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Geodesic Paths On 3D Surfaces: Survey and Open Problems

Anil Maheshwari Stefanie Wuhrer

This survey gives a brief overview of theoretiSAT [10]. Computing a geodesic path on a polyhe-
cally and practically relevant algorithms to computdral surface is an easier problem and it is solvable in
geodesic paths and distances on three-dimensigoellynomial time.
surfaces. The survey focuses on polyhedral three-Computing geodesic paths and distances on poly-
dimensional surfaces. hedral surfaces is applied in various areas such as

robotics, geographic information systems (GIS), cir-

cuit design, and computer graphics. For example,
1 Introduction geodesic path problems can be applied to finding the

most efficient path a robotic arm can trace without
Finding shortest paths and shortest distances hiting obstacles, analyzing water flow, studying traf-
tween points on a surfacg in three-dimensional fic control, texture mapping and morphing, and face
space is a well-studied problem in differential geecognition. A survey related to geodesic paths in
ometry and computational geometry. The shortdsto- and higher-dimensional spaces can be found in
path between two points o% is denoted ajeodesic the Handbook of Computational GeometB/].
pathon the surface and the shortest distance betweeNote that the geodesic distance between any two
two points onS is denoted ayeodesic distanceln points onP can be easily determined if the geodesic
this survey, we consider the case where a discreth is known by measuring the (weighted) length of
surface representation ¢f is given. Namely,S is the geodesic path. Hence, we will only consider the
represented as a polyhedréhin three-dimensional problem of computing geodesic paths Bn
space. Since discrete surfaces cannot be differenProblems on finding geodesic paths and distances
tiated, methods from differential geometry to contepending on the number of source and destination
pute geodesic paths and distances cannot be appfieithts have been studied. The three most commonly
in this case. However, algorithms from differentiagdtudied problems are (a) finding the geodesic path
geometry can be discretized and extended. Furthigtm one source vertexe P to one destination ver-
more, the discrete surface can be viewed as a grapteiad < P, (b) finding the geodesic paths from one
three-dimensional space. Therefore, methods fr@murce vertex € P to all destination vertices i,
graph theory and computational geometry have besmequivalently, finding the geodesic paths from all
applied to find geodesic paths and distances on padgurce vertices it to one destination vertaxe P,
hedral surfaces. known assingle source shortest path (SSSP) prob-

The general problem of computing a shortest pdém, and (c) finding the geodesic paths between all
between polyhedral obstacles in 3D is shown to pairs of vertices inP, known asall-pairs shortest
NP hard by Canny and Reif using reduction from ®ath (APSP) problem
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The algorithms reviewed in this survey are congraph theoretic algorithms. To obtain a good under-
pared by means of the following five categories: standing of the reviewed algorithms, we first review
some well-known graph theoretic algorithms.

Dijkstra proposed an algorithm to solve the SSSP
e Cost metric used to compute the geodesic paiioblem on a directed weighted graphiV, E) with

The cost metric can be the Euclidean diStan%Q/erticeS,m edgesl and positive We|ghﬂ53] D”k_

or a weight function (for example when goingtra’s algorithm proceeds by building a list of pro-

uphill is more costly than going downhill).  cessed vertices for which the shortest path to the
source points is known. The algorithm iteratively
decreases estimates on the shortest paths of non-
e Time complexity of the algorithm. processed vertices, which are stored in a priority

« Applicability of the algorithm by surveying if dueue. In each iteration of the algorithm, the clos-

the algorithm has been implemented and testeef unprocessed vertex from the source is extracted
in practice from the priority queue and processed by relaxing

) ] ) all its incident edges. The notion of relaxation under-
~ Approximation algorithms are compared accorgfy g the analogy between the length of the shortest
ing to their approximation ratio(or approximation path and the length of an extended tension spring.
factor) k. An algorithm that finds approximations tQynen the algorithm starts, the length of the short-
a geodesic path with approximation rakoretumns oqt path is overestimated and can be compared to
a path of length at most times the exact geodesic,, eytended spring. In each iteration, a shorter

path. _ path is found, which can be compared to relaxing
To solve the problem of computing geodesig, gpnring.  Although the original implementation

paths on discrete surfaces_, two different general ?quresO(n% time, the running time can be de-
proaches. can be used. First, the polyhedral Surf%?@ased t@ (1 log n+m) by using Fibonacci heaps.
can be viewed as a graph and algorithms to Comﬁorup L:5] presented arO(m)-time algorithm in
pute shortegt paths on graphs can be extendedcége where each edge is assigned a positive integer
find geodesic paths on polyhedral surfaces. AlgQewight The main idea is to use a hierarchical buck-

rithms following this approach are reviewed in Segging structure to avoid the bottleneck caused by sort-
tion 2. Second, the polyhedral surface can be viewgd o \ertices in increasing order from

as a discretized differentiable surface and aIgorithmsThe length of a path o depends on the em-

from differential geometry can be extended 10 fing, e cost metric. Hence, the shortest or geodesic
geodesic paths on polyhedral surfaces. Algorithigs, ong depends on this cost metric. In Sectia,
following this approach are reviewed in Secti8n o qqesic path algorithms with Euclidean cost metric
Atthe end of each section, open problems relatedfQ, (eyiewed. Using the Euclidean cost metric im-
the section are summarized. plies that the Euclidean length of the path is used
to measure the length of the path. In Sectig,
2 Gra_ph-Based A|gorithms geodesic path algorithms on weighted surfaces are
reviewed. Using a weighted cost metric implies
This section reviews algorithms to compute geodesiat different faces of can be weighted differently.
shortest paths that can be viewed as extensionsCtdarly, any algorithm that can solve a shortest path

e Accuracy of the computed geodesic path.

e Space complexity of the algorithm.
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problem using a weighted cost metric can also solest path can be computed as the straight line joining
the same problem using the Euclidean cost metrics andp after unfolding the faces adjacent to the edge
sequence to a plane. The authors aim to subdi¥ide
21 Euclidean Cost Metric with respect to a given source poln.tsu.ch that the
shortest path froms to any other point inP can be
When using the Euclidean distance along a poffpund efficiently. They definedge pointsz of P as
hedron P as cost metric, shortest paths consist pbints that have the property that there exists more
straight line segments that cross faces of the polyliean one shortest path fromto = and prove that
dron. An approach to compute shortest pathsPonthe ridge points can be representedby,?) straight
aims to compute a superset of all the possible eddiee segments. The algorithm partitions the boundary
of shortest paths off and to use this information toof P into at mostn connected regions callgaeels
compute shortest paths. Since all of the algorithmst containing any vertices or ridge pointsif The
pursuing this strategy are mainly of theoretical ilboundaries of peels contain only ridge points, ver-
terest to establish bounds on the number of possititees, and edges aP. The algorithm to construct
edges of shortest paths @7 they are not discussedhe peels is similar to Dijkstra’s graph search algo-
in detail in this survey. The algorithm’s pursuing thisthm. The peels are then iteratively unfolded to the
approach are less efficient than the ones surveypldne. The algorithm first preprocessBsby con-
A good overview of the algorithms finding edge sestructing the peels with respect tan O(n?logn)
guences is given by Lanthie?}j, p. 30-35]. time. The algorithm stores the computed peels in a

We first review algorithms that only operate on thigee called slice tree that can then be used to deter-
surface of a convex polyhedron. Second, we revigmine the shortest path between an arbitrary point on
algorithms that operate on the surface of any (convExands in O(n) time. The slice tree data structure
or non-convex) polyhedron. usesO(n?) space.

Mount [34] improves the algorithm by Sharir and
Schorr both in terms of time and space complexity.
The main observation by Mount is that the peels de-
This section discusses algorithms that operate on fimed by Sharir and Schorr can be viewed as Voronoi
surface of a convex polyhedraR with n vertices. regions of a point seRR containing the planar un-
Shortest paths according to the Euclidean cost mefotdings of the source point. Note thatRR contains
are considered. at mostn points per face of? because there are at

Sharir and Schorr/Z] proposed an algorithm thatmostn peels intersecting a face d@f. Mount ob-
computes the exact shortest path between pointssenves that the shortest path frerto any pointz on
the surface ofP. The proposed algorithm is mainlyP is at most the shortest path fromto any point
based on three observations. First, any shortest pats R plus the distance betweenand s along the
intersecting an edgeof P enters and leavesunder planar unfolding of the path. This observation de-
the same angle. Second, no shortest path on a corpends on the convexity adP and on the fact that all
polygon P can pass through a vertexof P unless shortest paths unfold to polygonal chains consisting
p is the destination or source of the shortest pathf. straight line segments. Mount uses this observa-
Third, if the sequence of edges Bfintersected by tion to prove that the Voronoi regions &f are iden-
the shortest path betweendp is known, the short- tical to the peels ofP with s as source point. An

Convex Polyhedra
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algorithm following the outline of Dijkstra’s algo-imate the shortest path adf. The algorithm can be
rithm is used to compute the point setand simul- extended to approximately solve the SSSP problem
taneously, the Voronoi regions @. Using this ap- in O(nlogn) time. That is, starting from one source
proach, P can be preprocessed with respectstm point, the algorithm computes approximations with
O(n%logn) time andO(n?) space. The space reapproximation ratic to all other points orP.
guirement to store the data structure after building itHar-Peled et al. 7] extend the algorithm by Her-
can be reduced tO(n logn) by storingO(n) differ- shberger and Suri to obtain an approximation ratio
ent but similar lists of siz€(n) each in an efficient of (1 + ¢) for 0 < € < 1. The algorithm is based on
way to avoid redundancy. Note that building the dathe approximation scheme by Dudley/] that ap-
structure still require®)(n?) space. The query timeproximates the minimum number of sets required to
to compute a shortest path from an arbitrary poiapproximate every set asapproximation. The al-

p € Ptosisreduced t@(k+logn), wherek is the gorithm by Har-Peled et al. proceeds by expanding
number of faces oP intersected by the shortest patl? by a factor related te and to the approximation
by using an output sensitive point location data strugbtained by Hershberger and Suri’'s algorithm. De-
ture. Mount B5] reduced the space requirement taote the expanded polygon /. The shortest path
build the data structure storing the Voronoi diagrabetween two vertices oR is approximated on a grid
to O(nlogn) by building a hierarchical structure orattice between the boundaries Bfand P’. Since
the intersections between edgesiofand geodesic P is convex and since the path is not in the inte-
paths starting frony. The data structure stores forior of P, the length of the path cannot be shorter
each edge of P a tree whose leaves contain the irthan the true shortest path. The path obtained by this
tersections betweenand geodesic paths crossiag method can be projected while ensuring that the

in order. Common sub-trees of different edges dength of the path does not grow. The running time
shared to reduce the space complexity. of the algorithm i0(n min(g%, logn)+ 6% log %)

To avoid the high time complexity of findingand hence depends both enande. As the algo-
geodesic paths, Hershberger and S [propose rithm by Hershberger and Suri, this algorithm can
an algorithm that finds an approximate shortest pdtb extended to approximately solve the SSSP prob-
between two points on the surface Bf The algo- lem. The running time of the extended algorithm is
rithm takes onlyO(n) time and has an approximaO (s (logn + log %)). Although the theory used
tion factor of2. The main idea of the algorithm isby Har-Peled et al. is rather technical, the algorithm
to extend the notion of bounding boxes to a geitself is simple. Agarwal et al. 7] improved the
eral simplified representation d? and to compute running time of the algorithm to approximate one
the shortest path between two points on this sishortest path by an approximation ratio (df+ ¢)
plified shape. To compute a shortest path betwdasn Har-Peled et al. t@(n log% + }3)- This im-

s andt, the faces containing the source and despiroves the running time of the algorithm to approxi-
nation points are extended into planes, and at masitely solve the SSSP problem® s + 15 log n).
O(n) different planes are added to the two planétar-Paled [ 5] presents a further improvement of the
to obtain a wedge. The shortest paths between thaning time of this algorithm. After preprocessing
two points are computed on each of these wedgeghie convex polytope if(n) time, an(1+€) approx-
O(1) time as a wedge has constant description simmation of the shortest path between two vertices is

The shortest path that was found is used to appregported inO(lf{g_g‘ Eig) time. This improves the
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running time of the algorithm to approximately solvprojecting the computed graph onto the surfacé of
the SSSP problem 10 (n (1 + 1?{5? ). Agarwal et al. implemented and tested this algorithm

Recently, Schreiber and Shariid proposed an and the algorithm by Hershberger and Sui][for

exact solution to the SSSP problem on convex poRificial data sets with up to almos80000 faces.
hedra in3-dimensional space. The algorithm ex- 1n€ following problems related to computing Eu-

tends Dijkstra’s algorithm to allow continuous upclideéan shortest paths on the surface of a convex
glyhedron remain unsolved:

dates. That is, a wavefront is propagated from th\

sources along the boundary of and the wavefront  § ~5, sSSP problem on convex polyhedra

is updated at events that change the topology of the o soved in O(nlogn) time using O(n)
wavefront. Note that a similar technique of continu- space Bd?

ous Dijkstra updates was used i®¥[. The general

idea of the continuous Dijkstra technique was for- ¢ Can an efficient trade off between the query
mally described by Mitchell et al. 3] and is re- time and the space complexity be estab-
viewed later in this survey. An implicit represen-  lished [39]?

tation of the solution is computed in optimal time

O(nlogn). The implicit representation is stored usseneral Polyhedra

ing O(nlogn) space. Afterwards, the shortest path _ _ _
from the source to any point o can be reported in This section discusses algorithms that operate on the

O(logn + k) time, where is the number of faces ofsurface of a polyhedro# with combinatorial com-
P crossed by the path. plexity n. Note thatP need not be convex. Short-

hreib ds th ) h best paths according to the Euclidean cost metric are
Sc reler b4l ext(_en s the previous approach by nsigered. The main problem that occurs when al-
Schreiber and Sharip] to so-calledrealistic poly- lowing non-convex polyhedra is that geodesic paths
hedra Realistic polyhedra are defined as threﬁaom stot on P may pass through a vertexof P
classes of non-convex polyhedra. The first class OfO’Rourke et al. 7] extend the algorithms- by
reglistic ponheo!ra have aboun(jary that formsateérharir and Schorr47] and Mount 4] to obtain
rain Whoshe maxmzl szcet sl?pe 'SI. bqund(?dhby(/ja “QHe first algorithm that finds the exact geodesic path
stant. The secon class ot rea Istic_poly edra Iﬁ@é:'(ween two vertices of an arbitrary polyhedron in
the property that e_ach axis parallel squar_e \_N'th edgglynomial time. Both the source and the destination
Iengtr;l tt)hat has distance at Iedsfr%m P f'? Inter- fpoint of P are considered to be verticesof The al-
secte ) y at most a cqn_stant number of face£’o gorithm considers the problem in two steps. First, the
The tr:"rdf class r?f rdealls;lc p(;lly hedrr1a haf\ the proEfraight—line distances between all pairs of vertices of
erty that for each edgeof P> of lengt |e|’_t €€ A€ b 4re found. This is achieved by extending the tech-
at most a constant number of faces within Short‘?ﬁ&ue to compute peels inf]. Second, the short-
path distance(|e}). est distance between the source and the destination
Agarwal et al. [] propose an algorithm to com-vertex is found on the graph induced by the vertices
pute a(1 + ¢) approximation of the shortest path besf P. The algorithm take®)(n°) time to compute
tween two vertices that us€s(7-) time andO(Z%) one shortest path oR. Since the complexity of the
space. The approach proceeds by constructinguaning time is high, the algorithm is irrelevant for
graph, computing the shortest path on this graph, gmactical purposes and has not been implemented.
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Mitchell et al. [32] formalize the technique calledtinuous Dijkstra technique can be used with differ-
continuous Dijkstrapreviously used ind4] to find ent update schemes to obtain new algorithms, as we
shortest paths from a source pairin the surface of saw for convex polyhedra3f]. Although the con-

a convex polyhedron. The algorithm traverses tkdbution by Mitchell et al. is rather technical, the
graph induced byP similarly to the graph explo- algorithm is of practical interest as well. Recently,
ration of a grapiti in Dijkstra’s algorithm. Edges of Surazhkhy et al.44] implemented and tested the
P behave like nodes if7. Since the distance fromalgorithm on data sets obtained using a laser-range
s on P to an edgee is not unique,e is labeled by scanner. Although the worst-case running time of
a function describing the distance frosito e. The the algorithm isO(n? log n), Surazhsky et al. found
algorithm keeps track of a subdivision @fwith the the algorithm’s average running time in their experi-
property that for two point andq in the same re- ments to be much lower and suitable for objects with
gion of e, the shortest paths fromto p and froms hundreds of thousands of triangles. The exact algo-
to ¢ pass through the same sequence of vertices aititin by Mitchell et al. is then modified to obtain an
edges ofP. Mitchell et al. observe that these sulalgorithm that solves the SSSP problem with approx-
divisions ofe resemble the peels used i]. How- imation ratio(1 + ¢). Surazhsky et al. derive from
ever, special care needs to be taken when compheir experiments that an average running time of
ing this subdivision, since geodesic paths emanati@gn logn) can be expected in practice for bounded
from s can pass through a vertgxof P. In this approximations from one source point to all the other
case,p is treated as @seudo-source The pseudo- points of the mesh.

sourcep is labeled by the geodesic distance frem Chen and Han 1] developed an algorithm to
to p. For any pointz of P, the geodesic distancecompute geodesic distances from a source peint
is the minimum of the shortest distance frento  on a non-convex polyhedron that does not use the
not passing through a vertex &f and the geodesiccontinuous Dijkstra technique. The algorithm con-
distance from the nearest pseudo-source’db x structs a tree callesequence trethat can be viewed
plus the label of the pseudo-source. This obsenas an extension of the dual graph of the tree con-
tion allows to compute the subdivision efand to taining ridge points used by Sharir and Schet?][
store for each region of the subdivision the distant@ non-convex polyhedra. In the case of a convex
to the nearest pseudo-source. For a given source patyhedron, the sequence tr€eontains nodes con-
tex s, the algorithm computes a subdivision Bfin sisting of an edge of P, the image ofs in the lo-
O(n?logn) time andO(n?) space. Once the subcal coordinate system of the face incidentetcand
division has been computed, the distance fromo the projection of the image onta Chen and Han
any other point onP can be computed i0(logn) prove thatl’ has a linear number of nodes, contains
time. Reporting the shortest path betwaeand any all of the shortest paths, and can be built(iin?)
other point onP takesO(k + logn) time, wherek time. For non-convex polyhedrd, contains addi-

is the number of faces aP crossed by the shortestional leaves representing pseudo-sources’dfas
path. If the algorithm is initialized with more thardefined by Mitchell et al. 37]) and the distances of
one source point, the subdivision obtained after theeudo-sources from This augmentation ¢f adds
continuous Dijkstra algorithm ended represents themostO(n) nodes. Hence, the algorithm builds a
Voronoi diagram of the source points. Mitchell etequence tree i@ (n?) time andO(n) space. After
al.'s algorithm is of theoretical interest, since the cofi* was computed, the geodesic distance between
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and any point inP can be reported i®)(log n) time. ning times of both algorithms is independent of the
The geodesic path can be reportediiflogn + k) choice ofe. The main idea of the algorithm is to par-
time, wherek is the number of faces d? crossed by tition the boundary of the simple polyhedréhinto
the path. Kavena and O’Rourké(] implemented patches of faces oP. A graphG; is constructed
and tested the algorithm on synthetic data. The imA the boundary of each patdh. The graphsz;
plementation confirms the quadratic time complexigre merged into one graggh and the geodesic paths
and the linear space complexity in practice. The esn P are approximated by the solution of Dijkstra’s
periments show that roundoff errors are not a sericalgorithm onG. Although this is the first paper to
problem for this algorithm. Kavena and O’Rourkéreak the quadratic time complexity, the contribution
found the space complexity to be the bottleneck isf mainly of theoretic interest because the algorithm
the algorithm. Data sets with tens of thousands igfinvolved. Hence, the algorithm has not been im-
points were used to test the algorithm. plemented.

Har-Peled 16] extended his previous ap- Kapoor pl] presents an algorithm that solves the
proach to compute(l + ¢) approximations of problem of computing the exact shortest path be-
geodesic paths on realistic po|yhedr&5][ to tween a pair of pOintS o in SUb-quadratiC time.
work in case of general polyhedra. Given &he algorithm follows the continuous Dijkstra tech-
source points, the algorithm computes a subbique by Mitchell et al. 7] and propagates a wave-
division of P of size O (2 log( )) in time front over the surfat_:e of? stgrtin_g from a source
O( 2logn + "log( )1Og( )) In the special Point s. The algorithm maintains the wavefront

case of convex po|yhedra the preprocess|ng tie a CO”eCtlon of circular arcs with centers «at

becomes O((—) log( ) log( )logn) and pseudo-sources @f. Furthermore, the algo-
¢ o) s rithm maintains all of the edges @ that have not

yet been reached by the wavefront. The algorithm
takesO(n log® n) time andO(n) space. According
to O’Rourke [36], the details of the algorithm are
“formidable”. It is therefore not surprising that the

After this preprocessing step, @ + €) approx-
imation of the shortest path betweenand any
point p on P can be reported inO (log (%))
time. This implies that a(1 + ¢) approxima-
tion to the SSSP problem can be obtained élgorlthm contains some flaws{].

O (n*logn + ¢ log (¢) log (2) +nlog (%)) time. " i and Suzuki 9] propose an iterative ap-

In 1997, Agarwal and Varadarajas][proposed proximation algorithm to compute the shortest path
an algorithm that answers the question of whethelgyveen pairs of points o. The algorithm is
is possible to compute an approximate shortest pgised on Dijkstra’s algorithm and iteratively refines
between two points on polyhedra in sub-quadratite mesh in regions where the path can pass. The re-
time. The proposed algorithm only works for polyfinement proceeds by placing Steiner points on edges
hedra of genus zero. Two algorithms using thg p and to repeat Dijkstra’s algorithm on the aug-
same general technique were proposed. The figglnted graph. The user gives two thresholds re-
algorithm computes an approximation to the shofieq to the accuracy of the approximation. The first
est path with approximation ratio(1 + €),€ > 0 threshold defines the number of times the algorithm
in O(n3 10g3 n) time. The second algorithm takeserates. The second threshold is related to the num-
only O(no logs n) time, but the approximation ratiober of Steiner points placed on an edge®fThe au-
increases ta5(1 + €),e > 0. Note that the run- thors implement the algorithm and compare it to an
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implementation of Chen and Han’s algorithm. Thegn approximation of the shortest path with approx-
find their algorithm to outperform Chen and Han'snation ratio(1 + ¢) using O(n® log(nN%)) time
algorithm both in terms of time and space compleandO(n?) space, wheréV is the largest integer co-
ity. ordinate of any vertex in the subdivision aﬁfuél is
The following problems related to computing Euthe ratio between the maximum and the minimum
clidean shortest paths on the surface of a possikgight. To our knowledge, this algorithm has not
non-convex polyhedron remain unsolved: been implemented. This is not surprising, since the
high time complexity makes the algorithm unsuitable
e Can the exact shortest path between a pairfof practical purposes.
vertices onP be computed irO(nlogn) time  Lanthier et al. 6, 27] developed an approach to
usingO(n) space? construct a graph that can be searched to obtain an
approximate shortest path o by adding Steiner
e Can the SSSP problem be solvedifnlogn) points on each edge @t. Without loss of generality,

time andO(n) space? the authors assume to be triangulated. A total of
O(n?) Steiner points are added, yielding space com-
2.2 Weighted Cost Metric plexity O(n?) for all of the algorithms. Four algo-

rithms are presented. The first algorithm computes

This section discusses algorithms that operate on the shortest path between two arbitrary pointsfon
surface of a possibly non-convex polyhedmBrwith by finding shortest paths in the graph containing ver-
combinatorial complexity: in 3-dimensional space.tices of P and the added Steiner points. The com-
Unlike in Section2.1, the length of the shortest patlputed shortest path is at mogt L longer than the
is not simply measured by its Euclidean length. Itcue weighted shortest path dn, whereW is the
stead, a weighty; is associated with each fagé maximum weight and where is the longest edge of
of P. The length of a path crossing is its Eu- P. The running time of this algorithm 9(n°). Sec-
clidean length multiplied byw;. The weights can ond, a faster and less accurate algorithm is presented
be used to model the difficulty of the path. For exe compute the shortest path between two arbitrary
ample, it is harder to walk on an uneven terrain th@oints on” by computing a spanner on the graph
on an asphalt road. A good overview of algorithmsontaining the Steiner points and by finding a short-
related to weighted shortest paths can be foundest path on the spanner. The computed shortest path
Lanthier 5. has length at most(w + W L), wherer is the true

Mitchell and Papadimitrioud3] present an algo- weighted shortest path oR and 3 > 1 is a con-
rithm to compute the shortest path distance betwestant. Third, algorithms were presented to prodess
two arbitrary points in a planar subdivision with for queries asking for shortest paths between a fixed
edges. They note that shortest paths obey Snedisirce points in P and an arbitrary poing in P.
Law of refraction at edges of the subdivision. The al-he query time is proportional ttwgn and the ac-
gorithm is based on this observation and the continttracy of the shortest path. Fourth, algorithms were
ous Dijkstra technique formalized i&]]. Therefore, presented to procegsfor queries asking for shortest
the authors note that the algorithm can be extendeaths between two arbitrary points ih The query
to compute weighted shortest paths on the surfacdiofe is proportional tdogn and the accuracy of the
possibly non-convex polyhedra. The algorithm findshortest path. For the query algorithms, time-space
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trade off schemes are presented. The authors imgle+ ¢). That way, a grapld- is constructed. An ex-
mented and tested all of the algorithms on both re&nsion of Dijkstra’s algorithm can be run @r to
life and synthetic data sets. Experiments showed toatain a(1 + ¢) approximation of shortest paths on

in practice, much less tham? Steiner points suffice P. The algorithm take€)(Z log %(% + logn)), for

to yield acceptable results. 0 < e < 1andO(nlogn) for e > 1 time to compute
Lanthier et al. furthermore present an algorithimhe shortest path between two arbitrary vertices on
that runs inO(n log n) time that computes a shortesP.

path withing afactoro(1+ 2 ),where@mm Sun and Reif 43] improve the algo-

Sin O min

is the minimum interior angle of any face #f[27, rithm by Aleksandrov et al.  to run in
Theorem 3.1]. O(Z (log L +1logn)log 1) time. This improvement

Aleksandrov et al. ] presented an algorithm to!S achieved by solving the SSSP problem on the
compute an approximation of a weighted geode§faPh enhanced by Steiner points using a new
path on arbitrary polyhedra with approximation radlgorithm calledBushwhack algorithm The Bush-
tio (1 + ¢). The algorithm is similar toZ6] in that whack algorithm is similar to Dijkstra’s algorithm.
Steiner points are added along each edg®.0On However, the Bushwhack algorithm maintains for
each edgey = O(log %) Steiner points are pIaced,eaCh Steiner point a small set of incident edges that
whereL is the length of the longest edge Bfand ar€ likely to be usz_ad ?n order to improve the current
ris mm(m’ %) times the minimum distances_horteSt pa_lth. This list of gdges results_ in an algo-
of a vertex of P to the boundary of the union offithm that is faster than Dijkstra’s algorithm. Sun
its incident faces. As before% is the ratio be- and Reif implemented and tested their algorithm.
tween the maximum and the minimum weight. Ahey found that wherO(¢ log ¢) Steiner points
graph G is computed on the Steiner points agd &€ inserted per edge, the hidden constant in the
is partitioned into™ sub-regions. In each sub{-notation s large.
region, all shortest paths between pairs of verticesAleksandrov et al. ], 8] improve the running time
are computed. Furthermore, all shortest paths Ié-the algorithm toO (7 log 2 log 1) by discretiz-
tween pairs of vertices on the boundaries of tlwg P differently. In this algorithm, Steiner points
sub-regions are computed. This computation takea® placed along the three bisectors of triangles of
O(nmrlogr + (nm)? log ™2 4 M) time. The P. The practical use of the algorithms is limited,

graphG has comglexitw(nmz) v\\//;ich dominates since a large number of Steiner points is inserted.
’ e to memory restrictions on current computers,

the space requirement of the algorithm. Note thlaf_J X :

since the graph is subdivided into small sub-graptgiS Yields problems for real-life data sets.

the preprocessing is suitable for parallelizing the al- If the weights used for the weighted distances are

gorithm. After preprocessing, @ + ¢) approxima- estricted to be in the range, p] U {oo},p = 1,

tion of the shortest path between two arbitrary quefgheng et al. 7] present an algorithm to compute

points onP can be reported. To our knowledge, thi@n approximation of rati¢l + ¢) of the shortest path

algorithm has not been implemented. from stot that runs irﬁ(ﬁi‘jﬂn?’ log £2) time. The
Aleksandrov et a|q:| extend this algorithm and advantage of this algorithm is that the running time

place Steiner points on edges Bfand in the inte- does not depend on the geometryraf

rior of faces of P. The approximation ratio remains Lanthier et al. 8] implemented the first paral-

9



lel algorithm to compute approximations of ratio is obtained 25]? Is this problem NP-hard?

(1 + €) for weighted shortest paths. As in previous

approaches, the approach proceeds by constructing What is the minimum number of Steiner points

a graph and by computing the shortest path between needed on each face to obtain (& + ¢)-

vertices of a graph. The computation of the short- approximation scheme? Is this problem NP-

est paths is based on Dijkstra’s algorithm and can be hard?

broken down into three components: preprocessing

to find a graph(z, executing Dijkstra’s algorithm on

G, and backtracking the path. The algorithm us& Sample-Based Algorithms

a spatial indexing structure calledultidimensional

fixed partitionthat achieves load balancing and réFhis section reviews algorithms for computing short-

duces the idle time of processors. The algorithm cast paths on discretized smooth surfaces. We focus

solve the SSSP and the APSP problems. The algo-the case where the discretization at hand is given

rithm was tested on a network of workstations, onas polyhedron. Unlike the above-mentioned algo-

beowulf cluster, and on a symmetric multiprocessighms, the algorithms reviewed in this section gener-

architecture. The tests were performed for six gealize algorithms from differential geometry to com-

graphic data sets with up to one million triangles afuiite geodesic paths on smooth surfaces to operate

achieved acceptable running times. on discretized surfaces. The research area concerned

Aleksandrov et al. 4] preprocess P in Wwiththese problems idiscrete differential geometry

0 (% log L log %> time andO (% log %) space, Foramore extensive survey, refer to Kirsanav][

such f[hat an approximation of rat{(eb + €) between Kimmt_al ar_1d Kiryati P2] assume that a_discretizec_l

any pointq on P and a given source pointon P surface_ is given in a voxel r_epresgntatlon. That IS,

can be computed i (l) time. Alternatively, P space is divided into a cu_blcgl grid and each grid

g+, n. 41\ POINtislabeled as located inside the surface, on the

can be preprocessed '@< g 108 ¢ log E) surface, or outside of the surface. The approach pro-

time and O (%712%2 log’ 1) space, such that arPosed by Kimmel and Kiryati has two stages. In the
c ‘ first stage, a 3D length estimator is used in a graph

search on the graph defined by the surface voxels to

find a global approximation of the shortest path. This

%Qproxmatlon is then refined using local informa-

tion. The refinement is done using a discrete version

The following problems related to computin f geodesic curvature shortening flow. This way, an

weighted shortest paths on the surface of a possi yrtoxmatlbon fOf adsrjrc;]rtest path be:weenttwo grlc:
non-convex polyhedron remain unsolved: INts can be foun € approximation ratio is no

shown to be bounded. However, since the underly-

e No exact algorithm for computing weightednd surface is assumed to be smooth, the approxima-

shortest paths exists to our knowledge. tion is the best that can be obtained with the available

voxel grid size. The algorithm has been implemented

e How canm Steiner points be placed on eachnd tested thoroughly and appears to perform well in
face such that the best approximation accuragsactice.

approximation of ratio(1 + €) between any pair
of points on P can be computed irO(q) time,

whereg is the genus ofP and wherey is an input
parameter. The algorithm is complex and has

been implemented to our knowledge.

10



Kimmel and Sethian 43] present an approachimprove an existing estimate of a geodesic path be-
called fast marching method on triangular domaitween two vertices of a triangulated surface. Start-
(FMM) that solves the SSSP problem by solving thieg from a path computed via FMM, the path can
Eikonal equation on a triangular grid withvertices. be refined to yield a better approximation. Simi-
The result is based on Sethian’s method to solve e to Kimmel and Kiryati 2], a discrete geodesic
Eikonal equation on a quadrilateral grid(] 41]. curvature flow is used to iteratively improve the ap-
The algorithm’s running time i©(nlogn). The al- proximation. Martinez et al. show that the iterative
gorithm proceeds by iteratively unfolding all of thescheme converges to the true geodesic path.
triangles of the triangular mesh. When unfolding tri- Xin and Wang {i6] present another iterative
angles, Steiner points are placed along the edgesn&thod to improve the path found by the fast march-
the triangles. This results in shortest paths that é¢nty method. The algorithm first improves the ini-
through faces of the triangulation and yields consisal fast marching method by classifying the edges of
tent results. However, the shortest paths found usiftgnto different types and by treating different edge
the FMM method only approximate the true geodedigpes differently during the wave front propagation.
distances on the triangular mesh. The reason is tBatond, the algorithm iteratively improves the result-
the true geodesic distance may require Steiner poiing shortest path until the exact locally shortest path
in the interior of a triangular face. The accuracy @ found.
the approach depends on the quality of the underly-Memoli and SapiroJ0] approximate the geodesic
ing triangulation; namely on the longest edge and thsstances of an underlying smooth manifold using
widest angle in the triangular mesh. The algorithm cloud of sample points without aiming to recon-
requiresO(n) space. Since the algorithm is easstruct a polyhedron representing the surface. The al-
to implement and performs well in practice, severgbrithm is based on a previous algorithm that oper-
implementations of the algorithm exist. Yatziv edites on implicit surfaces. The algorithm proceeds by
al. [47] improve the running time of FMM by us-placing a ball around each sample point and by com-
ing anuntidy priority queue Their experimental re- puting the unionU of those balls. The Euclidean
sults show that the accuracy of the computed shatistance inU is used to approximate the geodesic
est paths only suffers slightly from this newly introdistance on the underlying smooth manifold. The
duced inaccuracy. Kirsanowv4] introduces a novel approximation is proven to be bounded by a constant
update rule for FMM during the march. This updatié the sampling rate is sufficiently small. The sam-
rule yields a higher accuracy of the resulting shortgsing rate needed by the algorithm depends on the
paths. Bertelli et al.q] consider solving the APSPhighest principal curvature of the underlying smooth
problem using FMM. Their goal is to take advansurface. If the sampling is subject to noise, the bound
tage of the redundant computation in different pass@sthe approximation error gets worse. However, the
of the SSSP algorithm to obtain a more efficient agecline in accuracy can be bounded by a function de-
proach than simply running FMM times with each pending on the sampling noise.
vertex as source point. Although the algorithm is
shown to achieve higher efficiency in experiments,
the waorst case running time of the algorithm remains
O(n?logn).

Martinez et al. P9] present a way to iteratively
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Polyhedral | Cost Approximation | Time Ref.

Surface Metric Ratio Complexity
Graph-based | Convex Euclidean| 1 O(n?logn) [427]
Graph-based | Convex Euclidean| 1 O(n?logn) [34]
Graph-based | Convex Euclidean| 2 O(n) [18]
Graph-based | Convex Euclidean| 1 + ¢ O(nmin(—5,logn) + 5 log 1) [17]
Graph-based | Convex Euclidean| 1 + ¢ O(nlog 1+ %) (2]
Graph-based | Convex Euclidean| 1 O(nlogn) [39
Graph-based | Non-convex| Euclidean| 1 O(n) [37]
Graph-based | Non-convex| Euclidean| 1 O(n?logn) [37]
Graph-based | Non-convex| Euclidean| 1 O(n?) [11]
Graph-based | Non-convex| Euclidean| 1 + ¢ O (n?logn + 2 log (1) log (2)) [16]
Graph-based | Non-convex| Euclidean| 7(1 + ¢) O(ng log% n) [3]
Graph-based | Non-convex| Euclidean| 15(1 + ¢) O(ng log§ n) [3]
Graph-based | Non-convex| Euclidean| 1 O(nlog®n) [21]
Graph-based | Non-convex| Weighted | 1 + ¢ O(n® log(nN%)) [33
Graph-based | Non-convex| Weighted | Additive O(n) [27]
Graph-based | Non-convex| Weighted | 1 + ¢ O(nmrlogr + (”T)Z log ™2 + ("\’/7?2) [5]
Graph-based | Non-convex| Weighted | 1 + ¢ O(Z log %(% +logn)) [6]
Graph-based | Non-convex| Weighted | 1 + ¢ O(% log % log %) [8]
Graph-based | Non-convex| Weighted | 1 + ¢ O(2 (log £ +1logn)log 1) [43]
Graph-based | Non-convex| Weighted | 1 + ¢ O(@nij’ log 22) [17]
Graph-based | Non-convex| Weighted | 1 + ¢ (0] (% log % log %) [4]
Sample-based Non-convex| Euclidean| Unbounded O(nlogn) [23]
Sample-based Non-convex| Euclidean| Unbounded O(n) [47]

Table 1: Results on Shortest Paths on a Polyhedral Suffaséh »n vertices. The constart > 0 is the
desired accuracy of the shortest path. In the weighted dasethe largest integer coordinate of any vertex
in the subdivision andg is the ratio between the maximum and the minimum weight. Tmebsl m

denotes the number of Steiner points placed along one edigesymbol- denotesnin(

€
24+3W/w?

%) times

the minimum distance of a vertex #fto the boundary of the union of its incident faces. The carigta> 1

is the largest weight assigned to a faceof
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The following problems related to sample-based3] Pankaj Agarwal and Kasturi Varadarajan. Ap-
geodesic computations remain unsolved:

4

Graph-based algorithms find globally optimal
paths that may not be locally optimal if the
graph is based on samples obtained from a
smooth surface.
tial geometry can be discretized to find locally
shortest paths. However, these algorithms can
often get trapped in local insignificant minima.
Can graph-based algorithms be combined with
algorithms from discrete differential geometry
to yield efficient globally convergent algorithms

to compute a bounded approximation of thd9]

geodesic distance on a sample set obtained from
a smooth surface?fl]?

Can FMM be generalized to solve the APSP
problem ino(n?log n) time (recall that a solu-
tion in O(n? logn) was suggested])?

Summary

To summarize this survey, Tallagives the reviewed
results on shortest path problems on polyhedral sur-

faces. [7]
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