
endpoint in C' and so cannot intersect if the vertices are
in general position. Therefore, there can be no crossing
violations.

To complete the proof, recall that n. < g(n) and
ni,ne < f(n). The number of colors used is conse-
quently bounded by ¢ + n. < F(f(n)) + g(n). O

We now use this lemma to prove our main theorem.

Theorem 2 Assume we have a graph H whose edges
can be colored into two layers Hy and Hs such that
H,H, € ¢g. Then H has geometric thickness
O(F(|H|)) where F is defined as in the preceding
lemma.

Proof. From Lemma 1, we know that there is an as-
signment of colors and z-coordinates for both H; and
Hs separately. For Hy we simply transpose the xz and
y coordinates. Therefore, each vertex v € V(H) has -
coordinate defined by H;’s assignment and y-coordinate
defined by Hy’s assignment. From Lemma 1, we know
that the choice of y-coordinate does not affect H; and
symmetrically for Hy. The only caveat is that the ver-
tices may not be in general position, which could cause
overlap. A simple solution is to perturb the positions
slightly resulting in no new crossings and eliminating
any overlapping edges.

The colors between the two assignments are kept dis-
tinct. That is, we color the edges in H; with a different
color set from any edges in Hy, thereby avoiding any
new crossing violations. 0

3 Specific Examples

In this section, we show specific examples of graphs
with varying thickness values. From [5, 22], we know
that every planar graph has a separator property with
f(n) =2n/3 and g(n) = 3/n/2. Solving for F(n) yields
the following (known) corollary:

Corollary 3 Any graph with (graph) thickness two has
geometric thickness O(y/n).

It is also well known that trees have centroid vertices
yielding a separator property with f(n) = 2n/3 and
g(n) = 1. Solving for F(n) yields the following corol-
lary:

Corollary 4 Any graph with arboricity two has geo-
metric thickness O(logn).

We can easily extend this tree property to outerplanar
graphs.

Corollary 5 Any graph with outerthickness two has ge-
ometric thickness O(logn).

In fact, since k-outerplanar graphs have 2k separa-
tors [6], we also get the following:

Corollary 6 Any graph that can be decomposed into
two k-outerplanar graphs has geometric thickness
O(klogn).

We can also use more general separator theorems. For
example, Alon et al. [4] show that any graph with n
vertices and no Kj,-minor has a separator with f(n) =
2n/3 and g(n) = h3/?2n!/2. This yields the following:

Corollary 7 For any h > 0, any graph that can be de-
composed into two Kp-minor-free graphs has geometric
thickness O(h3/?n/?).

K, -minor-free graphs including series-parallel graphs
have a separator of size 2. [19]

Corollary 8 Any graph that can be decomposed into
two Ky-minor-free graphs has geometric thickness

O(logn).

4 Closing Remarks

We have shown that for certain classes of graphs the
geometric thickness can be bounded by a non-trivial
function of the number of vertices in n. In particular,
we have related arboricity two and outerthickness two
to geometric thickness O(logn). Given that some ar-
boricity three, and hence thickness three, graphs have
been shown to have w(1) geometric thickness, albeit us-
ing a very slow-growing function, it would be interesting
to show a lower bound for thickness two graphs. Also,
it remains open to show that the geometric thickness
bound for arboricity two graphs is tight.

We would like to thank David Eppstein for several
helpful discussions on this topic leading to the results in
this paper and the referees for their helpful comments.
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