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9 Geodesic Paths On 3D Surfaces: Survey and Open Problems

Anil Maheshwari Stefanie Wuhrer

This survey gives a brief overview of theoreti-
cally and practically relevant algorithms to compute
geodesic paths and distances on three-dimensional
surfaces. The survey focuses on polyhedral three-
dimensional surfaces.

1 Introduction

Finding shortest paths and shortest distances be-
tween points on a surfaceS in three-dimensional
space is a well-studied problem in differential ge-
ometry and computational geometry. The shortest
path between two points onS is denoted ageodesic
pathon the surface and the shortest distance between
two points onS is denoted ageodesic distance. In
this survey, we consider the case where a discrete
surface representation ofS is given. Namely,S is
represented as a polyhedronP in three-dimensional
space. Since discrete surfaces cannot be differen-
tiated, methods from differential geometry to com-
pute geodesic paths and distances cannot be applied
in this case. However, algorithms from differential
geometry can be discretized and extended. Further-
more, the discrete surface can be viewed as a graph in
three-dimensional space. Therefore, methods from
graph theory and computational geometry have been
applied to find geodesic paths and distances on poly-
hedral surfaces.

The general problem of computing a shortest path
between polyhedral obstacles in 3D is shown to be
NP hard by Canny and Reif using reduction from 3-

SAT [10]. Computing a geodesic path on a polyhe-
dral surface is an easier problem and it is solvable in
polynomial time.

Computing geodesic paths and distances on poly-
hedral surfaces is applied in various areas such as
robotics, geographic information systems (GIS), cir-
cuit design, and computer graphics. For example,
geodesic path problems can be applied to finding the
most efficient path a robotic arm can trace without
hitting obstacles, analyzing water flow, studying traf-
fic control, texture mapping and morphing, and face
recognition. A survey related to geodesic paths in
two- and higher-dimensional spaces can be found in
the Handbook of Computational Geometry [31].

Note that the geodesic distance between any two
points onP can be easily determined if the geodesic
path is known by measuring the (weighted) length of
the geodesic path. Hence, we will only consider the
problem of computing geodesic paths onP .

Problems on finding geodesic paths and distances
depending on the number of source and destination
points have been studied. The three most commonly
studied problems are (a) finding the geodesic path
from one source vertexs ∈ P to one destination ver-
tex d ∈ P , (b) finding the geodesic paths from one
source vertexs ∈ P to all destination vertices inP ,
or equivalently, finding the geodesic paths from all
source vertices inP to one destination vertexd ∈ P ,
known assingle source shortest path (SSSP) prob-
lem, and (c) finding the geodesic paths between all
pairs of vertices inP , known asall-pairs shortest
path (APSP) problem.
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The algorithms reviewed in this survey are com-
pared by means of the following five categories:

• Accuracy of the computed geodesic path.

• Cost metric used to compute the geodesic path.
The cost metric can be the Euclidean distance
or a weight function (for example when going
uphill is more costly than going downhill).

• Space complexity of the algorithm.

• Time complexity of the algorithm.

• Applicability of the algorithm by surveying if
the algorithm has been implemented and tested
in practice.

Approximation algorithms are compared accord-
ing to their approximation ratio(or approximation
factor) k. An algorithm that finds approximations to
a geodesic path with approximation ratiok returns
a path of length at mostk times the exact geodesic
path.

To solve the problem of computing geodesic
paths on discrete surfaces, two different general ap-
proaches can be used. First, the polyhedral surface
can be viewed as a graph and algorithms to com-
pute shortest paths on graphs can be extended to
find geodesic paths on polyhedral surfaces. Algo-
rithms following this approach are reviewed in Sec-
tion 2. Second, the polyhedral surface can be viewed
as a discretized differentiable surface and algorithms
from differential geometry can be extended to find
geodesic paths on polyhedral surfaces. Algorithms
following this approach are reviewed in Section3.
At the end of each section, open problems related to
the section are summarized.

2 Graph-Based Algorithms

This section reviews algorithms to compute geodesic
shortest paths that can be viewed as extensions of

graph theoretic algorithms. To obtain a good under-
standing of the reviewed algorithms, we first review
some well-known graph theoretic algorithms.

Dijkstra proposed an algorithm to solve the SSSP
problem on a directed weighted graphG(V,E) with
n vertices,m edges, and positive weights [13]. Dijk-
stra’s algorithm proceeds by building a list of pro-
cessed vertices for which the shortest path to the
source points is known. The algorithm iteratively
decreases estimates on the shortest paths of non-
processed vertices, which are stored in a priority
queue. In each iteration of the algorithm, the clos-
est unprocessed vertex from the source is extracted
from the priority queue and processed by relaxing
all its incident edges. The notion of relaxation under-
lines the analogy between the length of the shortest
path and the length of an extended tension spring.
When the algorithm starts, the length of the short-
est path is overestimated and can be compared to
an extended spring. In each iteration, a shorter
path is found, which can be compared to relaxing
the spring. Although the original implementation
requiresO(n2) time, the running time can be de-
creased toO(n log n+m) by using Fibonacci heaps.
Thorup [45] presented anO(m)-time algorithm in
case where each edge is assigned a positive integer
weight. The main idea is to use a hierarchical buck-
eting structure to avoid the bottleneck caused by sort-
ing the vertices in increasing order froms.

The length of a path onS depends on the em-
ployed cost metric. Hence, the shortest or geodesic
path onS depends on this cost metric. In Section2.1,
geodesic path algorithms with Euclidean cost metric
are reviewed. Using the Euclidean cost metric im-
plies that the Euclidean length of the path is used
to measure the length of the path. In Section2.2,
geodesic path algorithms on weighted surfaces are
reviewed. Using a weighted cost metric implies
that different faces ofS can be weighted differently.
Clearly, any algorithm that can solve a shortest path
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problem using a weighted cost metric can also solve
the same problem using the Euclidean cost metric.

2.1 Euclidean Cost Metric

When using the Euclidean distance along a poly-
hedronP as cost metric, shortest paths consist of
straight line segments that cross faces of the polyhe-
dron. An approach to compute shortest paths onP

aims to compute a superset of all the possible edges
of shortest paths onP and to use this information to
compute shortest paths. Since all of the algorithms
pursuing this strategy are mainly of theoretical in-
terest to establish bounds on the number of possible
edges of shortest paths onP , they are not discussed
in detail in this survey. The algorithm’s pursuing this
approach are less efficient than the ones surveyed.
A good overview of the algorithms finding edge se-
quences is given by Lanthier [25, p. 30–35].

We first review algorithms that only operate on the
surface of a convex polyhedron. Second, we review
algorithms that operate on the surface of any (convex
or non-convex) polyhedron.

Convex Polyhedra

This section discusses algorithms that operate on the
surface of a convex polyhedronP with n vertices.
Shortest paths according to the Euclidean cost metric
are considered.

Sharir and Schorr [42] proposed an algorithm that
computes the exact shortest path between points on
the surface ofP . The proposed algorithm is mainly
based on three observations. First, any shortest path
intersecting an edgee of P enters and leavese under
the same angle. Second, no shortest path on a convex
polygonP can pass through a vertexp of P unless
p is the destination or source of the shortest path.
Third, if the sequence of edges ofP intersected by
the shortest path betweens andp is known, the short-

est path can be computed as the straight line joining
s andp after unfolding the faces adjacent to the edge
sequence to a plane. The authors aim to subdivideP

with respect to a given source points, such that the
shortest path froms to any other point inP can be
found efficiently. They defineridge pointsx of P as
points that have the property that there exists more
than one shortest path froms to x and prove that
the ridge points can be represented byO(n2) straight
line segments. The algorithm partitions the boundary
of P into at mostn connected regions calledpeels
not containing any vertices or ridge points ofP . The
boundaries of peels contain only ridge points, ver-
tices, and edges ofP . The algorithm to construct
the peels is similar to Dijkstra’s graph search algo-
rithm. The peels are then iteratively unfolded to the
plane. The algorithm first preprocessesP by con-
structing the peels with respect tos in O(n3 log n)
time. The algorithm stores the computed peels in a
tree called slice tree that can then be used to deter-
mine the shortest path between an arbitrary point on
P ands in O(n) time. The slice tree data structure
usesO(n2) space.

Mount [34] improves the algorithm by Sharir and
Schorr both in terms of time and space complexity.
The main observation by Mount is that the peels de-
fined by Sharir and Schorr can be viewed as Voronoi
regions of a point setR containing the planar un-
foldings of the source points. Note thatR contains
at mostn points per face ofP because there are at
mostn peels intersecting a face ofP . Mount ob-
serves that the shortest path froms to any pointx on
P is at most the shortest path fromx to any point
r ∈ R plus the distance betweenr ands along the
planar unfolding of the path. This observation de-
pends on the convexity ofP and on the fact that all
shortest paths unfold to polygonal chains consisting
of straight line segments. Mount uses this observa-
tion to prove that the Voronoi regions ofR are iden-
tical to the peels ofP with s as source point. An
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algorithm following the outline of Dijkstra’s algo-
rithm is used to compute the point setR and simul-
taneously, the Voronoi regions ofR. Using this ap-
proach,P can be preprocessed with respect tos in
O(n2 log n) time andO(n2) space. The space re-
quirement to store the data structure after building it
can be reduced toO(n log n) by storingO(n) differ-
ent but similar lists of sizeO(n) each in an efficient
way to avoid redundancy. Note that building the data
structure still requiresO(n2) space. The query time
to compute a shortest path from an arbitrary point
p ∈ P to s is reduced toO(k+log n), wherek is the
number of faces ofP intersected by the shortest path
by using an output sensitive point location data struc-
ture. Mount [35] reduced the space requirement to
build the data structure storing the Voronoi diagram
to O(n log n) by building a hierarchical structure on
the intersections between edges ofP and geodesic
paths starting froms. The data structure stores for
each edgee of P a tree whose leaves contain the in-
tersections betweene and geodesic paths crossinge
in order. Common sub-trees of different edges are
shared to reduce the space complexity.

To avoid the high time complexity of finding
geodesic paths, Hershberger and Suri [18] propose
an algorithm that finds an approximate shortest path
between two points on the surface ofP . The algo-
rithm takes onlyO(n) time and has an approxima-
tion factor of2. The main idea of the algorithm is
to extend the notion of bounding boxes to a gen-
eral simplified representation ofP and to compute
the shortest path between two points on this sim-
plified shape. To compute a shortest path between
s and t, the faces containing the source and desti-
nation points are extended into planes, and at most
O(n) different planes are added to the two planes
to obtain a wedge. The shortest paths between the
two points are computed on each of these wedges in
O(1) time as a wedge has constant description size.
The shortest path that was found is used to approx-

imate the shortest path onP . The algorithm can be
extended to approximately solve the SSSP problem
in O(n log n) time. That is, starting from one source
point, the algorithm computes approximations with
approximation ratio2 to all other points onP .

Har-Peled et al. [17] extend the algorithm by Her-
shberger and Suri to obtain an approximation ratio
of (1 + ǫ) for 0 < ǫ < 1. The algorithm is based on
the approximation scheme by Dudley [14] that ap-
proximates the minimum number of sets required to
approximate every set asǫ-approximation. The al-
gorithm by Har-Peled et al. proceeds by expanding
P by a factor related toǫ and to the approximation
obtained by Hershberger and Suri’s algorithm. De-
note the expanded polygon byP ′. The shortest path
between two vertices onP is approximated on a grid
lattice between the boundaries ofP andP ′. Since
P is convex and since the path is not in the inte-
rior of P , the length of the path cannot be shorter
than the true shortest path. The path obtained by this
method can be projected toP while ensuring that the
length of the path does not grow. The running time
of the algorithm isO(nmin( 1

ǫ1.5
, log n)+ 1

ǫ4.5
log 1

ǫ )
and hence depends both onn and ǫ. As the algo-
rithm by Hershberger and Suri, this algorithm can
be extended to approximately solve the SSSP prob-
lem. The running time of the extended algorithm is
O( n

ǫ4.5
(log n + log 1

ǫ )). Although the theory used
by Har-Peled et al. is rather technical, the algorithm
itself is simple. Agarwal et al. [2] improved the
running time of the algorithm to approximate one
shortest path by an approximation ratio of(1 + ǫ)
by Har-Peled et al. toO(n log 1

ǫ + 1
ǫ3
). This im-

proves the running time of the algorithm to approxi-
mately solve the SSSP problem toO( n

ǫ3
+ n

ǫ1.5
log n).

Har-Paled [15] presents a further improvement of the
running time of this algorithm. After preprocessing
the convex polytope inO(n) time, an(1+ǫ) approx-
imation of the shortest path between two vertices is
reported inO( log n

ǫ1.5
+ 1

ǫ3
) time. This improves the
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running time of the algorithm to approximately solve
the SSSP problem toO(n(1 + logn

ǫ1.5
+ 1

ǫ3
)).

Recently, Schreiber and Sharir [39] proposed an
exact solution to the SSSP problem on convex poly-
hedra in3-dimensional space. The algorithm ex-
tends Dijkstra’s algorithm to allow continuous up-
dates. That is, a wavefront is propagated from the
sources along the boundary ofP and the wavefront
is updated at events that change the topology of the
wavefront. Note that a similar technique of continu-
ous Dijkstra updates was used in [34]. The general
idea of the continuous Dijkstra technique was for-
mally described by Mitchell et al. [32] and is re-
viewed later in this survey. An implicit represen-
tation of the solution is computed in optimal time
O(n log n). The implicit representation is stored us-
ing O(n log n) space. Afterwards, the shortest path
from the source to any point onP can be reported in
O(log n+k) time, wherek is the number of faces of
P crossed by the path.

Schreiber [38] extends the previous approach by
Schreiber and Sharir [39] to so-calledrealistic poly-
hedra. Realistic polyhedra are defined as three
classes of non-convex polyhedra. The first class of
realistic polyhedra have a boundary that forms a ter-
rain whose maximal facet slope is bounded by a con-
stant. The second class of realistic polyhedra has
the property that each axis parallel square with edge
length l that has distance at leastl from P is inter-
sected by at most a constant number of faces ofP .
The third class of realistic polyhedra has the prop-
erty that for each edgee of P of length|e|, there are
at most a constant number of faces within shortest
path distanceO(|e|).

Agarwal et al. [1] propose an algorithm to com-
pute a(1 + ǫ) approximation of the shortest path be-
tween two vertices that usesO( n√

ǫ
) time andO( 1

ǫ4
)

space. The approach proceeds by constructing a
graph, computing the shortest path on this graph, and

projecting the computed graph onto the surface ofP .
Agarwal et al. implemented and tested this algorithm
and the algorithm by Hershberger and Suri [18] for
artificial data sets with up to almost100000 faces.

The following problems related to computing Eu-
clidean shortest paths on the surface of a convex
polyhedron remain unsolved:

• Can SSSP problem on convex polyhedra
be solved in O(n log n) time using O(n)
space [39]?

• Can an efficient trade off between the query
time and the space complexity be estab-
lished [39]?

General Polyhedra

This section discusses algorithms that operate on the
surface of a polyhedronP with combinatorial com-
plexity n. Note thatP need not be convex. Short-
est paths according to the Euclidean cost metric are
considered. The main problem that occurs when al-
lowing non-convex polyhedra is that geodesic paths
from s to t onP may pass through a vertexp of P .

O’Rourke et al. [37] extend the algorithms by
Sharir and Schorr [42] and Mount [34] to obtain
the first algorithm that finds the exact geodesic path
between two vertices of an arbitrary polyhedron in
polynomial time. Both the source and the destination
point ofP are considered to be vertices ofP . The al-
gorithm considers the problem in two steps. First, the
straight-line distances between all pairs of vertices of
P are found. This is achieved by extending the tech-
nique to compute peels in [42]. Second, the short-
est distance between the source and the destination
vertex is found on the graph induced by the vertices
of P . The algorithm takesO(n5) time to compute
one shortest path onP . Since the complexity of the
running time is high, the algorithm is irrelevant for
practical purposes and has not been implemented.
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Mitchell et al. [32] formalize the technique called
continuous Dijkstrapreviously used in [34] to find
shortest paths from a source points on the surface of
a convex polyhedron. The algorithm traverses the
graph induced byP similarly to the graph explo-
ration of a graphG in Dijkstra’s algorithm. Edges of
P behave like nodes inG. Since the distance from
s on P to an edgee is not unique,e is labeled by
a function describing the distance froms to e. The
algorithm keeps track of a subdivision ofe with the
property that for two pointsp andq in the same re-
gion of e, the shortest paths froms to p and froms

to q pass through the same sequence of vertices and
edges ofP . Mitchell et al. observe that these sub-
divisions ofe resemble the peels used in [42]. How-
ever, special care needs to be taken when comput-
ing this subdivision, since geodesic paths emanating
from s can pass through a vertexp of P . In this
case,p is treated as apseudo-source. The pseudo-
sourcep is labeled by the geodesic distance froms
to p. For any pointx of P , the geodesic distance
is the minimum of the shortest distance froms to x

not passing through a vertex ofP and the geodesic
distance from the nearest pseudo-source ofP to x

plus the label of the pseudo-source. This observa-
tion allows to compute the subdivision ofs and to
store for each region of the subdivision the distance
to the nearest pseudo-source. For a given source ver-
tex s, the algorithm computes a subdivision ofP in
O(n2 log n) time andO(n2) space. Once the sub-
division has been computed, the distance froms to
any other point onP can be computed inO(log n)
time. Reporting the shortest path betweens and any
other point onP takesO(k + log n) time, wherek
is the number of faces ofP crossed by the shortest
path. If the algorithm is initialized with more than
one source point, the subdivision obtained after the
continuous Dijkstra algorithm ended represents the
Voronoi diagram of the source points. Mitchell et
al.’s algorithm is of theoretical interest, since the con-

tinuous Dijkstra technique can be used with differ-
ent update schemes to obtain new algorithms, as we
saw for convex polyhedra [39]. Although the con-
tribution by Mitchell et al. is rather technical, the
algorithm is of practical interest as well. Recently,
Surazhkhy et al. [44] implemented and tested the
algorithm on data sets obtained using a laser-range
scanner. Although the worst-case running time of
the algorithm isO(n2 log n), Surazhsky et al. found
the algorithm’s average running time in their experi-
ments to be much lower and suitable for objects with
hundreds of thousands of triangles. The exact algo-
rithm by Mitchell et al. is then modified to obtain an
algorithm that solves the SSSP problem with approx-
imation ratio(1 + ǫ). Surazhsky et al. derive from
their experiments that an average running time of
O(n log n) can be expected in practice for bounded
approximations from one source point to all the other
points of the mesh.

Chen and Han [11] developed an algorithm to
compute geodesic distances from a source points

on a non-convex polyhedron that does not use the
continuous Dijkstra technique. The algorithm con-
structs a tree calledsequence treethat can be viewed
as an extension of the dual graph of the tree con-
taining ridge points used by Sharir and Schorr [42]
to non-convex polyhedra. In the case of a convex
polyhedron, the sequence treeT contains nodes con-
sisting of an edgee of P , the image ofs in the lo-
cal coordinate system of the face incident toe, and
the projection of the image ontoe. Chen and Han
prove thatT has a linear number of nodes, contains
all of the shortest paths, and can be built inO(n2)
time. For non-convex polyhedra,T contains addi-
tional leaves representing pseudo-sources ofP (as
defined by Mitchell et al. [32]) and the distances of
pseudo-sources froms. This augmentation ofT adds
at mostO(n) nodes. Hence, the algorithm builds a
sequence tree inO(n2) time andO(n) space. After
T was computed, the geodesic distance betweens
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and any point inP can be reported inO(log n) time.
The geodesic path can be reported inO(log n + k)
time, wherek is the number of faces ofP crossed by
the path. Kavena and O’Rourke [20] implemented
and tested the algorithm on synthetic data. The im-
plementation confirms the quadratic time complexity
and the linear space complexity in practice. The ex-
periments show that roundoff errors are not a serious
problem for this algorithm. Kavena and O’Rourke
found the space complexity to be the bottleneck of
the algorithm. Data sets with tens of thousands of
points were used to test the algorithm.

Har-Peled [16] extended his previous ap-
proach to compute(1 + ǫ) approximations of
geodesic paths on realistic polyhedra [15] to
work in case of general polyhedra. Given a
source point s, the algorithm computes a sub-
division of P of size O

(

n
ǫ log

(

1
ǫ

))

in time
O
(

n2 log n+ n
ǫ log

(

1
ǫ

)

log
(

n
ǫ

))

. In the special
case of convex polyhedra, the preprocessing time

becomes O
(

(

n
ǫ

)3
log

(

1
ǫ

)

+ n
ǫ1.5

log
(

1
ǫ

)

log n
)

.

After this preprocessing step, a(1 + ǫ) approx-
imation of the shortest path betweens and any
point p on P can be reported inO

(

log
(

n
ǫ

))

time. This implies that a(1 + ǫ) approxima-
tion to the SSSP problem can be obtained in
O
(

n2 log n+ n
ǫ log

(

1
ǫ

)

log
(

n
ǫ

)

+ n log
(

n
ǫ

))

time.

In 1997, Agarwal and Varadarajan [3] proposed
an algorithm that answers the question of whether it
is possible to compute an approximate shortest path
between two points on polyhedra in sub-quadratic
time. The proposed algorithm only works for poly-
hedra of genus zero. Two algorithms using the
same general technique were proposed. The first
algorithm computes an approximation to the short-
est path with approximation ratio7(1 + ǫ), ǫ > 0

in O(n
5

3 log
5

3 n) time. The second algorithm takes

onlyO(n
8

5 log
8

5 n) time, but the approximation ratio
increases to15(1 + ǫ), ǫ > 0. Note that the run-

ning times of both algorithms is independent of the
choice ofǫ. The main idea of the algorithm is to par-
tition the boundary of the simple polyhedronP into
patches of faces ofP . A graphGi is constructed
on the boundary of each patchPi. The graphsGi

are merged into one graphG and the geodesic paths
onP are approximated by the solution of Dijkstra’s
algorithm onG. Although this is the first paper to
break the quadratic time complexity, the contribution
is mainly of theoretic interest because the algorithm
is involved. Hence, the algorithm has not been im-
plemented.

Kapoor [21] presents an algorithm that solves the
problem of computing the exact shortest path be-
tween a pair of points onP in sub-quadratic time.
The algorithm follows the continuous Dijkstra tech-
nique by Mitchell et al. [32] and propagates a wave-
front over the surface ofP starting from a source
point s. The algorithm maintains the wavefront
as a collection of circular arcs with centers ats

and pseudo-sources ofP . Furthermore, the algo-
rithm maintains all of the edges ofP that have not
yet been reached by the wavefront. The algorithm
takesO(n log2 n) time andO(n) space. According
to O’Rourke [36], the details of the algorithm are
“formidable” . It is therefore not surprising that the
algorithm contains some flaws [39].

Kanai and Suzuki [19] propose an iterative ap-
proximation algorithm to compute the shortest path
between pairs of points onP . The algorithm is
based on Dijkstra’s algorithm and iteratively refines
the mesh in regions where the path can pass. The re-
finement proceeds by placing Steiner points on edges
of P and to repeat Dijkstra’s algorithm on the aug-
mented graph. The user gives two thresholds re-
lated to the accuracy of the approximation. The first
threshold defines the number of times the algorithm
iterates. The second threshold is related to the num-
ber of Steiner points placed on an edge ofP . The au-
thors implement the algorithm and compare it to an
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implementation of Chen and Han’s algorithm. They
find their algorithm to outperform Chen and Han’s
algorithm both in terms of time and space complex-
ity.

The following problems related to computing Eu-
clidean shortest paths on the surface of a possibly
non-convex polyhedron remain unsolved:

• Can the exact shortest path between a pair of
vertices onP be computed inO(n log n) time
usingO(n) space?

• Can the SSSP problem be solved inO(n log n)
time andO(n) space?

2.2 Weighted Cost Metric

This section discusses algorithms that operate on the
surface of a possibly non-convex polyhedronP with
combinatorial complexityn in 3-dimensional space.
Unlike in Section2.1, the length of the shortest path
is not simply measured by its Euclidean length. In-
stead, a weightwi is associated with each facefi
of P . The length of a path crossingfi is its Eu-
clidean length multiplied bywi. The weights can
be used to model the difficulty of the path. For ex-
ample, it is harder to walk on an uneven terrain than
on an asphalt road. A good overview of algorithms
related to weighted shortest paths can be found in
Lanthier [25].

Mitchell and Papadimitriou [33] present an algo-
rithm to compute the shortest path distance between
two arbitrary points in a planar subdivision withn
edges. They note that shortest paths obey Snell’s
Law of refraction at edges of the subdivision. The al-
gorithm is based on this observation and the continu-
ous Dijkstra technique formalized in [32]. Therefore,
the authors note that the algorithm can be extended
to compute weighted shortest paths on the surface of
possibly non-convex polyhedra. The algorithm finds

an approximation of the shortest path with approx-
imation ratio(1 + ǫ) usingO(n8 log(nN W

wǫ)) time
andO(n4) space, whereN is the largest integer co-
ordinate of any vertex in the subdivision andWw is
the ratio between the maximum and the minimum
weight. To our knowledge, this algorithm has not
been implemented. This is not surprising, since the
high time complexity makes the algorithm unsuitable
for practical purposes.

Lanthier et al. [26, 27] developed an approach to
construct a graph that can be searched to obtain an
approximate shortest path onP by adding Steiner
points on each edge ofP . Without loss of generality,
the authors assumeP to be triangulated. A total of
O(n2) Steiner points are added, yielding space com-
plexity O(n2) for all of the algorithms. Four algo-
rithms are presented. The first algorithm computes
the shortest path between two arbitrary points onP

by finding shortest paths in the graph containing ver-
tices ofP and the added Steiner points. The com-
puted shortest path is at mostWL longer than the
true weighted shortest path onP , whereW is the
maximum weight and whereL is the longest edge of
P . The running time of this algorithm isO(n5). Sec-
ond, a faster and less accurate algorithm is presented
to compute the shortest path between two arbitrary
points onP by computing a spanner on the graph
containing the Steiner points and by finding a short-
est path on the spanner. The computed shortest path
has length at mostβ(π + WL), whereπ is the true
weighted shortest path onP andβ > 1 is a con-
stant. Third, algorithms were presented to processP

for queries asking for shortest paths between a fixed
source points in P and an arbitrary pointq in P .
The query time is proportional tolog n and the ac-
curacy of the shortest path. Fourth, algorithms were
presented to processP for queries asking for shortest
paths between two arbitrary points inP . The query
time is proportional tolog n and the accuracy of the
shortest path. For the query algorithms, time-space
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trade off schemes are presented. The authors imple-
mented and tested all of the algorithms on both real-
life and synthetic data sets. Experiments showed that
in practice, much less thann2 Steiner points suffice
to yield acceptable results.

Lanthier et al. furthermore present an algorithm
that runs inO(n log n) time that computes a shortest

path withing a factor of
(

1 + 2
sinΘmin

)

, whereΘmin

is the minimum interior angle of any face ofP [27,
Theorem 3.1].

Aleksandrov et al. [5] presented an algorithm to
compute an approximation of a weighted geodesic
path on arbitrary polyhedra with approximation ra-
tio (1 + ǫ). The algorithm is similar to [26] in that
Steiner points are added along each edge ofP . On
each edge,m = O(log L

r ) Steiner points are placed,
whereL is the length of the longest edge ofP and
r is min( ǫ

2+3W/w ,
1
6) times the minimum distance

of a vertex ofP to the boundary of the union of
its incident faces. As before,Ww is the ratio be-
tween the maximum and the minimum weight. A
graphG is computed on the Steiner points andG
is partitioned intomn

r sub-regions. In each sub-
region, all shortest paths between pairs of vertices
are computed. Furthermore, all shortest paths be-
tween pairs of vertices on the boundaries of the
sub-regions are computed. This computation takes

O(nmr log r + (nm)2

r log nm√
r
+ (nm)2√

r
) time. The

graphG has complexityO(nm2), which dominates
the space requirement of the algorithm. Note that
since the graph is subdivided into small sub-graphs,
the preprocessing is suitable for parallelizing the al-
gorithm. After preprocessing, a(1 + ǫ) approxima-
tion of the shortest path between two arbitrary query
points onP can be reported. To our knowledge, this
algorithm has not been implemented.

Aleksandrov et al. [6] extend this algorithm and
place Steiner points on edges ofP and in the inte-
rior of faces ofP . The approximation ratio remains

(1 + ǫ). That way, a graphG is constructed. An ex-
tension of Dijkstra’s algorithm can be run onG to
obtain a(1 + ǫ) approximation of shortest paths on
P . The algorithm takesO(nǫ log

1
ǫ (

1√
ǫ
+ log n)), for

0 < ǫ < 1 andO(n log n) for ǫ ≥ 1 time to compute
the shortest path between two arbitrary vertices on
P .

Sun and Reif [43] improve the algo-
rithm by Aleksandrov et al. [6] to run in
O(nǫ

(

log 1
ǫ + log n

)

log 1
ǫ ) time. This improvement

is achieved by solving the SSSP problem on the
graph enhanced by Steiner points using a new
algorithm calledBushwhack algorithm. The Bush-
whack algorithm is similar to Dijkstra’s algorithm.
However, the Bushwhack algorithm maintains for
each Steiner point a small set of incident edges that
are likely to be used in order to improve the current
shortest path. This list of edges results in an algo-
rithm that is faster than Dijkstra’s algorithm. Sun
and Reif implemented and tested their algorithm.
They found that whenO(1ǫ log

1
ǫ ) Steiner points

are inserted per edge, the hidden constant in the
O-notation is large.

Aleksandrov et al. [7, 8] improve the running time
of the algorithm toO( n√

ǫ
log n

ǫ log
1
ǫ ) by discretiz-

ing P differently. In this algorithm, Steiner points
are placed along the three bisectors of triangles of
P . The practical use of the algorithms is limited,
since a large number of Steiner points is inserted.
Due to memory restrictions on current computers,
this yields problems for real-life data sets.

If the weights used for the weighted distances are
restricted to be in the range[1, ρ] ∪ {∞} , ρ ≥ 1,
Cheng et al. [12] present an algorithm to compute
an approximation of ratio(1+ ǫ) of the shortest path

from s to t that runs inO(ρ
2 log ρ
ǫ2

n3 log ρn
ǫ ) time. The

advantage of this algorithm is that the running time
does not depend on the geometry ofP .

Lanthier et al. [28] implemented the first paral-
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lel algorithm to compute approximations of ratio
(1 + ǫ) for weighted shortest paths. As in previous
approaches, the approach proceeds by constructing
a graph and by computing the shortest path between
vertices of a graph. The computation of the short-
est paths is based on Dijkstra’s algorithm and can be
broken down into three components: preprocessing
to find a graphG, executing Dijkstra’s algorithm on
G, and backtracking the path. The algorithm uses
a spatial indexing structure calledmultidimensional
fixed partition that achieves load balancing and re-
duces the idle time of processors. The algorithm can
solve the SSSP and the APSP problems. The algo-
rithm was tested on a network of workstations, on a
beowulf cluster, and on a symmetric multiprocessing
architecture. The tests were performed for six geo-
graphic data sets with up to one million triangles and
achieved acceptable running times.

Aleksandrov et al. [4] preprocess P in

O
(

n√
ǫ
log 1

ǫ log
n
ǫ

)

time andO
(

n√
ǫ
log 1

ǫ

)

space,

such that an approximation of ratio(1 + ǫ) between
any pointq on P and a given source points on P

can be computed inO
(

1
ǫ

)

time. Alternatively,P

can be preprocessed inO
(

(g+1)n2

ǫ3/2q
log n

ǫ log
4 1

ǫ

)

time andO
(

(g+1)n2

ǫ3/2q
log4 1

ǫ

)

space, such that an

approximation of ratio(1 + ǫ) between any pair
of points on P can be computed inO(q) time,
whereg is the genus ofP and whereq is an input
parameter. The algorithm is complex and has not
been implemented to our knowledge.

The following problems related to computing
weighted shortest paths on the surface of a possibly
non-convex polyhedron remain unsolved:

• No exact algorithm for computing weighted
shortest paths exists to our knowledge.

• How canm Steiner points be placed on each
face such that the best approximation accuracy

is obtained [25]? Is this problem NP-hard?

• What is the minimum number of Steiner points
needed on each face to obtain a(1 + ǫ)-
approximation scheme? Is this problem NP-
hard?

3 Sample-Based Algorithms

This section reviews algorithms for computing short-
est paths on discretized smooth surfaces. We focus
on the case where the discretization at hand is given
as polyhedron. Unlike the above-mentioned algo-
rithms, the algorithms reviewed in this section gener-
alize algorithms from differential geometry to com-
pute geodesic paths on smooth surfaces to operate
on discretized surfaces. The research area concerned
with these problems isdiscrete differential geometry.
For a more extensive survey, refer to Kirsanov [24].

Kimmel and Kiryati [22] assume that a discretized
surface is given in a voxel representation. That is,
space is divided into a cubical grid and each grid
point is labeled as located inside the surface, on the
surface, or outside of the surface. The approach pro-
posed by Kimmel and Kiryati has two stages. In the
first stage, a 3D length estimator is used in a graph
search on the graph defined by the surface voxels to
find a global approximation of the shortest path. This
approximation is then refined using local informa-
tion. The refinement is done using a discrete version
of geodesic curvature shortening flow. This way, an
approximation of a shortest path between two grid
points can be found. The approximation ratio is not
shown to be bounded. However, since the underly-
ing surface is assumed to be smooth, the approxima-
tion is the best that can be obtained with the available
voxel grid size. The algorithm has been implemented
and tested thoroughly and appears to perform well in
practice.
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Kimmel and Sethian [23] present an approach
called fast marching method on triangular domains
(FMM) that solves the SSSP problem by solving the
Eikonal equation on a triangular grid withn vertices.
The result is based on Sethian’s method to solve the
Eikonal equation on a quadrilateral grid [40, 41].
The algorithm’s running time isO(n log n). The al-
gorithm proceeds by iteratively unfolding all of the
triangles of the triangular mesh. When unfolding tri-
angles, Steiner points are placed along the edges of
the triangles. This results in shortest paths that cut
through faces of the triangulation and yields consis-
tent results. However, the shortest paths found using
the FMM method only approximate the true geodesic
distances on the triangular mesh. The reason is that
the true geodesic distance may require Steiner points
in the interior of a triangular face. The accuracy of
the approach depends on the quality of the underly-
ing triangulation; namely on the longest edge and the
widest angle in the triangular mesh. The algorithm
requiresO(n) space. Since the algorithm is easy
to implement and performs well in practice, several
implementations of the algorithm exist. Yatziv et
al. [47] improve the running time of FMM by us-
ing anuntidy priority queue. Their experimental re-
sults show that the accuracy of the computed short-
est paths only suffers slightly from this newly intro-
duced inaccuracy. Kirsanov [24] introduces a novel
update rule for FMM during the march. This update
rule yields a higher accuracy of the resulting shortest
paths. Bertelli et al. [9] consider solving the APSP
problem using FMM. Their goal is to take advan-
tage of the redundant computation in different passes
of the SSSP algorithm to obtain a more efficient ap-
proach than simply running FMMn times with each
vertex as source point. Although the algorithm is
shown to achieve higher efficiency in experiments,
the worst case running time of the algorithm remains
O(n2 log n).

Martinez et al. [29] present a way to iteratively

improve an existing estimate of a geodesic path be-
tween two vertices of a triangulated surface. Start-
ing from a path computed via FMM, the path can
be refined to yield a better approximation. Simi-
lar to Kimmel and Kiryati [22], a discrete geodesic
curvature flow is used to iteratively improve the ap-
proximation. Martinez et al. show that the iterative
scheme converges to the true geodesic path.

Xin and Wang [46] present another iterative
method to improve the path found by the fast march-
ing method. The algorithm first improves the ini-
tial fast marching method by classifying the edges of
P into different types and by treating different edge
types differently during the wave front propagation.
Second, the algorithm iteratively improves the result-
ing shortest path until the exact locally shortest path
is found.

Memoli and Sapiro [30] approximate the geodesic
distances of an underlying smooth manifold using
a cloud of sample points without aiming to recon-
struct a polyhedron representing the surface. The al-
gorithm is based on a previous algorithm that oper-
ates on implicit surfaces. The algorithm proceeds by
placing a ball around each sample point and by com-
puting the unionU of those balls. The Euclidean
distance inU is used to approximate the geodesic
distance on the underlying smooth manifold. The
approximation is proven to be bounded by a constant
if the sampling rate is sufficiently small. The sam-
pling rate needed by the algorithm depends on the
highest principal curvature of the underlying smooth
surface. If the sampling is subject to noise, the bound
on the approximation error gets worse. However, the
decline in accuracy can be bounded by a function de-
pending on the sampling noise.
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Polyhedral Cost Approximation Time Ref.
Surface Metric Ratio Complexity

Graph-based Convex Euclidean 1 O(n3 log n) [42]
Graph-based Convex Euclidean 1 O(n2 log n) [34]
Graph-based Convex Euclidean 2 O(n) [18]
Graph-based Convex Euclidean 1 + ǫ O(nmin( 1

ǫ1.5
, log n) + 1

ǫ4.5
log 1

ǫ ) [17]
Graph-based Convex Euclidean 1 + ǫ O(n log 1

ǫ +
1
ǫ3
) [2]

Graph-based Convex Euclidean 1 O(n log n) [39]

Graph-based Non-convex Euclidean 1 O(n5) [37]
Graph-based Non-convex Euclidean 1 O(n2 log n) [32]
Graph-based Non-convex Euclidean 1 O(n2) [11]
Graph-based Non-convex Euclidean 1 + ǫ O

(

n2 log n+ n
ǫ log

(

1
ǫ

)

log
(

n
ǫ

))

[16]

Graph-based Non-convex Euclidean 7(1 + ǫ) O(n
5

3 log
5

3 n) [3]

Graph-based Non-convex Euclidean 15(1 + ǫ) O(n
8

5 log
8

5 n) [3]
Graph-based Non-convex Euclidean 1 O(n log2 n) [21]

Graph-based Non-convex Weighted 1 + ǫ O(n8 log(nN W
wǫ)) [33]

Graph-based Non-convex Weighted Additive O(n5) [27]

Graph-based Non-convex Weighted 1 + ǫ O(nmr log r + (nm)2

r log nm√
r
+ (nm)2√

r
) [5]

Graph-based Non-convex Weighted 1 + ǫ O(nǫ log
1
ǫ (

1√
ǫ
+ log n)) [6]

Graph-based Non-convex Weighted 1 + ǫ O( n√
ǫ
log n

ǫ log
1
ǫ ) [8]

Graph-based Non-convex Weighted 1 + ǫ O(nǫ
(

log 1
ǫ + log n

)

log 1
ǫ ) [43]

Graph-based Non-convex Weighted 1 + ǫ O(ρ
2 log ρ
ǫ2 n3 log ρn

ǫ ) [12]

Graph-based Non-convex Weighted 1 + ǫ O
(

n√
ǫ
log 1

ǫ log
n
ǫ

)

[4]

Sample-based Non-convex Euclidean Unbounded O(n log n) [23]
Sample-based Non-convex Euclidean Unbounded O(n) [47]

Table 1: Results on Shortest Paths on a Polyhedral SurfaceP with n vertices. The constantǫ > 0 is the
desired accuracy of the shortest path. In the weighted case,N is the largest integer coordinate of any vertex
in the subdivision andWw is the ratio between the maximum and the minimum weight. The symbol m
denotes the number of Steiner points placed along one edge. The symbolr denotesmin( ǫ

2+3W/w ,
1
6 ) times

the minimum distance of a vertex ofP to the boundary of the union of its incident faces. The constant ρ > 1
is the largest weight assigned to a face ofP .
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The following problems related to sample-based
geodesic computations remain unsolved:

• Graph-based algorithms find globally optimal
paths that may not be locally optimal if the
graph is based on samples obtained from a
smooth surface. Algorithms from differen-
tial geometry can be discretized to find locally
shortest paths. However, these algorithms can
often get trapped in local insignificant minima.
Can graph-based algorithms be combined with
algorithms from discrete differential geometry
to yield efficient globally convergent algorithms
to compute a bounded approximation of the
geodesic distance on a sample set obtained from
a smooth surface [24]?

• Can FMM be generalized to solve the APSP
problem ino(n2 log n) time (recall that a solu-
tion inO(n2 log n) was suggested [9])?

4 Summary

To summarize this survey, Table1 gives the reviewed
results on shortest path problems on polyhedral sur-
faces.
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Jörg-Rüdiger Sack. Approximate shortest path
queries on weighted polyhedral surfaces.Math-
ematical Foundations of Computer Science,
4162:98–109, 2006.

[5] Lyudmil Aleksandrov, Mark Lanthier, Anil
Maheshwari, and Jörg-Rüdiger Sack. Anǫ-
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